mesa/src/gallium/drivers/iris/iris_state.c

8117 lines
300 KiB
C
Raw Normal View History

/*
* Copyright © 2017 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
/**
* @file iris_state.c
*
* ============================= GENXML CODE =============================
* [This file is compiled once per generation.]
* =======================================================================
*
* This is the main state upload code.
*
* Gallium uses Constant State Objects, or CSOs, for most state. Large,
* complex, or highly reusable state can be created once, and bound and
* rebound multiple times. This is modeled with the pipe->create_*_state()
* and pipe->bind_*_state() hooks. Highly dynamic or inexpensive state is
* streamed out on the fly, via pipe->set_*_state() hooks.
*
* OpenGL involves frequently mutating context state, which is mirrored in
* core Mesa by highly mutable data structures. However, most applications
* typically draw the same things over and over - from frame to frame, most
* of the same objects are still visible and need to be redrawn. So, rather
* than inventing new state all the time, applications usually mutate to swap
* between known states that we've seen before.
*
* Gallium isolates us from this mutation by tracking API state, and
* distilling it into a set of Constant State Objects, or CSOs. Large,
* complex, or typically reusable state can be created once, then reused
* multiple times. Drivers can create and store their own associated data.
* This create/bind model corresponds to the pipe->create_*_state() and
* pipe->bind_*_state() driver hooks.
*
* Some state is cheap to create, or expected to be highly dynamic. Rather
* than creating and caching piles of CSOs for these, Gallium simply streams
* them out, via the pipe->set_*_state() driver hooks.
*
* To reduce draw time overhead, we try to compute as much state at create
* time as possible. Wherever possible, we translate the Gallium pipe state
* to 3DSTATE commands, and store those commands in the CSO. At draw time,
* we can simply memcpy them into a batch buffer.
*
* No hardware matches the abstraction perfectly, so some commands require
* information from multiple CSOs. In this case, we can store two copies
* of the packet (one in each CSO), and simply | together their DWords at
* draw time. Sometimes the second set is trivial (one or two fields), so
* we simply pack it at draw time.
*
* There are two main components in the file below. First, the CSO hooks
* create/bind/track state. The second are the draw-time upload functions,
* iris_upload_render_state() and iris_upload_compute_state(), which read
* the context state and emit the commands into the actual batch.
*/
#include <stdio.h>
#include <errno.h>
#if HAVE_VALGRIND
#include <valgrind.h>
#include <memcheck.h>
#define VG(x) x
#ifdef DEBUG
#define __gen_validate_value(x) VALGRIND_CHECK_MEM_IS_DEFINED(&(x), sizeof(x))
#endif
#else
#define VG(x)
#endif
#include "pipe/p_defines.h"
#include "pipe/p_state.h"
#include "pipe/p_context.h"
#include "pipe/p_screen.h"
#include "util/u_dual_blend.h"
#include "util/u_inlines.h"
#include "util/format/u_format.h"
#include "util/u_framebuffer.h"
#include "util/u_transfer.h"
2018-02-09 14:21:54 -08:00
#include "util/u_upload_mgr.h"
#include "util/u_viewport.h"
#include "util/u_memory.h"
#include "drm-uapi/i915_drm.h"
2018-04-19 19:04:17 -07:00
#include "nir.h"
#include "intel/compiler/brw_compiler.h"
#include "intel/common/intel_aux_map.h"
#include "intel/common/intel_l3_config.h"
#include "intel/common/intel_sample_positions.h"
2017-12-27 02:54:26 -08:00
#include "iris_batch.h"
#include "iris_context.h"
#include "iris_defines.h"
2018-01-11 22:18:54 -08:00
#include "iris_pipe.h"
#include "iris_resource.h"
#include "iris_genx_macros.h"
#include "intel/common/intel_guardband.h"
/**
* Statically assert that PIPE_* enums match the hardware packets.
* (As long as they match, we don't need to translate them.)
*/
UNUSED static void pipe_asserts()
{
#define PIPE_ASSERT(x) STATIC_ASSERT((int)x)
/* pipe_logicop happens to match the hardware. */
PIPE_ASSERT(PIPE_LOGICOP_CLEAR == LOGICOP_CLEAR);
PIPE_ASSERT(PIPE_LOGICOP_NOR == LOGICOP_NOR);
PIPE_ASSERT(PIPE_LOGICOP_AND_INVERTED == LOGICOP_AND_INVERTED);
PIPE_ASSERT(PIPE_LOGICOP_COPY_INVERTED == LOGICOP_COPY_INVERTED);
PIPE_ASSERT(PIPE_LOGICOP_AND_REVERSE == LOGICOP_AND_REVERSE);
PIPE_ASSERT(PIPE_LOGICOP_INVERT == LOGICOP_INVERT);
PIPE_ASSERT(PIPE_LOGICOP_XOR == LOGICOP_XOR);
PIPE_ASSERT(PIPE_LOGICOP_NAND == LOGICOP_NAND);
PIPE_ASSERT(PIPE_LOGICOP_AND == LOGICOP_AND);
PIPE_ASSERT(PIPE_LOGICOP_EQUIV == LOGICOP_EQUIV);
PIPE_ASSERT(PIPE_LOGICOP_NOOP == LOGICOP_NOOP);
PIPE_ASSERT(PIPE_LOGICOP_OR_INVERTED == LOGICOP_OR_INVERTED);
PIPE_ASSERT(PIPE_LOGICOP_COPY == LOGICOP_COPY);
PIPE_ASSERT(PIPE_LOGICOP_OR_REVERSE == LOGICOP_OR_REVERSE);
PIPE_ASSERT(PIPE_LOGICOP_OR == LOGICOP_OR);
PIPE_ASSERT(PIPE_LOGICOP_SET == LOGICOP_SET);
/* pipe_blend_func happens to match the hardware. */
PIPE_ASSERT(PIPE_BLENDFACTOR_ONE == BLENDFACTOR_ONE);
PIPE_ASSERT(PIPE_BLENDFACTOR_SRC_COLOR == BLENDFACTOR_SRC_COLOR);
PIPE_ASSERT(PIPE_BLENDFACTOR_SRC_ALPHA == BLENDFACTOR_SRC_ALPHA);
PIPE_ASSERT(PIPE_BLENDFACTOR_DST_ALPHA == BLENDFACTOR_DST_ALPHA);
PIPE_ASSERT(PIPE_BLENDFACTOR_DST_COLOR == BLENDFACTOR_DST_COLOR);
PIPE_ASSERT(PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE == BLENDFACTOR_SRC_ALPHA_SATURATE);
PIPE_ASSERT(PIPE_BLENDFACTOR_CONST_COLOR == BLENDFACTOR_CONST_COLOR);
PIPE_ASSERT(PIPE_BLENDFACTOR_CONST_ALPHA == BLENDFACTOR_CONST_ALPHA);
PIPE_ASSERT(PIPE_BLENDFACTOR_SRC1_COLOR == BLENDFACTOR_SRC1_COLOR);
PIPE_ASSERT(PIPE_BLENDFACTOR_SRC1_ALPHA == BLENDFACTOR_SRC1_ALPHA);
PIPE_ASSERT(PIPE_BLENDFACTOR_ZERO == BLENDFACTOR_ZERO);
PIPE_ASSERT(PIPE_BLENDFACTOR_INV_SRC_COLOR == BLENDFACTOR_INV_SRC_COLOR);
PIPE_ASSERT(PIPE_BLENDFACTOR_INV_SRC_ALPHA == BLENDFACTOR_INV_SRC_ALPHA);
PIPE_ASSERT(PIPE_BLENDFACTOR_INV_DST_ALPHA == BLENDFACTOR_INV_DST_ALPHA);
PIPE_ASSERT(PIPE_BLENDFACTOR_INV_DST_COLOR == BLENDFACTOR_INV_DST_COLOR);
PIPE_ASSERT(PIPE_BLENDFACTOR_INV_CONST_COLOR == BLENDFACTOR_INV_CONST_COLOR);
PIPE_ASSERT(PIPE_BLENDFACTOR_INV_CONST_ALPHA == BLENDFACTOR_INV_CONST_ALPHA);
PIPE_ASSERT(PIPE_BLENDFACTOR_INV_SRC1_COLOR == BLENDFACTOR_INV_SRC1_COLOR);
PIPE_ASSERT(PIPE_BLENDFACTOR_INV_SRC1_ALPHA == BLENDFACTOR_INV_SRC1_ALPHA);
/* pipe_blend_func happens to match the hardware. */
PIPE_ASSERT(PIPE_BLEND_ADD == BLENDFUNCTION_ADD);
PIPE_ASSERT(PIPE_BLEND_SUBTRACT == BLENDFUNCTION_SUBTRACT);
PIPE_ASSERT(PIPE_BLEND_REVERSE_SUBTRACT == BLENDFUNCTION_REVERSE_SUBTRACT);
PIPE_ASSERT(PIPE_BLEND_MIN == BLENDFUNCTION_MIN);
PIPE_ASSERT(PIPE_BLEND_MAX == BLENDFUNCTION_MAX);
/* pipe_stencil_op happens to match the hardware. */
PIPE_ASSERT(PIPE_STENCIL_OP_KEEP == STENCILOP_KEEP);
PIPE_ASSERT(PIPE_STENCIL_OP_ZERO == STENCILOP_ZERO);
PIPE_ASSERT(PIPE_STENCIL_OP_REPLACE == STENCILOP_REPLACE);
PIPE_ASSERT(PIPE_STENCIL_OP_INCR == STENCILOP_INCRSAT);
PIPE_ASSERT(PIPE_STENCIL_OP_DECR == STENCILOP_DECRSAT);
PIPE_ASSERT(PIPE_STENCIL_OP_INCR_WRAP == STENCILOP_INCR);
PIPE_ASSERT(PIPE_STENCIL_OP_DECR_WRAP == STENCILOP_DECR);
PIPE_ASSERT(PIPE_STENCIL_OP_INVERT == STENCILOP_INVERT);
2018-01-29 15:06:04 -08:00
/* pipe_sprite_coord_mode happens to match 3DSTATE_SBE */
PIPE_ASSERT(PIPE_SPRITE_COORD_UPPER_LEFT == UPPERLEFT);
PIPE_ASSERT(PIPE_SPRITE_COORD_LOWER_LEFT == LOWERLEFT);
#undef PIPE_ASSERT
}
2018-01-10 00:19:29 -08:00
static unsigned
translate_prim_type(enum pipe_prim_type prim, uint8_t verts_per_patch)
{
static const unsigned map[] = {
[PIPE_PRIM_POINTS] = _3DPRIM_POINTLIST,
[PIPE_PRIM_LINES] = _3DPRIM_LINELIST,
[PIPE_PRIM_LINE_LOOP] = _3DPRIM_LINELOOP,
[PIPE_PRIM_LINE_STRIP] = _3DPRIM_LINESTRIP,
[PIPE_PRIM_TRIANGLES] = _3DPRIM_TRILIST,
[PIPE_PRIM_TRIANGLE_STRIP] = _3DPRIM_TRISTRIP,
[PIPE_PRIM_TRIANGLE_FAN] = _3DPRIM_TRIFAN,
[PIPE_PRIM_QUADS] = _3DPRIM_QUADLIST,
[PIPE_PRIM_QUAD_STRIP] = _3DPRIM_QUADSTRIP,
[PIPE_PRIM_POLYGON] = _3DPRIM_POLYGON,
[PIPE_PRIM_LINES_ADJACENCY] = _3DPRIM_LINELIST_ADJ,
[PIPE_PRIM_LINE_STRIP_ADJACENCY] = _3DPRIM_LINESTRIP_ADJ,
[PIPE_PRIM_TRIANGLES_ADJACENCY] = _3DPRIM_TRILIST_ADJ,
[PIPE_PRIM_TRIANGLE_STRIP_ADJACENCY] = _3DPRIM_TRISTRIP_ADJ,
[PIPE_PRIM_PATCHES] = _3DPRIM_PATCHLIST_1 - 1,
};
2018-01-20 01:05:13 -08:00
return map[prim] + (prim == PIPE_PRIM_PATCHES ? verts_per_patch : 0);
2018-01-10 00:19:29 -08:00
}
static unsigned
translate_compare_func(enum pipe_compare_func pipe_func)
{
static const unsigned map[] = {
[PIPE_FUNC_NEVER] = COMPAREFUNCTION_NEVER,
[PIPE_FUNC_LESS] = COMPAREFUNCTION_LESS,
[PIPE_FUNC_EQUAL] = COMPAREFUNCTION_EQUAL,
[PIPE_FUNC_LEQUAL] = COMPAREFUNCTION_LEQUAL,
[PIPE_FUNC_GREATER] = COMPAREFUNCTION_GREATER,
[PIPE_FUNC_NOTEQUAL] = COMPAREFUNCTION_NOTEQUAL,
[PIPE_FUNC_GEQUAL] = COMPAREFUNCTION_GEQUAL,
[PIPE_FUNC_ALWAYS] = COMPAREFUNCTION_ALWAYS,
};
return map[pipe_func];
}
static unsigned
translate_shadow_func(enum pipe_compare_func pipe_func)
{
/* Gallium specifies the result of shadow comparisons as:
*
* 1 if ref <op> texel,
* 0 otherwise.
*
* The hardware does:
*
* 0 if texel <op> ref,
* 1 otherwise.
*
* So we need to flip the operator and also negate.
*/
static const unsigned map[] = {
[PIPE_FUNC_NEVER] = PREFILTEROPALWAYS,
[PIPE_FUNC_LESS] = PREFILTEROPLEQUAL,
[PIPE_FUNC_EQUAL] = PREFILTEROPNOTEQUAL,
[PIPE_FUNC_LEQUAL] = PREFILTEROPLESS,
[PIPE_FUNC_GREATER] = PREFILTEROPGEQUAL,
[PIPE_FUNC_NOTEQUAL] = PREFILTEROPEQUAL,
[PIPE_FUNC_GEQUAL] = PREFILTEROPGREATER,
[PIPE_FUNC_ALWAYS] = PREFILTEROPNEVER,
};
return map[pipe_func];
}
static unsigned
translate_cull_mode(unsigned pipe_face)
{
static const unsigned map[4] = {
[PIPE_FACE_NONE] = CULLMODE_NONE,
[PIPE_FACE_FRONT] = CULLMODE_FRONT,
[PIPE_FACE_BACK] = CULLMODE_BACK,
[PIPE_FACE_FRONT_AND_BACK] = CULLMODE_BOTH,
};
return map[pipe_face];
}
static unsigned
translate_fill_mode(unsigned pipe_polymode)
{
static const unsigned map[4] = {
[PIPE_POLYGON_MODE_FILL] = FILL_MODE_SOLID,
[PIPE_POLYGON_MODE_LINE] = FILL_MODE_WIREFRAME,
[PIPE_POLYGON_MODE_POINT] = FILL_MODE_POINT,
[PIPE_POLYGON_MODE_FILL_RECTANGLE] = FILL_MODE_SOLID,
};
return map[pipe_polymode];
}
static unsigned
translate_mip_filter(enum pipe_tex_mipfilter pipe_mip)
{
static const unsigned map[] = {
[PIPE_TEX_MIPFILTER_NEAREST] = MIPFILTER_NEAREST,
[PIPE_TEX_MIPFILTER_LINEAR] = MIPFILTER_LINEAR,
[PIPE_TEX_MIPFILTER_NONE] = MIPFILTER_NONE,
};
return map[pipe_mip];
}
static uint32_t
translate_wrap(unsigned pipe_wrap)
{
static const unsigned map[] = {
[PIPE_TEX_WRAP_REPEAT] = TCM_WRAP,
[PIPE_TEX_WRAP_CLAMP] = TCM_HALF_BORDER,
[PIPE_TEX_WRAP_CLAMP_TO_EDGE] = TCM_CLAMP,
[PIPE_TEX_WRAP_CLAMP_TO_BORDER] = TCM_CLAMP_BORDER,
[PIPE_TEX_WRAP_MIRROR_REPEAT] = TCM_MIRROR,
[PIPE_TEX_WRAP_MIRROR_CLAMP_TO_EDGE] = TCM_MIRROR_ONCE,
/* These are unsupported. */
[PIPE_TEX_WRAP_MIRROR_CLAMP] = -1,
[PIPE_TEX_WRAP_MIRROR_CLAMP_TO_BORDER] = -1,
};
return map[pipe_wrap];
}
/**
* Allocate space for some indirect state.
*
* Return a pointer to the map (to fill it out) and a state ref (for
* referring to the state in GPU commands).
*/
2018-06-28 00:57:49 -07:00
static void *
upload_state(struct u_upload_mgr *uploader,
struct iris_state_ref *ref,
unsigned size,
unsigned alignment)
{
void *p = NULL;
u_upload_alloc(uploader, 0, size, alignment, &ref->offset, &ref->res, &p);
return p;
}
/**
* Stream out temporary/short-lived state.
*
* This allocates space, pins the BO, and includes the BO address in the
* returned offset (which works because all state lives in 32-bit memory
* zones).
*/
static uint32_t *
stream_state(struct iris_batch *batch,
struct u_upload_mgr *uploader,
struct pipe_resource **out_res,
unsigned size,
unsigned alignment,
2018-04-06 11:44:59 -07:00
uint32_t *out_offset)
{
void *ptr = NULL;
u_upload_alloc(uploader, 0, size, alignment, out_offset, out_res, &ptr);
2018-04-06 11:44:59 -07:00
struct iris_bo *bo = iris_resource_bo(*out_res);
iris_use_pinned_bo(batch, bo, false, IRIS_DOMAIN_NONE);
2018-04-06 11:44:59 -07:00
iris_record_state_size(batch->state_sizes,
bo->gtt_offset + *out_offset, size);
2018-04-06 11:44:59 -07:00
*out_offset += iris_bo_offset_from_base_address(bo);
iris: Record state sizes for INTEL_DEBUG=bat decoding. Felix noticed a crash when using INTEL_DEBUG=bat decoding. It turned out that we were sometimes placing variable length data near the end of a buffer, and with the decoder guessing random lengths rather than having an actual count, it was walking off the end and crashing. So this does more than improve the decoder output. Unfortunately, this is a bit more complicated than i965's handling, because we don't have a single state buffer. Various places upload data via u_upload_mgr, and so there isn't a central place to record the size. We don't need to catch every single place, however, since it's only important to record variable length packets (like viewports and binding tables). State data also lives arbitrarily long, rather than being discarded on every batch like i965, so we don't know when to clear out old entries either. (We also don't have a callback when an upload buffer is released.) So, this tracking may space leak over time. That's probably okay though, as this is only a debugging feature and it's a slow leak. We may also get lucky and overwrite existing entries as we reuse BOs, though I find this unlikely to happen. The fact that the decoder works in terms of offsets from a state base address is also not ideal, as dynamic state base address and surface state base address differ for iris. However, because dynamic state addresses start from the top of a 4GB region, and binding tables start from addresses [0, 64K), it's highly unlikely that we'll get overlap. We can always improve this, but for now it's better than what we had.
2019-05-22 18:14:38 -07:00
return ptr;
}
/**
* stream_state() + memcpy.
*/
static uint32_t
emit_state(struct iris_batch *batch,
struct u_upload_mgr *uploader,
struct pipe_resource **out_res,
const void *data,
unsigned size,
unsigned alignment)
{
unsigned offset = 0;
uint32_t *map =
stream_state(batch, uploader, out_res, size, alignment, &offset);
if (map)
memcpy(map, data, size);
return offset;
}
/**
* Did field 'x' change between 'old_cso' and 'new_cso'?
*
* (If so, we may want to set some dirty flags.)
*/
2018-06-09 00:01:09 -07:00
#define cso_changed(x) (!old_cso || (old_cso->x != new_cso->x))
#define cso_changed_memcmp(x) \
(!old_cso || memcmp(old_cso->x, new_cso->x, sizeof(old_cso->x)) != 0)
static void
flush_before_state_base_change(struct iris_batch *batch)
{
const struct gen_device_info *devinfo = &batch->screen->devinfo;
/* Flush before emitting STATE_BASE_ADDRESS.
*
* This isn't documented anywhere in the PRM. However, it seems to be
* necessary prior to changing the surface state base address. We've
* seen issues in Vulkan where we get GPU hangs when using multi-level
* command buffers which clear depth, reset state base address, and then
* go render stuff.
*
* Normally, in GL, we would trust the kernel to do sufficient stalls
* and flushes prior to executing our batch. However, it doesn't seem
* as if the kernel's flushing is always sufficient and we don't want to
* rely on it.
*
* We make this an end-of-pipe sync instead of a normal flush because we
* do not know the current status of the GPU. On Haswell at least,
* having a fast-clear operation in flight at the same time as a normal
* rendering operation can cause hangs. Since the kernel's flushing is
* insufficient, we need to ensure that any rendering operations from
* other processes are definitely complete before we try to do our own
* rendering. It's a bit of a big hammer but it appears to work.
*/
iris_emit_end_of_pipe_sync(batch,
"change STATE_BASE_ADDRESS (flushes)",
PIPE_CONTROL_RENDER_TARGET_FLUSH |
PIPE_CONTROL_DEPTH_CACHE_FLUSH |
PIPE_CONTROL_DATA_CACHE_FLUSH |
/* Wa_1606662791:
*
* Software must program PIPE_CONTROL command
* with "HDC Pipeline Flush" prior to
* programming of the below two non-pipeline
* state :
* * STATE_BASE_ADDRESS
* * 3DSTATE_BINDING_TABLE_POOL_ALLOC
*/
((GFX_VER == 12 && devinfo->revision == 0 /* A0 */ ?
PIPE_CONTROL_FLUSH_HDC : 0)));
}
static void
flush_after_state_base_change(struct iris_batch *batch)
{
/* After re-setting the surface state base address, we have to do some
* cache flusing so that the sampler engine will pick up the new
* SURFACE_STATE objects and binding tables. From the Broadwell PRM,
* Shared Function > 3D Sampler > State > State Caching (page 96):
*
* Coherency with system memory in the state cache, like the texture
* cache is handled partially by software. It is expected that the
* command stream or shader will issue Cache Flush operation or
* Cache_Flush sampler message to ensure that the L1 cache remains
* coherent with system memory.
*
* [...]
*
* Whenever the value of the Dynamic_State_Base_Addr,
* Surface_State_Base_Addr are altered, the L1 state cache must be
* invalidated to ensure the new surface or sampler state is fetched
* from system memory.
*
* The PIPE_CONTROL command has a "State Cache Invalidation Enable" bit
* which, according the PIPE_CONTROL instruction documentation in the
* Broadwell PRM:
*
* Setting this bit is independent of any other bit in this packet.
* This bit controls the invalidation of the L1 and L2 state caches
* at the top of the pipe i.e. at the parsing time.
*
* Unfortunately, experimentation seems to indicate that state cache
* invalidation through a PIPE_CONTROL does nothing whatsoever in
* regards to surface state and binding tables. In stead, it seems that
* invalidating the texture cache is what is actually needed.
*
* XXX: As far as we have been able to determine through
* experimentation, shows that flush the texture cache appears to be
* sufficient. The theory here is that all of the sampling/rendering
* units cache the binding table in the texture cache. However, we have
* yet to be able to actually confirm this.
*/
iris_emit_end_of_pipe_sync(batch,
"change STATE_BASE_ADDRESS (invalidates)",
PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
PIPE_CONTROL_CONST_CACHE_INVALIDATE |
PIPE_CONTROL_STATE_CACHE_INVALIDATE);
}
static void
_iris_emit_lri(struct iris_batch *batch, uint32_t reg, uint32_t val)
{
iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_IMM), lri) {
lri.RegisterOffset = reg;
lri.DataDWord = val;
}
}
#define iris_emit_lri(b, r, v) _iris_emit_lri(b, GENX(r##_num), v)
static void
_iris_emit_lrr(struct iris_batch *batch, uint32_t dst, uint32_t src)
{
iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_REG), lrr) {
lrr.SourceRegisterAddress = src;
lrr.DestinationRegisterAddress = dst;
}
}
static void
iris_load_register_reg32(struct iris_batch *batch, uint32_t dst,
uint32_t src)
{
_iris_emit_lrr(batch, dst, src);
}
static void
iris_load_register_reg64(struct iris_batch *batch, uint32_t dst,
uint32_t src)
{
_iris_emit_lrr(batch, dst, src);
_iris_emit_lrr(batch, dst + 4, src + 4);
}
static void
iris_load_register_imm32(struct iris_batch *batch, uint32_t reg,
uint32_t val)
{
_iris_emit_lri(batch, reg, val);
}
static void
iris_load_register_imm64(struct iris_batch *batch, uint32_t reg,
uint64_t val)
{
_iris_emit_lri(batch, reg + 0, val & 0xffffffff);
_iris_emit_lri(batch, reg + 4, val >> 32);
}
/**
* Emit MI_LOAD_REGISTER_MEM to load a 32-bit MMIO register from a buffer.
*/
static void
iris_load_register_mem32(struct iris_batch *batch, uint32_t reg,
struct iris_bo *bo, uint32_t offset)
{
iris_batch_sync_region_start(batch);
iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
lrm.RegisterAddress = reg;
lrm.MemoryAddress = ro_bo(bo, offset);
}
iris_batch_sync_region_end(batch);
}
/**
* Load a 64-bit value from a buffer into a MMIO register via
* two MI_LOAD_REGISTER_MEM commands.
*/
static void
iris_load_register_mem64(struct iris_batch *batch, uint32_t reg,
struct iris_bo *bo, uint32_t offset)
{
iris_load_register_mem32(batch, reg + 0, bo, offset + 0);
iris_load_register_mem32(batch, reg + 4, bo, offset + 4);
}
static void
iris_store_register_mem32(struct iris_batch *batch, uint32_t reg,
struct iris_bo *bo, uint32_t offset,
bool predicated)
{
iris_batch_sync_region_start(batch);
iris_emit_cmd(batch, GENX(MI_STORE_REGISTER_MEM), srm) {
srm.RegisterAddress = reg;
srm.MemoryAddress = rw_bo(bo, offset, IRIS_DOMAIN_OTHER_WRITE);
srm.PredicateEnable = predicated;
}
iris_batch_sync_region_end(batch);
}
static void
iris_store_register_mem64(struct iris_batch *batch, uint32_t reg,
struct iris_bo *bo, uint32_t offset,
bool predicated)
{
iris_store_register_mem32(batch, reg + 0, bo, offset + 0, predicated);
iris_store_register_mem32(batch, reg + 4, bo, offset + 4, predicated);
}
static void
iris_store_data_imm32(struct iris_batch *batch,
struct iris_bo *bo, uint32_t offset,
uint32_t imm)
{
iris_batch_sync_region_start(batch);
iris_emit_cmd(batch, GENX(MI_STORE_DATA_IMM), sdi) {
sdi.Address = rw_bo(bo, offset, IRIS_DOMAIN_OTHER_WRITE);
sdi.ImmediateData = imm;
}
iris_batch_sync_region_end(batch);
}
static void
iris_store_data_imm64(struct iris_batch *batch,
struct iris_bo *bo, uint32_t offset,
uint64_t imm)
{
/* Can't use iris_emit_cmd because MI_STORE_DATA_IMM has a length of
* 2 in genxml but it's actually variable length and we need 5 DWords.
*/
void *map = iris_get_command_space(batch, 4 * 5);
iris_batch_sync_region_start(batch);
_iris_pack_command(batch, GENX(MI_STORE_DATA_IMM), map, sdi) {
sdi.DWordLength = 5 - 2;
sdi.Address = rw_bo(bo, offset, IRIS_DOMAIN_OTHER_WRITE);
sdi.ImmediateData = imm;
}
iris_batch_sync_region_end(batch);
}
static void
iris_copy_mem_mem(struct iris_batch *batch,
struct iris_bo *dst_bo, uint32_t dst_offset,
struct iris_bo *src_bo, uint32_t src_offset,
unsigned bytes)
{
/* MI_COPY_MEM_MEM operates on DWords. */
assert(bytes % 4 == 0);
assert(dst_offset % 4 == 0);
assert(src_offset % 4 == 0);
iris_batch_sync_region_start(batch);
for (unsigned i = 0; i < bytes; i += 4) {
iris_emit_cmd(batch, GENX(MI_COPY_MEM_MEM), cp) {
cp.DestinationMemoryAddress = rw_bo(dst_bo, dst_offset + i,
IRIS_DOMAIN_OTHER_WRITE);
cp.SourceMemoryAddress = ro_bo(src_bo, src_offset + i);
}
}
iris_batch_sync_region_end(batch);
}
static void
emit_pipeline_select(struct iris_batch *batch, uint32_t pipeline)
{
#if GFX_VER >= 8 && GFX_VER < 10
/* From the Broadwell PRM, Volume 2a: Instructions, PIPELINE_SELECT:
*
* Software must clear the COLOR_CALC_STATE Valid field in
* 3DSTATE_CC_STATE_POINTERS command prior to send a PIPELINE_SELECT
* with Pipeline Select set to GPGPU.
*
* The internal hardware docs recommend the same workaround for Gfx9
* hardware too.
*/
if (pipeline == GPGPU)
iris_emit_cmd(batch, GENX(3DSTATE_CC_STATE_POINTERS), t);
#endif
/* From "BXML » GT » MI » vol1a GPU Overview » [Instruction]
* PIPELINE_SELECT [DevBWR+]":
*
* "Project: DEVSNB+
*
* Software must ensure all the write caches are flushed through a
* stalling PIPE_CONTROL command followed by another PIPE_CONTROL
* command to invalidate read only caches prior to programming
* MI_PIPELINE_SELECT command to change the Pipeline Select Mode."
*/
iris_emit_pipe_control_flush(batch,
"workaround: PIPELINE_SELECT flushes (1/2)",
PIPE_CONTROL_RENDER_TARGET_FLUSH |
PIPE_CONTROL_DEPTH_CACHE_FLUSH |
PIPE_CONTROL_DATA_CACHE_FLUSH |
PIPE_CONTROL_CS_STALL);
iris_emit_pipe_control_flush(batch,
"workaround: PIPELINE_SELECT flushes (2/2)",
PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
PIPE_CONTROL_CONST_CACHE_INVALIDATE |
PIPE_CONTROL_STATE_CACHE_INVALIDATE |
PIPE_CONTROL_INSTRUCTION_INVALIDATE);
iris_emit_cmd(batch, GENX(PIPELINE_SELECT), sel) {
#if GFX_VER >= 9
sel.MaskBits = GFX_VER >= 12 ? 0x13 : 3;
sel.MediaSamplerDOPClockGateEnable = GFX_VER >= 12;
#endif
sel.PipelineSelection = pipeline;
}
}
UNUSED static void
init_glk_barrier_mode(struct iris_batch *batch, uint32_t value)
{
#if GFX_VER == 9
/* Project: DevGLK
*
* "This chicken bit works around a hardware issue with barrier
* logic encountered when switching between GPGPU and 3D pipelines.
* To workaround the issue, this mode bit should be set after a
* pipeline is selected."
*/
iris_emit_reg(batch, GENX(SLICE_COMMON_ECO_CHICKEN1), reg) {
reg.GLKBarrierMode = value;
reg.GLKBarrierModeMask = 1;
}
#endif
}
static void
init_state_base_address(struct iris_batch *batch)
2018-01-25 01:53:52 -08:00
{
struct isl_device *isl_dev = &batch->screen->isl_dev;
uint32_t mocs = isl_mocs(isl_dev, 0, false);
flush_before_state_base_change(batch);
2018-01-25 01:53:52 -08:00
2018-09-12 23:31:46 -07:00
/* We program most base addresses once at context initialization time.
* Each base address points at a 4GB memory zone, and never needs to
* change. See iris_bufmgr.h for a description of the memory zones.
*
2018-09-12 23:31:46 -07:00
* The one exception is Surface State Base Address, which needs to be
* updated occasionally. See iris_binder.c for the details there.
*/
2018-01-25 01:53:52 -08:00
iris_emit_cmd(batch, GENX(STATE_BASE_ADDRESS), sba) {
sba.GeneralStateMOCS = mocs;
sba.StatelessDataPortAccessMOCS = mocs;
sba.DynamicStateMOCS = mocs;
sba.IndirectObjectMOCS = mocs;
sba.InstructionMOCS = mocs;
sba.SurfaceStateMOCS = mocs;
2018-01-25 01:53:52 -08:00
sba.GeneralStateBaseAddressModifyEnable = true;
sba.DynamicStateBaseAddressModifyEnable = true;
sba.IndirectObjectBaseAddressModifyEnable = true;
sba.InstructionBaseAddressModifyEnable = true;
sba.GeneralStateBufferSizeModifyEnable = true;
sba.DynamicStateBufferSizeModifyEnable = true;
#if (GFX_VER >= 9)
2018-01-25 01:53:52 -08:00
sba.BindlessSurfaceStateBaseAddressModifyEnable = true;
sba.BindlessSurfaceStateMOCS = mocs;
#endif
2018-01-25 01:53:52 -08:00
sba.IndirectObjectBufferSizeModifyEnable = true;
sba.InstructionBuffersizeModifyEnable = true;
sba.InstructionBaseAddress = ro_bo(NULL, IRIS_MEMZONE_SHADER_START);
sba.DynamicStateBaseAddress = ro_bo(NULL, IRIS_MEMZONE_DYNAMIC_START);
2018-01-25 01:53:52 -08:00
sba.GeneralStateBufferSize = 0xfffff;
sba.IndirectObjectBufferSize = 0xfffff;
sba.InstructionBufferSize = 0xfffff;
sba.DynamicStateBufferSize = 0xfffff;
2018-01-25 01:53:52 -08:00
}
flush_after_state_base_change(batch);
}
static void
iris_emit_l3_config(struct iris_batch *batch,
const struct intel_l3_config *cfg)
{
assert(cfg || GFX_VER >= 12);
#if GFX_VER >= 12
#define L3_ALLOCATION_REG GENX(L3ALLOC)
#define L3_ALLOCATION_REG_num GENX(L3ALLOC_num)
#else
#define L3_ALLOCATION_REG GENX(L3CNTLREG)
#define L3_ALLOCATION_REG_num GENX(L3CNTLREG_num)
#endif
iris_emit_reg(batch, L3_ALLOCATION_REG, reg) {
#if GFX_VER < 11
reg.SLMEnable = cfg->n[INTEL_L3P_SLM] > 0;
#endif
#if GFX_VER == 11
/* Wa_1406697149: Bit 9 "Error Detection Behavior Control" must be set
* in L3CNTLREG register. The default setting of the bit is not the
* desirable behavior.
*/
reg.ErrorDetectionBehaviorControl = true;
reg.UseFullWays = true;
#endif
if (GFX_VER < 12 || cfg) {
reg.URBAllocation = cfg->n[INTEL_L3P_URB];
reg.ROAllocation = cfg->n[INTEL_L3P_RO];
reg.DCAllocation = cfg->n[INTEL_L3P_DC];
reg.AllAllocation = cfg->n[INTEL_L3P_ALL];
} else {
#if GFX_VER >= 12
reg.L3FullWayAllocationEnable = true;
#endif
}
}
}
#if GFX_VER == 9
static void
iris_enable_obj_preemption(struct iris_batch *batch, bool enable)
{
/* A fixed function pipe flush is required before modifying this field */
iris_emit_end_of_pipe_sync(batch, enable ? "enable preemption"
: "disable preemption",
PIPE_CONTROL_RENDER_TARGET_FLUSH);
/* enable object level preemption */
iris_emit_reg(batch, GENX(CS_CHICKEN1), reg) {
reg.ReplayMode = enable;
reg.ReplayModeMask = true;
}
}
#endif
/**
* Compute an \p n x \p m pixel hashing table usable as slice, subslice or
* pixel pipe hashing table. The resulting table is the cyclic repetition of
* a fixed pattern with periodicity equal to \p period.
*
* If \p index is specified to be equal to \p period, a 2-way hashing table
* will be generated such that indices 0 and 1 are returned for the following
* fractions of entries respectively:
*
* p_0 = ceil(period / 2) / period
* p_1 = floor(period / 2) / period
*
* If \p index is even and less than \p period, a 3-way hashing table will be
* generated such that indices 0, 1 and 2 are returned for the following
* fractions of entries:
*
* p_0 = (ceil(period / 2) - 1) / period
* p_1 = floor(period / 2) / period
* p_2 = 1 / period
*
* The equations above apply if \p flip is equal to 0, if it is equal to 1 p_0
* and p_1 will be swapped for the result. Note that in the context of pixel
* pipe hashing this can be always 0 on Gfx12 platforms, since the hardware
* transparently remaps logical indices found on the table to physical pixel
* pipe indices from the highest to lowest EU count.
*/
UNUSED static void
calculate_pixel_hashing_table(unsigned n, unsigned m,
unsigned period, unsigned index, bool flip,
uint32_t *p)
{
for (unsigned i = 0; i < n; i++) {
for (unsigned j = 0; j < m; j++) {
const unsigned k = (i + j) % period;
p[j + m * i] = (k == index ? 2 : (k & 1) ^ flip);
}
}
}
#if GFX_VER == 11
static void
gfx11_upload_pixel_hashing_tables(struct iris_batch *batch)
{
const struct gen_device_info *devinfo = &batch->screen->devinfo;
assert(devinfo->ppipe_subslices[2] == 0);
if (devinfo->ppipe_subslices[0] == devinfo->ppipe_subslices[1])
return;
struct iris_context *ice = batch->ice;
assert(&ice->batches[IRIS_BATCH_RENDER] == batch);
unsigned size = GENX(SLICE_HASH_TABLE_length) * 4;
uint32_t hash_address;
struct pipe_resource *tmp = NULL;
uint32_t *map =
stream_state(batch, ice->state.dynamic_uploader, &tmp,
size, 64, &hash_address);
pipe_resource_reference(&tmp, NULL);
const bool flip = devinfo->ppipe_subslices[0] < devinfo->ppipe_subslices[1];
struct GENX(SLICE_HASH_TABLE) table;
calculate_pixel_hashing_table(16, 16, 3, 3, flip, table.Entry[0]);
GENX(SLICE_HASH_TABLE_pack)(NULL, map, &table);
iris_emit_cmd(batch, GENX(3DSTATE_SLICE_TABLE_STATE_POINTERS), ptr) {
ptr.SliceHashStatePointerValid = true;
ptr.SliceHashTableStatePointer = hash_address;
}
iris_emit_cmd(batch, GENX(3DSTATE_3D_MODE), mode) {
mode.SliceHashingTableEnable = true;
}
}
#elif GFX_VERx10 == 120
static void
gfx12_upload_pixel_hashing_tables(struct iris_batch *batch)
{
const struct gen_device_info *devinfo = &batch->screen->devinfo;
/* For each n calculate ppipes_of[n], equal to the number of pixel pipes
* present with n active dual subslices.
*/
unsigned ppipes_of[3] = {};
for (unsigned n = 0; n < ARRAY_SIZE(ppipes_of); n++) {
for (unsigned p = 0; p < ARRAY_SIZE(devinfo->ppipe_subslices); p++)
ppipes_of[n] += (devinfo->ppipe_subslices[p] == n);
}
/* Gfx12 has three pixel pipes. */
assert(ppipes_of[0] + ppipes_of[1] + ppipes_of[2] == 3);
if (ppipes_of[2] == 3 || ppipes_of[0] == 2) {
/* All three pixel pipes have the maximum number of active dual
* subslices, or there is only one active pixel pipe: Nothing to do.
*/
return;
}
iris_emit_cmd(batch, GENX(3DSTATE_SUBSLICE_HASH_TABLE), p) {
p.SliceHashControl[0] = TABLE_0;
if (ppipes_of[2] == 2 && ppipes_of[0] == 1)
calculate_pixel_hashing_table(8, 16, 2, 2, 0, p.TwoWayTableEntry[0]);
else if (ppipes_of[2] == 1 && ppipes_of[1] == 1 && ppipes_of[0] == 1)
calculate_pixel_hashing_table(8, 16, 3, 3, 0, p.TwoWayTableEntry[0]);
if (ppipes_of[2] == 2 && ppipes_of[1] == 1)
calculate_pixel_hashing_table(8, 16, 5, 4, 0, p.ThreeWayTableEntry[0]);
else if (ppipes_of[2] == 2 && ppipes_of[0] == 1)
calculate_pixel_hashing_table(8, 16, 2, 2, 0, p.ThreeWayTableEntry[0]);
else if (ppipes_of[2] == 1 && ppipes_of[1] == 1 && ppipes_of[0] == 1)
calculate_pixel_hashing_table(8, 16, 3, 3, 0, p.ThreeWayTableEntry[0]);
else
unreachable("Illegal fusing.");
}
iris_emit_cmd(batch, GENX(3DSTATE_3D_MODE), p) {
p.SubsliceHashingTableEnable = true;
p.SubsliceHashingTableEnableMask = true;
}
}
#endif
static void
iris_alloc_push_constants(struct iris_batch *batch)
{
/* For now, we set a static partitioning of the push constant area,
* assuming that all stages could be in use.
*
* TODO: Try lazily allocating the HS/DS/GS sections as needed, and
* see if that improves performance by offering more space to
* the VS/FS when those aren't in use. Also, try dynamically
* enabling/disabling it like i965 does. This would be more
* stalls and may not actually help; we don't know yet.
*/
for (int i = 0; i <= MESA_SHADER_FRAGMENT; i++) {
iris_emit_cmd(batch, GENX(3DSTATE_PUSH_CONSTANT_ALLOC_VS), alloc) {
alloc._3DCommandSubOpcode = 18 + i;
alloc.ConstantBufferOffset = 6 * i;
alloc.ConstantBufferSize = i == MESA_SHADER_FRAGMENT ? 8 : 6;
}
}
}
#if GFX_VER >= 12
static void
init_aux_map_state(struct iris_batch *batch);
#endif
/**
* Upload initial GPU state for any kind of context.
*
* These need to happen for both render and compute.
*/
static void
iris_init_common_context(struct iris_batch *batch)
{
#if GFX_VER == 11
iris_emit_reg(batch, GENX(SAMPLER_MODE), reg) {
reg.HeaderlessMessageforPreemptableContexts = 1;
reg.HeaderlessMessageforPreemptableContextsMask = 1;
}
/* Bit 1 must be set in HALF_SLICE_CHICKEN7. */
iris_emit_reg(batch, GENX(HALF_SLICE_CHICKEN7), reg) {
reg.EnabledTexelOffsetPrecisionFix = 1;
reg.EnabledTexelOffsetPrecisionFixMask = 1;
}
#endif
}
/**
* Upload the initial GPU state for a render context.
*
* This sets some invariant state that needs to be programmed a particular
* way, but we never actually change.
*/
static void
iris_init_render_context(struct iris_batch *batch)
{
UNUSED const struct gen_device_info *devinfo = &batch->screen->devinfo;
iris_batch_sync_region_start(batch);
emit_pipeline_select(batch, _3D);
iris_emit_l3_config(batch, batch->screen->l3_config_3d);
init_state_base_address(batch);
2018-01-25 01:53:52 -08:00
iris_init_common_context(batch);
#if GFX_VER >= 9
iris_emit_reg(batch, GENX(CS_DEBUG_MODE2), reg) {
reg.CONSTANT_BUFFERAddressOffsetDisable = true;
reg.CONSTANT_BUFFERAddressOffsetDisableMask = true;
}
#else
iris_emit_reg(batch, GENX(INSTPM), reg) {
reg.CONSTANT_BUFFERAddressOffsetDisable = true;
reg.CONSTANT_BUFFERAddressOffsetDisableMask = true;
}
#endif
#if GFX_VER == 9
iris_emit_reg(batch, GENX(CACHE_MODE_1), reg) {
reg.FloatBlendOptimizationEnable = true;
reg.FloatBlendOptimizationEnableMask = true;
reg.MSCRAWHazardAvoidanceBit = true;
reg.MSCRAWHazardAvoidanceBitMask = true;
reg.PartialResolveDisableInVC = true;
reg.PartialResolveDisableInVCMask = true;
}
if (devinfo->is_geminilake)
init_glk_barrier_mode(batch, GLK_BARRIER_MODE_3D_HULL);
#endif
#if GFX_VER == 11
iris_emit_reg(batch, GENX(TCCNTLREG), reg) {
reg.L3DataPartialWriteMergingEnable = true;
reg.ColorZPartialWriteMergingEnable = true;
reg.URBPartialWriteMergingEnable = true;
reg.TCDisable = true;
}
/* Hardware specification recommends disabling repacking for the
* compatibility with decompression mechanism in display controller.
*/
if (devinfo->disable_ccs_repack) {
iris_emit_reg(batch, GENX(CACHE_MODE_0), reg) {
reg.DisableRepackingforCompression = true;
reg.DisableRepackingforCompressionMask = true;
}
}
gfx11_upload_pixel_hashing_tables(batch);
#endif
#if GFX_VERx10 == 120
gfx12_upload_pixel_hashing_tables(batch);
2018-09-18 11:04:44 -07:00
#endif
/* 3DSTATE_DRAWING_RECTANGLE is non-pipelined, so we want to avoid
* changing it dynamically. We set it to the maximum size here, and
* instead include the render target dimensions in the viewport, so
* viewport extents clipping takes care of pruning stray geometry.
*/
2018-01-09 11:25:29 -08:00
iris_emit_cmd(batch, GENX(3DSTATE_DRAWING_RECTANGLE), rect) {
rect.ClippedDrawingRectangleXMax = UINT16_MAX;
rect.ClippedDrawingRectangleYMax = UINT16_MAX;
}
/* Set the initial MSAA sample positions. */
2018-01-09 11:25:29 -08:00
iris_emit_cmd(batch, GENX(3DSTATE_SAMPLE_PATTERN), pat) {
INTEL_SAMPLE_POS_1X(pat._1xSample);
INTEL_SAMPLE_POS_2X(pat._2xSample);
INTEL_SAMPLE_POS_4X(pat._4xSample);
INTEL_SAMPLE_POS_8X(pat._8xSample);
#if GFX_VER >= 9
INTEL_SAMPLE_POS_16X(pat._16xSample);
#endif
2018-01-09 11:25:29 -08:00
}
/* Use the legacy AA line coverage computation. */
2018-01-09 11:25:29 -08:00
iris_emit_cmd(batch, GENX(3DSTATE_AA_LINE_PARAMETERS), foo);
/* Disable chromakeying (it's for media) */
2018-01-09 11:25:29 -08:00
iris_emit_cmd(batch, GENX(3DSTATE_WM_CHROMAKEY), foo);
/* We want regular rendering, not special HiZ operations. */
2018-01-09 11:25:29 -08:00
iris_emit_cmd(batch, GENX(3DSTATE_WM_HZ_OP), foo);
/* No polygon stippling offsets are necessary. */
2019-01-24 09:26:38 -08:00
/* TODO: may need to set an offset for origin-UL framebuffers */
2018-01-09 21:29:09 -08:00
iris_emit_cmd(batch, GENX(3DSTATE_POLY_STIPPLE_OFFSET), foo);
2018-01-11 23:01:28 -08:00
iris_alloc_push_constants(batch);
#if GFX_VER >= 12
init_aux_map_state(batch);
#endif
iris_batch_sync_region_end(batch);
2018-01-09 11:25:29 -08:00
}
2018-07-26 21:59:20 -07:00
static void
iris_init_compute_context(struct iris_batch *batch)
2018-07-26 21:59:20 -07:00
{
UNUSED const struct gen_device_info *devinfo = &batch->screen->devinfo;
iris_batch_sync_region_start(batch);
/* Wa_1607854226:
*
* Start with pipeline in 3D mode to set the STATE_BASE_ADDRESS.
*/
#if GFX_VER == 12
emit_pipeline_select(batch, _3D);
#else
emit_pipeline_select(batch, GPGPU);
#endif
2018-07-26 21:59:20 -07:00
iris_emit_l3_config(batch, batch->screen->l3_config_cs);
init_state_base_address(batch);
iris_init_common_context(batch);
#if GFX_VER == 12
emit_pipeline_select(batch, GPGPU);
#endif
#if GFX_VER == 9
if (devinfo->is_geminilake)
init_glk_barrier_mode(batch, GLK_BARRIER_MODE_GPGPU);
#endif
#if GFX_VER >= 12
init_aux_map_state(batch);
#endif
iris_batch_sync_region_end(batch);
2018-07-26 21:59:20 -07:00
}
struct iris_vertex_buffer_state {
/** The VERTEX_BUFFER_STATE hardware structure. */
uint32_t state[GENX(VERTEX_BUFFER_STATE_length)];
/** The resource to source vertex data from. */
struct pipe_resource *resource;
int offset;
};
struct iris_depth_buffer_state {
/* Depth/HiZ/Stencil related hardware packets. */
uint32_t packets[GENX(3DSTATE_DEPTH_BUFFER_length) +
GENX(3DSTATE_STENCIL_BUFFER_length) +
GENX(3DSTATE_HIER_DEPTH_BUFFER_length) +
GENX(3DSTATE_CLEAR_PARAMS_length) +
GENX(MI_LOAD_REGISTER_IMM_length) * 2];
};
/**
* Generation-specific context state (ice->state.genx->...).
*
* Most state can go in iris_context directly, but these encode hardware
* packets which vary by generation.
*/
struct iris_genx_state {
struct iris_vertex_buffer_state vertex_buffers[33];
uint32_t last_index_buffer[GENX(3DSTATE_INDEX_BUFFER_length)];
struct iris_depth_buffer_state depth_buffer;
2018-06-29 12:58:31 -07:00
uint32_t so_buffers[4 * GENX(3DSTATE_SO_BUFFER_length)];
#if GFX_VER == 8
bool pma_fix_enabled;
#endif
#if GFX_VER == 9
/* Is object level preemption enabled? */
bool object_preemption;
#endif
struct {
#if GFX_VER == 8
struct brw_image_param image_param[PIPE_MAX_SHADER_IMAGES];
#endif
} shaders[MESA_SHADER_STAGES];
};
/**
* The pipe->set_blend_color() driver hook.
*
* This corresponds to our COLOR_CALC_STATE.
*/
static void
iris_set_blend_color(struct pipe_context *ctx,
const struct pipe_blend_color *state)
{
struct iris_context *ice = (struct iris_context *) ctx;
/* Our COLOR_CALC_STATE is exactly pipe_blend_color, so just memcpy */
memcpy(&ice->state.blend_color, state, sizeof(struct pipe_blend_color));
ice->state.dirty |= IRIS_DIRTY_COLOR_CALC_STATE;
}
/**
* Gallium CSO for blend state (see pipe_blend_state).
*/
struct iris_blend_state {
2018-06-09 00:01:09 -07:00
/** Partial 3DSTATE_PS_BLEND */
uint32_t ps_blend[GENX(3DSTATE_PS_BLEND_length)];
2018-06-09 00:01:09 -07:00
/** Partial BLEND_STATE */
2018-01-25 21:53:41 -08:00
uint32_t blend_state[GENX(BLEND_STATE_length) +
BRW_MAX_DRAW_BUFFERS * GENX(BLEND_STATE_ENTRY_length)];
2018-01-25 02:09:59 -08:00
bool alpha_to_coverage; /* for shader key */
/** Bitfield of whether blending is enabled for RT[i] - for aux resolves */
uint8_t blend_enables;
/** Bitfield of whether color writes are enabled for RT[i] */
uint8_t color_write_enables;
/** Does RT[0] use dual color blending? */
bool dual_color_blending;
};
static enum pipe_blendfactor
fix_blendfactor(enum pipe_blendfactor f, bool alpha_to_one)
{
if (alpha_to_one) {
if (f == PIPE_BLENDFACTOR_SRC1_ALPHA)
return PIPE_BLENDFACTOR_ONE;
if (f == PIPE_BLENDFACTOR_INV_SRC1_ALPHA)
return PIPE_BLENDFACTOR_ZERO;
}
return f;
}
/**
* The pipe->create_blend_state() driver hook.
*
* Translates a pipe_blend_state into iris_blend_state.
*/
static void *
iris_create_blend_state(struct pipe_context *ctx,
const struct pipe_blend_state *state)
{
struct iris_blend_state *cso = malloc(sizeof(struct iris_blend_state));
uint32_t *blend_entry = cso->blend_state + GENX(BLEND_STATE_length);
cso->blend_enables = 0;
cso->color_write_enables = 0;
STATIC_ASSERT(BRW_MAX_DRAW_BUFFERS <= 8);
2018-01-25 02:09:59 -08:00
cso->alpha_to_coverage = state->alpha_to_coverage;
bool indep_alpha_blend = false;
2018-01-25 21:53:41 -08:00
for (int i = 0; i < BRW_MAX_DRAW_BUFFERS; i++) {
const struct pipe_rt_blend_state *rt =
&state->rt[state->independent_blend_enable ? i : 0];
enum pipe_blendfactor src_rgb =
fix_blendfactor(rt->rgb_src_factor, state->alpha_to_one);
enum pipe_blendfactor src_alpha =
fix_blendfactor(rt->alpha_src_factor, state->alpha_to_one);
enum pipe_blendfactor dst_rgb =
fix_blendfactor(rt->rgb_dst_factor, state->alpha_to_one);
enum pipe_blendfactor dst_alpha =
fix_blendfactor(rt->alpha_dst_factor, state->alpha_to_one);
if (rt->rgb_func != rt->alpha_func ||
src_rgb != src_alpha || dst_rgb != dst_alpha)
indep_alpha_blend = true;
if (rt->blend_enable)
cso->blend_enables |= 1u << i;
if (rt->colormask)
cso->color_write_enables |= 1u << i;
iris_pack_state(GENX(BLEND_STATE_ENTRY), blend_entry, be) {
be.LogicOpEnable = state->logicop_enable;
be.LogicOpFunction = state->logicop_func;
be.PreBlendSourceOnlyClampEnable = false;
be.ColorClampRange = COLORCLAMP_RTFORMAT;
be.PreBlendColorClampEnable = true;
be.PostBlendColorClampEnable = true;
be.ColorBufferBlendEnable = rt->blend_enable;
be.ColorBlendFunction = rt->rgb_func;
be.AlphaBlendFunction = rt->alpha_func;
be.SourceBlendFactor = src_rgb;
be.SourceAlphaBlendFactor = src_alpha;
be.DestinationBlendFactor = dst_rgb;
be.DestinationAlphaBlendFactor = dst_alpha;
be.WriteDisableRed = !(rt->colormask & PIPE_MASK_R);
be.WriteDisableGreen = !(rt->colormask & PIPE_MASK_G);
be.WriteDisableBlue = !(rt->colormask & PIPE_MASK_B);
be.WriteDisableAlpha = !(rt->colormask & PIPE_MASK_A);
}
blend_entry += GENX(BLEND_STATE_ENTRY_length);
}
iris_pack_command(GENX(3DSTATE_PS_BLEND), cso->ps_blend, pb) {
/* pb.HasWriteableRT is filled in at draw time.
* pb.AlphaTestEnable is filled in at draw time.
*
* pb.ColorBufferBlendEnable is filled in at draw time so we can avoid
* setting it when dual color blending without an appropriate shader.
*/
pb.AlphaToCoverageEnable = state->alpha_to_coverage;
pb.IndependentAlphaBlendEnable = indep_alpha_blend;
pb.SourceBlendFactor =
fix_blendfactor(state->rt[0].rgb_src_factor, state->alpha_to_one);
pb.SourceAlphaBlendFactor =
fix_blendfactor(state->rt[0].alpha_src_factor, state->alpha_to_one);
pb.DestinationBlendFactor =
fix_blendfactor(state->rt[0].rgb_dst_factor, state->alpha_to_one);
pb.DestinationAlphaBlendFactor =
fix_blendfactor(state->rt[0].alpha_dst_factor, state->alpha_to_one);
}
iris_pack_state(GENX(BLEND_STATE), cso->blend_state, bs) {
bs.AlphaToCoverageEnable = state->alpha_to_coverage;
bs.IndependentAlphaBlendEnable = indep_alpha_blend;
bs.AlphaToOneEnable = state->alpha_to_one;
bs.AlphaToCoverageDitherEnable = state->alpha_to_coverage;
bs.ColorDitherEnable = state->dither;
/* bl.AlphaTestEnable and bs.AlphaTestFunction are filled in later. */
}
cso->dual_color_blending = util_blend_state_is_dual(state, 0);
return cso;
}
/**
* The pipe->bind_blend_state() driver hook.
*
* Bind a blending CSO and flag related dirty bits.
*/
2017-12-27 02:54:26 -08:00
static void
iris_bind_blend_state(struct pipe_context *ctx, void *state)
{
struct iris_context *ice = (struct iris_context *) ctx;
struct iris_blend_state *cso = state;
ice->state.cso_blend = cso;
2018-06-09 00:01:09 -07:00
ice->state.dirty |= IRIS_DIRTY_PS_BLEND;
ice->state.dirty |= IRIS_DIRTY_BLEND_STATE;
ice->state.stage_dirty |= ice->state.stage_dirty_for_nos[IRIS_NOS_BLEND];
if (GFX_VER == 8)
ice->state.dirty |= IRIS_DIRTY_PMA_FIX;
2017-12-27 02:54:26 -08:00
}
/**
* Return true if the FS writes to any color outputs which are not disabled
* via color masking.
*/
static bool
has_writeable_rt(const struct iris_blend_state *cso_blend,
const struct shader_info *fs_info)
{
if (!fs_info)
return false;
unsigned rt_outputs = fs_info->outputs_written >> FRAG_RESULT_DATA0;
if (fs_info->outputs_written & BITFIELD64_BIT(FRAG_RESULT_COLOR))
rt_outputs = (1 << BRW_MAX_DRAW_BUFFERS) - 1;
return cso_blend->color_write_enables & rt_outputs;
}
/**
* Gallium CSO for depth, stencil, and alpha testing state.
*/
struct iris_depth_stencil_alpha_state {
/** Partial 3DSTATE_WM_DEPTH_STENCIL. */
uint32_t wmds[GENX(3DSTATE_WM_DEPTH_STENCIL_length)];
2018-06-09 00:01:09 -07:00
#if GFX_VER >= 12
uint32_t depth_bounds[GENX(3DSTATE_DEPTH_BOUNDS_length)];
#endif
/** Outbound to BLEND_STATE, 3DSTATE_PS_BLEND, COLOR_CALC_STATE. */
unsigned alpha_enabled:1;
unsigned alpha_func:3; /**< PIPE_FUNC_x */
float alpha_ref_value; /**< reference value */
/** Outbound to resolve and cache set tracking. */
bool depth_writes_enabled;
bool stencil_writes_enabled;
/** Outbound to Gfx8-9 PMA stall equations */
bool depth_test_enabled;
};
/**
* The pipe->create_depth_stencil_alpha_state() driver hook.
*
* We encode most of 3DSTATE_WM_DEPTH_STENCIL, and just save off the alpha
* testing state since we need pieces of it in a variety of places.
*/
static void *
2017-12-27 02:54:26 -08:00
iris_create_zsa_state(struct pipe_context *ctx,
const struct pipe_depth_stencil_alpha_state *state)
{
struct iris_depth_stencil_alpha_state *cso =
malloc(sizeof(struct iris_depth_stencil_alpha_state));
bool two_sided_stencil = state->stencil[1].enabled;
cso->alpha_enabled = state->alpha_enabled;
cso->alpha_func = state->alpha_func;
cso->alpha_ref_value = state->alpha_ref_value;
cso->depth_writes_enabled = state->depth_writemask;
cso->depth_test_enabled = state->depth_enabled;
cso->stencil_writes_enabled =
state->stencil[0].writemask != 0 ||
(two_sided_stencil && state->stencil[1].writemask != 0);
/* gallium frontends need to optimize away EQUAL writes for us. */
assert(!(state->depth_func == PIPE_FUNC_EQUAL && state->depth_writemask));
iris_pack_command(GENX(3DSTATE_WM_DEPTH_STENCIL), cso->wmds, wmds) {
wmds.StencilFailOp = state->stencil[0].fail_op;
wmds.StencilPassDepthFailOp = state->stencil[0].zfail_op;
wmds.StencilPassDepthPassOp = state->stencil[0].zpass_op;
wmds.StencilTestFunction =
translate_compare_func(state->stencil[0].func);
wmds.BackfaceStencilFailOp = state->stencil[1].fail_op;
wmds.BackfaceStencilPassDepthFailOp = state->stencil[1].zfail_op;
wmds.BackfaceStencilPassDepthPassOp = state->stencil[1].zpass_op;
wmds.BackfaceStencilTestFunction =
translate_compare_func(state->stencil[1].func);
wmds.DepthTestFunction = translate_compare_func(state->depth_func);
wmds.DoubleSidedStencilEnable = two_sided_stencil;
wmds.StencilTestEnable = state->stencil[0].enabled;
wmds.StencilBufferWriteEnable =
state->stencil[0].writemask != 0 ||
(two_sided_stencil && state->stencil[1].writemask != 0);
wmds.DepthTestEnable = state->depth_enabled;
wmds.DepthBufferWriteEnable = state->depth_writemask;
wmds.StencilTestMask = state->stencil[0].valuemask;
wmds.StencilWriteMask = state->stencil[0].writemask;
wmds.BackfaceStencilTestMask = state->stencil[1].valuemask;
wmds.BackfaceStencilWriteMask = state->stencil[1].writemask;
2018-01-09 11:25:29 -08:00
/* wmds.[Backface]StencilReferenceValue are merged later */
#if GFX_VER >= 12
wmds.StencilReferenceValueModifyDisable = true;
#endif
}
#if GFX_VER >= 12
iris_pack_command(GENX(3DSTATE_DEPTH_BOUNDS), cso->depth_bounds, depth_bounds) {
depth_bounds.DepthBoundsTestValueModifyDisable = false;
depth_bounds.DepthBoundsTestEnableModifyDisable = false;
depth_bounds.DepthBoundsTestEnable = state->depth_bounds_test;
depth_bounds.DepthBoundsTestMinValue = state->depth_bounds_min;
depth_bounds.DepthBoundsTestMaxValue = state->depth_bounds_max;
}
#endif
return cso;
}
/**
* The pipe->bind_depth_stencil_alpha_state() driver hook.
*
* Bind a depth/stencil/alpha CSO and flag related dirty bits.
*/
2017-12-27 02:54:26 -08:00
static void
iris_bind_zsa_state(struct pipe_context *ctx, void *state)
{
struct iris_context *ice = (struct iris_context *) ctx;
2018-01-10 00:36:44 -08:00
struct iris_depth_stencil_alpha_state *old_cso = ice->state.cso_zsa;
struct iris_depth_stencil_alpha_state *new_cso = state;
if (new_cso) {
if (cso_changed(alpha_ref_value))
2018-01-10 00:36:44 -08:00
ice->state.dirty |= IRIS_DIRTY_COLOR_CALC_STATE;
2018-06-09 00:01:09 -07:00
if (cso_changed(alpha_enabled))
2018-06-09 00:01:09 -07:00
ice->state.dirty |= IRIS_DIRTY_PS_BLEND | IRIS_DIRTY_BLEND_STATE;
if (cso_changed(alpha_func))
ice->state.dirty |= IRIS_DIRTY_BLEND_STATE;
if (cso_changed(depth_writes_enabled) || cso_changed(stencil_writes_enabled))
ice->state.dirty |= IRIS_DIRTY_RENDER_RESOLVES_AND_FLUSHES;
ice->state.depth_writes_enabled = new_cso->depth_writes_enabled;
ice->state.stencil_writes_enabled = new_cso->stencil_writes_enabled;
#if GFX_VER >= 12
if (cso_changed(depth_bounds))
ice->state.dirty |= IRIS_DIRTY_DEPTH_BOUNDS;
#endif
2018-01-10 00:36:44 -08:00
}
ice->state.cso_zsa = new_cso;
2017-12-27 02:54:26 -08:00
ice->state.dirty |= IRIS_DIRTY_CC_VIEWPORT;
ice->state.dirty |= IRIS_DIRTY_WM_DEPTH_STENCIL;
ice->state.stage_dirty |=
ice->state.stage_dirty_for_nos[IRIS_NOS_DEPTH_STENCIL_ALPHA];
if (GFX_VER == 8)
ice->state.dirty |= IRIS_DIRTY_PMA_FIX;
}
#if GFX_VER == 8
static bool
want_pma_fix(struct iris_context *ice)
{
UNUSED struct iris_screen *screen = (void *) ice->ctx.screen;
UNUSED const struct gen_device_info *devinfo = &screen->devinfo;
const struct brw_wm_prog_data *wm_prog_data = (void *)
ice->shaders.prog[MESA_SHADER_FRAGMENT]->prog_data;
const struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
const struct iris_depth_stencil_alpha_state *cso_zsa = ice->state.cso_zsa;
const struct iris_blend_state *cso_blend = ice->state.cso_blend;
/* In very specific combinations of state, we can instruct Gfx8-9 hardware
* to avoid stalling at the pixel mask array. The state equations are
* documented in these places:
*
* - Gfx8 Depth PMA Fix: CACHE_MODE_1::NP_PMA_FIX_ENABLE
* - Gfx9 Stencil PMA Fix: CACHE_MODE_0::STC PMA Optimization Enable
*
* Both equations share some common elements:
*
* no_hiz_op =
* !(3DSTATE_WM_HZ_OP::DepthBufferClear ||
* 3DSTATE_WM_HZ_OP::DepthBufferResolve ||
* 3DSTATE_WM_HZ_OP::Hierarchical Depth Buffer Resolve Enable ||
* 3DSTATE_WM_HZ_OP::StencilBufferClear) &&
*
* killpixels =
* 3DSTATE_WM::ForceKillPix != ForceOff &&
* (3DSTATE_PS_EXTRA::PixelShaderKillsPixels ||
* 3DSTATE_PS_EXTRA::oMask Present to RenderTarget ||
* 3DSTATE_PS_BLEND::AlphaToCoverageEnable ||
* 3DSTATE_PS_BLEND::AlphaTestEnable ||
* 3DSTATE_WM_CHROMAKEY::ChromaKeyKillEnable)
*
* (Technically the stencil PMA treats ForceKillPix differently,
* but I think this is a documentation oversight, and we don't
* ever use it in this way, so it doesn't matter).
*
* common_pma_fix =
* 3DSTATE_WM::ForceThreadDispatch != 1 &&
* 3DSTATE_RASTER::ForceSampleCount == NUMRASTSAMPLES_0 &&
* 3DSTATE_DEPTH_BUFFER::SURFACE_TYPE != NULL &&
* 3DSTATE_DEPTH_BUFFER::HIZ Enable &&
* 3DSTATE_WM::EDSC_Mode != EDSC_PREPS &&
* 3DSTATE_PS_EXTRA::PixelShaderValid &&
* no_hiz_op
*
* These are always true:
*
* 3DSTATE_RASTER::ForceSampleCount == NUMRASTSAMPLES_0
* 3DSTATE_PS_EXTRA::PixelShaderValid
*
* Also, we never use the normal drawing path for HiZ ops; these are true:
*
* !(3DSTATE_WM_HZ_OP::DepthBufferClear ||
* 3DSTATE_WM_HZ_OP::DepthBufferResolve ||
* 3DSTATE_WM_HZ_OP::Hierarchical Depth Buffer Resolve Enable ||
* 3DSTATE_WM_HZ_OP::StencilBufferClear)
*
* This happens sometimes:
*
* 3DSTATE_WM::ForceThreadDispatch != 1
*
* However, we choose to ignore it as it either agrees with the signal
* (dispatch was already enabled, so nothing out of the ordinary), or
* there are no framebuffer attachments (so no depth or HiZ anyway,
* meaning the PMA signal will already be disabled).
*/
if (!cso_fb->zsbuf)
return false;
struct iris_resource *zres, *sres;
iris_get_depth_stencil_resources(cso_fb->zsbuf->texture, &zres, &sres);
/* 3DSTATE_DEPTH_BUFFER::SURFACE_TYPE != NULL &&
* 3DSTATE_DEPTH_BUFFER::HIZ Enable &&
*/
if (!zres || !iris_resource_level_has_hiz(zres, cso_fb->zsbuf->u.tex.level))
return false;
/* 3DSTATE_WM::EDSC_Mode != EDSC_PREPS */
if (wm_prog_data->early_fragment_tests)
return false;
/* 3DSTATE_WM::ForceKillPix != ForceOff &&
* (3DSTATE_PS_EXTRA::PixelShaderKillsPixels ||
* 3DSTATE_PS_EXTRA::oMask Present to RenderTarget ||
* 3DSTATE_PS_BLEND::AlphaToCoverageEnable ||
* 3DSTATE_PS_BLEND::AlphaTestEnable ||
* 3DSTATE_WM_CHROMAKEY::ChromaKeyKillEnable)
*/
bool killpixels = wm_prog_data->uses_kill || wm_prog_data->uses_omask ||
cso_blend->alpha_to_coverage || cso_zsa->alpha_enabled;
/* The Gfx8 depth PMA equation becomes:
*
* depth_writes =
* 3DSTATE_WM_DEPTH_STENCIL::DepthWriteEnable &&
* 3DSTATE_DEPTH_BUFFER::DEPTH_WRITE_ENABLE
*
* stencil_writes =
* 3DSTATE_WM_DEPTH_STENCIL::Stencil Buffer Write Enable &&
* 3DSTATE_DEPTH_BUFFER::STENCIL_WRITE_ENABLE &&
* 3DSTATE_STENCIL_BUFFER::STENCIL_BUFFER_ENABLE
*
* Z_PMA_OPT =
* common_pma_fix &&
* 3DSTATE_WM_DEPTH_STENCIL::DepthTestEnable &&
* ((killpixels && (depth_writes || stencil_writes)) ||
* 3DSTATE_PS_EXTRA::PixelShaderComputedDepthMode != PSCDEPTH_OFF)
*
*/
if (!cso_zsa->depth_test_enabled)
return false;
return wm_prog_data->computed_depth_mode != PSCDEPTH_OFF ||
(killpixels && (cso_zsa->depth_writes_enabled ||
(sres && cso_zsa->stencil_writes_enabled)));
}
#endif
void
genX(update_pma_fix)(struct iris_context *ice,
struct iris_batch *batch,
bool enable)
{
#if GFX_VER == 8
struct iris_genx_state *genx = ice->state.genx;
if (genx->pma_fix_enabled == enable)
return;
genx->pma_fix_enabled = enable;
/* According to the Broadwell PIPE_CONTROL documentation, software should
* emit a PIPE_CONTROL with the CS Stall and Depth Cache Flush bits set
* prior to the LRI. If stencil buffer writes are enabled, then a Render * Cache Flush is also necessary.
*
* The Gfx9 docs say to use a depth stall rather than a command streamer
* stall. However, the hardware seems to violently disagree. A full
* command streamer stall seems to be needed in both cases.
*/
iris_emit_pipe_control_flush(batch, "PMA fix change (1/2)",
PIPE_CONTROL_CS_STALL |
PIPE_CONTROL_DEPTH_CACHE_FLUSH |
PIPE_CONTROL_RENDER_TARGET_FLUSH);
iris_emit_reg(batch, GENX(CACHE_MODE_1), reg) {
reg.NPPMAFixEnable = enable;
reg.NPEarlyZFailsDisable = enable;
reg.NPPMAFixEnableMask = true;
reg.NPEarlyZFailsDisableMask = true;
}
/* After the LRI, a PIPE_CONTROL with both the Depth Stall and Depth Cache
* Flush bits is often necessary. We do it regardless because it's easier.
* The render cache flush is also necessary if stencil writes are enabled.
*
* Again, the Gfx9 docs give a different set of flushes but the Broadwell
* flushes seem to work just as well.
*/
iris_emit_pipe_control_flush(batch, "PMA fix change (1/2)",
PIPE_CONTROL_DEPTH_STALL |
PIPE_CONTROL_DEPTH_CACHE_FLUSH |
PIPE_CONTROL_RENDER_TARGET_FLUSH);
#endif
2017-12-27 02:54:26 -08:00
}
/**
* Gallium CSO for rasterizer state.
*/
struct iris_rasterizer_state {
uint32_t sf[GENX(3DSTATE_SF_length)];
uint32_t clip[GENX(3DSTATE_CLIP_length)];
uint32_t raster[GENX(3DSTATE_RASTER_length)];
uint32_t wm[GENX(3DSTATE_WM_length)];
2018-01-20 00:55:16 -08:00
uint32_t line_stipple[GENX(3DSTATE_LINE_STIPPLE_length)];
uint8_t num_clip_plane_consts;
bool clip_halfz; /* for CC_VIEWPORT */
bool depth_clip_near; /* for CC_VIEWPORT */
bool depth_clip_far; /* for CC_VIEWPORT */
bool flatshade; /* for shader state */
2018-07-11 12:45:19 -07:00
bool flatshade_first; /* for stream output */
2018-01-25 02:09:59 -08:00
bool clamp_fragment_color; /* for shader state */
bool light_twoside; /* for shader state */
bool rasterizer_discard; /* for 3DSTATE_STREAMOUT and 3DSTATE_CLIP */
2018-01-09 23:13:16 -08:00
bool half_pixel_center; /* for 3DSTATE_MULTISAMPLE */
2018-06-09 00:01:09 -07:00
bool line_stipple_enable;
bool poly_stipple_enable;
2018-07-16 15:36:34 -07:00
bool multisample;
bool force_persample_interp;
bool conservative_rasterization;
bool fill_mode_point;
bool fill_mode_line;
bool fill_mode_point_or_line;
enum pipe_sprite_coord_mode sprite_coord_mode; /* PIPE_SPRITE_* */
2018-01-29 15:06:04 -08:00
uint16_t sprite_coord_enable;
};
static float
get_line_width(const struct pipe_rasterizer_state *state)
{
float line_width = state->line_width;
/* From the OpenGL 4.4 spec:
*
* "The actual width of non-antialiased lines is determined by rounding
* the supplied width to the nearest integer, then clamping it to the
* implementation-dependent maximum non-antialiased line width."
*/
if (!state->multisample && !state->line_smooth)
line_width = roundf(state->line_width);
if (!state->multisample && state->line_smooth && line_width < 1.5f) {
/* For 1 pixel line thickness or less, the general anti-aliasing
* algorithm gives up, and a garbage line is generated. Setting a
* Line Width of 0.0 specifies the rasterization of the "thinnest"
* (one-pixel-wide), non-antialiased lines.
*
* Lines rendered with zero Line Width are rasterized using the
* "Grid Intersection Quantization" rules as specified by the
* "Zero-Width (Cosmetic) Line Rasterization" section of the docs.
*/
line_width = 0.0f;
}
return line_width;
}
/**
* The pipe->create_rasterizer_state() driver hook.
*/
static void *
iris_create_rasterizer_state(struct pipe_context *ctx,
const struct pipe_rasterizer_state *state)
{
struct iris_rasterizer_state *cso =
malloc(sizeof(struct iris_rasterizer_state));
2018-07-16 15:36:34 -07:00
cso->multisample = state->multisample;
cso->force_persample_interp = state->force_persample_interp;
cso->clip_halfz = state->clip_halfz;
cso->depth_clip_near = state->depth_clip_near;
cso->depth_clip_far = state->depth_clip_far;
cso->flatshade = state->flatshade;
2018-07-11 12:45:19 -07:00
cso->flatshade_first = state->flatshade_first;
2018-01-25 02:09:59 -08:00
cso->clamp_fragment_color = state->clamp_fragment_color;
cso->light_twoside = state->light_twoside;
cso->rasterizer_discard = state->rasterizer_discard;
2018-01-09 23:13:16 -08:00
cso->half_pixel_center = state->half_pixel_center;
2018-01-29 15:06:04 -08:00
cso->sprite_coord_mode = state->sprite_coord_mode;
cso->sprite_coord_enable = state->sprite_coord_enable;
2018-06-09 00:01:09 -07:00
cso->line_stipple_enable = state->line_stipple_enable;
cso->poly_stipple_enable = state->poly_stipple_enable;
cso->conservative_rasterization =
state->conservative_raster_mode == PIPE_CONSERVATIVE_RASTER_POST_SNAP;
cso->fill_mode_point =
state->fill_front == PIPE_POLYGON_MODE_POINT ||
state->fill_back == PIPE_POLYGON_MODE_POINT;
cso->fill_mode_line =
state->fill_front == PIPE_POLYGON_MODE_LINE ||
state->fill_back == PIPE_POLYGON_MODE_LINE;
cso->fill_mode_point_or_line =
cso->fill_mode_point ||
cso->fill_mode_line;
2018-11-09 02:20:31 -08:00
if (state->clip_plane_enable != 0)
cso->num_clip_plane_consts = util_logbase2(state->clip_plane_enable) + 1;
else
cso->num_clip_plane_consts = 0;
float line_width = get_line_width(state);
iris_pack_command(GENX(3DSTATE_SF), cso->sf, sf) {
sf.StatisticsEnable = true;
sf.AALineDistanceMode = AALINEDISTANCE_TRUE;
sf.LineEndCapAntialiasingRegionWidth =
state->line_smooth ? _10pixels : _05pixels;
sf.LastPixelEnable = state->line_last_pixel;
sf.LineWidth = line_width;
sf.SmoothPointEnable = (state->point_smooth || state->multisample) &&
!state->point_quad_rasterization;
sf.PointWidthSource = state->point_size_per_vertex ? Vertex : State;
sf.PointWidth = CLAMP(state->point_size, 0.125f, 255.875f);
if (state->flatshade_first) {
sf.TriangleFanProvokingVertexSelect = 1;
} else {
sf.TriangleStripListProvokingVertexSelect = 2;
sf.TriangleFanProvokingVertexSelect = 2;
sf.LineStripListProvokingVertexSelect = 1;
}
}
iris_pack_command(GENX(3DSTATE_RASTER), cso->raster, rr) {
rr.FrontWinding = state->front_ccw ? CounterClockwise : Clockwise;
rr.CullMode = translate_cull_mode(state->cull_face);
rr.FrontFaceFillMode = translate_fill_mode(state->fill_front);
rr.BackFaceFillMode = translate_fill_mode(state->fill_back);
rr.DXMultisampleRasterizationEnable = state->multisample;
rr.GlobalDepthOffsetEnableSolid = state->offset_tri;
rr.GlobalDepthOffsetEnableWireframe = state->offset_line;
rr.GlobalDepthOffsetEnablePoint = state->offset_point;
2018-06-26 10:09:08 -07:00
rr.GlobalDepthOffsetConstant = state->offset_units * 2;
rr.GlobalDepthOffsetScale = state->offset_scale;
rr.GlobalDepthOffsetClamp = state->offset_clamp;
rr.SmoothPointEnable = state->point_smooth;
rr.AntialiasingEnable = state->line_smooth;
rr.ScissorRectangleEnable = state->scissor;
#if GFX_VER >= 9
rr.ViewportZNearClipTestEnable = state->depth_clip_near;
rr.ViewportZFarClipTestEnable = state->depth_clip_far;
rr.ConservativeRasterizationEnable =
cso->conservative_rasterization;
#else
rr.ViewportZClipTestEnable = (state->depth_clip_near || state->depth_clip_far);
#endif
}
iris_pack_command(GENX(3DSTATE_CLIP), cso->clip, cl) {
/* cl.NonPerspectiveBarycentricEnable is filled in at draw time from
* the FS program; cl.ForceZeroRTAIndexEnable is filled in from the FB.
*/
cl.EarlyCullEnable = true;
cl.UserClipDistanceClipTestEnableBitmask = state->clip_plane_enable;
cl.ForceUserClipDistanceClipTestEnableBitmask = true;
cl.APIMode = state->clip_halfz ? APIMODE_D3D : APIMODE_OGL;
cl.GuardbandClipTestEnable = true;
cl.ClipEnable = true;
cl.MinimumPointWidth = 0.125;
cl.MaximumPointWidth = 255.875;
if (state->flatshade_first) {
cl.TriangleFanProvokingVertexSelect = 1;
} else {
cl.TriangleStripListProvokingVertexSelect = 2;
cl.TriangleFanProvokingVertexSelect = 2;
cl.LineStripListProvokingVertexSelect = 1;
}
}
iris_pack_command(GENX(3DSTATE_WM), cso->wm, wm) {
/* wm.BarycentricInterpolationMode and wm.EarlyDepthStencilControl are
* filled in at draw time from the FS program.
*/
wm.LineAntialiasingRegionWidth = _10pixels;
wm.LineEndCapAntialiasingRegionWidth = _05pixels;
wm.PointRasterizationRule = RASTRULE_UPPER_RIGHT;
wm.LineStippleEnable = state->line_stipple_enable;
wm.PolygonStippleEnable = state->poly_stipple_enable;
}
2018-01-20 00:55:16 -08:00
/* Remap from 0..255 back to 1..256 */
const unsigned line_stipple_factor = state->line_stipple_factor + 1;
iris_pack_command(GENX(3DSTATE_LINE_STIPPLE), cso->line_stipple, line) {
if (state->line_stipple_enable) {
line.LineStipplePattern = state->line_stipple_pattern;
line.LineStippleInverseRepeatCount = 1.0f / line_stipple_factor;
line.LineStippleRepeatCount = line_stipple_factor;
}
2018-01-20 00:55:16 -08:00
}
return cso;
}
/**
* The pipe->bind_rasterizer_state() driver hook.
*
* Bind a rasterizer CSO and flag related dirty bits.
*/
static void
iris_bind_rasterizer_state(struct pipe_context *ctx, void *state)
{
struct iris_context *ice = (struct iris_context *) ctx;
2018-01-09 21:29:09 -08:00
struct iris_rasterizer_state *old_cso = ice->state.cso_rast;
struct iris_rasterizer_state *new_cso = state;
2018-01-10 00:36:44 -08:00
if (new_cso) {
2018-01-09 23:14:10 -08:00
/* Try to avoid re-emitting 3DSTATE_LINE_STIPPLE, it's non-pipelined */
2018-06-09 00:01:09 -07:00
if (cso_changed_memcmp(line_stipple))
2018-01-09 23:14:10 -08:00
ice->state.dirty |= IRIS_DIRTY_LINE_STIPPLE;
2018-01-09 21:29:09 -08:00
2018-06-09 00:01:09 -07:00
if (cso_changed(half_pixel_center))
2018-01-09 23:14:10 -08:00
ice->state.dirty |= IRIS_DIRTY_MULTISAMPLE;
2018-06-09 00:01:09 -07:00
if (cso_changed(line_stipple_enable) || cso_changed(poly_stipple_enable))
ice->state.dirty |= IRIS_DIRTY_WM;
2018-06-29 12:58:31 -07:00
if (cso_changed(rasterizer_discard))
ice->state.dirty |= IRIS_DIRTY_STREAMOUT | IRIS_DIRTY_CLIP;
if (cso_changed(flatshade_first))
2018-06-29 12:58:31 -07:00
ice->state.dirty |= IRIS_DIRTY_STREAMOUT;
if (cso_changed(depth_clip_near) || cso_changed(depth_clip_far) ||
cso_changed(clip_halfz))
ice->state.dirty |= IRIS_DIRTY_CC_VIEWPORT;
2018-07-23 15:29:00 -07:00
if (cso_changed(sprite_coord_enable) ||
cso_changed(sprite_coord_mode) ||
cso_changed(light_twoside))
2018-07-23 15:29:00 -07:00
ice->state.dirty |= IRIS_DIRTY_SBE;
if (cso_changed(conservative_rasterization))
ice->state.stage_dirty |= IRIS_STAGE_DIRTY_FS;
2018-01-09 23:13:16 -08:00
}
2018-01-09 21:29:09 -08:00
ice->state.cso_rast = new_cso;
ice->state.dirty |= IRIS_DIRTY_RASTER;
ice->state.dirty |= IRIS_DIRTY_CLIP;
ice->state.stage_dirty |=
ice->state.stage_dirty_for_nos[IRIS_NOS_RASTERIZER];
}
/**
* Return true if the given wrap mode requires the border color to exist.
*
* (We can skip uploading it if the sampler isn't going to use it.)
*/
static bool
wrap_mode_needs_border_color(unsigned wrap_mode)
{
return wrap_mode == TCM_CLAMP_BORDER || wrap_mode == TCM_HALF_BORDER;
}
/**
* Gallium CSO for sampler state.
*/
struct iris_sampler_state {
union pipe_color_union border_color;
bool needs_border_color;
uint32_t sampler_state[GENX(SAMPLER_STATE_length)];
};
/**
* The pipe->create_sampler_state() driver hook.
*
* We fill out SAMPLER_STATE (except for the border color pointer), and
* store that on the CPU. It doesn't make sense to upload it to a GPU
* buffer object yet, because 3DSTATE_SAMPLER_STATE_POINTERS requires
* all bound sampler states to be in contiguous memor.
*/
static void *
iris_create_sampler_state(struct pipe_context *ctx,
const struct pipe_sampler_state *state)
{
struct iris_sampler_state *cso = CALLOC_STRUCT(iris_sampler_state);
if (!cso)
return NULL;
STATIC_ASSERT(PIPE_TEX_FILTER_NEAREST == MAPFILTER_NEAREST);
STATIC_ASSERT(PIPE_TEX_FILTER_LINEAR == MAPFILTER_LINEAR);
unsigned wrap_s = translate_wrap(state->wrap_s);
unsigned wrap_t = translate_wrap(state->wrap_t);
unsigned wrap_r = translate_wrap(state->wrap_r);
memcpy(&cso->border_color, &state->border_color, sizeof(cso->border_color));
cso->needs_border_color = wrap_mode_needs_border_color(wrap_s) ||
wrap_mode_needs_border_color(wrap_t) ||
wrap_mode_needs_border_color(wrap_r);
float min_lod = state->min_lod;
unsigned mag_img_filter = state->mag_img_filter;
// XXX: explain this code ported from ilo...I don't get it at all...
if (state->min_mip_filter == PIPE_TEX_MIPFILTER_NONE &&
state->min_lod > 0.0f) {
min_lod = 0.0f;
mag_img_filter = state->min_img_filter;
}
iris_pack_state(GENX(SAMPLER_STATE), cso->sampler_state, samp) {
samp.TCXAddressControlMode = wrap_s;
samp.TCYAddressControlMode = wrap_t;
samp.TCZAddressControlMode = wrap_r;
samp.CubeSurfaceControlMode = state->seamless_cube_map;
samp.NonnormalizedCoordinateEnable = !state->normalized_coords;
samp.MinModeFilter = state->min_img_filter;
samp.MagModeFilter = mag_img_filter;
samp.MipModeFilter = translate_mip_filter(state->min_mip_filter);
samp.MaximumAnisotropy = RATIO21;
if (state->max_anisotropy >= 2) {
if (state->min_img_filter == PIPE_TEX_FILTER_LINEAR) {
samp.MinModeFilter = MAPFILTER_ANISOTROPIC;
samp.AnisotropicAlgorithm = EWAApproximation;
}
if (state->mag_img_filter == PIPE_TEX_FILTER_LINEAR)
samp.MagModeFilter = MAPFILTER_ANISOTROPIC;
samp.MaximumAnisotropy =
MIN2((state->max_anisotropy - 2) / 2, RATIO161);
}
/* Set address rounding bits if not using nearest filtering. */
if (state->min_img_filter != PIPE_TEX_FILTER_NEAREST) {
samp.UAddressMinFilterRoundingEnable = true;
samp.VAddressMinFilterRoundingEnable = true;
samp.RAddressMinFilterRoundingEnable = true;
}
if (state->mag_img_filter != PIPE_TEX_FILTER_NEAREST) {
samp.UAddressMagFilterRoundingEnable = true;
samp.VAddressMagFilterRoundingEnable = true;
samp.RAddressMagFilterRoundingEnable = true;
}
if (state->compare_mode == PIPE_TEX_COMPARE_R_TO_TEXTURE)
samp.ShadowFunction = translate_shadow_func(state->compare_func);
const float hw_max_lod = GFX_VER >= 7 ? 14 : 13;
samp.LODPreClampMode = CLAMP_MODE_OGL;
samp.MinLOD = CLAMP(min_lod, 0, hw_max_lod);
samp.MaxLOD = CLAMP(state->max_lod, 0, hw_max_lod);
samp.TextureLODBias = CLAMP(state->lod_bias, -16, 15);
/* .BorderColorPointer is filled in by iris_bind_sampler_states. */
}
return cso;
}
/**
* The pipe->bind_sampler_states() driver hook.
*/
2018-01-11 22:18:54 -08:00
static void
iris_bind_sampler_states(struct pipe_context *ctx,
enum pipe_shader_type p_stage,
unsigned start, unsigned count,
void **states)
{
struct iris_context *ice = (struct iris_context *) ctx;
gl_shader_stage stage = stage_from_pipe(p_stage);
struct iris_shader_state *shs = &ice->state.shaders[stage];
2018-01-11 22:18:54 -08:00
assert(start + count <= IRIS_MAX_TEXTURE_SAMPLERS);
bool dirty = false;
for (int i = 0; i < count; i++) {
if (shs->samplers[start + i] != states[i]) {
shs->samplers[start + i] = states[i];
dirty = true;
}
}
2018-01-11 22:18:54 -08:00
if (dirty)
ice->state.stage_dirty |= IRIS_STAGE_DIRTY_SAMPLER_STATES_VS << stage;
}
/**
* Upload the sampler states into a contiguous area of GPU memory, for
* for 3DSTATE_SAMPLER_STATE_POINTERS_*.
*
* Also fill out the border color state pointers.
*/
static void
iris_upload_sampler_states(struct iris_context *ice, gl_shader_stage stage)
{
struct iris_shader_state *shs = &ice->state.shaders[stage];
const struct shader_info *info = iris_get_shader_info(ice, stage);
/* We assume gallium frontends will call pipe->bind_sampler_states()
* if the program's number of textures changes.
*/
unsigned count = info ? BITSET_LAST_BIT(info->textures_used) : 0;
if (!count)
return;
/* Assemble the SAMPLER_STATEs into a contiguous table that lives
* in the dynamic state memory zone, so we can point to it via the
* 3DSTATE_SAMPLER_STATE_POINTERS_* commands.
*/
iris: Record state sizes for INTEL_DEBUG=bat decoding. Felix noticed a crash when using INTEL_DEBUG=bat decoding. It turned out that we were sometimes placing variable length data near the end of a buffer, and with the decoder guessing random lengths rather than having an actual count, it was walking off the end and crashing. So this does more than improve the decoder output. Unfortunately, this is a bit more complicated than i965's handling, because we don't have a single state buffer. Various places upload data via u_upload_mgr, and so there isn't a central place to record the size. We don't need to catch every single place, however, since it's only important to record variable length packets (like viewports and binding tables). State data also lives arbitrarily long, rather than being discarded on every batch like i965, so we don't know when to clear out old entries either. (We also don't have a callback when an upload buffer is released.) So, this tracking may space leak over time. That's probably okay though, as this is only a debugging feature and it's a slow leak. We may also get lucky and overwrite existing entries as we reuse BOs, though I find this unlikely to happen. The fact that the decoder works in terms of offsets from a state base address is also not ideal, as dynamic state base address and surface state base address differ for iris. However, because dynamic state addresses start from the top of a 4GB region, and binding tables start from addresses [0, 64K), it's highly unlikely that we'll get overlap. We can always improve this, but for now it's better than what we had.
2019-05-22 18:14:38 -07:00
unsigned size = count * 4 * GENX(SAMPLER_STATE_length);
2018-08-23 02:15:12 -07:00
uint32_t *map =
iris: Record state sizes for INTEL_DEBUG=bat decoding. Felix noticed a crash when using INTEL_DEBUG=bat decoding. It turned out that we were sometimes placing variable length data near the end of a buffer, and with the decoder guessing random lengths rather than having an actual count, it was walking off the end and crashing. So this does more than improve the decoder output. Unfortunately, this is a bit more complicated than i965's handling, because we don't have a single state buffer. Various places upload data via u_upload_mgr, and so there isn't a central place to record the size. We don't need to catch every single place, however, since it's only important to record variable length packets (like viewports and binding tables). State data also lives arbitrarily long, rather than being discarded on every batch like i965, so we don't know when to clear out old entries either. (We also don't have a callback when an upload buffer is released.) So, this tracking may space leak over time. That's probably okay though, as this is only a debugging feature and it's a slow leak. We may also get lucky and overwrite existing entries as we reuse BOs, though I find this unlikely to happen. The fact that the decoder works in terms of offsets from a state base address is also not ideal, as dynamic state base address and surface state base address differ for iris. However, because dynamic state addresses start from the top of a 4GB region, and binding tables start from addresses [0, 64K), it's highly unlikely that we'll get overlap. We can always improve this, but for now it's better than what we had.
2019-05-22 18:14:38 -07:00
upload_state(ice->state.dynamic_uploader, &shs->sampler_table, size, 32);
2018-04-19 12:07:44 -07:00
if (unlikely(!map))
return;
struct pipe_resource *res = shs->sampler_table.res;
struct iris_bo *bo = iris_resource_bo(res);
iris_record_state_size(ice->state.sizes,
bo->gtt_offset + shs->sampler_table.offset, size);
shs->sampler_table.offset += iris_bo_offset_from_base_address(bo);
iris: Record state sizes for INTEL_DEBUG=bat decoding. Felix noticed a crash when using INTEL_DEBUG=bat decoding. It turned out that we were sometimes placing variable length data near the end of a buffer, and with the decoder guessing random lengths rather than having an actual count, it was walking off the end and crashing. So this does more than improve the decoder output. Unfortunately, this is a bit more complicated than i965's handling, because we don't have a single state buffer. Various places upload data via u_upload_mgr, and so there isn't a central place to record the size. We don't need to catch every single place, however, since it's only important to record variable length packets (like viewports and binding tables). State data also lives arbitrarily long, rather than being discarded on every batch like i965, so we don't know when to clear out old entries either. (We also don't have a callback when an upload buffer is released.) So, this tracking may space leak over time. That's probably okay though, as this is only a debugging feature and it's a slow leak. We may also get lucky and overwrite existing entries as we reuse BOs, though I find this unlikely to happen. The fact that the decoder works in terms of offsets from a state base address is also not ideal, as dynamic state base address and surface state base address differ for iris. However, because dynamic state addresses start from the top of a 4GB region, and binding tables start from addresses [0, 64K), it's highly unlikely that we'll get overlap. We can always improve this, but for now it's better than what we had.
2019-05-22 18:14:38 -07:00
/* Make sure all land in the same BO */
iris_border_color_pool_reserve(ice, IRIS_MAX_TEXTURE_SAMPLERS);
ice->state.need_border_colors &= ~(1 << stage);
2018-01-11 22:18:54 -08:00
for (int i = 0; i < count; i++) {
struct iris_sampler_state *state = shs->samplers[i];
struct iris_sampler_view *tex = shs->textures[i];
if (!state) {
memset(map, 0, 4 * GENX(SAMPLER_STATE_length));
} else if (!state->needs_border_color) {
memcpy(map, state->sampler_state, 4 * GENX(SAMPLER_STATE_length));
} else {
ice->state.need_border_colors |= 1 << stage;
/* We may need to swizzle the border color for format faking.
* A/LA formats are faked as R/RG with 000R or R00G swizzles.
* This means we need to move the border color's A channel into
* the R or G channels so that those read swizzles will move it
* back into A.
*/
union pipe_color_union *color = &state->border_color;
union pipe_color_union tmp;
if (tex) {
enum pipe_format internal_format = tex->res->internal_format;
if (util_format_is_alpha(internal_format)) {
unsigned char swz[4] = {
PIPE_SWIZZLE_W, PIPE_SWIZZLE_0,
PIPE_SWIZZLE_0, PIPE_SWIZZLE_0
};
util_format_apply_color_swizzle(&tmp, color, swz, true);
color = &tmp;
} else if (util_format_is_luminance_alpha(internal_format) &&
internal_format != PIPE_FORMAT_L8A8_SRGB) {
unsigned char swz[4] = {
PIPE_SWIZZLE_X, PIPE_SWIZZLE_W,
PIPE_SWIZZLE_0, PIPE_SWIZZLE_0
};
util_format_apply_color_swizzle(&tmp, color, swz, true);
color = &tmp;
}
}
/* Stream out the border color and merge the pointer. */
uint32_t offset = iris_upload_border_color(ice, color);
uint32_t dynamic[GENX(SAMPLER_STATE_length)];
iris_pack_state(GENX(SAMPLER_STATE), dynamic, dyns) {
dyns.BorderColorPointer = offset;
}
for (uint32_t j = 0; j < GENX(SAMPLER_STATE_length); j++)
2018-08-23 02:15:12 -07:00
map[j] = state->sampler_state[j] | dynamic[j];
}
map += GENX(SAMPLER_STATE_length);
2018-01-11 22:18:54 -08:00
}
}
2018-10-07 20:31:09 -07:00
static enum isl_channel_select
fmt_swizzle(const struct iris_format_info *fmt, enum pipe_swizzle swz)
{
switch (swz) {
case PIPE_SWIZZLE_X: return fmt->swizzle.r;
case PIPE_SWIZZLE_Y: return fmt->swizzle.g;
case PIPE_SWIZZLE_Z: return fmt->swizzle.b;
case PIPE_SWIZZLE_W: return fmt->swizzle.a;
case PIPE_SWIZZLE_1: return SCS_ONE;
case PIPE_SWIZZLE_0: return SCS_ZERO;
default: unreachable("invalid swizzle");
}
}
static void
fill_buffer_surface_state(struct isl_device *isl_dev,
struct iris_resource *res,
void *map,
enum isl_format format,
struct isl_swizzle swizzle,
unsigned offset,
unsigned size,
isl_surf_usage_flags_t usage)
{
const struct isl_format_layout *fmtl = isl_format_get_layout(format);
const unsigned cpp = format == ISL_FORMAT_RAW ? 1 : fmtl->bpb / 8;
/* The ARB_texture_buffer_specification says:
*
* "The number of texels in the buffer texture's texel array is given by
*
* floor(<buffer_size> / (<components> * sizeof(<base_type>)),
*
* where <buffer_size> is the size of the buffer object, in basic
* machine units and <components> and <base_type> are the element count
* and base data type for elements, as specified in Table X.1. The
* number of texels in the texel array is then clamped to the
* implementation-dependent limit MAX_TEXTURE_BUFFER_SIZE_ARB."
*
* We need to clamp the size in bytes to MAX_TEXTURE_BUFFER_SIZE * stride,
* so that when ISL divides by stride to obtain the number of texels, that
* texel count is clamped to MAX_TEXTURE_BUFFER_SIZE.
*/
unsigned final_size =
MIN3(size, res->bo->size - res->offset - offset,
IRIS_MAX_TEXTURE_BUFFER_SIZE * cpp);
isl_buffer_fill_state(isl_dev, map,
.address = res->bo->gtt_offset + res->offset + offset,
.size_B = final_size,
.format = format,
.swizzle = swizzle,
.stride_B = cpp,
.mocs = iris_mocs(res->bo, isl_dev, usage));
}
#define SURFACE_STATE_ALIGNMENT 64
/**
* Allocate several contiguous SURFACE_STATE structures, one for each
* supported auxiliary surface mode. This only allocates the CPU-side
* copy, they will need to be uploaded later after they're filled in.
*/
static void
alloc_surface_states(struct iris_surface_state *surf_state,
unsigned aux_usages)
{
const unsigned surf_size = 4 * GENX(RENDER_SURFACE_STATE_length);
/* If this changes, update this to explicitly align pointers */
STATIC_ASSERT(surf_size == SURFACE_STATE_ALIGNMENT);
assert(aux_usages != 0);
/* In case we're re-allocating them... */
free(surf_state->cpu);
surf_state->num_states = util_bitcount(aux_usages);
surf_state->cpu = calloc(surf_state->num_states, surf_size);
surf_state->ref.offset = 0;
pipe_resource_reference(&surf_state->ref.res, NULL);
assert(surf_state->cpu);
}
/**
* Upload the CPU side SURFACE_STATEs into a GPU buffer.
*/
static void
upload_surface_states(struct u_upload_mgr *mgr,
struct iris_surface_state *surf_state)
{
const unsigned surf_size = 4 * GENX(RENDER_SURFACE_STATE_length);
const unsigned bytes = surf_state->num_states * surf_size;
void *map =
upload_state(mgr, &surf_state->ref, bytes, SURFACE_STATE_ALIGNMENT);
surf_state->ref.offset +=
iris_bo_offset_from_base_address(iris_resource_bo(surf_state->ref.res));
if (map)
memcpy(map, surf_state->cpu, bytes);
}
/**
* Update resource addresses in a set of SURFACE_STATE descriptors,
* and re-upload them if necessary.
*/
static bool
update_surface_state_addrs(struct u_upload_mgr *mgr,
struct iris_surface_state *surf_state,
struct iris_bo *bo)
{
if (surf_state->bo_address == bo->gtt_offset)
return false;
STATIC_ASSERT(GENX(RENDER_SURFACE_STATE_SurfaceBaseAddress_start) % 64 == 0);
STATIC_ASSERT(GENX(RENDER_SURFACE_STATE_SurfaceBaseAddress_bits) == 64);
uint64_t *ss_addr = (uint64_t *) &surf_state->cpu[GENX(RENDER_SURFACE_STATE_SurfaceBaseAddress_start) / 32];
/* First, update the CPU copies. We assume no other fields exist in
* the QWord containing Surface Base Address.
*/
for (unsigned i = 0; i < surf_state->num_states; i++) {
*ss_addr = *ss_addr - surf_state->bo_address + bo->gtt_offset;
ss_addr = ((void *) ss_addr) + SURFACE_STATE_ALIGNMENT;
}
/* Next, upload the updated copies to a GPU buffer. */
upload_surface_states(mgr, surf_state);
surf_state->bo_address = bo->gtt_offset;
return true;
}
#if GFX_VER == 8
/**
* Return an ISL surface for use with non-coherent render target reads.
*
* In a few complex cases, we can't use the SURFACE_STATE for normal render
* target writes. We need to make a separate one for sampling which refers
* to the single slice of the texture being read.
*/
static void
get_rt_read_isl_surf(const struct gen_device_info *devinfo,
struct iris_resource *res,
enum pipe_texture_target target,
struct isl_view *view,
uint32_t *offset_to_tile,
uint32_t *tile_x_sa,
uint32_t *tile_y_sa,
struct isl_surf *surf)
{
*surf = res->surf;
const enum isl_dim_layout dim_layout =
iris_get_isl_dim_layout(devinfo, res->surf.tiling, target);
surf->dim = target_to_isl_surf_dim(target);
if (surf->dim_layout == dim_layout)
return;
/* The layout of the specified texture target is not compatible with the
* actual layout of the miptree structure in memory -- You're entering
* dangerous territory, this can only possibly work if you only intended
* to access a single level and slice of the texture, and the hardware
* supports the tile offset feature in order to allow non-tile-aligned
* base offsets, since we'll have to point the hardware to the first
* texel of the level instead of relying on the usual base level/layer
* controls.
*/
assert(view->levels == 1 && view->array_len == 1);
assert(*tile_x_sa == 0 && *tile_y_sa == 0);
*offset_to_tile = iris_resource_get_tile_offsets(res, view->base_level,
view->base_array_layer,
tile_x_sa, tile_y_sa);
const unsigned l = view->base_level;
surf->logical_level0_px.width = minify(surf->logical_level0_px.width, l);
surf->logical_level0_px.height = surf->dim <= ISL_SURF_DIM_1D ? 1 :
minify(surf->logical_level0_px.height, l);
surf->logical_level0_px.depth = surf->dim <= ISL_SURF_DIM_2D ? 1 :
minify(surf->logical_level0_px.depth, l);
surf->logical_level0_px.array_len = 1;
surf->levels = 1;
surf->dim_layout = dim_layout;
view->base_level = 0;
view->base_array_layer = 0;
}
#endif
static void
fill_surface_state(struct isl_device *isl_dev,
void *map,
struct iris_resource *res,
struct isl_surf *surf,
struct isl_view *view,
unsigned aux_usage,
uint32_t extra_main_offset,
uint32_t tile_x_sa,
uint32_t tile_y_sa)
{
struct isl_surf_fill_state_info f = {
.surf = surf,
.view = view,
.mocs = iris_mocs(res->bo, isl_dev, view->usage),
.address = res->bo->gtt_offset + res->offset + extra_main_offset,
.x_offset_sa = tile_x_sa,
.y_offset_sa = tile_y_sa,
};
assert(!iris_resource_unfinished_aux_import(res));
if (aux_usage != ISL_AUX_USAGE_NONE) {
f.aux_surf = &res->aux.surf;
f.aux_usage = aux_usage;
f.aux_address = res->aux.bo->gtt_offset + res->aux.offset;
struct iris_bo *clear_bo = NULL;
uint64_t clear_offset = 0;
f.clear_color =
iris_resource_get_clear_color(res, &clear_bo, &clear_offset);
if (clear_bo) {
f.clear_address = clear_bo->gtt_offset + clear_offset;
f.use_clear_address = isl_dev->info->ver > 9;
}
}
isl_surf_fill_state_s(isl_dev, map, &f);
}
/**
* The pipe->create_sampler_view() driver hook.
*/
static struct pipe_sampler_view *
iris_create_sampler_view(struct pipe_context *ctx,
2018-01-09 17:54:43 -08:00
struct pipe_resource *tex,
const struct pipe_sampler_view *tmpl)
{
2018-01-09 17:54:43 -08:00
struct iris_screen *screen = (struct iris_screen *)ctx->screen;
2018-10-07 20:31:09 -07:00
const struct gen_device_info *devinfo = &screen->devinfo;
2018-01-09 17:54:43 -08:00
struct iris_sampler_view *isv = calloc(1, sizeof(struct iris_sampler_view));
2018-01-09 17:54:43 -08:00
if (!isv)
return NULL;
/* initialize base object */
2018-08-18 23:21:32 -07:00
isv->base = *tmpl;
isv->base.context = ctx;
isv->base.texture = NULL;
pipe_reference_init(&isv->base.reference, 1);
pipe_resource_reference(&isv->base.texture, tex);
2018-01-09 17:54:43 -08:00
2018-10-04 19:49:06 -07:00
if (util_format_is_depth_or_stencil(tmpl->format)) {
struct iris_resource *zres, *sres;
const struct util_format_description *desc =
util_format_description(tmpl->format);
iris_get_depth_stencil_resources(tex, &zres, &sres);
tex = util_format_has_depth(desc) ? &zres->base.b : &sres->base.b;
2018-10-04 19:49:06 -07:00
}
isv->res = (struct iris_resource *) tex;
alloc_surface_states(&isv->surface_state, isv->res->aux.sampler_usages);
isv->surface_state.bo_address = isv->res->bo->gtt_offset;
isl_surf_usage_flags_t usage = ISL_SURF_USAGE_TEXTURE_BIT;
2018-10-07 20:31:09 -07:00
2018-11-27 13:02:03 +10:00
if (isv->base.target == PIPE_TEXTURE_CUBE ||
isv->base.target == PIPE_TEXTURE_CUBE_ARRAY)
usage |= ISL_SURF_USAGE_CUBE_BIT;
2018-10-07 20:31:09 -07:00
const struct iris_format_info fmt =
iris_format_for_usage(devinfo, tmpl->format, usage);
isv->clear_color = isv->res->aux.clear_color;
2018-01-09 17:54:43 -08:00
isv->view = (struct isl_view) {
2018-10-07 20:31:09 -07:00
.format = fmt.fmt,
2018-01-09 17:54:43 -08:00
.swizzle = (struct isl_swizzle) {
2018-10-07 20:31:09 -07:00
.r = fmt_swizzle(&fmt, tmpl->swizzle_r),
.g = fmt_swizzle(&fmt, tmpl->swizzle_g),
.b = fmt_swizzle(&fmt, tmpl->swizzle_b),
.a = fmt_swizzle(&fmt, tmpl->swizzle_a),
2018-01-09 17:54:43 -08:00
},
2018-10-07 20:31:09 -07:00
.usage = usage,
2018-01-09 17:54:43 -08:00
};
void *map = isv->surface_state.cpu;
/* Fill out SURFACE_STATE for this view. */
if (tmpl->target != PIPE_BUFFER) {
isv->view.base_level = tmpl->u.tex.first_level;
isv->view.levels = tmpl->u.tex.last_level - tmpl->u.tex.first_level + 1;
2018-11-16 15:12:57 -08:00
// XXX: do I need to port f9fd0cf4790cb2a530e75d1a2206dbb9d8af7cb2?
isv->view.base_array_layer = tmpl->u.tex.first_layer;
isv->view.array_len =
tmpl->u.tex.last_layer - tmpl->u.tex.first_layer + 1;
if (iris_resource_unfinished_aux_import(isv->res))
iris_resource_finish_aux_import(&screen->base, isv->res);
unsigned aux_modes = isv->res->aux.sampler_usages;
while (aux_modes) {
enum isl_aux_usage aux_usage = u_bit_scan(&aux_modes);
fill_surface_state(&screen->isl_dev, map, isv->res, &isv->res->surf,
&isv->view, aux_usage, 0, 0, 0);
map += SURFACE_STATE_ALIGNMENT;
}
} else {
fill_buffer_surface_state(&screen->isl_dev, isv->res, map,
isv->view.format, isv->view.swizzle,
tmpl->u.buf.offset, tmpl->u.buf.size,
ISL_SURF_USAGE_TEXTURE_BIT);
}
2018-01-09 17:54:43 -08:00
2018-08-18 23:21:32 -07:00
return &isv->base;
}
static void
iris_sampler_view_destroy(struct pipe_context *ctx,
struct pipe_sampler_view *state)
{
struct iris_sampler_view *isv = (void *) state;
pipe_resource_reference(&state->texture, NULL);
pipe_resource_reference(&isv->surface_state.ref.res, NULL);
free(isv->surface_state.cpu);
free(isv);
}
/**
* The pipe->create_surface() driver hook.
*
* In Gallium nomenclature, "surfaces" are a view of a resource that
* can be bound as a render target or depth/stencil buffer.
*/
static struct pipe_surface *
iris_create_surface(struct pipe_context *ctx,
struct pipe_resource *tex,
2018-01-09 17:54:43 -08:00
const struct pipe_surface *tmpl)
{
2018-01-09 14:34:15 -08:00
struct iris_screen *screen = (struct iris_screen *)ctx->screen;
const struct gen_device_info *devinfo = &screen->devinfo;
2018-01-09 14:34:15 -08:00
isl_surf_usage_flags_t usage = 0;
2018-04-25 15:25:33 -07:00
if (tmpl->writable)
usage = ISL_SURF_USAGE_STORAGE_BIT;
else if (util_format_is_depth_or_stencil(tmpl->format))
usage = ISL_SURF_USAGE_DEPTH_BIT;
else
2018-04-25 15:25:33 -07:00
usage = ISL_SURF_USAGE_RENDER_TARGET_BIT;
2018-10-07 20:31:09 -07:00
const struct iris_format_info fmt =
iris_format_for_usage(devinfo, tmpl->format, usage);
if ((usage & ISL_SURF_USAGE_RENDER_TARGET_BIT) &&
2018-10-07 20:31:09 -07:00
!isl_format_supports_rendering(devinfo, fmt.fmt)) {
/* Framebuffer validation will reject this invalid case, but it
* hasn't had the opportunity yet. In the meantime, we need to
* avoid hitting ISL asserts about unsupported formats below.
*/
return NULL;
}
struct iris_surface *surf = calloc(1, sizeof(struct iris_surface));
struct pipe_surface *psurf = &surf->base;
struct iris_resource *res = (struct iris_resource *) tex;
if (!surf)
return NULL;
pipe_reference_init(&psurf->reference, 1);
pipe_resource_reference(&psurf->texture, tex);
psurf->context = ctx;
psurf->format = tmpl->format;
psurf->width = tex->width0;
psurf->height = tex->height0;
psurf->texture = tex;
psurf->u.tex.first_layer = tmpl->u.tex.first_layer;
psurf->u.tex.last_layer = tmpl->u.tex.last_layer;
psurf->u.tex.level = tmpl->u.tex.level;
uint32_t array_len = tmpl->u.tex.last_layer - tmpl->u.tex.first_layer + 1;
struct isl_view *view = &surf->view;
*view = (struct isl_view) {
2018-10-07 20:31:09 -07:00
.format = fmt.fmt,
2018-01-09 17:54:43 -08:00
.base_level = tmpl->u.tex.level,
2018-01-09 14:34:15 -08:00
.levels = 1,
2018-01-09 17:54:43 -08:00
.base_array_layer = tmpl->u.tex.first_layer,
.array_len = array_len,
2018-01-09 14:34:15 -08:00
.swizzle = ISL_SWIZZLE_IDENTITY,
2018-04-25 15:25:33 -07:00
.usage = usage,
2018-01-09 14:34:15 -08:00
};
#if GFX_VER == 8
enum pipe_texture_target target = (tex->target == PIPE_TEXTURE_3D &&
array_len == 1) ? PIPE_TEXTURE_2D :
tex->target == PIPE_TEXTURE_1D_ARRAY ?
PIPE_TEXTURE_2D_ARRAY : tex->target;
struct isl_view *read_view = &surf->read_view;
*read_view = (struct isl_view) {
.format = fmt.fmt,
.base_level = tmpl->u.tex.level,
.levels = 1,
.base_array_layer = tmpl->u.tex.first_layer,
.array_len = array_len,
.swizzle = ISL_SWIZZLE_IDENTITY,
.usage = ISL_SURF_USAGE_TEXTURE_BIT,
};
#endif
surf->clear_color = res->aux.clear_color;
/* Bail early for depth/stencil - we don't want SURFACE_STATE for them. */
2018-04-25 15:25:33 -07:00
if (res->surf.usage & (ISL_SURF_USAGE_DEPTH_BIT |
ISL_SURF_USAGE_STENCIL_BIT))
return psurf;
2018-06-28 00:57:49 -07:00
alloc_surface_states(&surf->surface_state, res->aux.possible_usages);
surf->surface_state.bo_address = res->bo->gtt_offset;
#if GFX_VER == 8
alloc_surface_states(&surf->surface_state_read, res->aux.possible_usages);
surf->surface_state_read.bo_address = res->bo->gtt_offset;
#endif
if (!isl_format_is_compressed(res->surf.format)) {
if (iris_resource_unfinished_aux_import(res))
iris_resource_finish_aux_import(&screen->base, res);
void *map = surf->surface_state.cpu;
UNUSED void *map_read = surf->surface_state_read.cpu;
/* This is a normal surface. Fill out a SURFACE_STATE for each possible
* auxiliary surface mode and return the pipe_surface.
*/
unsigned aux_modes = res->aux.possible_usages;
while (aux_modes) {
enum isl_aux_usage aux_usage = u_bit_scan(&aux_modes);
fill_surface_state(&screen->isl_dev, map, res, &res->surf,
view, aux_usage, 0, 0, 0);
map += SURFACE_STATE_ALIGNMENT;
#if GFX_VER == 8
struct isl_surf surf;
uint32_t offset_to_tile = 0, tile_x_sa = 0, tile_y_sa = 0;
get_rt_read_isl_surf(devinfo, res, target, read_view,
&offset_to_tile, &tile_x_sa, &tile_y_sa, &surf);
fill_surface_state(&screen->isl_dev, map_read, res, &surf, read_view,
aux_usage, offset_to_tile, tile_x_sa, tile_y_sa);
map_read += SURFACE_STATE_ALIGNMENT;
#endif
}
return psurf;
}
2018-01-09 14:34:15 -08:00
/* The resource has a compressed format, which is not renderable, but we
* have a renderable view format. We must be attempting to upload blocks
* of compressed data via an uncompressed view.
*
* In this case, we can assume there are no auxiliary buffers, a single
* miplevel, and that the resource is single-sampled. Gallium may try
* and create an uncompressed view with multiple layers, however.
*/
assert(!isl_format_is_compressed(fmt.fmt));
assert(res->aux.possible_usages == 1 << ISL_AUX_USAGE_NONE);
assert(res->surf.samples == 1);
assert(view->levels == 1);
struct isl_surf isl_surf;
uint32_t offset_B = 0, tile_x_sa = 0, tile_y_sa = 0;
if (view->base_level > 0) {
/* We can't rely on the hardware's miplevel selection with such
* a substantial lie about the format, so we select a single image
* using the Tile X/Y Offset fields. In this case, we can't handle
* multiple array slices.
*
* On Broadwell, HALIGN and VALIGN are specified in pixels and are
* hard-coded to align to exactly the block size of the compressed
* texture. This means that, when reinterpreted as a non-compressed
* texture, the tile offsets may be anything and we can't rely on
* X/Y Offset.
*
* Return NULL to force gallium frontends to take fallback paths.
*/
if (view->array_len > 1 || GFX_VER == 8)
return NULL;
const bool is_3d = res->surf.dim == ISL_SURF_DIM_3D;
isl_surf_get_image_surf(&screen->isl_dev, &res->surf,
view->base_level,
is_3d ? 0 : view->base_array_layer,
is_3d ? view->base_array_layer : 0,
&isl_surf,
&offset_B, &tile_x_sa, &tile_y_sa);
/* We use address and tile offsets to access a single level/layer
* as a subimage, so reset level/layer so it doesn't offset again.
*/
view->base_array_layer = 0;
view->base_level = 0;
} else {
/* Level 0 doesn't require tile offsets, and the hardware can find
* array slices using QPitch even with the format override, so we
* can allow layers in this case. Copy the original ISL surface.
*/
memcpy(&isl_surf, &res->surf, sizeof(isl_surf));
}
/* Scale down the image dimensions by the block size. */
const struct isl_format_layout *fmtl =
isl_format_get_layout(res->surf.format);
isl_surf.format = fmt.fmt;
isl_surf.logical_level0_px = isl_surf_get_logical_level0_el(&isl_surf);
isl_surf.phys_level0_sa = isl_surf_get_phys_level0_el(&isl_surf);
tile_x_sa /= fmtl->bw;
tile_y_sa /= fmtl->bh;
psurf->width = isl_surf.logical_level0_px.width;
psurf->height = isl_surf.logical_level0_px.height;
struct isl_surf_fill_state_info f = {
.surf = &isl_surf,
.view = view,
.mocs = iris_mocs(res->bo, &screen->isl_dev,
ISL_SURF_USAGE_RENDER_TARGET_BIT),
.address = res->bo->gtt_offset + offset_B,
.x_offset_sa = tile_x_sa,
.y_offset_sa = tile_y_sa,
};
isl_surf_fill_state_s(&screen->isl_dev, surf->surface_state.cpu, &f);
2018-01-09 14:34:15 -08:00
return psurf;
}
#if GFX_VER < 9
static void
fill_default_image_param(struct brw_image_param *param)
{
memset(param, 0, sizeof(*param));
/* Set the swizzling shifts to all-ones to effectively disable swizzling --
* See emit_address_calculation() in brw_fs_surface_builder.cpp for a more
* detailed explanation of these parameters.
*/
param->swizzling[0] = 0xff;
param->swizzling[1] = 0xff;
}
static void
fill_buffer_image_param(struct brw_image_param *param,
enum pipe_format pfmt,
unsigned size)
{
const unsigned cpp = util_format_get_blocksize(pfmt);
fill_default_image_param(param);
param->size[0] = size / cpp;
param->stride[0] = cpp;
}
#else
#define isl_surf_fill_image_param(x, ...)
#define fill_default_image_param(x, ...)
#define fill_buffer_image_param(x, ...)
#endif
2018-08-30 15:45:36 -07:00
/**
* The pipe->set_shader_images() driver hook.
*/
static void
iris_set_shader_images(struct pipe_context *ctx,
enum pipe_shader_type p_stage,
unsigned start_slot, unsigned count,
unsigned unbind_num_trailing_slots,
2018-08-30 15:45:36 -07:00
const struct pipe_image_view *p_images)
{
struct iris_context *ice = (struct iris_context *) ctx;
struct iris_screen *screen = (struct iris_screen *)ctx->screen;
gl_shader_stage stage = stage_from_pipe(p_stage);
struct iris_shader_state *shs = &ice->state.shaders[stage];
#if GFX_VER == 8
struct iris_genx_state *genx = ice->state.genx;
struct brw_image_param *image_params = genx->shaders[stage].image_param;
#endif
2018-08-30 15:45:36 -07:00
shs->bound_image_views &=
~u_bit_consecutive(start_slot, count + unbind_num_trailing_slots);
2018-08-30 15:45:36 -07:00
for (unsigned i = 0; i < count; i++) {
struct iris_image_view *iv = &shs->image[start_slot + i];
2018-08-30 15:45:36 -07:00
if (p_images && p_images[i].resource) {
const struct pipe_image_view *img = &p_images[i];
struct iris_resource *res = (void *) img->resource;
util_copy_image_view(&iv->base, img);
shs->bound_image_views |= 1 << (start_slot + i);
res->bind_history |= PIPE_BIND_SHADER_IMAGE;
res->bind_stages |= 1 << stage;
2018-08-30 15:45:36 -07:00
enum isl_format isl_fmt = iris_image_view_get_format(ice, img);
2018-08-30 15:45:36 -07:00
/* Render compression with images supported on gfx12+ only. */
unsigned aux_usages = GFX_VER >= 12 ? res->aux.possible_usages :
1 << ISL_AUX_USAGE_NONE;
alloc_surface_states(&iv->surface_state, aux_usages);
iv->surface_state.bo_address = res->bo->gtt_offset;
void *map = iv->surface_state.cpu;
if (res->base.b.target != PIPE_BUFFER) {
2018-08-30 15:45:36 -07:00
struct isl_view view = {
.format = isl_fmt,
2018-08-30 15:45:36 -07:00
.base_level = img->u.tex.level,
.levels = 1,
.base_array_layer = img->u.tex.first_layer,
.array_len = img->u.tex.last_layer - img->u.tex.first_layer + 1,
.swizzle = ISL_SWIZZLE_IDENTITY,
.usage = ISL_SURF_USAGE_STORAGE_BIT,
2018-08-30 15:45:36 -07:00
};
/* If using untyped fallback. */
if (isl_fmt == ISL_FORMAT_RAW) {
fill_buffer_surface_state(&screen->isl_dev, res, map,
isl_fmt, ISL_SWIZZLE_IDENTITY,
0, res->bo->size,
ISL_SURF_USAGE_STORAGE_BIT);
} else {
unsigned aux_modes = aux_usages;
while (aux_modes) {
enum isl_aux_usage usage = u_bit_scan(&aux_modes);
fill_surface_state(&screen->isl_dev, map, res, &res->surf,
&view, usage, 0, 0, 0);
map += SURFACE_STATE_ALIGNMENT;
}
}
isl_surf_fill_image_param(&screen->isl_dev,
&image_params[start_slot + i],
&res->surf, &view);
2018-08-30 15:45:36 -07:00
} else {
util_range_add(&res->base.b, &res->valid_buffer_range, img->u.buf.offset,
img->u.buf.offset + img->u.buf.size);
fill_buffer_surface_state(&screen->isl_dev, res, map,
isl_fmt, ISL_SWIZZLE_IDENTITY,
img->u.buf.offset, img->u.buf.size,
ISL_SURF_USAGE_STORAGE_BIT);
fill_buffer_image_param(&image_params[start_slot + i],
img->format, img->u.buf.size);
2018-08-30 15:45:36 -07:00
}
upload_surface_states(ice->state.surface_uploader, &iv->surface_state);
2018-08-30 15:45:36 -07:00
} else {
pipe_resource_reference(&iv->base.resource, NULL);
pipe_resource_reference(&iv->surface_state.ref.res, NULL);
fill_default_image_param(&image_params[start_slot + i]);
2018-08-30 15:45:36 -07:00
}
}
ice->state.stage_dirty |= IRIS_STAGE_DIRTY_BINDINGS_VS << stage;
ice->state.dirty |=
stage == MESA_SHADER_COMPUTE ? IRIS_DIRTY_COMPUTE_RESOLVES_AND_FLUSHES
: IRIS_DIRTY_RENDER_RESOLVES_AND_FLUSHES;
/* Broadwell also needs brw_image_params re-uploaded */
if (GFX_VER < 9) {
ice->state.stage_dirty |= IRIS_STAGE_DIRTY_CONSTANTS_VS << stage;
shs->sysvals_need_upload = true;
}
if (unbind_num_trailing_slots) {
iris_set_shader_images(ctx, p_stage, start_slot + count,
unbind_num_trailing_slots, 0, NULL);
}
2018-08-30 15:45:36 -07:00
}
/**
* The pipe->set_sampler_views() driver hook.
*/
static void
iris_set_sampler_views(struct pipe_context *ctx,
2018-04-07 06:35:51 -07:00
enum pipe_shader_type p_stage,
unsigned start, unsigned count,
unsigned unbind_num_trailing_slots,
struct pipe_sampler_view **views)
{
2018-04-07 06:35:51 -07:00
struct iris_context *ice = (struct iris_context *) ctx;
gl_shader_stage stage = stage_from_pipe(p_stage);
struct iris_shader_state *shs = &ice->state.shaders[stage];
unsigned i;
2018-04-07 06:35:51 -07:00
shs->bound_sampler_views &=
~u_bit_consecutive(start, count + unbind_num_trailing_slots);
for (i = 0; i < count; i++) {
struct pipe_sampler_view *pview = views ? views[i] : NULL;
2018-04-19 12:07:44 -07:00
pipe_sampler_view_reference((struct pipe_sampler_view **)
&shs->textures[start + i], pview);
struct iris_sampler_view *view = (void *) pview;
if (view) {
view->res->bind_history |= PIPE_BIND_SAMPLER_VIEW;
view->res->bind_stages |= 1 << stage;
shs->bound_sampler_views |= 1 << (start + i);
update_surface_state_addrs(ice->state.surface_uploader,
&view->surface_state, view->res->bo);
}
2018-04-19 12:07:44 -07:00
}
for (; i < count + unbind_num_trailing_slots; i++) {
pipe_sampler_view_reference((struct pipe_sampler_view **)
&shs->textures[start + i], NULL);
}
2018-04-07 06:35:51 -07:00
ice->state.stage_dirty |= (IRIS_STAGE_DIRTY_BINDINGS_VS << stage);
ice->state.dirty |=
stage == MESA_SHADER_COMPUTE ? IRIS_DIRTY_COMPUTE_RESOLVES_AND_FLUSHES
: IRIS_DIRTY_RENDER_RESOLVES_AND_FLUSHES;
}
static void
iris_set_compute_resources(struct pipe_context *ctx,
unsigned start, unsigned count,
struct pipe_surface **resources)
{
assert(count == 0);
}
static void
iris_set_global_binding(struct pipe_context *ctx,
unsigned start_slot, unsigned count,
struct pipe_resource **resources,
uint32_t **handles)
{
struct iris_context *ice = (struct iris_context *) ctx;
assert(start_slot + count <= IRIS_MAX_GLOBAL_BINDINGS);
for (unsigned i = 0; i < count; i++) {
if (resources && resources[i]) {
pipe_resource_reference(&ice->state.global_bindings[start_slot + i],
resources[i]);
struct iris_resource *res = (void *) resources[i];
uint64_t addr = res->bo->gtt_offset;
memcpy(handles[i], &addr, sizeof(addr));
} else {
pipe_resource_reference(&ice->state.global_bindings[start_slot + i],
NULL);
}
}
ice->state.stage_dirty |= IRIS_STAGE_DIRTY_BINDINGS_CS;
}
/**
* The pipe->set_tess_state() driver hook.
*/
static void
iris_set_tess_state(struct pipe_context *ctx,
const float default_outer_level[4],
const float default_inner_level[2])
{
struct iris_context *ice = (struct iris_context *) ctx;
struct iris_shader_state *shs = &ice->state.shaders[MESA_SHADER_TESS_CTRL];
memcpy(&ice->state.default_outer_level[0], &default_outer_level[0], 4 * sizeof(float));
memcpy(&ice->state.default_inner_level[0], &default_inner_level[0], 2 * sizeof(float));
ice->state.stage_dirty |= IRIS_STAGE_DIRTY_CONSTANTS_TCS;
shs->sysvals_need_upload = true;
}
static void
iris_surface_destroy(struct pipe_context *ctx, struct pipe_surface *p_surf)
{
struct iris_surface *surf = (void *) p_surf;
pipe_resource_reference(&p_surf->texture, NULL);
pipe_resource_reference(&surf->surface_state.ref.res, NULL);
pipe_resource_reference(&surf->surface_state_read.ref.res, NULL);
free(surf->surface_state.cpu);
free(surf);
}
static void
iris_set_clip_state(struct pipe_context *ctx,
const struct pipe_clip_state *state)
{
2018-11-09 02:11:16 -08:00
struct iris_context *ice = (struct iris_context *) ctx;
struct iris_shader_state *shs = &ice->state.shaders[MESA_SHADER_VERTEX];
struct iris_shader_state *gshs = &ice->state.shaders[MESA_SHADER_GEOMETRY];
struct iris_shader_state *tshs = &ice->state.shaders[MESA_SHADER_TESS_EVAL];
2018-11-09 02:11:16 -08:00
memcpy(&ice->state.clip_planes, state, sizeof(*state));
ice->state.stage_dirty |= IRIS_STAGE_DIRTY_CONSTANTS_VS |
IRIS_STAGE_DIRTY_CONSTANTS_GS |
IRIS_STAGE_DIRTY_CONSTANTS_TES;
shs->sysvals_need_upload = true;
gshs->sysvals_need_upload = true;
tshs->sysvals_need_upload = true;
}
/**
* The pipe->set_polygon_stipple() driver hook.
*/
static void
iris_set_polygon_stipple(struct pipe_context *ctx,
const struct pipe_poly_stipple *state)
{
struct iris_context *ice = (struct iris_context *) ctx;
memcpy(&ice->state.poly_stipple, state, sizeof(*state));
ice->state.dirty |= IRIS_DIRTY_POLYGON_STIPPLE;
}
/**
* The pipe->set_sample_mask() driver hook.
*/
static void
2018-01-10 00:19:29 -08:00
iris_set_sample_mask(struct pipe_context *ctx, unsigned sample_mask)
{
2018-01-10 00:19:29 -08:00
struct iris_context *ice = (struct iris_context *) ctx;
/* We only support 16x MSAA, so we have 16 bits of sample maks.
* st/mesa may pass us 0xffffffff though, meaning "enable all samples".
*/
ice->state.sample_mask = sample_mask & 0xffff;
2018-01-10 00:19:29 -08:00
ice->state.dirty |= IRIS_DIRTY_SAMPLE_MASK;
}
/**
* The pipe->set_scissor_states() driver hook.
*
* This corresponds to our SCISSOR_RECT state structures. It's an
* exact match, so we just store them, and memcpy them out later.
*/
static void
iris_set_scissor_states(struct pipe_context *ctx,
unsigned start_slot,
unsigned num_scissors,
const struct pipe_scissor_state *rects)
{
struct iris_context *ice = (struct iris_context *) ctx;
2018-01-21 21:23:48 -08:00
for (unsigned i = 0; i < num_scissors; i++) {
if (rects[i].minx == rects[i].maxx || rects[i].miny == rects[i].maxy) {
/* If the scissor was out of bounds and got clamped to 0 width/height
* at the bounds, the subtraction of 1 from maximums could produce a
* negative number and thus not clip anything. Instead, just provide
* a min > max scissor inside the bounds, which produces the expected
* no rendering.
*/
ice->state.scissors[start_slot + i] = (struct pipe_scissor_state) {
.minx = 1, .maxx = 0, .miny = 1, .maxy = 0,
};
} else {
ice->state.scissors[start_slot + i] = (struct pipe_scissor_state) {
.minx = rects[i].minx, .miny = rects[i].miny,
.maxx = rects[i].maxx - 1, .maxy = rects[i].maxy - 1,
};
}
}
ice->state.dirty |= IRIS_DIRTY_SCISSOR_RECT;
}
/**
* The pipe->set_stencil_ref() driver hook.
*
* This is added to 3DSTATE_WM_DEPTH_STENCIL dynamically at draw time.
*/
static void
iris_set_stencil_ref(struct pipe_context *ctx,
const struct pipe_stencil_ref state)
{
struct iris_context *ice = (struct iris_context *) ctx;
memcpy(&ice->state.stencil_ref, &state, sizeof(state));
if (GFX_VER >= 12)
ice->state.dirty |= IRIS_DIRTY_STENCIL_REF;
else if (GFX_VER >= 9)
ice->state.dirty |= IRIS_DIRTY_WM_DEPTH_STENCIL;
else
ice->state.dirty |= IRIS_DIRTY_COLOR_CALC_STATE;
}
2017-12-23 14:33:04 -08:00
static float
2018-01-30 17:36:24 -08:00
viewport_extent(const struct pipe_viewport_state *state, int axis, float sign)
2017-12-23 14:33:04 -08:00
{
2018-01-30 17:36:24 -08:00
return copysignf(state->scale[axis], sign) + state->translate[axis];
2017-12-23 14:33:04 -08:00
}
/**
* The pipe->set_viewport_states() driver hook.
*
* This corresponds to our SF_CLIP_VIEWPORT states. We can't calculate
* the guardband yet, as we need the framebuffer dimensions, but we can
* at least fill out the rest.
*/
static void
iris_set_viewport_states(struct pipe_context *ctx,
unsigned start_slot,
unsigned count,
2018-06-20 16:03:43 -07:00
const struct pipe_viewport_state *states)
{
2018-01-09 11:58:28 -08:00
struct iris_context *ice = (struct iris_context *) ctx;
2018-12-17 15:17:54 -08:00
memcpy(&ice->state.viewports[start_slot], states, sizeof(*states) * count);
2018-01-09 11:58:28 -08:00
ice->state.dirty |= IRIS_DIRTY_SF_CL_VIEWPORT;
if (ice->state.cso_rast && (!ice->state.cso_rast->depth_clip_near ||
!ice->state.cso_rast->depth_clip_far))
ice->state.dirty |= IRIS_DIRTY_CC_VIEWPORT;
}
/**
* The pipe->set_framebuffer_state() driver hook.
*
* Sets the current draw FBO, including color render targets, depth,
* and stencil buffers.
*/
static void
iris_set_framebuffer_state(struct pipe_context *ctx,
const struct pipe_framebuffer_state *state)
{
2018-01-09 14:34:15 -08:00
struct iris_context *ice = (struct iris_context *) ctx;
struct iris_screen *screen = (struct iris_screen *)ctx->screen;
struct isl_device *isl_dev = &screen->isl_dev;
2018-01-09 23:13:16 -08:00
struct pipe_framebuffer_state *cso = &ice->state.framebuffer;
2018-08-03 16:18:09 -07:00
struct iris_resource *zres;
struct iris_resource *stencil_res;
2018-01-09 14:34:15 -08:00
2018-07-24 10:59:10 -07:00
unsigned samples = util_framebuffer_get_num_samples(state);
unsigned layers = util_framebuffer_get_num_layers(state);
2018-07-24 10:59:10 -07:00
if (cso->samples != samples) {
2018-01-09 23:13:16 -08:00
ice->state.dirty |= IRIS_DIRTY_MULTISAMPLE;
/* We need to toggle 3DSTATE_PS::32 Pixel Dispatch Enable */
if (GFX_VER >= 9 && (cso->samples == 16 || samples == 16))
ice->state.stage_dirty |= IRIS_STAGE_DIRTY_FS;
2018-01-09 23:13:16 -08:00
}
2018-01-09 14:34:15 -08:00
2018-01-30 01:50:44 -08:00
if (cso->nr_cbufs != state->nr_cbufs) {
ice->state.dirty |= IRIS_DIRTY_BLEND_STATE;
}
if ((cso->layers == 0) != (layers == 0)) {
ice->state.dirty |= IRIS_DIRTY_CLIP;
}
if (cso->width != state->width || cso->height != state->height) {
ice->state.dirty |= IRIS_DIRTY_SF_CL_VIEWPORT;
}
if (cso->zsbuf || state->zsbuf) {
ice->state.dirty |= IRIS_DIRTY_DEPTH_BUFFER;
}
util_copy_framebuffer_state(cso, state);
2018-07-24 10:59:10 -07:00
cso->samples = samples;
cso->layers = layers;
2018-01-09 14:34:15 -08:00
struct iris_depth_buffer_state *cso_z = &ice->state.genx->depth_buffer;
struct isl_view view = {
.base_level = 0,
.levels = 1,
.base_array_layer = 0,
.array_len = 1,
.swizzle = ISL_SWIZZLE_IDENTITY,
};
2018-12-12 00:02:25 -08:00
struct isl_depth_stencil_hiz_emit_info info = { .view = &view };
2018-08-03 16:18:09 -07:00
if (cso->zsbuf) {
iris_get_depth_stencil_resources(cso->zsbuf->texture, &zres,
&stencil_res);
view.base_level = cso->zsbuf->u.tex.level;
view.base_array_layer = cso->zsbuf->u.tex.first_layer;
view.array_len =
cso->zsbuf->u.tex.last_layer - cso->zsbuf->u.tex.first_layer + 1;
2018-08-03 16:18:09 -07:00
if (zres) {
view.usage |= ISL_SURF_USAGE_DEPTH_BIT;
2018-08-03 16:18:09 -07:00
info.depth_surf = &zres->surf;
info.depth_address = zres->bo->gtt_offset + zres->offset;
info.mocs = iris_mocs(zres->bo, isl_dev, view.usage);
2018-08-03 16:18:09 -07:00
view.format = zres->surf.format;
2018-12-10 00:35:48 -08:00
if (iris_resource_level_has_hiz(zres, view.base_level)) {
info.hiz_usage = zres->aux.usage;
2018-12-10 00:35:48 -08:00
info.hiz_surf = &zres->aux.surf;
info.hiz_address = zres->aux.bo->gtt_offset + zres->aux.offset;
2018-12-10 00:35:48 -08:00
}
ice->state.hiz_usage = info.hiz_usage;
}
2018-08-03 16:18:09 -07:00
if (stencil_res) {
view.usage |= ISL_SURF_USAGE_STENCIL_BIT;
info.stencil_aux_usage = stencil_res->aux.usage;
2018-08-03 16:18:09 -07:00
info.stencil_surf = &stencil_res->surf;
info.stencil_address = stencil_res->bo->gtt_offset + stencil_res->offset;
2018-12-12 00:02:25 -08:00
if (!zres) {
2018-08-03 16:18:09 -07:00
view.format = stencil_res->surf.format;
info.mocs = iris_mocs(stencil_res->bo, isl_dev, view.usage);
2018-12-12 00:02:25 -08:00
}
2018-08-03 16:18:09 -07:00
}
}
isl_emit_depth_stencil_hiz_s(isl_dev, cso_z->packets, &info);
/* Make a null surface for unbound buffers */
void *null_surf_map =
upload_state(ice->state.surface_uploader, &ice->state.null_fb,
4 * GENX(RENDER_SURFACE_STATE_length), 64);
isl_null_fill_state(&screen->isl_dev, null_surf_map,
isl_extent3d(MAX2(cso->width, 1),
MAX2(cso->height, 1),
cso->layers ? cso->layers : 1));
ice->state.null_fb.offset +=
iris_bo_offset_from_base_address(iris_resource_bo(ice->state.null_fb.res));
2018-06-15 12:33:58 -07:00
/* Render target change */
ice->state.stage_dirty |= IRIS_STAGE_DIRTY_BINDINGS_FS;
2018-07-16 16:21:22 -07:00
ice->state.dirty |= IRIS_DIRTY_RENDER_BUFFER;
ice->state.dirty |= IRIS_DIRTY_RENDER_RESOLVES_AND_FLUSHES;
ice->state.stage_dirty |=
ice->state.stage_dirty_for_nos[IRIS_NOS_FRAMEBUFFER];
2018-09-18 11:04:44 -07:00
if (GFX_VER == 8)
ice->state.dirty |= IRIS_DIRTY_PMA_FIX;
}
/**
* The pipe->set_constant_buffer() driver hook.
*
* This uploads any constant data in user buffers, and references
* any UBO resources containing constant data.
*/
static void
iris_set_constant_buffer(struct pipe_context *ctx,
2018-02-09 14:21:54 -08:00
enum pipe_shader_type p_stage, unsigned index,
bool take_ownership,
2018-06-06 02:16:52 -07:00
const struct pipe_constant_buffer *input)
{
2018-02-09 14:21:54 -08:00
struct iris_context *ice = (struct iris_context *) ctx;
gl_shader_stage stage = stage_from_pipe(p_stage);
struct iris_shader_state *shs = &ice->state.shaders[stage];
struct pipe_shader_buffer *cbuf = &shs->constbuf[index];
/* TODO: Only do this if the buffer changes? */
pipe_resource_reference(&shs->constbuf_surf_state[index].res, NULL);
if (input && input->buffer_size && (input->buffer || input->user_buffer)) {
shs->bound_cbufs |= 1u << index;
if (input->user_buffer) {
void *map = NULL;
pipe_resource_reference(&cbuf->buffer, NULL);
u_upload_alloc(ice->ctx.const_uploader, 0, input->buffer_size, 64,
&cbuf->buffer_offset, &cbuf->buffer, (void **) &map);
2018-06-06 14:37:38 -07:00
if (!cbuf->buffer) {
/* Allocation was unsuccessful - just unbind */
iris_set_constant_buffer(ctx, p_stage, index, false, NULL);
return;
}
assert(map);
memcpy(map, input->user_buffer, input->buffer_size);
} else if (input->buffer) {
if (take_ownership) {
pipe_resource_reference(&cbuf->buffer, NULL);
cbuf->buffer = input->buffer;
} else {
pipe_resource_reference(&cbuf->buffer, input->buffer);
}
cbuf->buffer_offset = input->buffer_offset;
}
2018-06-06 14:37:38 -07:00
cbuf->buffer_size =
MIN2(input->buffer_size,
iris_resource_bo(cbuf->buffer)->size - cbuf->buffer_offset);
struct iris_resource *res = (void *) cbuf->buffer;
res->bind_history |= PIPE_BIND_CONSTANT_BUFFER;
res->bind_stages |= 1 << stage;
2018-06-06 02:16:52 -07:00
} else {
shs->bound_cbufs &= ~(1u << index);
pipe_resource_reference(&cbuf->buffer, NULL);
2018-06-06 02:16:52 -07:00
}
2018-06-15 12:33:58 -07:00
ice->state.stage_dirty |= IRIS_STAGE_DIRTY_CONSTANTS_VS << stage;
2018-02-09 14:21:54 -08:00
}
2018-11-08 23:10:46 -08:00
static void
upload_sysvals(struct iris_context *ice,
gl_shader_stage stage,
const struct pipe_grid_info *grid)
2018-11-08 23:10:46 -08:00
{
UNUSED struct iris_genx_state *genx = ice->state.genx;
2018-11-08 23:10:46 -08:00
struct iris_shader_state *shs = &ice->state.shaders[stage];
struct iris_compiled_shader *shader = ice->shaders.prog[stage];
if (!shader || (shader->num_system_values == 0 &&
shader->kernel_input_size == 0))
return;
2018-11-08 23:19:53 -08:00
assert(shader->num_cbufs > 0);
unsigned sysval_cbuf_index = shader->num_cbufs - 1;
struct pipe_shader_buffer *cbuf = &shs->constbuf[sysval_cbuf_index];
unsigned system_values_start =
ALIGN(shader->kernel_input_size, sizeof(uint32_t));
unsigned upload_size = system_values_start +
shader->num_system_values * sizeof(uint32_t);
void *map = NULL;
assert(sysval_cbuf_index < PIPE_MAX_CONSTANT_BUFFERS);
u_upload_alloc(ice->ctx.const_uploader, 0, upload_size, 64,
&cbuf->buffer_offset, &cbuf->buffer, &map);
2018-11-08 23:19:53 -08:00
if (shader->kernel_input_size > 0)
memcpy(map, grid->input, shader->kernel_input_size);
uint32_t *sysval_map = map + system_values_start;
for (int i = 0; i < shader->num_system_values; i++) {
uint32_t sysval = shader->system_values[i];
2018-11-08 23:19:53 -08:00
uint32_t value = 0;
if (BRW_PARAM_DOMAIN(sysval) == BRW_PARAM_DOMAIN_IMAGE) {
#if GFX_VER == 8
unsigned img = BRW_PARAM_IMAGE_IDX(sysval);
unsigned offset = BRW_PARAM_IMAGE_OFFSET(sysval);
struct brw_image_param *param =
&genx->shaders[stage].image_param[img];
assert(offset < sizeof(struct brw_image_param));
value = ((uint32_t *) param)[offset];
#endif
} else if (sysval == BRW_PARAM_BUILTIN_ZERO) {
value = 0;
} else if (BRW_PARAM_BUILTIN_IS_CLIP_PLANE(sysval)) {
2018-11-09 02:11:16 -08:00
int plane = BRW_PARAM_BUILTIN_CLIP_PLANE_IDX(sysval);
int comp = BRW_PARAM_BUILTIN_CLIP_PLANE_COMP(sysval);
value = fui(ice->state.clip_planes.ucp[plane][comp]);
} else if (sysval == BRW_PARAM_BUILTIN_PATCH_VERTICES_IN) {
if (stage == MESA_SHADER_TESS_CTRL) {
value = ice->state.vertices_per_patch;
} else {
assert(stage == MESA_SHADER_TESS_EVAL);
const struct shader_info *tcs_info =
iris_get_shader_info(ice, MESA_SHADER_TESS_CTRL);
if (tcs_info)
value = tcs_info->tess.tcs_vertices_out;
else
value = ice->state.vertices_per_patch;
}
} else if (sysval >= BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_X &&
sysval <= BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_W) {
unsigned i = sysval - BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_X;
value = fui(ice->state.default_outer_level[i]);
} else if (sysval == BRW_PARAM_BUILTIN_TESS_LEVEL_INNER_X) {
value = fui(ice->state.default_inner_level[0]);
} else if (sysval == BRW_PARAM_BUILTIN_TESS_LEVEL_INNER_Y) {
value = fui(ice->state.default_inner_level[1]);
} else if (sysval >= BRW_PARAM_BUILTIN_WORK_GROUP_SIZE_X &&
sysval <= BRW_PARAM_BUILTIN_WORK_GROUP_SIZE_Z) {
unsigned i = sysval - BRW_PARAM_BUILTIN_WORK_GROUP_SIZE_X;
value = ice->state.last_block[i];
} else if (sysval == BRW_PARAM_BUILTIN_WORK_DIM) {
value = grid->work_dim;
2018-11-09 02:11:16 -08:00
} else {
assert(!"unhandled system value");
}
2018-11-08 23:19:53 -08:00
*sysval_map++ = value;
2018-11-08 23:19:53 -08:00
}
2018-11-08 23:10:46 -08:00
cbuf->buffer_size = upload_size;
iris_upload_ubo_ssbo_surf_state(ice, cbuf,
&shs->constbuf_surf_state[sysval_cbuf_index],
ISL_SURF_USAGE_CONSTANT_BUFFER_BIT);
shs->sysvals_need_upload = false;
2018-11-08 23:10:46 -08:00
}
/**
* The pipe->set_shader_buffers() driver hook.
*
* This binds SSBOs and ABOs. Unfortunately, we need to stream out
* SURFACE_STATE here, as the buffer offset may change each time.
*/
static void
iris_set_shader_buffers(struct pipe_context *ctx,
enum pipe_shader_type p_stage,
unsigned start_slot, unsigned count,
const struct pipe_shader_buffer *buffers,
unsigned writable_bitmask)
{
struct iris_context *ice = (struct iris_context *) ctx;
gl_shader_stage stage = stage_from_pipe(p_stage);
struct iris_shader_state *shs = &ice->state.shaders[stage];
unsigned modified_bits = u_bit_consecutive(start_slot, count);
shs->bound_ssbos &= ~modified_bits;
shs->writable_ssbos &= ~modified_bits;
shs->writable_ssbos |= writable_bitmask << start_slot;
for (unsigned i = 0; i < count; i++) {
2018-07-24 20:57:02 -07:00
if (buffers && buffers[i].buffer) {
struct iris_resource *res = (void *) buffers[i].buffer;
struct pipe_shader_buffer *ssbo = &shs->ssbo[start_slot + i];
struct iris_state_ref *surf_state =
&shs->ssbo_surf_state[start_slot + i];
pipe_resource_reference(&ssbo->buffer, &res->base.b);
ssbo->buffer_offset = buffers[i].buffer_offset;
ssbo->buffer_size =
MIN2(buffers[i].buffer_size, res->bo->size - ssbo->buffer_offset);
shs->bound_ssbos |= 1 << (start_slot + i);
isl_surf_usage_flags_t usage = ISL_SURF_USAGE_STORAGE_BIT;
iris_upload_ubo_ssbo_surf_state(ice, ssbo, surf_state, usage);
res->bind_history |= PIPE_BIND_SHADER_BUFFER;
res->bind_stages |= 1 << stage;
util_range_add(&res->base.b, &res->valid_buffer_range, ssbo->buffer_offset,
ssbo->buffer_offset + ssbo->buffer_size);
} else {
pipe_resource_reference(&shs->ssbo[start_slot + i].buffer, NULL);
pipe_resource_reference(&shs->ssbo_surf_state[start_slot + i].res,
NULL);
}
}
ice->state.stage_dirty |= IRIS_STAGE_DIRTY_BINDINGS_VS << stage;
}
static void
iris_delete_state(struct pipe_context *ctx, void *state)
{
free(state);
}
/**
* The pipe->set_vertex_buffers() driver hook.
*
* This translates pipe_vertex_buffer to our 3DSTATE_VERTEX_BUFFERS packet.
*/
static void
iris_set_vertex_buffers(struct pipe_context *ctx,
unsigned start_slot, unsigned count,
unsigned unbind_num_trailing_slots,
bool take_ownership,
const struct pipe_vertex_buffer *buffers)
{
2018-01-10 00:19:29 -08:00
struct iris_context *ice = (struct iris_context *) ctx;
struct iris_screen *screen = (struct iris_screen *)ctx->screen;
struct iris_genx_state *genx = ice->state.genx;
2018-01-21 13:14:49 -08:00
ice->state.bound_vertex_buffers &=
~u_bit_consecutive64(start_slot, count + unbind_num_trailing_slots);
2018-01-21 13:14:49 -08:00
for (unsigned i = 0; i < count; i++) {
const struct pipe_vertex_buffer *buffer = buffers ? &buffers[i] : NULL;
struct iris_vertex_buffer_state *state =
&genx->vertex_buffers[start_slot + i];
if (!buffer) {
pipe_resource_reference(&state->resource, NULL);
continue;
2018-06-18 00:23:25 -07:00
}
/* We may see user buffers that are NULL bindings. */
assert(!(buffer->is_user_buffer && buffer->buffer.user != NULL));
if (take_ownership) {
pipe_resource_reference(&state->resource, NULL);
state->resource = buffer->buffer.resource;
} else {
pipe_resource_reference(&state->resource, buffer->buffer.resource);
}
struct iris_resource *res = (void *) state->resource;
2018-01-21 13:14:49 -08:00
state->offset = (int) buffer->buffer_offset;
if (res) {
ice->state.bound_vertex_buffers |= 1ull << (start_slot + i);
res->bind_history |= PIPE_BIND_VERTEX_BUFFER;
}
iris_pack_state(GENX(VERTEX_BUFFER_STATE), state->state, vb) {
vb.VertexBufferIndex = start_slot + i;
vb.AddressModifyEnable = true;
vb.BufferPitch = buffer->stride;
if (res) {
vb.BufferSize = res->base.b.width0 - (int) buffer->buffer_offset;
vb.BufferStartingAddress =
ro_bo(NULL, res->bo->gtt_offset + (int) buffer->buffer_offset);
vb.MOCS = iris_mocs(res->bo, &screen->isl_dev,
ISL_SURF_USAGE_VERTEX_BUFFER_BIT);
#if GEN_GEN >= 12
vb.L3BypassDisable = true;
#endif
} else {
vb.NullVertexBuffer = true;
}
}
}
for (unsigned i = 0; i < unbind_num_trailing_slots; i++) {
struct iris_vertex_buffer_state *state =
&genx->vertex_buffers[start_slot + count + i];
pipe_resource_reference(&state->resource, NULL);
}
2018-01-10 00:19:29 -08:00
ice->state.dirty |= IRIS_DIRTY_VERTEX_BUFFERS;
}
/**
* Gallium CSO for vertex elements.
*/
struct iris_vertex_element_state {
uint32_t vertex_elements[1 + 33 * GENX(VERTEX_ELEMENT_STATE_length)];
2018-06-07 01:45:47 -07:00
uint32_t vf_instancing[33 * GENX(3DSTATE_VF_INSTANCING_length)];
uint32_t edgeflag_ve[GENX(VERTEX_ELEMENT_STATE_length)];
uint32_t edgeflag_vfi[GENX(3DSTATE_VF_INSTANCING_length)];
unsigned count;
};
/**
* The pipe->create_vertex_elements() driver hook.
*
* This translates pipe_vertex_element to our 3DSTATE_VERTEX_ELEMENTS
* and 3DSTATE_VF_INSTANCING commands. The vertex_elements and vf_instancing
* arrays are ready to be emitted at draw time if no EdgeFlag or SGVs are
* needed. In these cases we will need information available at draw time.
* We setup edgeflag_ve and edgeflag_vfi as alternatives last
* 3DSTATE_VERTEX_ELEMENT and 3DSTATE_VF_INSTANCING that can be used at
* draw time if we detect that EdgeFlag is needed by the Vertex Shader.
*/
static void *
iris_create_vertex_elements(struct pipe_context *ctx,
unsigned count,
const struct pipe_vertex_element *state)
{
2018-10-07 20:31:09 -07:00
struct iris_screen *screen = (struct iris_screen *)ctx->screen;
const struct gen_device_info *devinfo = &screen->devinfo;
struct iris_vertex_element_state *cso =
malloc(sizeof(struct iris_vertex_element_state));
cso->count = count;
2018-04-26 23:42:10 -07:00
iris_pack_command(GENX(3DSTATE_VERTEX_ELEMENTS), cso->vertex_elements, ve) {
ve.DWordLength =
1 + GENX(VERTEX_ELEMENT_STATE_length) * MAX2(count, 1) - 2;
2018-04-26 23:42:10 -07:00
}
uint32_t *ve_pack_dest = &cso->vertex_elements[1];
2018-06-07 01:45:47 -07:00
uint32_t *vfi_pack_dest = cso->vf_instancing;
if (count == 0) {
iris_pack_state(GENX(VERTEX_ELEMENT_STATE), ve_pack_dest, ve) {
ve.Valid = true;
ve.SourceElementFormat = ISL_FORMAT_R32G32B32A32_FLOAT;
ve.Component0Control = VFCOMP_STORE_0;
ve.Component1Control = VFCOMP_STORE_0;
ve.Component2Control = VFCOMP_STORE_0;
ve.Component3Control = VFCOMP_STORE_1_FP;
}
iris_pack_command(GENX(3DSTATE_VF_INSTANCING), vfi_pack_dest, vi) {
}
}
for (int i = 0; i < count; i++) {
2018-10-07 20:31:09 -07:00
const struct iris_format_info fmt =
iris_format_for_usage(devinfo, state[i].src_format, 0);
2018-01-30 02:44:25 -08:00
unsigned comp[4] = { VFCOMP_STORE_SRC, VFCOMP_STORE_SRC,
VFCOMP_STORE_SRC, VFCOMP_STORE_SRC };
2018-10-07 20:31:09 -07:00
switch (isl_format_get_num_channels(fmt.fmt)) {
case 0: comp[0] = VFCOMP_STORE_0; /* fallthrough */
case 1: comp[1] = VFCOMP_STORE_0; /* fallthrough */
case 2: comp[2] = VFCOMP_STORE_0; /* fallthrough */
2018-01-30 02:44:25 -08:00
case 3:
2018-10-07 20:31:09 -07:00
comp[3] = isl_format_has_int_channel(fmt.fmt) ? VFCOMP_STORE_1_INT
: VFCOMP_STORE_1_FP;
2018-01-30 02:44:25 -08:00
break;
}
iris_pack_state(GENX(VERTEX_ELEMENT_STATE), ve_pack_dest, ve) {
ve.EdgeFlagEnable = false;
ve.VertexBufferIndex = state[i].vertex_buffer_index;
ve.Valid = true;
ve.SourceElementOffset = state[i].src_offset;
2018-10-07 20:31:09 -07:00
ve.SourceElementFormat = fmt.fmt;
2018-01-30 02:44:25 -08:00
ve.Component0Control = comp[0];
ve.Component1Control = comp[1];
ve.Component2Control = comp[2];
ve.Component3Control = comp[3];
}
2018-06-07 01:45:47 -07:00
iris_pack_command(GENX(3DSTATE_VF_INSTANCING), vfi_pack_dest, vi) {
vi.VertexElementIndex = i;
vi.InstancingEnable = state[i].instance_divisor > 0;
vi.InstanceDataStepRate = state[i].instance_divisor;
}
ve_pack_dest += GENX(VERTEX_ELEMENT_STATE_length);
2018-06-07 01:45:47 -07:00
vfi_pack_dest += GENX(3DSTATE_VF_INSTANCING_length);
}
/* An alternative version of the last VE and VFI is stored so it
* can be used at draw time in case Vertex Shader uses EdgeFlag
*/
if (count) {
const unsigned edgeflag_index = count - 1;
const struct iris_format_info fmt =
iris_format_for_usage(devinfo, state[edgeflag_index].src_format, 0);
iris_pack_state(GENX(VERTEX_ELEMENT_STATE), cso->edgeflag_ve, ve) {
ve.EdgeFlagEnable = true ;
ve.VertexBufferIndex = state[edgeflag_index].vertex_buffer_index;
ve.Valid = true;
ve.SourceElementOffset = state[edgeflag_index].src_offset;
ve.SourceElementFormat = fmt.fmt;
ve.Component0Control = VFCOMP_STORE_SRC;
ve.Component1Control = VFCOMP_STORE_0;
ve.Component2Control = VFCOMP_STORE_0;
ve.Component3Control = VFCOMP_STORE_0;
}
iris_pack_command(GENX(3DSTATE_VF_INSTANCING), cso->edgeflag_vfi, vi) {
/* The vi.VertexElementIndex of the EdgeFlag Vertex Element is filled
* at draw time, as it should change if SGVs are emitted.
*/
vi.InstancingEnable = state[edgeflag_index].instance_divisor > 0;
vi.InstanceDataStepRate = state[edgeflag_index].instance_divisor;
}
}
return cso;
}
/**
* The pipe->bind_vertex_elements_state() driver hook.
*/
2018-01-09 21:29:09 -08:00
static void
iris_bind_vertex_elements_state(struct pipe_context *ctx, void *state)
{
struct iris_context *ice = (struct iris_context *) ctx;
2018-07-18 09:23:24 -07:00
struct iris_vertex_element_state *old_cso = ice->state.cso_vertex_elements;
struct iris_vertex_element_state *new_cso = state;
/* 3DSTATE_VF_SGVs overrides the last VE, so if the count is changing,
* we need to re-emit it to ensure we're overriding the right one.
*/
2018-07-18 09:23:24 -07:00
if (new_cso && cso_changed(count))
ice->state.dirty |= IRIS_DIRTY_VF_SGVS;
2018-01-09 21:29:09 -08:00
ice->state.cso_vertex_elements = state;
ice->state.dirty |= IRIS_DIRTY_VERTEX_ELEMENTS;
}
/**
* The pipe->create_stream_output_target() driver hook.
*
* "Target" here refers to a destination buffer. We translate this into
* a 3DSTATE_SO_BUFFER packet. We can handle most fields, but don't yet
* know which buffer this represents, or whether we ought to zero the
* write-offsets, or append. Those are handled in the set() hook.
*/
static struct pipe_stream_output_target *
iris_create_stream_output_target(struct pipe_context *ctx,
struct pipe_resource *p_res,
unsigned buffer_offset,
unsigned buffer_size)
{
struct iris_resource *res = (void *) p_res;
2018-06-29 12:58:31 -07:00
struct iris_stream_output_target *cso = calloc(1, sizeof(*cso));
if (!cso)
return NULL;
res->bind_history |= PIPE_BIND_STREAM_OUTPUT;
2018-06-29 12:58:31 -07:00
pipe_reference_init(&cso->base.reference, 1);
pipe_resource_reference(&cso->base.buffer, p_res);
2018-06-29 12:58:31 -07:00
cso->base.buffer_offset = buffer_offset;
cso->base.buffer_size = buffer_size;
cso->base.context = ctx;
util_range_add(&res->base.b, &res->valid_buffer_range, buffer_offset,
buffer_offset + buffer_size);
2018-06-29 12:58:31 -07:00
return &cso->base;
}
static void
iris_stream_output_target_destroy(struct pipe_context *ctx,
2018-06-29 12:58:31 -07:00
struct pipe_stream_output_target *state)
{
2018-06-29 12:58:31 -07:00
struct iris_stream_output_target *cso = (void *) state;
pipe_resource_reference(&cso->base.buffer, NULL);
pipe_resource_reference(&cso->offset.res, NULL);
free(cso);
}
/**
* The pipe->set_stream_output_targets() driver hook.
*
* At this point, we know which targets are bound to a particular index,
* and also whether we want to append or start over. We can finish the
* 3DSTATE_SO_BUFFER packets we started earlier.
*/
static void
iris_set_stream_output_targets(struct pipe_context *ctx,
unsigned num_targets,
struct pipe_stream_output_target **targets,
const unsigned *offsets)
{
2018-06-29 12:58:31 -07:00
struct iris_context *ice = (struct iris_context *) ctx;
2018-07-11 12:45:19 -07:00
struct iris_genx_state *genx = ice->state.genx;
uint32_t *so_buffers = genx->so_buffers;
struct iris_screen *screen = (struct iris_screen *)ctx->screen;
2018-07-11 12:45:19 -07:00
const bool active = num_targets > 0;
if (ice->state.streamout_active != active) {
ice->state.streamout_active = active;
ice->state.dirty |= IRIS_DIRTY_STREAMOUT;
2018-10-24 14:45:00 -07:00
/* We only emit 3DSTATE_SO_DECL_LIST when streamout is active, because
* it's a non-pipelined command. If we're switching streamout on, we
* may have missed emitting it earlier, so do so now. (We're already
* taking a stall to update 3DSTATE_SO_BUFFERS anyway...)
*/
if (active) {
2018-10-24 14:45:00 -07:00
ice->state.dirty |= IRIS_DIRTY_SO_DECL_LIST;
} else {
uint32_t flush = 0;
for (int i = 0; i < PIPE_MAX_SO_BUFFERS; i++) {
struct iris_stream_output_target *tgt =
(void *) ice->state.so_target[i];
if (tgt) {
struct iris_resource *res = (void *) tgt->base.buffer;
flush |= iris_flush_bits_for_history(ice, res);
iris_dirty_for_history(ice, res);
}
}
#if GEN_GEN >= 12
/* SO draws require flushing of const cache to make SO data
* observable when VB/IB are cached in L3.
*/
if (flush & PIPE_CONTROL_VF_CACHE_INVALIDATE)
flush |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
#endif
iris_emit_pipe_control_flush(&ice->batches[IRIS_BATCH_RENDER],
"make streamout results visible", flush);
}
2018-07-11 12:45:19 -07:00
}
2018-07-11 17:05:10 -07:00
for (int i = 0; i < 4; i++) {
pipe_so_target_reference(&ice->state.so_target[i],
i < num_targets ? targets[i] : NULL);
}
2018-07-11 12:45:19 -07:00
/* No need to update 3DSTATE_SO_BUFFER unless SOL is active. */
if (!active)
return;
2018-06-29 12:58:31 -07:00
for (unsigned i = 0; i < 4; i++,
so_buffers += GENX(3DSTATE_SO_BUFFER_length)) {
struct iris_stream_output_target *tgt = (void *) ice->state.so_target[i];
unsigned offset = offsets[i];
if (!tgt) {
iris_pack_command(GENX(3DSTATE_SO_BUFFER), so_buffers, sob) {
#if GFX_VER < 12
2018-06-29 12:58:31 -07:00
sob.SOBufferIndex = i;
#else
sob._3DCommandOpcode = 0;
sob._3DCommandSubOpcode = SO_BUFFER_INDEX_0_CMD + i;
#endif
}
2018-06-29 12:58:31 -07:00
continue;
}
if (!tgt->offset.res)
upload_state(ctx->stream_uploader, &tgt->offset, sizeof(uint32_t), 4);
struct iris_resource *res = (void *) tgt->base.buffer;
2018-06-29 12:58:31 -07:00
/* Note that offsets[i] will either be 0, causing us to zero
* the value in the buffer, or 0xFFFFFFFF, which happens to mean
* "continue appending at the existing offset."
*/
assert(offset == 0 || offset == 0xFFFFFFFF);
/* When we're first called with an offset of 0, we want the next
* 3DSTATE_SO_BUFFER packets to reset the offset to the beginning.
* Any further times we emit those packets, we want to use 0xFFFFFFFF
* to continue appending from the current offset.
*
* Note that we might be called by Begin (offset = 0), Pause, then
* Resume (offset = 0xFFFFFFFF) before ever drawing (where these
* commands will actually be sent to the GPU). In this case, we
* don't want to append - we still want to do our initial zeroing.
*/
if (offset == 0)
tgt->zero_offset = true;
2018-06-29 12:58:31 -07:00
iris_pack_command(GENX(3DSTATE_SO_BUFFER), so_buffers, sob) {
#if GFX_VER < 12
sob.SOBufferIndex = i;
#else
sob._3DCommandOpcode = 0;
sob._3DCommandSubOpcode = SO_BUFFER_INDEX_0_CMD + i;
#endif
sob.SurfaceBaseAddress =
rw_bo(NULL, res->bo->gtt_offset + tgt->base.buffer_offset,
IRIS_DOMAIN_OTHER_WRITE);
sob.SOBufferEnable = true;
sob.StreamOffsetWriteEnable = true;
sob.StreamOutputBufferOffsetAddressEnable = true;
sob.MOCS = iris_mocs(res->bo, &screen->isl_dev, 0);
sob.SurfaceSize = MAX2(tgt->base.buffer_size / 4, 1) - 1;
sob.StreamOutputBufferOffsetAddress =
rw_bo(NULL, iris_resource_bo(tgt->offset.res)->gtt_offset +
tgt->offset.offset, IRIS_DOMAIN_OTHER_WRITE);
sob.StreamOffset = 0xFFFFFFFF; /* not offset, see above */
2018-06-29 12:58:31 -07:00
}
}
ice->state.dirty |= IRIS_DIRTY_SO_BUFFERS;
}
/**
* An iris-vtable helper for encoding the 3DSTATE_SO_DECL_LIST and
* 3DSTATE_STREAMOUT packets.
*
* 3DSTATE_SO_DECL_LIST is a list of shader outputs we want the streamout
* hardware to record. We can create it entirely based on the shader, with
* no dynamic state dependencies.
*
* 3DSTATE_STREAMOUT is an annoying mix of shader-based information and
* state-based settings. We capture the shader-related ones here, and merge
* the rest in at draw time.
*/
2018-06-29 12:58:31 -07:00
static uint32_t *
iris_create_so_decl_list(const struct pipe_stream_output_info *info,
const struct brw_vue_map *vue_map)
{
struct GENX(SO_DECL) so_decl[MAX_VERTEX_STREAMS][128];
int buffer_mask[MAX_VERTEX_STREAMS] = {0, 0, 0, 0};
int next_offset[MAX_VERTEX_STREAMS] = {0, 0, 0, 0};
int decls[MAX_VERTEX_STREAMS] = {0, 0, 0, 0};
int max_decls = 0;
STATIC_ASSERT(ARRAY_SIZE(so_decl[0]) >= MAX_PROGRAM_OUTPUTS);
memset(so_decl, 0, sizeof(so_decl));
/* Construct the list of SO_DECLs to be emitted. The formatting of the
* command feels strange -- each dword pair contains a SO_DECL per stream.
*/
for (unsigned i = 0; i < info->num_outputs; i++) {
const struct pipe_stream_output *output = &info->output[i];
const int buffer = output->output_buffer;
const int varying = output->register_index;
const unsigned stream_id = output->stream;
assert(stream_id < MAX_VERTEX_STREAMS);
buffer_mask[stream_id] |= 1 << buffer;
assert(vue_map->varying_to_slot[varying] >= 0);
/* Mesa doesn't store entries for gl_SkipComponents in the Outputs[]
* array. Instead, it simply increments DstOffset for the following
* input by the number of components that should be skipped.
*
* Our hardware is unusual in that it requires us to program SO_DECLs
* for fake "hole" components, rather than simply taking the offset
* for each real varying. Each hole can have size 1, 2, 3, or 4; we
* program as many size = 4 holes as we can, then a final hole to
* accommodate the final 1, 2, or 3 remaining.
*/
int skip_components = output->dst_offset - next_offset[buffer];
while (skip_components > 0) {
so_decl[stream_id][decls[stream_id]++] = (struct GENX(SO_DECL)) {
.HoleFlag = 1,
.OutputBufferSlot = output->output_buffer,
.ComponentMask = (1 << MIN2(skip_components, 4)) - 1,
};
skip_components -= 4;
}
next_offset[buffer] = output->dst_offset + output->num_components;
so_decl[stream_id][decls[stream_id]++] = (struct GENX(SO_DECL)) {
.OutputBufferSlot = output->output_buffer,
.RegisterIndex = vue_map->varying_to_slot[varying],
.ComponentMask =
((1 << output->num_components) - 1) << output->start_component,
};
if (decls[stream_id] > max_decls)
max_decls = decls[stream_id];
}
2018-07-11 12:45:19 -07:00
unsigned dwords = GENX(3DSTATE_STREAMOUT_length) + (3 + 2 * max_decls);
uint32_t *map = ralloc_size(NULL, sizeof(uint32_t) * dwords);
uint32_t *so_decl_map = map + GENX(3DSTATE_STREAMOUT_length);
iris_pack_command(GENX(3DSTATE_STREAMOUT), map, sol) {
int urb_entry_read_offset = 0;
int urb_entry_read_length = (vue_map->num_slots + 1) / 2 -
urb_entry_read_offset;
2018-06-29 12:58:31 -07:00
2018-07-11 12:45:19 -07:00
/* We always read the whole vertex. This could be reduced at some
* point by reading less and offsetting the register index in the
* SO_DECLs.
*/
sol.Stream0VertexReadOffset = urb_entry_read_offset;
sol.Stream0VertexReadLength = urb_entry_read_length - 1;
sol.Stream1VertexReadOffset = urb_entry_read_offset;
sol.Stream1VertexReadLength = urb_entry_read_length - 1;
sol.Stream2VertexReadOffset = urb_entry_read_offset;
sol.Stream2VertexReadLength = urb_entry_read_length - 1;
sol.Stream3VertexReadOffset = urb_entry_read_offset;
sol.Stream3VertexReadLength = urb_entry_read_length - 1;
/* Set buffer pitches; 0 means unbound. */
sol.Buffer0SurfacePitch = 4 * info->stride[0];
sol.Buffer1SurfacePitch = 4 * info->stride[1];
sol.Buffer2SurfacePitch = 4 * info->stride[2];
sol.Buffer3SurfacePitch = 4 * info->stride[3];
}
iris_pack_command(GENX(3DSTATE_SO_DECL_LIST), so_decl_map, list) {
2018-06-29 12:58:31 -07:00
list.DWordLength = 3 + 2 * max_decls - 2;
list.StreamtoBufferSelects0 = buffer_mask[0];
list.StreamtoBufferSelects1 = buffer_mask[1];
list.StreamtoBufferSelects2 = buffer_mask[2];
list.StreamtoBufferSelects3 = buffer_mask[3];
list.NumEntries0 = decls[0];
list.NumEntries1 = decls[1];
list.NumEntries2 = decls[2];
list.NumEntries3 = decls[3];
}
for (int i = 0; i < max_decls; i++) {
2018-07-11 16:26:06 -07:00
iris_pack_state(GENX(SO_DECL_ENTRY), so_decl_map + 3 + i * 2, entry) {
2018-06-29 12:58:31 -07:00
entry.Stream0Decl = so_decl[0][i];
entry.Stream1Decl = so_decl[1][i];
entry.Stream2Decl = so_decl[2][i];
entry.Stream3Decl = so_decl[3][i];
}
}
2018-07-11 12:45:19 -07:00
return map;
2018-06-29 12:58:31 -07:00
}
2018-01-29 15:06:04 -08:00
static void
2018-04-19 19:04:17 -07:00
iris_compute_sbe_urb_read_interval(uint64_t fs_input_slots,
const struct brw_vue_map *last_vue_map,
bool two_sided_color,
unsigned *out_offset,
unsigned *out_length)
{
/* The compiler computes the first URB slot without considering COL/BFC
* swizzling (because it doesn't know whether it's enabled), so we need
* to do that here too. This may result in a smaller offset, which
* should be safe.
*/
const unsigned first_slot =
brw_compute_first_urb_slot_required(fs_input_slots, last_vue_map);
/* This becomes the URB read offset (counted in pairs of slots). */
assert(first_slot % 2 == 0);
*out_offset = first_slot / 2;
/* We need to adjust the inputs read to account for front/back color
* swizzling, as it can make the URB length longer.
*/
for (int c = 0; c <= 1; c++) {
if (fs_input_slots & (VARYING_BIT_COL0 << c)) {
/* If two sided color is enabled, the fragment shader's gl_Color
* (COL0) input comes from either the gl_FrontColor (COL0) or
* gl_BackColor (BFC0) input varyings. Mark BFC as used, too.
*/
if (two_sided_color)
fs_input_slots |= (VARYING_BIT_BFC0 << c);
/* If front color isn't written, we opt to give them back color
* instead of an undefined value. Switch from COL to BFC.
*/
if (last_vue_map->varying_to_slot[VARYING_SLOT_COL0 + c] == -1) {
fs_input_slots &= ~(VARYING_BIT_COL0 << c);
fs_input_slots |= (VARYING_BIT_BFC0 << c);
}
}
}
/* Compute the minimum URB Read Length necessary for the FS inputs.
*
* From the Sandy Bridge PRM, Volume 2, Part 1, documentation for
* 3DSTATE_SF DWord 1 bits 15:11, "Vertex URB Entry Read Length":
*
* "This field should be set to the minimum length required to read the
* maximum source attribute. The maximum source attribute is indicated
* by the maximum value of the enabled Attribute # Source Attribute if
* Attribute Swizzle Enable is set, Number of Output Attributes-1 if
* enable is not set.
* read_length = ceiling((max_source_attr + 1) / 2)
*
* [errata] Corruption/Hang possible if length programmed larger than
* recommended"
*
* Similar text exists for Ivy Bridge.
*
* We find the last URB slot that's actually read by the FS.
*/
unsigned last_read_slot = last_vue_map->num_slots - 1;
while (last_read_slot > first_slot && !(fs_input_slots &
(1ull << last_vue_map->slot_to_varying[last_read_slot])))
--last_read_slot;
/* The URB read length is the difference of the two, counted in pairs. */
*out_length = DIV_ROUND_UP(last_read_slot - first_slot + 1, 2);
}
2018-06-20 15:11:09 -07:00
static void
iris_emit_sbe_swiz(struct iris_batch *batch,
const struct iris_context *ice,
const struct brw_vue_map *vue_map,
2018-07-23 15:29:00 -07:00
unsigned urb_read_offset,
unsigned sprite_coord_enables)
2018-06-20 15:11:09 -07:00
{
struct GENX(SF_OUTPUT_ATTRIBUTE_DETAIL) attr_overrides[16] = {};
const struct brw_wm_prog_data *wm_prog_data = (void *)
ice->shaders.prog[MESA_SHADER_FRAGMENT]->prog_data;
const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
/* XXX: this should be generated when putting programs in place */
for (uint8_t idx = 0; idx < wm_prog_data->urb_setup_attribs_count; idx++) {
const uint8_t fs_attr = wm_prog_data->urb_setup_attribs[idx];
2018-06-20 15:11:09 -07:00
const int input_index = wm_prog_data->urb_setup[fs_attr];
if (input_index < 0 || input_index >= 16)
continue;
struct GENX(SF_OUTPUT_ATTRIBUTE_DETAIL) *attr =
&attr_overrides[input_index];
int slot = vue_map->varying_to_slot[fs_attr];
2018-06-20 15:11:09 -07:00
/* Viewport and Layer are stored in the VUE header. We need to override
* them to zero if earlier stages didn't write them, as GL requires that
* they read back as zero when not explicitly set.
*/
switch (fs_attr) {
case VARYING_SLOT_VIEWPORT:
case VARYING_SLOT_LAYER:
attr->ComponentOverrideX = true;
attr->ComponentOverrideW = true;
attr->ConstantSource = CONST_0000;
if (!(vue_map->slots_valid & VARYING_BIT_LAYER))
attr->ComponentOverrideY = true;
if (!(vue_map->slots_valid & VARYING_BIT_VIEWPORT))
attr->ComponentOverrideZ = true;
continue;
case VARYING_SLOT_PRIMITIVE_ID:
/* Override if the previous shader stage didn't write gl_PrimitiveID. */
if (slot == -1) {
attr->ComponentOverrideX = true;
attr->ComponentOverrideY = true;
attr->ComponentOverrideZ = true;
attr->ComponentOverrideW = true;
attr->ConstantSource = PRIM_ID;
continue;
}
2018-06-20 15:11:09 -07:00
default:
break;
}
2018-07-23 15:29:00 -07:00
if (sprite_coord_enables & (1 << input_index))
continue;
2018-06-20 15:11:09 -07:00
/* If there was only a back color written but not front, use back
* as the color instead of undefined.
*/
if (slot == -1 && fs_attr == VARYING_SLOT_COL0)
slot = vue_map->varying_to_slot[VARYING_SLOT_BFC0];
if (slot == -1 && fs_attr == VARYING_SLOT_COL1)
slot = vue_map->varying_to_slot[VARYING_SLOT_BFC1];
/* Not written by the previous stage - undefined. */
if (slot == -1) {
attr->ComponentOverrideX = true;
attr->ComponentOverrideY = true;
attr->ComponentOverrideZ = true;
attr->ComponentOverrideW = true;
attr->ConstantSource = CONST_0001_FLOAT;
continue;
}
/* Compute the location of the attribute relative to the read offset,
* which is counted in 256-bit increments (two 128-bit VUE slots).
*/
const int source_attr = slot - 2 * urb_read_offset;
assert(source_attr >= 0 && source_attr <= 32);
attr->SourceAttribute = source_attr;
/* If we are doing two-sided color, and the VUE slot following this one
* represents a back-facing color, then we need to instruct the SF unit
* to do back-facing swizzling.
*/
if (cso_rast->light_twoside &&
((vue_map->slot_to_varying[slot] == VARYING_SLOT_COL0 &&
vue_map->slot_to_varying[slot+1] == VARYING_SLOT_BFC0) ||
(vue_map->slot_to_varying[slot] == VARYING_SLOT_COL1 &&
vue_map->slot_to_varying[slot+1] == VARYING_SLOT_BFC1)))
attr->SwizzleSelect = INPUTATTR_FACING;
}
iris_emit_cmd(batch, GENX(3DSTATE_SBE_SWIZ), sbes) {
for (int i = 0; i < 16; i++)
sbes.Attribute[i] = attr_overrides[i];
}
}
static bool
iris_is_drawing_points(const struct iris_context *ice)
{
const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
if (cso_rast->fill_mode_point) {
return true;
}
if (ice->shaders.prog[MESA_SHADER_GEOMETRY]) {
const struct brw_gs_prog_data *gs_prog_data =
(void *) ice->shaders.prog[MESA_SHADER_GEOMETRY]->prog_data;
return gs_prog_data->output_topology == _3DPRIM_POINTLIST;
} else if (ice->shaders.prog[MESA_SHADER_TESS_EVAL]) {
const struct brw_tes_prog_data *tes_data =
(void *) ice->shaders.prog[MESA_SHADER_TESS_EVAL]->prog_data;
return tes_data->output_topology == BRW_TESS_OUTPUT_TOPOLOGY_POINT;
} else {
return ice->state.prim_mode == PIPE_PRIM_POINTS;
}
}
2018-07-23 15:29:00 -07:00
static unsigned
iris_calculate_point_sprite_overrides(const struct brw_wm_prog_data *prog_data,
const struct iris_rasterizer_state *cso)
{
unsigned overrides = 0;
if (prog_data->urb_setup[VARYING_SLOT_PNTC] != -1)
overrides |= 1 << prog_data->urb_setup[VARYING_SLOT_PNTC];
for (int i = 0; i < 8; i++) {
if ((cso->sprite_coord_enable & (1 << i)) &&
prog_data->urb_setup[VARYING_SLOT_TEX0 + i] != -1)
overrides |= 1 << prog_data->urb_setup[VARYING_SLOT_TEX0 + i];
}
return overrides;
}
2018-04-19 19:04:17 -07:00
static void
iris_emit_sbe(struct iris_batch *batch, const struct iris_context *ice)
2018-01-29 15:06:04 -08:00
{
2018-04-19 19:04:17 -07:00
const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
const struct brw_wm_prog_data *wm_prog_data = (void *)
ice->shaders.prog[MESA_SHADER_FRAGMENT]->prog_data;
const struct shader_info *fs_info =
iris_get_shader_info(ice, MESA_SHADER_FRAGMENT);
const struct brw_vue_map *last_vue_map =
&brw_vue_prog_data(ice->shaders.last_vue_shader->prog_data)->vue_map;
2018-01-29 15:06:04 -08:00
unsigned urb_read_offset, urb_read_length;
iris_compute_sbe_urb_read_interval(fs_info->inputs_read,
last_vue_map,
2018-04-19 19:04:17 -07:00
cso_rast->light_twoside,
&urb_read_offset, &urb_read_length);
2018-01-29 15:06:04 -08:00
2018-07-23 15:29:00 -07:00
unsigned sprite_coord_overrides =
iris_is_drawing_points(ice) ?
iris_calculate_point_sprite_overrides(wm_prog_data, cso_rast) : 0;
2018-07-23 15:29:00 -07:00
2018-04-19 19:04:17 -07:00
iris_emit_cmd(batch, GENX(3DSTATE_SBE), sbe) {
2018-01-29 15:06:04 -08:00
sbe.AttributeSwizzleEnable = true;
sbe.NumberofSFOutputAttributes = wm_prog_data->num_varying_inputs;
sbe.PointSpriteTextureCoordinateOrigin = cso_rast->sprite_coord_mode;
sbe.VertexURBEntryReadOffset = urb_read_offset;
sbe.VertexURBEntryReadLength = urb_read_length;
sbe.ForceVertexURBEntryReadOffset = true;
sbe.ForceVertexURBEntryReadLength = true;
sbe.ConstantInterpolationEnable = wm_prog_data->flat_inputs;
2018-07-23 15:29:00 -07:00
sbe.PointSpriteTextureCoordinateEnable = sprite_coord_overrides;
#if GFX_VER >= 9
2018-04-19 19:04:17 -07:00
for (int i = 0; i < 32; i++) {
2018-01-29 15:06:04 -08:00
sbe.AttributeActiveComponentFormat[i] = ACTIVE_COMPONENT_XYZW;
}
#endif
2018-01-29 15:06:04 -08:00
}
2018-06-20 15:11:09 -07:00
iris_emit_sbe_swiz(batch, ice, last_vue_map, urb_read_offset,
sprite_coord_overrides);
2018-01-29 15:06:04 -08:00
}
/* ------------------------------------------------------------------- */
/**
* Populate VS program key fields based on the current state.
*/
static void
iris_populate_vs_key(const struct iris_context *ice,
const struct shader_info *info,
gl_shader_stage last_stage,
struct iris_vs_prog_key *key)
{
const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
if (info->clip_distance_array_size == 0 &&
(info->outputs_written & (VARYING_BIT_POS | VARYING_BIT_CLIP_VERTEX)) &&
last_stage == MESA_SHADER_VERTEX)
key->vue.nr_userclip_plane_consts = cso_rast->num_clip_plane_consts;
}
/**
* Populate TCS program key fields based on the current state.
*/
static void
iris_populate_tcs_key(const struct iris_context *ice,
struct iris_tcs_prog_key *key)
{
}
/**
* Populate TES program key fields based on the current state.
*/
static void
iris_populate_tes_key(const struct iris_context *ice,
const struct shader_info *info,
gl_shader_stage last_stage,
struct iris_tes_prog_key *key)
{
const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
if (info->clip_distance_array_size == 0 &&
(info->outputs_written & (VARYING_BIT_POS | VARYING_BIT_CLIP_VERTEX)) &&
last_stage == MESA_SHADER_TESS_EVAL)
key->vue.nr_userclip_plane_consts = cso_rast->num_clip_plane_consts;
}
/**
* Populate GS program key fields based on the current state.
*/
static void
iris_populate_gs_key(const struct iris_context *ice,
const struct shader_info *info,
gl_shader_stage last_stage,
struct iris_gs_prog_key *key)
{
const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
if (info->clip_distance_array_size == 0 &&
(info->outputs_written & (VARYING_BIT_POS | VARYING_BIT_CLIP_VERTEX)) &&
last_stage == MESA_SHADER_GEOMETRY)
key->vue.nr_userclip_plane_consts = cso_rast->num_clip_plane_consts;
}
/**
* Populate FS program key fields based on the current state.
*/
static void
iris_populate_fs_key(const struct iris_context *ice,
const struct shader_info *info,
struct iris_fs_prog_key *key)
{
struct iris_screen *screen = (void *) ice->ctx.screen;
2018-01-29 15:06:08 -08:00
const struct pipe_framebuffer_state *fb = &ice->state.framebuffer;
const struct iris_depth_stencil_alpha_state *zsa = ice->state.cso_zsa;
const struct iris_rasterizer_state *rast = ice->state.cso_rast;
const struct iris_blend_state *blend = ice->state.cso_blend;
key->nr_color_regions = fb->nr_cbufs;
2018-01-25 02:09:59 -08:00
key->clamp_fragment_color = rast->clamp_fragment_color;
i965,iris,anv: Make alpha to coverage work with sample mask From "Alpha Coverage" section of SKL PRM Volume 7: "If Pixel Shader outputs oMask, AlphaToCoverage is disabled in hardware, regardless of the state setting for this feature." From OpenGL spec 4.6, "15.2 Shader Execution": "The built-in integer array gl_SampleMask can be used to change the sample coverage for a fragment from within the shader." From OpenGL spec 4.6, "17.3.1 Alpha To Coverage": "If SAMPLE_ALPHA_TO_COVERAGE is enabled, a temporary coverage value is generated where each bit is determined by the alpha value at the corresponding sample location. The temporary coverage value is then ANDed with the fragment coverage value to generate a new fragment coverage value." Similar wording could be found in Vulkan spec 1.1.100 "25.6. Multisample Coverage" Thus we need to compute alpha to coverage dithering manually in shader and replace sample mask store with the bitwise-AND of sample mask and alpha to coverage dithering. The following formula is used to compute final sample mask: m = int(16.0 * clamp(src0_alpha, 0.0, 1.0)) dither_mask = 0x1111 * ((0xfea80 >> (m & ~3)) & 0xf) | 0x0808 * (m & 2) | 0x0100 * (m & 1) sample_mask = sample_mask & dither_mask Credits to Francisco Jerez <currojerez@riseup.net> for creating it. It gives a number of ones proportional to the alpha for 2, 4, 8 or 16 least significant bits of the result. GEN6 hardware does not have issue with simultaneous usage of sample mask and alpha to coverage however due to the wrong sending order of oMask and src0_alpha it is still affected by it. Bugzilla: https://bugs.freedesktop.org/show_bug.cgi?id=109743 Signed-off-by: Danylo Piliaiev <danylo.piliaiev@globallogic.com> Reviewed-by: Francisco Jerez <currojerez@riseup.net>
2019-02-20 19:39:18 +02:00
key->alpha_to_coverage = blend->alpha_to_coverage;
key->alpha_test_replicate_alpha = fb->nr_cbufs > 1 && zsa->alpha_enabled;
2018-01-25 02:09:59 -08:00
key->flat_shade = rast->flatshade &&
(info->inputs_read & (VARYING_BIT_COL0 | VARYING_BIT_COL1));
2018-06-26 01:00:37 -07:00
2018-07-16 15:36:34 -07:00
key->persample_interp = rast->force_persample_interp;
key->multisample_fbo = rast->multisample && fb->samples > 1;
key->coherent_fb_fetch = GFX_VER >= 9;
2018-07-16 15:36:34 -07:00
key->force_dual_color_blend =
screen->driconf.dual_color_blend_by_location &&
(blend->blend_enables & 1) && blend->dual_color_blending;
2019-01-24 09:26:38 -08:00
/* TODO: Respect glHint for key->high_quality_derivatives */
}
2018-07-26 21:59:20 -07:00
static void
iris_populate_cs_key(const struct iris_context *ice,
struct iris_cs_prog_key *key)
2018-07-26 21:59:20 -07:00
{
}
2018-01-25 20:12:37 -08:00
static uint64_t
KSP(const struct iris_compiled_shader *shader)
{
2018-06-28 00:57:49 -07:00
struct iris_resource *res = (void *) shader->assembly.res;
return iris_bo_offset_from_base_address(res->bo) + shader->assembly.offset;
2018-01-25 20:12:37 -08:00
}
#define INIT_THREAD_DISPATCH_FIELDS(pkt, prefix, stage) \
2018-01-25 20:12:37 -08:00
pkt.KernelStartPointer = KSP(shader); \
pkt.BindingTableEntryCount = shader->bt.size_bytes / 4; \
pkt.FloatingPointMode = prog_data->use_alt_mode; \
\
pkt.DispatchGRFStartRegisterForURBData = \
prog_data->dispatch_grf_start_reg; \
pkt.prefix##URBEntryReadLength = vue_prog_data->urb_read_length; \
pkt.prefix##URBEntryReadOffset = 0; \
\
pkt.StatisticsEnable = true; \
pkt.Enable = true; \
\
if (prog_data->total_scratch) { \
pkt.PerThreadScratchSpace = ffs(prog_data->total_scratch) - 11; \
}
2017-12-27 02:54:26 -08:00
#define MERGE_SCRATCH_ADDR(name) \
{ \
uint32_t pkt2[GENX(name##_length)] = {0}; \
_iris_pack_command(batch, GENX(name), pkt2, p) { \
p.ScratchSpaceBasePointer = \
rw_bo(NULL, scratch_addr, IRIS_DOMAIN_NONE); \
} \
iris_emit_merge(batch, pkt, pkt2, GENX(name##_length)); \
}
/**
* Encode most of 3DSTATE_VS based on the compiled shader.
*/
static void
iris_store_vs_state(const struct gen_device_info *devinfo,
2018-06-09 00:01:09 -07:00
struct iris_compiled_shader *shader)
{
struct brw_stage_prog_data *prog_data = shader->prog_data;
struct brw_vue_prog_data *vue_prog_data = (void *) prog_data;
iris_pack_command(GENX(3DSTATE_VS), shader->derived_data, vs) {
INIT_THREAD_DISPATCH_FIELDS(vs, Vertex, MESA_SHADER_VERTEX);
vs.MaximumNumberofThreads = devinfo->max_vs_threads - 1;
vs.SIMD8DispatchEnable = true;
vs.UserClipDistanceCullTestEnableBitmask =
vue_prog_data->cull_distance_mask;
2018-01-09 11:51:34 -08:00
}
}
2018-01-09 11:51:34 -08:00
/**
* Encode most of 3DSTATE_HS based on the compiled shader.
*/
static void
iris_store_tcs_state(const struct gen_device_info *devinfo,
2018-06-09 00:01:09 -07:00
struct iris_compiled_shader *shader)
{
struct brw_stage_prog_data *prog_data = shader->prog_data;
struct brw_vue_prog_data *vue_prog_data = (void *) prog_data;
struct brw_tcs_prog_data *tcs_prog_data = (void *) prog_data;
2018-01-09 21:29:09 -08:00
iris_pack_command(GENX(3DSTATE_HS), shader->derived_data, hs) {
INIT_THREAD_DISPATCH_FIELDS(hs, Vertex, MESA_SHADER_TESS_CTRL);
#if GFX_VER >= 12
/* Wa_1604578095:
*
* Hang occurs when the number of max threads is less than 2 times
* the number of instance count. The number of max threads must be
* more than 2 times the number of instance count.
*/
assert((devinfo->max_tcs_threads / 2) > tcs_prog_data->instances);
hs.DispatchGRFStartRegisterForURBData = prog_data->dispatch_grf_start_reg & 0x1f;
hs.DispatchGRFStartRegisterForURBData5 = prog_data->dispatch_grf_start_reg >> 5;
#endif
hs.InstanceCount = tcs_prog_data->instances - 1;
hs.MaximumNumberofThreads = devinfo->max_tcs_threads - 1;
hs.IncludeVertexHandles = true;
intel/compiler: Implement TCS 8_PATCH mode and INTEL_DEBUG=tcs8 Our tessellation control shaders can be dispatched in several modes. - SINGLE_PATCH (Gen7+) processes a single patch per thread, with each channel corresponding to a different patch vertex. PATCHLIST_N will launch (N / 8) threads. If N is less than 8, some channels will be disabled, leaving some untapped hardware capabilities. Conditionals based on gl_InvocationID are non-uniform, which means that they'll often have to execute both paths. However, if there are fewer than 8 vertices, all invocations will happen within a single thread, so barriers can become no-ops, which is nice. We also burn a maximum of 4 registers for ICP handles, so we can compile without regard for the value of N. It also works in all cases. - DUAL_PATCH mode processes up to two patches at a time, where the first four channels come from patch 1, and the second group of four come from patch 2. This tries to provide better EU utilization for small patches (N <= 4). It cannot be used in all cases. - 8_PATCH mode processes 8 patches at a time, with a thread launched per vertex in the patch. Each channel corresponds to the same vertex, but in each of the 8 patches. This utilizes all channels even for small patches. It also makes conditions on gl_InvocationID uniform, leading to proper jumps. Barriers, unfortunately, become real. Worse, for PATCHLIST_N, the thread payload burns N registers for ICP handles. This can burn up to 32 registers, or 1/4 of our register file, for URB handles. For Vulkan (and DX), we know the number of vertices at compile time, so we can limit the amount of waste. In GL, the patch dimension is dynamic state, so we either would have to waste all 32 (not reasonable) or guess (badly) and recompile. This is unfortunate. Because we can only spawn 16 thread instances, we can only use this mode for PATCHLIST_16 and smaller. The rest must use SINGLE_PATCH. This patch implements the new 8_PATCH TCS mode, but leaves us using SINGLE_PATCH by default. A new INTEL_DEBUG=tcs8 flag will switch to using 8_PATCH mode for testing and benchmarking purposes. We may want to consider using 8_PATCH mode in Vulkan in some cases. The data I've seen shows that 8_PATCH mode can be more efficient in some cases, but SINGLE_PATCH mode (the one we use today) is faster in other cases. Ultimately, the TES matters much more than the TCS for performance, so the decision may not matter much. Reviewed-by: Jason Ekstrand <jason@jlekstrand.net>
2019-05-03 14:57:54 -07:00
#if GFX_VER == 12
/* Patch Count threshold specifies the maximum number of patches that
* will be accumulated before a thread dispatch is forced.
*/
hs.PatchCountThreshold = tcs_prog_data->patch_count_threshold;
#endif
#if GFX_VER >= 9
intel/compiler: Implement TCS 8_PATCH mode and INTEL_DEBUG=tcs8 Our tessellation control shaders can be dispatched in several modes. - SINGLE_PATCH (Gen7+) processes a single patch per thread, with each channel corresponding to a different patch vertex. PATCHLIST_N will launch (N / 8) threads. If N is less than 8, some channels will be disabled, leaving some untapped hardware capabilities. Conditionals based on gl_InvocationID are non-uniform, which means that they'll often have to execute both paths. However, if there are fewer than 8 vertices, all invocations will happen within a single thread, so barriers can become no-ops, which is nice. We also burn a maximum of 4 registers for ICP handles, so we can compile without regard for the value of N. It also works in all cases. - DUAL_PATCH mode processes up to two patches at a time, where the first four channels come from patch 1, and the second group of four come from patch 2. This tries to provide better EU utilization for small patches (N <= 4). It cannot be used in all cases. - 8_PATCH mode processes 8 patches at a time, with a thread launched per vertex in the patch. Each channel corresponds to the same vertex, but in each of the 8 patches. This utilizes all channels even for small patches. It also makes conditions on gl_InvocationID uniform, leading to proper jumps. Barriers, unfortunately, become real. Worse, for PATCHLIST_N, the thread payload burns N registers for ICP handles. This can burn up to 32 registers, or 1/4 of our register file, for URB handles. For Vulkan (and DX), we know the number of vertices at compile time, so we can limit the amount of waste. In GL, the patch dimension is dynamic state, so we either would have to waste all 32 (not reasonable) or guess (badly) and recompile. This is unfortunate. Because we can only spawn 16 thread instances, we can only use this mode for PATCHLIST_16 and smaller. The rest must use SINGLE_PATCH. This patch implements the new 8_PATCH TCS mode, but leaves us using SINGLE_PATCH by default. A new INTEL_DEBUG=tcs8 flag will switch to using 8_PATCH mode for testing and benchmarking purposes. We may want to consider using 8_PATCH mode in Vulkan in some cases. The data I've seen shows that 8_PATCH mode can be more efficient in some cases, but SINGLE_PATCH mode (the one we use today) is faster in other cases. Ultimately, the TES matters much more than the TCS for performance, so the decision may not matter much. Reviewed-by: Jason Ekstrand <jason@jlekstrand.net>
2019-05-03 14:57:54 -07:00
hs.DispatchMode = vue_prog_data->dispatch_mode;
hs.IncludePrimitiveID = tcs_prog_data->include_primitive_id;
#endif
2018-01-10 00:36:44 -08:00
}
}
2018-01-10 00:36:44 -08:00
/**
* Encode 3DSTATE_TE and most of 3DSTATE_DS based on the compiled shader.
*/
static void
iris_store_tes_state(const struct gen_device_info *devinfo,
2018-06-09 00:01:09 -07:00
struct iris_compiled_shader *shader)
{
struct brw_stage_prog_data *prog_data = shader->prog_data;
struct brw_vue_prog_data *vue_prog_data = (void *) prog_data;
struct brw_tes_prog_data *tes_prog_data = (void *) prog_data;
2018-01-21 15:28:59 -08:00
uint32_t *te_state = (void *) shader->derived_data;
uint32_t *ds_state = te_state + GENX(3DSTATE_TE_length);
2018-01-21 17:34:41 -08:00
iris_pack_command(GENX(3DSTATE_TE), te_state, te) {
te.Partitioning = tes_prog_data->partitioning;
te.OutputTopology = tes_prog_data->output_topology;
te.TEDomain = tes_prog_data->domain;
te.TEEnable = true;
te.MaximumTessellationFactorOdd = 63.0;
te.MaximumTessellationFactorNotOdd = 64.0;
}
2018-01-21 17:34:41 -08:00
iris_pack_command(GENX(3DSTATE_DS), ds_state, ds) {
INIT_THREAD_DISPATCH_FIELDS(ds, Patch, MESA_SHADER_TESS_EVAL);
2018-01-21 15:28:59 -08:00
ds.DispatchMode = DISPATCH_MODE_SIMD8_SINGLE_PATCH;
ds.MaximumNumberofThreads = devinfo->max_tes_threads - 1;
ds.ComputeWCoordinateEnable =
tes_prog_data->domain == BRW_TESS_DOMAIN_TRI;
2018-01-10 00:19:29 -08:00
ds.UserClipDistanceCullTestEnableBitmask =
vue_prog_data->cull_distance_mask;
2018-01-09 23:13:16 -08:00
}
}
2018-01-09 21:29:09 -08:00
/**
* Encode most of 3DSTATE_GS based on the compiled shader.
*/
static void
iris_store_gs_state(const struct gen_device_info *devinfo,
2018-06-09 00:01:09 -07:00
struct iris_compiled_shader *shader)
{
struct brw_stage_prog_data *prog_data = shader->prog_data;
struct brw_vue_prog_data *vue_prog_data = (void *) prog_data;
struct brw_gs_prog_data *gs_prog_data = (void *) prog_data;
2018-01-10 00:19:29 -08:00
iris_pack_command(GENX(3DSTATE_GS), shader->derived_data, gs) {
INIT_THREAD_DISPATCH_FIELDS(gs, Vertex, MESA_SHADER_GEOMETRY);
2018-01-22 22:40:51 -08:00
gs.OutputVertexSize = gs_prog_data->output_vertex_size_hwords * 2 - 1;
gs.OutputTopology = gs_prog_data->output_topology;
gs.ControlDataHeaderSize =
gs_prog_data->control_data_header_size_hwords;
gs.InstanceControl = gs_prog_data->invocations - 1;
2018-06-26 13:35:47 -07:00
gs.DispatchMode = DISPATCH_MODE_SIMD8;
gs.IncludePrimitiveID = gs_prog_data->include_primitive_id;
gs.ControlDataFormat = gs_prog_data->control_data_format;
gs.ReorderMode = TRAILING;
gs.ExpectedVertexCount = gs_prog_data->vertices_in;
gs.MaximumNumberofThreads =
GFX_VER == 8 ? (devinfo->max_gs_threads / 2 - 1)
: (devinfo->max_gs_threads - 1);
2018-01-22 22:40:51 -08:00
if (gs_prog_data->static_vertex_count != -1) {
gs.StaticOutput = true;
gs.StaticOutputVertexCount = gs_prog_data->static_vertex_count;
}
gs.IncludeVertexHandles = vue_prog_data->include_vue_handles;
gs.UserClipDistanceCullTestEnableBitmask =
vue_prog_data->cull_distance_mask;
const int urb_entry_write_offset = 1;
const uint32_t urb_entry_output_length =
DIV_ROUND_UP(vue_prog_data->vue_map.num_slots, 2) -
urb_entry_write_offset;
gs.VertexURBEntryOutputReadOffset = urb_entry_write_offset;
gs.VertexURBEntryOutputLength = MAX2(urb_entry_output_length, 1);
2018-01-22 23:39:38 -08:00
}
}
/**
* Encode most of 3DSTATE_PS and 3DSTATE_PS_EXTRA based on the shader.
*/
static void
iris_store_fs_state(const struct gen_device_info *devinfo,
2018-06-09 00:01:09 -07:00
struct iris_compiled_shader *shader)
{
struct brw_stage_prog_data *prog_data = shader->prog_data;
struct brw_wm_prog_data *wm_prog_data = (void *) shader->prog_data;
uint32_t *ps_state = (void *) shader->derived_data;
uint32_t *psx_state = ps_state + GENX(3DSTATE_PS_length);
iris_pack_command(GENX(3DSTATE_PS), ps_state, ps) {
ps.VectorMaskEnable = true;
ps.BindingTableEntryCount = shader->bt.size_bytes / 4;
ps.FloatingPointMode = prog_data->use_alt_mode;
ps.MaximumNumberofThreadsPerPSD = 64 - (GFX_VER == 8 ? 2 : 1);
ps.PushConstantEnable = prog_data->ubo_ranges[0].length > 0;
/* From the documentation for this packet:
* "If the PS kernel does not need the Position XY Offsets to
* compute a Position Value, then this field should be programmed
* to POSOFFSET_NONE."
*
* "SW Recommendation: If the PS kernel needs the Position Offsets
* to compute a Position XY value, this field should match Position
* ZW Interpolation Mode to ensure a consistent position.xyzw
* computation."
*
* We only require XY sample offsets. So, this recommendation doesn't
* look useful at the moment. We might need this in future.
*/
ps.PositionXYOffsetSelect =
wm_prog_data->uses_pos_offset ? POSOFFSET_SAMPLE : POSOFFSET_NONE;
if (prog_data->total_scratch)
ps.PerThreadScratchSpace = ffs(prog_data->total_scratch) - 11;
2018-01-22 23:39:38 -08:00
}
iris_pack_command(GENX(3DSTATE_PS_EXTRA), psx_state, psx) {
psx.PixelShaderValid = true;
psx.PixelShaderComputedDepthMode = wm_prog_data->computed_depth_mode;
psx.PixelShaderKillsPixel = wm_prog_data->uses_kill;
psx.AttributeEnable = wm_prog_data->num_varying_inputs != 0;
psx.PixelShaderUsesSourceDepth = wm_prog_data->uses_src_depth;
psx.PixelShaderUsesSourceW = wm_prog_data->uses_src_w;
psx.PixelShaderIsPerSample = wm_prog_data->persample_dispatch;
psx.oMaskPresenttoRenderTarget = wm_prog_data->uses_omask;
2018-01-22 23:39:38 -08:00
#if GFX_VER >= 9
psx.PixelShaderPullsBary = wm_prog_data->pulls_bary;
psx.PixelShaderComputesStencil = wm_prog_data->computed_stencil;
#endif
}
}
/**
* Compute the size of the derived data (shader command packets).
*
* This must match the data written by the iris_store_xs_state() functions.
*/
2018-07-26 21:59:20 -07:00
static void
iris_store_cs_state(const struct gen_device_info *devinfo,
2018-07-26 21:59:20 -07:00
struct iris_compiled_shader *shader)
{
struct brw_cs_prog_data *cs_prog_data = (void *) shader->prog_data;
void *map = shader->derived_data;
iris_pack_state(GENX(INTERFACE_DESCRIPTOR_DATA), map, desc) {
#if GFX_VERx10 < 125
2018-07-26 21:59:20 -07:00
desc.ConstantURBEntryReadLength = cs_prog_data->push.per_thread.regs;
desc.CrossThreadConstantDataReadLength =
cs_prog_data->push.cross_thread.regs;
#else
assert(cs_prog_data->push.per_thread.regs == 0);
assert(cs_prog_data->push.cross_thread.regs == 0);
#endif
desc.BarrierEnable = cs_prog_data->uses_barrier;
#if GFX_VER >= 12
/* TODO: Check if we are missing workarounds and enable mid-thread
* preemption.
*
* We still have issues with mid-thread preemption (it was already
* disabled by the kernel on gfx11, due to missing workarounds). It's
* possible that we are just missing some workarounds, and could enable
* it later, but for now let's disable it to fix a GPU in compute in Car
* Chase (and possibly more).
*/
desc.ThreadPreemptionDisable = true;
#endif
2018-07-26 21:59:20 -07:00
}
}
static unsigned
iris_derived_program_state_size(enum iris_program_cache_id cache_id)
{
2018-04-21 23:27:15 -07:00
assert(cache_id <= IRIS_CACHE_BLORP);
2018-01-22 23:39:38 -08:00
static const unsigned dwords[] = {
[IRIS_CACHE_VS] = GENX(3DSTATE_VS_length),
[IRIS_CACHE_TCS] = GENX(3DSTATE_HS_length),
[IRIS_CACHE_TES] = GENX(3DSTATE_TE_length) + GENX(3DSTATE_DS_length),
[IRIS_CACHE_GS] = GENX(3DSTATE_GS_length),
[IRIS_CACHE_FS] =
GENX(3DSTATE_PS_length) + GENX(3DSTATE_PS_EXTRA_length),
2018-07-26 21:59:20 -07:00
[IRIS_CACHE_CS] = GENX(INTERFACE_DESCRIPTOR_DATA_length),
2018-04-21 23:27:15 -07:00
[IRIS_CACHE_BLORP] = 0,
};
return sizeof(uint32_t) * dwords[cache_id];
}
/**
* Create any state packets corresponding to the given shader stage
* (i.e. 3DSTATE_VS) and save them as "derived data" in the shader variant.
* This means that we can look up a program in the in-memory cache and
* get most of the state packet without having to reconstruct it.
*/
static void
iris_store_derived_program_state(const struct gen_device_info *devinfo,
2018-06-09 00:01:09 -07:00
enum iris_program_cache_id cache_id,
struct iris_compiled_shader *shader)
{
switch (cache_id) {
case IRIS_CACHE_VS:
iris_store_vs_state(devinfo, shader);
break;
case IRIS_CACHE_TCS:
iris_store_tcs_state(devinfo, shader);
break;
case IRIS_CACHE_TES:
iris_store_tes_state(devinfo, shader);
break;
case IRIS_CACHE_GS:
iris_store_gs_state(devinfo, shader);
break;
case IRIS_CACHE_FS:
iris_store_fs_state(devinfo, shader);
break;
case IRIS_CACHE_CS:
iris_store_cs_state(devinfo, shader);
2018-04-21 23:27:15 -07:00
case IRIS_CACHE_BLORP:
break;
default:
break;
2018-01-10 00:19:29 -08:00
}
}
2018-01-10 00:19:29 -08:00
/* ------------------------------------------------------------------- */
2018-01-25 21:39:44 -08:00
static const uint32_t push_constant_opcodes[] = {
[MESA_SHADER_VERTEX] = 21,
[MESA_SHADER_TESS_CTRL] = 25, /* HS */
[MESA_SHADER_TESS_EVAL] = 26, /* DS */
[MESA_SHADER_GEOMETRY] = 22,
[MESA_SHADER_FRAGMENT] = 23,
[MESA_SHADER_COMPUTE] = 0,
};
static uint32_t
use_null_surface(struct iris_batch *batch, struct iris_context *ice)
{
struct iris_bo *state_bo = iris_resource_bo(ice->state.unbound_tex.res);
iris_use_pinned_bo(batch, state_bo, false, IRIS_DOMAIN_NONE);
return ice->state.unbound_tex.offset;
}
static uint32_t
use_null_fb_surface(struct iris_batch *batch, struct iris_context *ice)
{
/* If set_framebuffer_state() was never called, fall back to 1x1x1 */
if (!ice->state.null_fb.res)
return use_null_surface(batch, ice);
struct iris_bo *state_bo = iris_resource_bo(ice->state.null_fb.res);
iris_use_pinned_bo(batch, state_bo, false, IRIS_DOMAIN_NONE);
return ice->state.null_fb.offset;
}
static uint32_t
surf_state_offset_for_aux(struct iris_resource *res,
unsigned aux_modes,
enum isl_aux_usage aux_usage)
{
assert(aux_modes & (1 << aux_usage));
return SURFACE_STATE_ALIGNMENT *
util_bitcount(aux_modes & ((1 << aux_usage) - 1));
}
#if GFX_VER == 9
static void
surf_state_update_clear_value(struct iris_batch *batch,
struct iris_resource *res,
struct iris_state_ref *state,
unsigned aux_modes,
enum isl_aux_usage aux_usage)
{
struct isl_device *isl_dev = &batch->screen->isl_dev;
struct iris_bo *state_bo = iris_resource_bo(state->res);
uint64_t real_offset = state->offset + IRIS_MEMZONE_BINDER_START;
uint32_t offset_into_bo = real_offset - state_bo->gtt_offset;
uint32_t clear_offset = offset_into_bo +
isl_dev->ss.clear_value_offset +
surf_state_offset_for_aux(res, aux_modes, aux_usage);
uint32_t *color = res->aux.clear_color.u32;
assert(isl_dev->ss.clear_value_size == 16);
if (aux_usage == ISL_AUX_USAGE_HIZ) {
iris_emit_pipe_control_write(batch, "update fast clear value (Z)",
PIPE_CONTROL_WRITE_IMMEDIATE,
state_bo, clear_offset, color[0]);
} else {
iris_emit_pipe_control_write(batch, "update fast clear color (RG__)",
PIPE_CONTROL_WRITE_IMMEDIATE,
state_bo, clear_offset,
(uint64_t) color[0] |
(uint64_t) color[1] << 32);
iris_emit_pipe_control_write(batch, "update fast clear color (__BA)",
PIPE_CONTROL_WRITE_IMMEDIATE,
state_bo, clear_offset + 8,
(uint64_t) color[2] |
(uint64_t) color[3] << 32);
}
iris_emit_pipe_control_flush(batch,
"update fast clear: state cache invalidate",
PIPE_CONTROL_FLUSH_ENABLE |
PIPE_CONTROL_STATE_CACHE_INVALIDATE);
}
#endif
static void
update_clear_value(struct iris_context *ice,
struct iris_batch *batch,
struct iris_resource *res,
struct iris_surface_state *surf_state,
unsigned all_aux_modes,
struct isl_view *view)
{
UNUSED struct isl_device *isl_dev = &batch->screen->isl_dev;
UNUSED unsigned aux_modes = all_aux_modes;
/* We only need to update the clear color in the surface state for gfx8 and
* gfx9. Newer gens can read it directly from the clear color state buffer.
*/
#if GFX_VER == 9
/* Skip updating the ISL_AUX_USAGE_NONE surface state */
aux_modes &= ~(1 << ISL_AUX_USAGE_NONE);
while (aux_modes) {
enum isl_aux_usage aux_usage = u_bit_scan(&aux_modes);
surf_state_update_clear_value(batch, res, &surf_state->ref,
all_aux_modes, aux_usage);
}
#elif GFX_VER == 8
/* TODO: Could update rather than re-filling */
alloc_surface_states(surf_state, all_aux_modes);
void *map = surf_state->cpu;
while (aux_modes) {
enum isl_aux_usage aux_usage = u_bit_scan(&aux_modes);
fill_surface_state(isl_dev, map, res, &res->surf, view, aux_usage,
0, 0, 0);
map += SURFACE_STATE_ALIGNMENT;
}
upload_surface_states(ice->state.surface_uploader, surf_state);
#endif
}
/**
* Add a surface to the validation list, as well as the buffer containing
* the corresponding SURFACE_STATE.
*
* Returns the binding table entry (offset to SURFACE_STATE).
*/
static uint32_t
use_surface(struct iris_context *ice,
struct iris_batch *batch,
struct pipe_surface *p_surf,
bool writeable,
enum isl_aux_usage aux_usage,
bool is_read_surface,
enum iris_domain access)
{
struct iris_surface *surf = (void *) p_surf;
struct iris_resource *res = (void *) p_surf->texture;
uint32_t offset = 0;
if (GFX_VER == 8 && is_read_surface && !surf->surface_state_read.ref.res) {
upload_surface_states(ice->state.surface_uploader,
&surf->surface_state_read);
}
if (!surf->surface_state.ref.res) {
upload_surface_states(ice->state.surface_uploader,
&surf->surface_state);
}
if (res->aux.bo) {
iris_use_pinned_bo(batch, res->aux.bo, writeable, access);
if (res->aux.clear_color_bo)
iris_use_pinned_bo(batch, res->aux.clear_color_bo, false, access);
if (memcmp(&res->aux.clear_color, &surf->clear_color,
sizeof(surf->clear_color)) != 0) {
update_clear_value(ice, batch, res, &surf->surface_state,
res->aux.possible_usages, &surf->view);
if (GFX_VER == 8) {
update_clear_value(ice, batch, res, &surf->surface_state_read,
res->aux.possible_usages, &surf->read_view);
}
surf->clear_color = res->aux.clear_color;
}
}
2018-12-08 11:52:55 -08:00
iris_use_pinned_bo(batch, iris_resource_bo(p_surf->texture),
writeable, access);
if (GFX_VER == 8 && is_read_surface) {
iris_use_pinned_bo(batch, iris_resource_bo(surf->surface_state_read.ref.res), false,
IRIS_DOMAIN_NONE);
} else {
iris_use_pinned_bo(batch, iris_resource_bo(surf->surface_state.ref.res), false,
IRIS_DOMAIN_NONE);
}
offset = (GFX_VER == 8 && is_read_surface)
? surf->surface_state_read.ref.offset
: surf->surface_state.ref.offset;
return offset +
surf_state_offset_for_aux(res, res->aux.possible_usages, aux_usage);
}
2018-04-07 06:35:51 -07:00
static uint32_t
use_sampler_view(struct iris_context *ice,
struct iris_batch *batch,
struct iris_sampler_view *isv)
2018-04-07 06:35:51 -07:00
{
enum isl_aux_usage aux_usage =
iris_resource_texture_aux_usage(ice, isv->res, isv->view.format);
if (!isv->surface_state.ref.res)
upload_surface_states(ice->state.surface_uploader, &isv->surface_state);
if (isv->res->aux.bo) {
iris_use_pinned_bo(batch, isv->res->aux.bo,
false, IRIS_DOMAIN_OTHER_READ);
if (isv->res->aux.clear_color_bo)
iris_use_pinned_bo(batch, isv->res->aux.clear_color_bo,
false, IRIS_DOMAIN_OTHER_READ);
if (memcmp(&isv->res->aux.clear_color, &isv->clear_color,
sizeof(isv->clear_color)) != 0) {
update_clear_value(ice, batch, isv->res, &isv->surface_state,
isv->res->aux.sampler_usages, &isv->view);
isv->clear_color = isv->res->aux.clear_color;
}
}
2018-12-08 11:52:55 -08:00
iris_use_pinned_bo(batch, isv->res->bo, false, IRIS_DOMAIN_OTHER_READ);
iris_use_pinned_bo(batch, iris_resource_bo(isv->surface_state.ref.res), false,
IRIS_DOMAIN_NONE);
return isv->surface_state.ref.offset +
surf_state_offset_for_aux(isv->res, isv->res->aux.sampler_usages,
aux_usage);
2018-04-07 06:35:51 -07:00
}
2018-06-06 14:56:10 -07:00
static uint32_t
use_ubo_ssbo(struct iris_batch *batch,
struct iris_context *ice,
struct pipe_shader_buffer *buf,
struct iris_state_ref *surf_state,
bool writable, enum iris_domain access)
2018-06-06 14:56:10 -07:00
{
if (!buf->buffer || !surf_state->res)
return use_null_surface(batch, ice);
iris_use_pinned_bo(batch, iris_resource_bo(buf->buffer), writable, access);
iris_use_pinned_bo(batch, iris_resource_bo(surf_state->res), false,
IRIS_DOMAIN_NONE);
return surf_state->offset;
}
2018-08-30 15:49:32 -07:00
static uint32_t
use_image(struct iris_batch *batch, struct iris_context *ice,
struct iris_shader_state *shs, const struct shader_info *info,
int i)
2018-08-30 15:49:32 -07:00
{
struct iris_image_view *iv = &shs->image[i];
struct iris_resource *res = (void *) iv->base.resource;
if (!res)
2018-08-30 15:49:32 -07:00
return use_null_surface(batch, ice);
bool write = iv->base.shader_access & PIPE_IMAGE_ACCESS_WRITE;
2018-08-30 15:49:32 -07:00
iris_use_pinned_bo(batch, res->bo, write, IRIS_DOMAIN_NONE);
iris_use_pinned_bo(batch, iris_resource_bo(iv->surface_state.ref.res),
false, IRIS_DOMAIN_NONE);
2018-08-30 15:49:32 -07:00
2018-12-08 11:52:55 -08:00
if (res->aux.bo)
iris_use_pinned_bo(batch, res->aux.bo, write, IRIS_DOMAIN_NONE);
2018-12-08 11:52:55 -08:00
enum isl_aux_usage aux_usage =
iris_image_view_aux_usage(ice, &iv->base, info);
return iv->surface_state.ref.offset +
surf_state_offset_for_aux(res, res->aux.possible_usages, aux_usage);
2018-08-30 15:49:32 -07:00
}
#define push_bt_entry(addr) \
assert(addr >= binder_addr); \
assert(s < shader->bt.size_bytes / sizeof(uint32_t)); \
if (!pin_only) bt_map[s++] = (addr) - binder_addr;
#define bt_assert(section) \
if (!pin_only && shader->bt.used_mask[section] != 0) \
assert(shader->bt.offsets[section] == s);
/**
* Populate the binding table for a given shader stage.
*
* This fills out the table of pointers to surfaces required by the shader,
* and also adds those buffers to the validation list so the kernel can make
* resident before running our batch.
*/
static void
iris_populate_binding_table(struct iris_context *ice,
struct iris_batch *batch,
gl_shader_stage stage,
bool pin_only)
{
const struct iris_binder *binder = &ice->state.binder;
struct iris_compiled_shader *shader = ice->shaders.prog[stage];
if (!shader)
return;
struct iris_binding_table *bt = &shader->bt;
UNUSED struct brw_stage_prog_data *prog_data = shader->prog_data;
struct iris_shader_state *shs = &ice->state.shaders[stage];
uint32_t binder_addr = binder->bo->gtt_offset;
uint32_t *bt_map = binder->map + binder->bt_offset[stage];
int s = 0;
const struct shader_info *info = iris_get_shader_info(ice, stage);
if (!info) {
/* TCS passthrough doesn't need a binding table. */
assert(stage == MESA_SHADER_TESS_CTRL);
return;
}
if (stage == MESA_SHADER_COMPUTE &&
shader->bt.used_mask[IRIS_SURFACE_GROUP_CS_WORK_GROUPS]) {
/* surface for gl_NumWorkGroups */
struct iris_state_ref *grid_data = &ice->state.grid_size;
struct iris_state_ref *grid_state = &ice->state.grid_surf_state;
iris_use_pinned_bo(batch, iris_resource_bo(grid_data->res), false,
IRIS_DOMAIN_OTHER_READ);
iris_use_pinned_bo(batch, iris_resource_bo(grid_state->res), false,
IRIS_DOMAIN_NONE);
push_bt_entry(grid_state->offset);
}
if (stage == MESA_SHADER_FRAGMENT) {
struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
2018-07-30 22:59:52 -07:00
/* Note that cso_fb->nr_cbufs == fs_key->nr_color_regions. */
if (cso_fb->nr_cbufs) {
for (unsigned i = 0; i < cso_fb->nr_cbufs; i++) {
uint32_t addr;
if (cso_fb->cbufs[i]) {
addr = use_surface(ice, batch, cso_fb->cbufs[i], true,
ice->state.draw_aux_usage[i], false,
IRIS_DOMAIN_RENDER_WRITE);
} else {
addr = use_null_fb_surface(batch, ice);
}
push_bt_entry(addr);
}
} else if (GFX_VER < 11) {
uint32_t addr = use_null_fb_surface(batch, ice);
push_bt_entry(addr);
2018-07-30 22:59:52 -07:00
}
}
#define foreach_surface_used(index, group) \
bt_assert(group); \
for (int index = 0; index < bt->sizes[group]; index++) \
if (iris_group_index_to_bti(bt, group, index) != \
IRIS_SURFACE_NOT_USED)
foreach_surface_used(i, IRIS_SURFACE_GROUP_RENDER_TARGET_READ) {
struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
uint32_t addr;
if (cso_fb->cbufs[i]) {
addr = use_surface(ice, batch, cso_fb->cbufs[i],
false, ice->state.draw_aux_usage[i], true,
IRIS_DOMAIN_OTHER_READ);
push_bt_entry(addr);
}
}
foreach_surface_used(i, IRIS_SURFACE_GROUP_TEXTURE) {
struct iris_sampler_view *view = shs->textures[i];
uint32_t addr = view ? use_sampler_view(ice, batch, view)
: use_null_surface(batch, ice);
push_bt_entry(addr);
}
foreach_surface_used(i, IRIS_SURFACE_GROUP_IMAGE) {
uint32_t addr = use_image(batch, ice, shs, info, i);
push_bt_entry(addr);
}
foreach_surface_used(i, IRIS_SURFACE_GROUP_UBO) {
uint32_t addr = use_ubo_ssbo(batch, ice, &shs->constbuf[i],
&shs->constbuf_surf_state[i], false,
IRIS_DOMAIN_OTHER_READ);
push_bt_entry(addr);
}
foreach_surface_used(i, IRIS_SURFACE_GROUP_SSBO) {
uint32_t addr =
use_ubo_ssbo(batch, ice, &shs->ssbo[i], &shs->ssbo_surf_state[i],
shs->writable_ssbos & (1u << i), IRIS_DOMAIN_NONE);
push_bt_entry(addr);
}
#if 0
2019-01-24 09:26:38 -08:00
/* XXX: YUV surfaces not implemented yet */
bt_assert(plane_start[1], ...);
bt_assert(plane_start[2], ...);
#endif
}
static void
iris_use_optional_res(struct iris_batch *batch,
struct pipe_resource *res,
bool writeable,
enum iris_domain access)
{
if (res) {
struct iris_bo *bo = iris_resource_bo(res);
iris_use_pinned_bo(batch, bo, writeable, access);
}
}
static void
pin_depth_and_stencil_buffers(struct iris_batch *batch,
struct pipe_surface *zsbuf,
struct iris_depth_stencil_alpha_state *cso_zsa)
{
if (!zsbuf)
return;
struct iris_resource *zres, *sres;
iris_get_depth_stencil_resources(zsbuf->texture, &zres, &sres);
if (zres) {
const enum iris_domain access = cso_zsa->depth_writes_enabled ?
IRIS_DOMAIN_DEPTH_WRITE : IRIS_DOMAIN_OTHER_READ;
iris_use_pinned_bo(batch, zres->bo, cso_zsa->depth_writes_enabled,
access);
if (zres->aux.bo) {
iris_use_pinned_bo(batch, zres->aux.bo,
cso_zsa->depth_writes_enabled, access);
}
}
if (sres) {
const enum iris_domain access = cso_zsa->stencil_writes_enabled ?
IRIS_DOMAIN_DEPTH_WRITE : IRIS_DOMAIN_OTHER_READ;
iris_use_pinned_bo(batch, sres->bo, cso_zsa->stencil_writes_enabled,
access);
}
}
static uint32_t
pin_scratch_space(struct iris_context *ice,
struct iris_batch *batch,
const struct brw_stage_prog_data *prog_data,
gl_shader_stage stage)
{
uint32_t scratch_addr = 0;
if (prog_data->total_scratch > 0) {
struct iris_bo *scratch_bo =
iris_get_scratch_space(ice, prog_data->total_scratch, stage);
iris_use_pinned_bo(batch, scratch_bo, true, IRIS_DOMAIN_NONE);
scratch_addr = scratch_bo->gtt_offset;
}
return scratch_addr;
}
/* ------------------------------------------------------------------- */
/**
* Pin any BOs which were installed by a previous batch, and restored
* via the hardware logical context mechanism.
*
* We don't need to re-emit all state every batch - the hardware context
* mechanism will save and restore it for us. This includes pointers to
* various BOs...which won't exist unless we ask the kernel to pin them
* by adding them to the validation list.
*
* We can skip buffers if we've re-emitted those packets, as we're
* overwriting those stale pointers with new ones, and don't actually
* refer to the old BOs.
*/
static void
iris_restore_render_saved_bos(struct iris_context *ice,
struct iris_batch *batch,
const struct pipe_draw_info *draw)
{
struct iris_genx_state *genx = ice->state.genx;
const uint64_t clean = ~ice->state.dirty;
const uint64_t stage_clean = ~ice->state.stage_dirty;
if (clean & IRIS_DIRTY_CC_VIEWPORT) {
iris_use_optional_res(batch, ice->state.last_res.cc_vp, false,
IRIS_DOMAIN_NONE);
}
if (clean & IRIS_DIRTY_SF_CL_VIEWPORT) {
iris_use_optional_res(batch, ice->state.last_res.sf_cl_vp, false,
IRIS_DOMAIN_NONE);
}
if (clean & IRIS_DIRTY_BLEND_STATE) {
iris_use_optional_res(batch, ice->state.last_res.blend, false,
IRIS_DOMAIN_NONE);
}
if (clean & IRIS_DIRTY_COLOR_CALC_STATE) {
iris_use_optional_res(batch, ice->state.last_res.color_calc, false,
IRIS_DOMAIN_NONE);
}
if (clean & IRIS_DIRTY_SCISSOR_RECT) {
iris_use_optional_res(batch, ice->state.last_res.scissor, false,
IRIS_DOMAIN_NONE);
}
if (ice->state.streamout_active && (clean & IRIS_DIRTY_SO_BUFFERS)) {
for (int i = 0; i < 4; i++) {
struct iris_stream_output_target *tgt =
(void *) ice->state.so_target[i];
if (tgt) {
iris_use_pinned_bo(batch, iris_resource_bo(tgt->base.buffer),
true, IRIS_DOMAIN_OTHER_WRITE);
iris_use_pinned_bo(batch, iris_resource_bo(tgt->offset.res),
true, IRIS_DOMAIN_OTHER_WRITE);
}
}
}
for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
if (!(stage_clean & (IRIS_STAGE_DIRTY_CONSTANTS_VS << stage)))
continue;
struct iris_shader_state *shs = &ice->state.shaders[stage];
struct iris_compiled_shader *shader = ice->shaders.prog[stage];
if (!shader)
continue;
struct brw_stage_prog_data *prog_data = (void *) shader->prog_data;
for (int i = 0; i < 4; i++) {
const struct brw_ubo_range *range = &prog_data->ubo_ranges[i];
if (range->length == 0)
continue;
/* Range block is a binding table index, map back to UBO index. */
unsigned block_index = iris_bti_to_group_index(
&shader->bt, IRIS_SURFACE_GROUP_UBO, range->block);
assert(block_index != IRIS_SURFACE_NOT_USED);
struct pipe_shader_buffer *cbuf = &shs->constbuf[block_index];
struct iris_resource *res = (void *) cbuf->buffer;
if (res)
iris_use_pinned_bo(batch, res->bo, false, IRIS_DOMAIN_OTHER_READ);
else
iris_use_pinned_bo(batch, batch->screen->workaround_bo, false,
IRIS_DOMAIN_OTHER_READ);
}
}
for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
if (stage_clean & (IRIS_STAGE_DIRTY_BINDINGS_VS << stage)) {
/* Re-pin any buffers referred to by the binding table. */
iris_populate_binding_table(ice, batch, stage, true);
}
}
for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
struct iris_shader_state *shs = &ice->state.shaders[stage];
struct pipe_resource *res = shs->sampler_table.res;
if (res)
iris_use_pinned_bo(batch, iris_resource_bo(res), false,
IRIS_DOMAIN_NONE);
}
for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
if (stage_clean & (IRIS_STAGE_DIRTY_VS << stage)) {
struct iris_compiled_shader *shader = ice->shaders.prog[stage];
2018-12-12 01:41:39 -08:00
2018-06-28 00:57:49 -07:00
if (shader) {
struct iris_bo *bo = iris_resource_bo(shader->assembly.res);
iris_use_pinned_bo(batch, bo, false, IRIS_DOMAIN_NONE);
pin_scratch_space(ice, batch, shader->prog_data, stage);
2018-12-12 01:41:39 -08:00
}
}
}
if ((clean & IRIS_DIRTY_DEPTH_BUFFER) &&
(clean & IRIS_DIRTY_WM_DEPTH_STENCIL)) {
struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
pin_depth_and_stencil_buffers(batch, cso_fb->zsbuf, ice->state.cso_zsa);
}
iris_use_optional_res(batch, ice->state.last_res.index_buffer, false,
IRIS_DOMAIN_OTHER_READ);
if (clean & IRIS_DIRTY_VERTEX_BUFFERS) {
uint64_t bound = ice->state.bound_vertex_buffers;
while (bound) {
const int i = u_bit_scan64(&bound);
struct pipe_resource *res = genx->vertex_buffers[i].resource;
iris_use_pinned_bo(batch, iris_resource_bo(res), false,
IRIS_DOMAIN_OTHER_READ);
}
}
}
static void
iris_restore_compute_saved_bos(struct iris_context *ice,
struct iris_batch *batch,
const struct pipe_grid_info *grid)
{
const uint64_t stage_clean = ~ice->state.stage_dirty;
const int stage = MESA_SHADER_COMPUTE;
struct iris_shader_state *shs = &ice->state.shaders[stage];
if (stage_clean & IRIS_STAGE_DIRTY_BINDINGS_CS) {
/* Re-pin any buffers referred to by the binding table. */
iris_populate_binding_table(ice, batch, stage, true);
}
struct pipe_resource *sampler_res = shs->sampler_table.res;
if (sampler_res)
iris_use_pinned_bo(batch, iris_resource_bo(sampler_res), false,
IRIS_DOMAIN_NONE);
if ((stage_clean & IRIS_STAGE_DIRTY_SAMPLER_STATES_CS) &&
(stage_clean & IRIS_STAGE_DIRTY_BINDINGS_CS) &&
(stage_clean & IRIS_STAGE_DIRTY_CONSTANTS_CS) &&
(stage_clean & IRIS_STAGE_DIRTY_CS)) {
iris_use_optional_res(batch, ice->state.last_res.cs_desc, false,
IRIS_DOMAIN_NONE);
}
if (stage_clean & IRIS_STAGE_DIRTY_CS) {
struct iris_compiled_shader *shader = ice->shaders.prog[stage];
2018-12-12 01:41:39 -08:00
if (shader) {
struct iris_bo *bo = iris_resource_bo(shader->assembly.res);
iris_use_pinned_bo(batch, bo, false, IRIS_DOMAIN_NONE);
if (GFX_VERx10 < 125) {
struct iris_bo *curbe_bo =
iris_resource_bo(ice->state.last_res.cs_thread_ids);
iris_use_pinned_bo(batch, curbe_bo, false, IRIS_DOMAIN_NONE);
}
pin_scratch_space(ice, batch, shader->prog_data, stage);
2018-12-12 01:41:39 -08:00
}
}
}
/**
* Possibly emit STATE_BASE_ADDRESS to update Surface State Base Address.
*/
static void
iris_update_surface_base_address(struct iris_batch *batch,
struct iris_binder *binder)
{
if (batch->last_surface_base_address == binder->bo->gtt_offset)
return;
struct isl_device *isl_dev = &batch->screen->isl_dev;
uint32_t mocs = isl_mocs(isl_dev, 0, false);
iris_batch_sync_region_start(batch);
flush_before_state_base_change(batch);
#if GFX_VER == 12
/* Wa_1607854226:
*
* Workaround the non pipelined state not applying in MEDIA/GPGPU pipeline
* mode by putting the pipeline temporarily in 3D mode..
*/
if (batch->name == IRIS_BATCH_COMPUTE)
emit_pipeline_select(batch, _3D);
#endif
iris_emit_cmd(batch, GENX(STATE_BASE_ADDRESS), sba) {
sba.SurfaceStateBaseAddressModifyEnable = true;
sba.SurfaceStateBaseAddress = ro_bo(binder->bo, 0);
/* The hardware appears to pay attention to the MOCS fields even
* if you don't set the "Address Modify Enable" bit for the base.
*/
sba.GeneralStateMOCS = mocs;
sba.StatelessDataPortAccessMOCS = mocs;
sba.DynamicStateMOCS = mocs;
sba.IndirectObjectMOCS = mocs;
sba.InstructionMOCS = mocs;
sba.SurfaceStateMOCS = mocs;
#if GFX_VER >= 9
sba.BindlessSurfaceStateMOCS = mocs;
#endif
}
#if GFX_VER == 12
/* Wa_1607854226:
*
* Put the pipeline back into compute mode.
*/
if (batch->name == IRIS_BATCH_COMPUTE)
emit_pipeline_select(batch, GPGPU);
#endif
flush_after_state_base_change(batch);
iris_batch_sync_region_end(batch);
batch->last_surface_base_address = binder->bo->gtt_offset;
}
static inline void
iris_viewport_zmin_zmax(const struct pipe_viewport_state *vp, bool halfz,
bool window_space_position, float *zmin, float *zmax)
{
if (window_space_position) {
*zmin = 0.f;
*zmax = 1.f;
return;
}
util_viewport_zmin_zmax(vp, halfz, zmin, zmax);
}
#if GFX_VER >= 12
void
genX(invalidate_aux_map_state)(struct iris_batch *batch)
{
struct iris_screen *screen = batch->screen;
void *aux_map_ctx = iris_bufmgr_get_aux_map_context(screen->bufmgr);
if (!aux_map_ctx)
return;
uint32_t aux_map_state_num = intel_aux_map_get_state_num(aux_map_ctx);
if (batch->last_aux_map_state != aux_map_state_num) {
/* HSD 1209978178: docs say that before programming the aux table:
*
* "Driver must ensure that the engine is IDLE but ensure it doesn't
* add extra flushes in the case it knows that the engine is already
* IDLE."
*
* An end of pipe sync is needed here, otherwise we see GPU hangs in
* dEQP-GLES31.functional.copy_image.* tests.
*/
iris_emit_end_of_pipe_sync(batch, "Invalidate aux map table",
PIPE_CONTROL_CS_STALL);
/* If the aux-map state number increased, then we need to rewrite the
* register. Rewriting the register is used to both set the aux-map
* translation table address, and also to invalidate any previously
* cached translations.
*/
iris_load_register_imm32(batch, GENX(GFX_CCS_AUX_INV_num), 1);
batch->last_aux_map_state = aux_map_state_num;
}
}
static void
init_aux_map_state(struct iris_batch *batch)
{
struct iris_screen *screen = batch->screen;
void *aux_map_ctx = iris_bufmgr_get_aux_map_context(screen->bufmgr);
if (!aux_map_ctx)
return;
uint64_t base_addr = intel_aux_map_get_base(aux_map_ctx);
assert(base_addr != 0 && align64(base_addr, 32 * 1024) == base_addr);
iris_load_register_imm64(batch, GENX(GFX_AUX_TABLE_BASE_ADDR_num),
base_addr);
}
#endif
struct push_bos {
struct {
struct iris_address addr;
uint32_t length;
} buffers[4];
int buffer_count;
uint32_t max_length;
};
static void
setup_constant_buffers(struct iris_context *ice,
struct iris_batch *batch,
int stage,
struct push_bos *push_bos)
{
struct iris_shader_state *shs = &ice->state.shaders[stage];
struct iris_compiled_shader *shader = ice->shaders.prog[stage];
struct brw_stage_prog_data *prog_data = (void *) shader->prog_data;
uint32_t push_range_sum = 0;
int n = 0;
for (int i = 0; i < 4; i++) {
const struct brw_ubo_range *range = &prog_data->ubo_ranges[i];
if (range->length == 0)
continue;
push_range_sum += range->length;
if (range->length > push_bos->max_length)
push_bos->max_length = range->length;
/* Range block is a binding table index, map back to UBO index. */
unsigned block_index = iris_bti_to_group_index(
&shader->bt, IRIS_SURFACE_GROUP_UBO, range->block);
assert(block_index != IRIS_SURFACE_NOT_USED);
struct pipe_shader_buffer *cbuf = &shs->constbuf[block_index];
struct iris_resource *res = (void *) cbuf->buffer;
assert(cbuf->buffer_offset % 32 == 0);
push_bos->buffers[n].length = range->length;
push_bos->buffers[n].addr =
res ? ro_bo(res->bo, range->start * 32 + cbuf->buffer_offset)
: batch->screen->workaround_address;
n++;
}
/* From the 3DSTATE_CONSTANT_XS and 3DSTATE_CONSTANT_ALL programming notes:
*
* "The sum of all four read length fields must be less than or
* equal to the size of 64."
*/
assert(push_range_sum <= 64);
push_bos->buffer_count = n;
}
static void
emit_push_constant_packets(struct iris_context *ice,
struct iris_batch *batch,
int stage,
const struct push_bos *push_bos)
{
UNUSED struct isl_device *isl_dev = &batch->screen->isl_dev;
struct iris_compiled_shader *shader = ice->shaders.prog[stage];
struct brw_stage_prog_data *prog_data = (void *) shader->prog_data;
iris_emit_cmd(batch, GENX(3DSTATE_CONSTANT_VS), pkt) {
pkt._3DCommandSubOpcode = push_constant_opcodes[stage];
#if GFX_VER >= 12
pkt.MOCS = isl_mocs(isl_dev, 0, false);
#endif
if (prog_data) {
/* The Skylake PRM contains the following restriction:
*
* "The driver must ensure The following case does not occur
* without a flush to the 3D engine: 3DSTATE_CONSTANT_* with
* buffer 3 read length equal to zero committed followed by a
* 3DSTATE_CONSTANT_* with buffer 0 read length not equal to
* zero committed."
*
* To avoid this, we program the buffers in the highest slots.
* This way, slot 0 is only used if slot 3 is also used.
*/
int n = push_bos->buffer_count;
assert(n <= 4);
const unsigned shift = 4 - n;
for (int i = 0; i < n; i++) {
pkt.ConstantBody.ReadLength[i + shift] =
push_bos->buffers[i].length;
pkt.ConstantBody.Buffer[i + shift] = push_bos->buffers[i].addr;
}
}
}
}
#if GFX_VER >= 12
static void
emit_push_constant_packet_all(struct iris_context *ice,
struct iris_batch *batch,
uint32_t shader_mask,
const struct push_bos *push_bos)
{
struct isl_device *isl_dev = &batch->screen->isl_dev;
if (!push_bos) {
iris_emit_cmd(batch, GENX(3DSTATE_CONSTANT_ALL), pc) {
pc.ShaderUpdateEnable = shader_mask;
}
return;
}
const uint32_t n = push_bos->buffer_count;
const uint32_t max_pointers = 4;
const uint32_t num_dwords = 2 + 2 * n;
uint32_t const_all[2 + 2 * max_pointers];
uint32_t *dw = &const_all[0];
assert(n <= max_pointers);
iris_pack_command(GENX(3DSTATE_CONSTANT_ALL), dw, all) {
all.DWordLength = num_dwords - 2;
all.MOCS = isl_mocs(isl_dev, 0, false);
all.ShaderUpdateEnable = shader_mask;
all.PointerBufferMask = (1 << n) - 1;
}
dw += 2;
for (int i = 0; i < n; i++) {
_iris_pack_state(batch, GENX(3DSTATE_CONSTANT_ALL_DATA),
dw + i * 2, data) {
data.PointerToConstantBuffer = push_bos->buffers[i].addr;
data.ConstantBufferReadLength = push_bos->buffers[i].length;
}
}
iris_batch_emit(batch, const_all, sizeof(uint32_t) * num_dwords);
}
#endif
static void
iris_upload_dirty_render_state(struct iris_context *ice,
struct iris_batch *batch,
const struct pipe_draw_info *draw)
{
const uint64_t dirty = ice->state.dirty;
const uint64_t stage_dirty = ice->state.stage_dirty;
if (!(dirty & IRIS_ALL_DIRTY_FOR_RENDER) &&
!(stage_dirty & IRIS_ALL_STAGE_DIRTY_FOR_RENDER))
return;
2018-06-29 12:58:31 -07:00
struct iris_genx_state *genx = ice->state.genx;
struct iris_binder *binder = &ice->state.binder;
struct brw_wm_prog_data *wm_prog_data = (void *)
ice->shaders.prog[MESA_SHADER_FRAGMENT]->prog_data;
if (dirty & IRIS_DIRTY_CC_VIEWPORT) {
const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
uint32_t cc_vp_address;
/* XXX: could avoid streaming for depth_clip [0,1] case. */
uint32_t *cc_vp_map =
stream_state(batch, ice->state.dynamic_uploader,
&ice->state.last_res.cc_vp,
4 * ice->state.num_viewports *
GENX(CC_VIEWPORT_length), 32, &cc_vp_address);
for (int i = 0; i < ice->state.num_viewports; i++) {
float zmin, zmax;
iris_viewport_zmin_zmax(&ice->state.viewports[i], cso_rast->clip_halfz,
ice->state.window_space_position,
&zmin, &zmax);
if (cso_rast->depth_clip_near)
zmin = 0.0;
if (cso_rast->depth_clip_far)
zmax = 1.0;
iris_pack_state(GENX(CC_VIEWPORT), cc_vp_map, ccv) {
ccv.MinimumDepth = zmin;
ccv.MaximumDepth = zmax;
}
cc_vp_map += GENX(CC_VIEWPORT_length);
}
iris_emit_cmd(batch, GENX(3DSTATE_VIEWPORT_STATE_POINTERS_CC), ptr) {
ptr.CCViewportPointer = cc_vp_address;
}
2018-01-22 23:39:38 -08:00
}
if (dirty & IRIS_DIRTY_SF_CL_VIEWPORT) {
struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
uint32_t sf_cl_vp_address;
uint32_t *vp_map =
stream_state(batch, ice->state.dynamic_uploader,
&ice->state.last_res.sf_cl_vp,
4 * ice->state.num_viewports *
GENX(SF_CLIP_VIEWPORT_length), 64, &sf_cl_vp_address);
for (unsigned i = 0; i < ice->state.num_viewports; i++) {
const struct pipe_viewport_state *state = &ice->state.viewports[i];
2018-12-03 02:08:23 -08:00
float gb_xmin, gb_xmax, gb_ymin, gb_ymax;
float vp_xmin = viewport_extent(state, 0, -1.0f);
float vp_xmax = viewport_extent(state, 0, 1.0f);
float vp_ymin = viewport_extent(state, 1, -1.0f);
float vp_ymax = viewport_extent(state, 1, 1.0f);
intel_calculate_guardband_size(cso_fb->width, cso_fb->height,
state->scale[0], state->scale[1],
state->translate[0], state->translate[1],
&gb_xmin, &gb_xmax, &gb_ymin, &gb_ymax);
2018-12-03 02:08:23 -08:00
iris_pack_state(GENX(SF_CLIP_VIEWPORT), vp_map, vp) {
vp.ViewportMatrixElementm00 = state->scale[0];
vp.ViewportMatrixElementm11 = state->scale[1];
vp.ViewportMatrixElementm22 = state->scale[2];
vp.ViewportMatrixElementm30 = state->translate[0];
vp.ViewportMatrixElementm31 = state->translate[1];
vp.ViewportMatrixElementm32 = state->translate[2];
2018-12-03 02:08:23 -08:00
vp.XMinClipGuardband = gb_xmin;
vp.XMaxClipGuardband = gb_xmax;
vp.YMinClipGuardband = gb_ymin;
vp.YMaxClipGuardband = gb_ymax;
vp.XMinViewPort = MAX2(vp_xmin, 0);
vp.XMaxViewPort = MIN2(vp_xmax, cso_fb->width) - 1;
vp.YMinViewPort = MAX2(vp_ymin, 0);
vp.YMaxViewPort = MIN2(vp_ymax, cso_fb->height) - 1;
}
vp_map += GENX(SF_CLIP_VIEWPORT_length);
}
iris_emit_cmd(batch, GENX(3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP), ptr) {
ptr.SFClipViewportPointer = sf_cl_vp_address;
2018-01-10 00:19:29 -08:00
}
}
if (dirty & IRIS_DIRTY_URB) {
for (int i = MESA_SHADER_VERTEX; i <= MESA_SHADER_GEOMETRY; i++) {
if (!ice->shaders.prog[i]) {
ice->shaders.urb.size[i] = 1;
} else {
struct brw_vue_prog_data *vue_prog_data =
(void *) ice->shaders.prog[i]->prog_data;
ice->shaders.urb.size[i] = vue_prog_data->urb_entry_size;
}
assert(ice->shaders.urb.size[i] != 0);
}
intel_get_urb_config(&batch->screen->devinfo,
batch->screen->l3_config_3d,
ice->shaders.prog[MESA_SHADER_TESS_EVAL] != NULL,
ice->shaders.prog[MESA_SHADER_GEOMETRY] != NULL,
ice->shaders.urb.size,
ice->shaders.urb.entries,
ice->shaders.urb.start,
&ice->state.urb_deref_block_size,
&ice->shaders.urb.constrained);
for (int i = MESA_SHADER_VERTEX; i <= MESA_SHADER_GEOMETRY; i++) {
iris_emit_cmd(batch, GENX(3DSTATE_URB_VS), urb) {
urb._3DCommandSubOpcode += i;
urb.VSURBStartingAddress = ice->shaders.urb.start[i];
urb.VSURBEntryAllocationSize = ice->shaders.urb.size[i] - 1;
urb.VSNumberofURBEntries = ice->shaders.urb.entries[i];
}
}
}
2018-01-10 00:19:29 -08:00
if (dirty & IRIS_DIRTY_BLEND_STATE) {
2018-01-25 21:53:41 -08:00
struct iris_blend_state *cso_blend = ice->state.cso_blend;
2018-01-30 01:50:44 -08:00
struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
2018-01-25 21:53:41 -08:00
struct iris_depth_stencil_alpha_state *cso_zsa = ice->state.cso_zsa;
const int header_dwords = GENX(BLEND_STATE_length);
/* Always write at least one BLEND_STATE - the final RT message will
* reference BLEND_STATE[0] even if there aren't color writes. There
* may still be alpha testing, computed depth, and so on.
*/
const int rt_dwords =
MAX2(cso_fb->nr_cbufs, 1) * GENX(BLEND_STATE_ENTRY_length);
2018-01-25 21:53:41 -08:00
uint32_t blend_offset;
uint32_t *blend_map =
stream_state(batch, ice->state.dynamic_uploader,
&ice->state.last_res.blend,
4 * (header_dwords + rt_dwords), 64, &blend_offset);
2018-01-25 21:53:41 -08:00
uint32_t blend_state_header;
iris_pack_state(GENX(BLEND_STATE), &blend_state_header, bs) {
bs.AlphaTestEnable = cso_zsa->alpha_enabled;
bs.AlphaTestFunction = translate_compare_func(cso_zsa->alpha_func);
2018-01-25 21:53:41 -08:00
}
blend_map[0] = blend_state_header | cso_blend->blend_state[0];
memcpy(&blend_map[1], &cso_blend->blend_state[1], 4 * rt_dwords);
2018-01-25 21:53:41 -08:00
iris_emit_cmd(batch, GENX(3DSTATE_BLEND_STATE_POINTERS), ptr) {
ptr.BlendStatePointer = blend_offset;
ptr.BlendStatePointerValid = true;
}
}
if (dirty & IRIS_DIRTY_COLOR_CALC_STATE) {
struct iris_depth_stencil_alpha_state *cso = ice->state.cso_zsa;
#if GFX_VER == 8
struct pipe_stencil_ref *p_stencil_refs = &ice->state.stencil_ref;
#endif
uint32_t cc_offset;
void *cc_map =
stream_state(batch, ice->state.dynamic_uploader,
&ice->state.last_res.color_calc,
sizeof(uint32_t) * GENX(COLOR_CALC_STATE_length),
64, &cc_offset);
iris_pack_state(GENX(COLOR_CALC_STATE), cc_map, cc) {
cc.AlphaTestFormat = ALPHATEST_FLOAT32;
cc.AlphaReferenceValueAsFLOAT32 = cso->alpha_ref_value;
cc.BlendConstantColorRed = ice->state.blend_color.color[0];
cc.BlendConstantColorGreen = ice->state.blend_color.color[1];
cc.BlendConstantColorBlue = ice->state.blend_color.color[2];
cc.BlendConstantColorAlpha = ice->state.blend_color.color[3];
#if GFX_VER == 8
cc.StencilReferenceValue = p_stencil_refs->ref_value[0];
cc.BackfaceStencilReferenceValue = p_stencil_refs->ref_value[1];
#endif
}
iris_emit_cmd(batch, GENX(3DSTATE_CC_STATE_POINTERS), ptr) {
ptr.ColorCalcStatePointer = cc_offset;
ptr.ColorCalcStatePointerValid = true;
2018-01-10 00:19:29 -08:00
}
2018-01-20 01:07:41 -08:00
}
2018-01-10 00:19:29 -08:00
/* Wa_1604061319
*
* 3DSTATE_CONSTANT_* needs to be programmed before BTP_*
*
* Testing shows that all the 3DSTATE_CONSTANT_XS need to be emitted if
* any stage has a dirty binding table.
*/
const bool emit_const_wa = GFX_VER >= 11 &&
((dirty & IRIS_DIRTY_RENDER_BUFFER) ||
(stage_dirty & IRIS_ALL_STAGE_DIRTY_BINDINGS));
#if GFX_VER >= 12
uint32_t nobuffer_stages = 0;
#endif
2018-01-25 21:39:44 -08:00
for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
if (!(stage_dirty & (IRIS_STAGE_DIRTY_CONSTANTS_VS << stage)) &&
!emit_const_wa)
2018-02-09 14:21:54 -08:00
continue;
struct iris_shader_state *shs = &ice->state.shaders[stage];
struct iris_compiled_shader *shader = ice->shaders.prog[stage];
2018-02-09 14:21:54 -08:00
2018-06-06 02:16:52 -07:00
if (!shader)
2018-01-25 21:39:44 -08:00
continue;
if (shs->sysvals_need_upload)
upload_sysvals(ice, stage, NULL);
2018-11-08 23:10:46 -08:00
struct push_bos push_bos = {};
setup_constant_buffers(ice, batch, stage, &push_bos);
#if GFX_VER >= 12
/* If this stage doesn't have any push constants, emit it later in a
* single CONSTANT_ALL packet with all the other stages.
*/
if (push_bos.buffer_count == 0) {
nobuffer_stages |= 1 << stage;
continue;
}
/* The Constant Buffer Read Length field from 3DSTATE_CONSTANT_ALL
* contains only 5 bits, so we can only use it for buffers smaller than
* 32.
*/
if (push_bos.max_length < 32) {
emit_push_constant_packet_all(ice, batch, 1 << stage, &push_bos);
continue;
}
#endif
emit_push_constant_packets(ice, batch, stage, &push_bos);
2018-01-25 21:39:44 -08:00
}
#if GFX_VER >= 12
if (nobuffer_stages)
emit_push_constant_packet_all(ice, batch, nobuffer_stages, NULL);
#endif
2018-06-15 12:33:58 -07:00
for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
/* Gfx9 requires 3DSTATE_BINDING_TABLE_POINTERS_XS to be re-emitted
* in order to commit constants. TODO: Investigate "Disable Gather
* at Set Shader" to go back to legacy mode...
*/
if (stage_dirty & ((IRIS_STAGE_DIRTY_BINDINGS_VS |
(GFX_VER == 9 ? IRIS_STAGE_DIRTY_CONSTANTS_VS : 0))
<< stage)) {
iris_emit_cmd(batch, GENX(3DSTATE_BINDING_TABLE_POINTERS_VS), ptr) {
ptr._3DCommandSubOpcode = 38 + stage;
ptr.PointertoVSBindingTable = binder->bt_offset[stage];
2018-01-30 01:40:14 -08:00
}
}
2018-06-15 12:33:58 -07:00
}
if (GFX_VER >= 11 && (dirty & IRIS_DIRTY_RENDER_BUFFER)) {
// XXX: we may want to flag IRIS_DIRTY_MULTISAMPLE (or SAMPLE_MASK?)
// XXX: see commit 979fc1bc9bcc64027ff2cfafd285676f31b930a6
/* The PIPE_CONTROL command description says:
*
* "Whenever a Binding Table Index (BTI) used by a Render Target
* Message points to a different RENDER_SURFACE_STATE, SW must issue a
* Render Target Cache Flush by enabling this bit. When render target
* flush is set due to new association of BTI, PS Scoreboard Stall bit
* must be set in this packet."
*/
// XXX: does this need to happen at 3DSTATE_BTP_PS time?
iris_emit_pipe_control_flush(batch, "workaround: RT BTI change [draw]",
PIPE_CONTROL_RENDER_TARGET_FLUSH |
PIPE_CONTROL_STALL_AT_SCOREBOARD);
}
2018-06-15 12:33:58 -07:00
for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
if (stage_dirty & (IRIS_STAGE_DIRTY_BINDINGS_VS << stage)) {
iris_populate_binding_table(ice, batch, stage, false);
}
2018-01-30 01:40:14 -08:00
}
for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
if (!(stage_dirty & (IRIS_STAGE_DIRTY_SAMPLER_STATES_VS << stage)) ||
!ice->shaders.prog[stage])
continue;
2018-01-22 23:39:38 -08:00
iris_upload_sampler_states(ice, stage);
struct iris_shader_state *shs = &ice->state.shaders[stage];
struct pipe_resource *res = shs->sampler_table.res;
if (res)
iris_use_pinned_bo(batch, iris_resource_bo(res), false,
IRIS_DOMAIN_NONE);
iris_emit_cmd(batch, GENX(3DSTATE_SAMPLER_STATE_POINTERS_VS), ptr) {
ptr._3DCommandSubOpcode = 43 + stage;
ptr.PointertoVSSamplerState = shs->sampler_table.offset;
2018-01-22 23:39:38 -08:00
}
}
if (ice->state.need_border_colors)
iris_use_pinned_bo(batch, ice->state.border_color_pool.bo, false,
IRIS_DOMAIN_NONE);
if (dirty & IRIS_DIRTY_MULTISAMPLE) {
iris_emit_cmd(batch, GENX(3DSTATE_MULTISAMPLE), ms) {
ms.PixelLocation =
ice->state.cso_rast->half_pixel_center ? CENTER : UL_CORNER;
if (ice->state.framebuffer.samples > 0)
ms.NumberofMultisamples = ffs(ice->state.framebuffer.samples) - 1;
2018-01-22 23:39:38 -08:00
}
}
if (dirty & IRIS_DIRTY_SAMPLE_MASK) {
iris_emit_cmd(batch, GENX(3DSTATE_SAMPLE_MASK), ms) {
ms.SampleMask = ice->state.sample_mask;
2018-01-22 23:39:38 -08:00
}
}
for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
if (!(stage_dirty & (IRIS_STAGE_DIRTY_VS << stage)))
continue;
struct iris_compiled_shader *shader = ice->shaders.prog[stage];
if (shader) {
struct brw_stage_prog_data *prog_data = shader->prog_data;
2018-06-28 00:57:49 -07:00
struct iris_resource *cache = (void *) shader->assembly.res;
iris_use_pinned_bo(batch, cache->bo, false, IRIS_DOMAIN_NONE);
uint32_t scratch_addr =
pin_scratch_space(ice, batch, prog_data, stage);
if (stage == MESA_SHADER_FRAGMENT) {
UNUSED struct iris_rasterizer_state *cso = ice->state.cso_rast;
struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
uint32_t ps_state[GENX(3DSTATE_PS_length)] = {0};
_iris_pack_command(batch, GENX(3DSTATE_PS), ps_state, ps) {
ps._8PixelDispatchEnable = wm_prog_data->dispatch_8;
ps._16PixelDispatchEnable = wm_prog_data->dispatch_16;
ps._32PixelDispatchEnable = wm_prog_data->dispatch_32;
/* The docs for 3DSTATE_PS::32 Pixel Dispatch Enable say:
*
* "When NUM_MULTISAMPLES = 16 or FORCE_SAMPLE_COUNT = 16,
* SIMD32 Dispatch must not be enabled for PER_PIXEL dispatch
* mode."
*
* 16x MSAA only exists on Gfx9+, so we can skip this on Gfx8.
*/
if (GFX_VER >= 9 && cso_fb->samples == 16 &&
!wm_prog_data->persample_dispatch) {
assert(ps._8PixelDispatchEnable || ps._16PixelDispatchEnable);
ps._32PixelDispatchEnable = false;
}
ps.DispatchGRFStartRegisterForConstantSetupData0 =
brw_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, ps, 0);
ps.DispatchGRFStartRegisterForConstantSetupData1 =
brw_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, ps, 1);
ps.DispatchGRFStartRegisterForConstantSetupData2 =
brw_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, ps, 2);
ps.KernelStartPointer0 = KSP(shader) +
brw_wm_prog_data_prog_offset(wm_prog_data, ps, 0);
ps.KernelStartPointer1 = KSP(shader) +
brw_wm_prog_data_prog_offset(wm_prog_data, ps, 1);
ps.KernelStartPointer2 = KSP(shader) +
brw_wm_prog_data_prog_offset(wm_prog_data, ps, 2);
ps.ScratchSpaceBasePointer =
rw_bo(NULL, scratch_addr, IRIS_DOMAIN_NONE);
}
uint32_t psx_state[GENX(3DSTATE_PS_EXTRA_length)] = {0};
iris_pack_command(GENX(3DSTATE_PS_EXTRA), psx_state, psx) {
#if GFX_VER >= 9
if (!wm_prog_data->uses_sample_mask)
psx.InputCoverageMaskState = ICMS_NONE;
else if (wm_prog_data->post_depth_coverage)
psx.InputCoverageMaskState = ICMS_DEPTH_COVERAGE;
else if (wm_prog_data->inner_coverage &&
cso->conservative_rasterization)
psx.InputCoverageMaskState = ICMS_INNER_CONSERVATIVE;
else
psx.InputCoverageMaskState = ICMS_NORMAL;
#else
psx.PixelShaderUsesInputCoverageMask =
wm_prog_data->uses_sample_mask;
#endif
}
uint32_t *shader_ps = (uint32_t *) shader->derived_data;
uint32_t *shader_psx = shader_ps + GENX(3DSTATE_PS_length);
iris_emit_merge(batch, shader_ps, ps_state,
GENX(3DSTATE_PS_length));
iris_emit_merge(batch, shader_psx, psx_state,
GENX(3DSTATE_PS_EXTRA_length));
} else if (scratch_addr) {
uint32_t *pkt = (uint32_t *) shader->derived_data;
switch (stage) {
case MESA_SHADER_VERTEX: MERGE_SCRATCH_ADDR(3DSTATE_VS); break;
case MESA_SHADER_TESS_CTRL: MERGE_SCRATCH_ADDR(3DSTATE_HS); break;
case MESA_SHADER_TESS_EVAL: MERGE_SCRATCH_ADDR(3DSTATE_DS); break;
case MESA_SHADER_GEOMETRY: MERGE_SCRATCH_ADDR(3DSTATE_GS); break;
}
} else {
iris_batch_emit(batch, shader->derived_data,
iris_derived_program_state_size(stage));
}
} else {
if (stage == MESA_SHADER_TESS_EVAL) {
iris_emit_cmd(batch, GENX(3DSTATE_HS), hs);
iris_emit_cmd(batch, GENX(3DSTATE_TE), te);
iris_emit_cmd(batch, GENX(3DSTATE_DS), ds);
} else if (stage == MESA_SHADER_GEOMETRY) {
iris_emit_cmd(batch, GENX(3DSTATE_GS), gs);
2018-01-22 23:39:38 -08:00
}
}
}
if (ice->state.streamout_active) {
if (dirty & IRIS_DIRTY_SO_BUFFERS) {
for (int i = 0; i < 4; i++) {
struct iris_stream_output_target *tgt =
(void *) ice->state.so_target[i];
const uint32_t dwords = GENX(3DSTATE_SO_BUFFER_length);
uint32_t *so_buffers = genx->so_buffers + i * dwords;
bool zero_offset = false;
if (tgt) {
zero_offset = tgt->zero_offset;
iris_use_pinned_bo(batch, iris_resource_bo(tgt->base.buffer),
true, IRIS_DOMAIN_OTHER_WRITE);
iris_use_pinned_bo(batch, iris_resource_bo(tgt->offset.res),
true, IRIS_DOMAIN_OTHER_WRITE);
}
if (zero_offset) {
/* Skip the last DWord which contains "Stream Offset" of
* 0xFFFFFFFF and instead emit a dword of zero directly.
*/
STATIC_ASSERT(GENX(3DSTATE_SO_BUFFER_StreamOffset_start) ==
32 * (dwords - 1));
const uint32_t zero = 0;
iris_batch_emit(batch, so_buffers, 4 * (dwords - 1));
iris_batch_emit(batch, &zero, sizeof(zero));
tgt->zero_offset = false;
} else {
iris_batch_emit(batch, so_buffers, 4 * dwords);
}
2018-07-11 17:05:10 -07:00
}
}
2018-06-29 12:58:31 -07:00
if ((dirty & IRIS_DIRTY_SO_DECL_LIST) && ice->state.streamout) {
uint32_t *decl_list =
ice->state.streamout + GENX(3DSTATE_STREAMOUT_length);
iris_batch_emit(batch, decl_list, 4 * ((decl_list[0] & 0xff) + 2));
}
2018-06-29 12:58:31 -07:00
if (dirty & IRIS_DIRTY_STREAMOUT) {
const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
2018-07-11 12:45:19 -07:00
uint32_t dynamic_sol[GENX(3DSTATE_STREAMOUT_length)];
iris_pack_command(GENX(3DSTATE_STREAMOUT), dynamic_sol, sol) {
sol.SOFunctionEnable = true;
sol.SOStatisticsEnable = true;
sol.RenderingDisable = cso_rast->rasterizer_discard &&
!ice->state.prims_generated_query_active;
2018-07-11 12:45:19 -07:00
sol.ReorderMode = cso_rast->flatshade_first ? LEADING : TRAILING;
}
assert(ice->state.streamout);
iris_emit_merge(batch, ice->state.streamout, dynamic_sol,
GENX(3DSTATE_STREAMOUT_length));
}
} else {
if (dirty & IRIS_DIRTY_STREAMOUT) {
iris_emit_cmd(batch, GENX(3DSTATE_STREAMOUT), sol);
}
2018-07-11 12:45:19 -07:00
}
2018-01-10 00:19:29 -08:00
if (dirty & IRIS_DIRTY_CLIP) {
struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
2018-01-10 00:19:29 -08:00
bool gs_or_tes = ice->shaders.prog[MESA_SHADER_GEOMETRY] ||
ice->shaders.prog[MESA_SHADER_TESS_EVAL];
bool points_or_lines = cso_rast->fill_mode_point_or_line ||
(gs_or_tes ? ice->shaders.output_topology_is_points_or_lines
: ice->state.prim_is_points_or_lines);
uint32_t dynamic_clip[GENX(3DSTATE_CLIP_length)];
iris_pack_command(GENX(3DSTATE_CLIP), &dynamic_clip, cl) {
2018-12-02 14:39:29 -08:00
cl.StatisticsEnable = ice->state.statistics_counters_enabled;
if (cso_rast->rasterizer_discard)
cl.ClipMode = CLIPMODE_REJECT_ALL;
else if (ice->state.window_space_position)
cl.ClipMode = CLIPMODE_ACCEPT_ALL;
else
cl.ClipMode = CLIPMODE_NORMAL;
cl.PerspectiveDivideDisable = ice->state.window_space_position;
cl.ViewportXYClipTestEnable = !points_or_lines;
if (wm_prog_data->barycentric_interp_modes &
BRW_BARYCENTRIC_NONPERSPECTIVE_BITS)
cl.NonPerspectiveBarycentricEnable = true;
2018-01-10 00:19:29 -08:00
cl.ForceZeroRTAIndexEnable = cso_fb->layers <= 1;
2018-06-20 15:35:10 -07:00
cl.MaximumVPIndex = ice->state.num_viewports - 1;
2018-01-10 00:19:29 -08:00
}
iris_emit_merge(batch, cso_rast->clip, dynamic_clip,
ARRAY_SIZE(cso_rast->clip));
2018-01-10 00:19:29 -08:00
}
2017-12-27 02:54:26 -08:00
if (dirty & (IRIS_DIRTY_RASTER | IRIS_DIRTY_URB)) {
struct iris_rasterizer_state *cso = ice->state.cso_rast;
iris_batch_emit(batch, cso->raster, sizeof(cso->raster));
2017-12-27 02:54:26 -08:00
uint32_t dynamic_sf[GENX(3DSTATE_SF_length)];
iris_pack_command(GENX(3DSTATE_SF), &dynamic_sf, sf) {
sf.ViewportTransformEnable = !ice->state.window_space_position;
#if GFX_VER >= 12
sf.DerefBlockSize = ice->state.urb_deref_block_size;
#endif
}
iris_emit_merge(batch, cso->sf, dynamic_sf,
ARRAY_SIZE(dynamic_sf));
}
2017-12-27 02:54:26 -08:00
2018-06-09 00:01:09 -07:00
if (dirty & IRIS_DIRTY_WM) {
struct iris_rasterizer_state *cso = ice->state.cso_rast;
uint32_t dynamic_wm[GENX(3DSTATE_WM_length)];
2017-12-27 02:54:26 -08:00
iris_pack_command(GENX(3DSTATE_WM), &dynamic_wm, wm) {
wm.StatisticsEnable = ice->state.statistics_counters_enabled;
wm.BarycentricInterpolationMode =
wm_prog_data->barycentric_interp_modes;
2017-12-27 02:54:26 -08:00
if (wm_prog_data->early_fragment_tests)
wm.EarlyDepthStencilControl = EDSC_PREPS;
else if (wm_prog_data->has_side_effects)
wm.EarlyDepthStencilControl = EDSC_PSEXEC;
/* We could skip this bit if color writes are enabled. */
if (wm_prog_data->has_side_effects || wm_prog_data->uses_kill)
wm.ForceThreadDispatchEnable = ForceON;
}
iris_emit_merge(batch, cso->wm, dynamic_wm, ARRAY_SIZE(cso->wm));
}
2017-12-27 02:54:26 -08:00
2018-08-18 01:24:38 -07:00
if (dirty & IRIS_DIRTY_SBE) {
2018-04-19 19:04:17 -07:00
iris_emit_sbe(batch, ice);
2018-01-29 15:06:04 -08:00
}
2017-12-27 02:54:26 -08:00
if (dirty & IRIS_DIRTY_PS_BLEND) {
2018-01-25 21:58:31 -08:00
struct iris_blend_state *cso_blend = ice->state.cso_blend;
struct iris_depth_stencil_alpha_state *cso_zsa = ice->state.cso_zsa;
const struct shader_info *fs_info =
iris_get_shader_info(ice, MESA_SHADER_FRAGMENT);
2018-01-25 21:58:31 -08:00
uint32_t dynamic_pb[GENX(3DSTATE_PS_BLEND_length)];
iris_pack_command(GENX(3DSTATE_PS_BLEND), &dynamic_pb, pb) {
pb.HasWriteableRT = has_writeable_rt(cso_blend, fs_info);
pb.AlphaTestEnable = cso_zsa->alpha_enabled;
/* The dual source blending docs caution against using SRC1 factors
* when the shader doesn't use a dual source render target write.
* Empirically, this can lead to GPU hangs, and the results are
* undefined anyway, so simply disable blending to avoid the hang.
*/
pb.ColorBufferBlendEnable = (cso_blend->blend_enables & 1) &&
(!cso_blend->dual_color_blending || wm_prog_data->dual_src_blend);
2018-01-25 21:58:31 -08:00
}
iris_emit_merge(batch, cso_blend->ps_blend, dynamic_pb,
ARRAY_SIZE(cso_blend->ps_blend));
}
2017-12-27 02:54:26 -08:00
if (dirty & IRIS_DIRTY_WM_DEPTH_STENCIL) {
struct iris_depth_stencil_alpha_state *cso = ice->state.cso_zsa;
#if GFX_VER >= 9 && GFX_VER < 12
struct pipe_stencil_ref *p_stencil_refs = &ice->state.stencil_ref;
uint32_t stencil_refs[GENX(3DSTATE_WM_DEPTH_STENCIL_length)];
iris_pack_command(GENX(3DSTATE_WM_DEPTH_STENCIL), &stencil_refs, wmds) {
wmds.StencilReferenceValue = p_stencil_refs->ref_value[0];
wmds.BackfaceStencilReferenceValue = p_stencil_refs->ref_value[1];
}
iris_emit_merge(batch, cso->wmds, stencil_refs, ARRAY_SIZE(cso->wmds));
#else
/* Use modify disable fields which allow us to emit packets
* directly instead of merging them later.
*/
iris_batch_emit(batch, cso->wmds, sizeof(cso->wmds));
#endif
#if GFX_VER >= 12
iris_batch_emit(batch, cso->depth_bounds, sizeof(cso->depth_bounds));
#endif
}
2018-01-21 23:55:04 -08:00
if (dirty & IRIS_DIRTY_STENCIL_REF) {
#if GFX_VER >= 12
/* Use modify disable fields which allow us to emit packets
* directly instead of merging them later.
*/
struct pipe_stencil_ref *p_stencil_refs = &ice->state.stencil_ref;
uint32_t stencil_refs[GENX(3DSTATE_WM_DEPTH_STENCIL_length)];
iris_pack_command(GENX(3DSTATE_WM_DEPTH_STENCIL), &stencil_refs, wmds) {
wmds.StencilReferenceValue = p_stencil_refs->ref_value[0];
wmds.BackfaceStencilReferenceValue = p_stencil_refs->ref_value[1];
wmds.StencilTestMaskModifyDisable = true;
wmds.StencilWriteMaskModifyDisable = true;
wmds.StencilStateModifyDisable = true;
wmds.DepthStateModifyDisable = true;
}
iris_batch_emit(batch, stencil_refs, sizeof(stencil_refs));
#endif
}
if (dirty & IRIS_DIRTY_SCISSOR_RECT) {
/* Wa_1409725701:
* "The viewport-specific state used by the SF unit (SCISSOR_RECT) is
* stored as an array of up to 16 elements. The location of first
* element of the array, as specified by Pointer to SCISSOR_RECT,
* should be aligned to a 64-byte boundary.
*/
uint32_t alignment = 64;
2018-06-20 16:07:05 -07:00
uint32_t scissor_offset =
emit_state(batch, ice->state.dynamic_uploader,
&ice->state.last_res.scissor,
ice->state.scissors,
sizeof(struct pipe_scissor_state) *
ice->state.num_viewports, alignment);
2018-01-21 23:55:04 -08:00
iris_emit_cmd(batch, GENX(3DSTATE_SCISSOR_STATE_POINTERS), ptr) {
ptr.ScissorRectPointer = scissor_offset;
}
2018-01-21 23:55:04 -08:00
}
if (dirty & IRIS_DIRTY_DEPTH_BUFFER) {
struct iris_depth_buffer_state *cso_z = &ice->state.genx->depth_buffer;
/* Do not emit the clear params yets. We need to update the clear value
* first.
*/
uint32_t clear_length = GENX(3DSTATE_CLEAR_PARAMS_length) * 4;
uint32_t cso_z_size = batch->screen->isl_dev.ds.size - clear_length;;
#if GFX_VER == 12
/* Wa_14010455700
*
* ISL will change some CHICKEN registers depending on the depth surface
* format, along with emitting the depth and stencil packets. In that
* case, we want to do a depth flush and stall, so the pipeline is not
* using these settings while we change the registers.
*/
iris_emit_end_of_pipe_sync(batch,
"Workaround: Stop pipeline for 14010455700",
PIPE_CONTROL_DEPTH_STALL |
PIPE_CONTROL_DEPTH_CACHE_FLUSH);
#endif
iris_batch_emit(batch, cso_z->packets, cso_z_size);
if (GFX_VER >= 12) {
/* Wa_1408224581
*
* Workaround: Gfx12LP Astep only An additional pipe control with
* post-sync = store dword operation would be required.( w/a is to
* have an additional pipe control after the stencil state whenever
* the surface state bits of this state is changing).
*/
iris_emit_pipe_control_write(batch, "WA for stencil state",
PIPE_CONTROL_WRITE_IMMEDIATE,
batch->screen->workaround_address.bo,
batch->screen->workaround_address.offset, 0);
}
union isl_color_value clear_value = { .f32 = { 0, } };
struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
if (cso_fb->zsbuf) {
struct iris_resource *zres, *sres;
iris_get_depth_stencil_resources(cso_fb->zsbuf->texture,
&zres, &sres);
if (zres && zres->aux.bo)
clear_value = iris_resource_get_clear_color(zres, NULL, NULL);
}
uint32_t clear_params[GENX(3DSTATE_CLEAR_PARAMS_length)];
iris_pack_command(GENX(3DSTATE_CLEAR_PARAMS), clear_params, clear) {
clear.DepthClearValueValid = true;
clear.DepthClearValue = clear_value.f32[0];
}
iris_batch_emit(batch, clear_params, clear_length);
}
if (dirty & (IRIS_DIRTY_DEPTH_BUFFER | IRIS_DIRTY_WM_DEPTH_STENCIL)) {
/* Listen for buffer changes, and also write enable changes. */
struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
pin_depth_and_stencil_buffers(batch, cso_fb->zsbuf, ice->state.cso_zsa);
}
2018-01-21 23:55:04 -08:00
if (dirty & IRIS_DIRTY_POLYGON_STIPPLE) {
iris_emit_cmd(batch, GENX(3DSTATE_POLY_STIPPLE_PATTERN), poly) {
for (int i = 0; i < 32; i++) {
poly.PatternRow[i] = ice->state.poly_stipple.stipple[i];
}
}
2018-01-21 23:55:04 -08:00
}
if (dirty & IRIS_DIRTY_LINE_STIPPLE) {
struct iris_rasterizer_state *cso = ice->state.cso_rast;
iris_batch_emit(batch, cso->line_stipple, sizeof(cso->line_stipple));
}
2018-01-22 23:25:18 -08:00
if (dirty & IRIS_DIRTY_VF_TOPOLOGY) {
iris_emit_cmd(batch, GENX(3DSTATE_VF_TOPOLOGY), topo) {
topo.PrimitiveTopologyType =
translate_prim_type(draw->mode, draw->vertices_per_patch);
}
2018-01-22 23:25:18 -08:00
}
if (dirty & IRIS_DIRTY_VERTEX_BUFFERS) {
int count = util_bitcount64(ice->state.bound_vertex_buffers);
uint64_t dynamic_bound = ice->state.bound_vertex_buffers;
if (ice->state.vs_uses_draw_params) {
assert(ice->draw.draw_params.res);
struct iris_vertex_buffer_state *state =
&(ice->state.genx->vertex_buffers[count]);
pipe_resource_reference(&state->resource, ice->draw.draw_params.res);
struct iris_resource *res = (void *) state->resource;
iris_pack_state(GENX(VERTEX_BUFFER_STATE), state->state, vb) {
vb.VertexBufferIndex = count;
vb.AddressModifyEnable = true;
vb.BufferPitch = 0;
vb.BufferSize = res->bo->size - ice->draw.draw_params.offset;
vb.BufferStartingAddress =
ro_bo(NULL, res->bo->gtt_offset +
(int) ice->draw.draw_params.offset);
vb.MOCS = iris_mocs(res->bo, &batch->screen->isl_dev,
ISL_SURF_USAGE_VERTEX_BUFFER_BIT);
#if GEN_GEN >= 12
vb.L3BypassDisable = true;
#endif
}
dynamic_bound |= 1ull << count;
count++;
}
if (ice->state.vs_uses_derived_draw_params) {
struct iris_vertex_buffer_state *state =
&(ice->state.genx->vertex_buffers[count]);
pipe_resource_reference(&state->resource,
ice->draw.derived_draw_params.res);
struct iris_resource *res = (void *) ice->draw.derived_draw_params.res;
iris_pack_state(GENX(VERTEX_BUFFER_STATE), state->state, vb) {
vb.VertexBufferIndex = count;
vb.AddressModifyEnable = true;
vb.BufferPitch = 0;
vb.BufferSize =
res->bo->size - ice->draw.derived_draw_params.offset;
vb.BufferStartingAddress =
ro_bo(NULL, res->bo->gtt_offset +
(int) ice->draw.derived_draw_params.offset);
vb.MOCS = iris_mocs(res->bo, &batch->screen->isl_dev,
ISL_SURF_USAGE_VERTEX_BUFFER_BIT);
#if GEN_GEN >= 12
vb.L3BypassDisable = true;
#endif
}
dynamic_bound |= 1ull << count;
count++;
}
2018-01-21 23:55:04 -08:00
if (count) {
#if GFX_VER >= 11
/* Gfx11+ doesn't need the cache workaround below */
uint64_t bound = dynamic_bound;
while (bound) {
const int i = u_bit_scan64(&bound);
iris_use_optional_res(batch, genx->vertex_buffers[i].resource,
false, IRIS_DOMAIN_OTHER_READ);
}
#else
/* The VF cache designers cut corners, and made the cache key's
* <VertexBufferIndex, Memory Address> tuple only consider the bottom
* 32 bits of the address. If you have two vertex buffers which get
* placed exactly 4 GiB apart and use them in back-to-back draw calls,
* you can get collisions (even within a single batch).
*
* So, we need to do a VF cache invalidate if the buffer for a VB
* slot slot changes [48:32] address bits from the previous time.
*/
unsigned flush_flags = 0;
2018-01-21 23:55:04 -08:00
uint64_t bound = dynamic_bound;
while (bound) {
const int i = u_bit_scan64(&bound);
uint16_t high_bits = 0;
struct iris_resource *res =
(void *) genx->vertex_buffers[i].resource;
if (res) {
iris_use_pinned_bo(batch, res->bo, false, IRIS_DOMAIN_OTHER_READ);
high_bits = res->bo->gtt_offset >> 32ull;
if (high_bits != ice->state.last_vbo_high_bits[i]) {
flush_flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE |
PIPE_CONTROL_CS_STALL;
ice->state.last_vbo_high_bits[i] = high_bits;
}
}
}
if (flush_flags) {
iris_emit_pipe_control_flush(batch,
"workaround: VF cache 32-bit key [VB]",
flush_flags);
}
#endif
const unsigned vb_dwords = GENX(VERTEX_BUFFER_STATE_length);
uint32_t *map =
iris_get_command_space(batch, 4 * (1 + vb_dwords * count));
_iris_pack_command(batch, GENX(3DSTATE_VERTEX_BUFFERS), map, vb) {
vb.DWordLength = (vb_dwords * count + 1) - 2;
}
map += 1;
bound = dynamic_bound;
while (bound) {
const int i = u_bit_scan64(&bound);
memcpy(map, genx->vertex_buffers[i].state,
sizeof(uint32_t) * vb_dwords);
map += vb_dwords;
}
2018-01-21 23:55:04 -08:00
}
}
if (dirty & IRIS_DIRTY_VERTEX_ELEMENTS) {
struct iris_vertex_element_state *cso = ice->state.cso_vertex_elements;
const unsigned entries = MAX2(cso->count, 1);
if (!(ice->state.vs_needs_sgvs_element ||
ice->state.vs_uses_derived_draw_params ||
ice->state.vs_needs_edge_flag)) {
iris_batch_emit(batch, cso->vertex_elements, sizeof(uint32_t) *
(1 + entries * GENX(VERTEX_ELEMENT_STATE_length)));
} else {
uint32_t dynamic_ves[1 + 33 * GENX(VERTEX_ELEMENT_STATE_length)];
const unsigned dyn_count = cso->count +
ice->state.vs_needs_sgvs_element +
ice->state.vs_uses_derived_draw_params;
iris_pack_command(GENX(3DSTATE_VERTEX_ELEMENTS),
&dynamic_ves, ve) {
ve.DWordLength =
1 + GENX(VERTEX_ELEMENT_STATE_length) * dyn_count - 2;
}
memcpy(&dynamic_ves[1], &cso->vertex_elements[1],
(cso->count - ice->state.vs_needs_edge_flag) *
GENX(VERTEX_ELEMENT_STATE_length) * sizeof(uint32_t));
uint32_t *ve_pack_dest =
&dynamic_ves[1 + (cso->count - ice->state.vs_needs_edge_flag) *
GENX(VERTEX_ELEMENT_STATE_length)];
if (ice->state.vs_needs_sgvs_element) {
uint32_t base_ctrl = ice->state.vs_uses_draw_params ?
VFCOMP_STORE_SRC : VFCOMP_STORE_0;
iris_pack_state(GENX(VERTEX_ELEMENT_STATE), ve_pack_dest, ve) {
ve.Valid = true;
ve.VertexBufferIndex =
util_bitcount64(ice->state.bound_vertex_buffers);
ve.SourceElementFormat = ISL_FORMAT_R32G32_UINT;
ve.Component0Control = base_ctrl;
ve.Component1Control = base_ctrl;
ve.Component2Control = VFCOMP_STORE_0;
ve.Component3Control = VFCOMP_STORE_0;
}
ve_pack_dest += GENX(VERTEX_ELEMENT_STATE_length);
}
if (ice->state.vs_uses_derived_draw_params) {
iris_pack_state(GENX(VERTEX_ELEMENT_STATE), ve_pack_dest, ve) {
ve.Valid = true;
ve.VertexBufferIndex =
util_bitcount64(ice->state.bound_vertex_buffers) +
ice->state.vs_uses_draw_params;
ve.SourceElementFormat = ISL_FORMAT_R32G32_UINT;
ve.Component0Control = VFCOMP_STORE_SRC;
ve.Component1Control = VFCOMP_STORE_SRC;
ve.Component2Control = VFCOMP_STORE_0;
ve.Component3Control = VFCOMP_STORE_0;
}
ve_pack_dest += GENX(VERTEX_ELEMENT_STATE_length);
}
if (ice->state.vs_needs_edge_flag) {
for (int i = 0; i < GENX(VERTEX_ELEMENT_STATE_length); i++)
ve_pack_dest[i] = cso->edgeflag_ve[i];
}
iris_batch_emit(batch, &dynamic_ves, sizeof(uint32_t) *
(1 + dyn_count * GENX(VERTEX_ELEMENT_STATE_length)));
}
if (!ice->state.vs_needs_edge_flag) {
iris_batch_emit(batch, cso->vf_instancing, sizeof(uint32_t) *
entries * GENX(3DSTATE_VF_INSTANCING_length));
} else {
assert(cso->count > 0);
const unsigned edgeflag_index = cso->count - 1;
uint32_t dynamic_vfi[33 * GENX(3DSTATE_VF_INSTANCING_length)];
memcpy(&dynamic_vfi[0], cso->vf_instancing, edgeflag_index *
GENX(3DSTATE_VF_INSTANCING_length) * sizeof(uint32_t));
uint32_t *vfi_pack_dest = &dynamic_vfi[0] +
edgeflag_index * GENX(3DSTATE_VF_INSTANCING_length);
iris_pack_command(GENX(3DSTATE_VF_INSTANCING), vfi_pack_dest, vi) {
vi.VertexElementIndex = edgeflag_index +
ice->state.vs_needs_sgvs_element +
ice->state.vs_uses_derived_draw_params;
}
for (int i = 0; i < GENX(3DSTATE_VF_INSTANCING_length); i++)
vfi_pack_dest[i] |= cso->edgeflag_vfi[i];
iris_batch_emit(batch, &dynamic_vfi[0], sizeof(uint32_t) *
entries * GENX(3DSTATE_VF_INSTANCING_length));
}
2018-07-18 09:23:24 -07:00
}
if (dirty & IRIS_DIRTY_VF_SGVS) {
const struct brw_vs_prog_data *vs_prog_data = (void *)
ice->shaders.prog[MESA_SHADER_VERTEX]->prog_data;
struct iris_vertex_element_state *cso = ice->state.cso_vertex_elements;
iris_emit_cmd(batch, GENX(3DSTATE_VF_SGVS), sgv) {
if (vs_prog_data->uses_vertexid) {
sgv.VertexIDEnable = true;
sgv.VertexIDComponentNumber = 2;
sgv.VertexIDElementOffset =
cso->count - ice->state.vs_needs_edge_flag;
2018-07-18 09:23:24 -07:00
}
if (vs_prog_data->uses_instanceid) {
sgv.InstanceIDEnable = true;
sgv.InstanceIDComponentNumber = 3;
sgv.InstanceIDElementOffset =
cso->count - ice->state.vs_needs_edge_flag;
2018-07-18 09:23:24 -07:00
}
}
}
2018-01-21 23:55:04 -08:00
if (dirty & IRIS_DIRTY_VF) {
iris_emit_cmd(batch, GENX(3DSTATE_VF), vf) {
if (draw->primitive_restart) {
vf.IndexedDrawCutIndexEnable = true;
vf.CutIndex = draw->restart_index;
}
}
}
2018-01-21 23:55:04 -08:00
if (dirty & IRIS_DIRTY_VF_STATISTICS) {
iris_emit_cmd(batch, GENX(3DSTATE_VF_STATISTICS), vf) {
vf.StatisticsEnable = true;
}
}
#if GFX_VER == 8
if (dirty & IRIS_DIRTY_PMA_FIX) {
bool enable = want_pma_fix(ice);
genX(update_pma_fix)(ice, batch, enable);
}
#endif
if (ice->state.current_hash_scale != 1)
genX(emit_hashing_mode)(ice, batch, UINT_MAX, UINT_MAX, 1);
#if GFX_VER >= 12
genX(invalidate_aux_map_state)(batch);
#endif
}
static void
iris_upload_render_state(struct iris_context *ice,
struct iris_batch *batch,
const struct pipe_draw_info *draw,
const struct pipe_draw_indirect_info *indirect,
const struct pipe_draw_start_count *sc)
{
bool use_predicate = ice->state.predicate == IRIS_PREDICATE_STATE_USE_BIT;
iris_batch_sync_region_start(batch);
/* Always pin the binder. If we're emitting new binding table pointers,
* we need it. If not, we're probably inheriting old tables via the
* context, and need it anyway. Since true zero-bindings cases are
* practically non-existent, just pin it and avoid last_res tracking.
*/
iris_use_pinned_bo(batch, ice->state.binder.bo, false,
IRIS_DOMAIN_NONE);
if (!batch->contains_draw_with_next_seqno) {
2018-11-21 11:54:37 -08:00
iris_restore_render_saved_bos(ice, batch, draw);
batch->contains_draw_with_next_seqno = batch->contains_draw = true;
2018-11-21 11:54:37 -08:00
}
iris_upload_dirty_render_state(ice, batch, draw);
if (draw->index_size > 0) {
unsigned offset;
if (draw->has_user_indices) {
unsigned start_offset = draw->index_size * sc->start;
u_upload_data(ice->ctx.stream_uploader, start_offset,
sc->count * draw->index_size, 4,
(char*)draw->index.user + start_offset,
&offset, &ice->state.last_res.index_buffer);
offset -= start_offset;
} else {
struct iris_resource *res = (void *) draw->index.resource;
res->bind_history |= PIPE_BIND_INDEX_BUFFER;
pipe_resource_reference(&ice->state.last_res.index_buffer,
draw->index.resource);
offset = 0;
}
struct iris_genx_state *genx = ice->state.genx;
struct iris_bo *bo = iris_resource_bo(ice->state.last_res.index_buffer);
uint32_t ib_packet[GENX(3DSTATE_INDEX_BUFFER_length)];
iris_pack_command(GENX(3DSTATE_INDEX_BUFFER), ib_packet, ib) {
ib.IndexFormat = draw->index_size >> 1;
ib.MOCS = iris_mocs(bo, &batch->screen->isl_dev,
ISL_SURF_USAGE_INDEX_BUFFER_BIT);
ib.BufferSize = bo->size - offset;
ib.BufferStartingAddress = ro_bo(NULL, bo->gtt_offset + offset);
#if GEN_GEN >= 12
ib.L3BypassDisable = true;
#endif
}
if (memcmp(genx->last_index_buffer, ib_packet, sizeof(ib_packet)) != 0) {
memcpy(genx->last_index_buffer, ib_packet, sizeof(ib_packet));
iris_batch_emit(batch, ib_packet, sizeof(ib_packet));
iris_use_pinned_bo(batch, bo, false, IRIS_DOMAIN_OTHER_READ);
}
#if GFX_VER < 11
/* The VF cache key only uses 32-bits, see vertex buffer comment above */
uint16_t high_bits = bo->gtt_offset >> 32ull;
if (high_bits != ice->state.last_index_bo_high_bits) {
iris_emit_pipe_control_flush(batch,
"workaround: VF cache 32-bit key [IB]",
PIPE_CONTROL_VF_CACHE_INVALIDATE |
PIPE_CONTROL_CS_STALL);
ice->state.last_index_bo_high_bits = high_bits;
}
#endif
}
2018-01-21 23:55:04 -08:00
2018-07-14 22:15:39 -07:00
#define _3DPRIM_END_OFFSET 0x2420
#define _3DPRIM_START_VERTEX 0x2430
#define _3DPRIM_VERTEX_COUNT 0x2434
#define _3DPRIM_INSTANCE_COUNT 0x2438
#define _3DPRIM_START_INSTANCE 0x243C
#define _3DPRIM_BASE_VERTEX 0x2440
if (indirect && !indirect->count_from_stream_output) {
if (indirect->indirect_draw_count) {
use_predicate = true;
struct iris_bo *draw_count_bo =
iris_resource_bo(indirect->indirect_draw_count);
unsigned draw_count_offset =
indirect->indirect_draw_count_offset;
iris_emit_pipe_control_flush(batch,
"ensure indirect draw buffer is flushed",
PIPE_CONTROL_FLUSH_ENABLE);
if (ice->state.predicate == IRIS_PREDICATE_STATE_USE_BIT) {
struct mi_builder b;
mi_builder_init(&b, &batch->screen->devinfo, batch);
/* comparison = draw id < draw count */
struct mi_value comparison =
mi_ult(&b, mi_imm(draw->drawid),
mi_mem32(ro_bo(draw_count_bo, draw_count_offset)));
/* predicate = comparison & conditional rendering predicate */
mi_store(&b, mi_reg32(MI_PREDICATE_RESULT),
mi_iand(&b, comparison, mi_reg32(CS_GPR(15))));
} else {
uint32_t mi_predicate;
2018-07-14 22:15:39 -07:00
/* Upload the id of the current primitive to MI_PREDICATE_SRC1. */
iris_load_register_imm64(batch, MI_PREDICATE_SRC1, draw->drawid);
/* Upload the current draw count from the draw parameters buffer
* to MI_PREDICATE_SRC0.
*/
iris_load_register_mem32(batch, MI_PREDICATE_SRC0,
draw_count_bo, draw_count_offset);
/* Zero the top 32-bits of MI_PREDICATE_SRC0 */
iris_load_register_imm32(batch, MI_PREDICATE_SRC0 + 4, 0);
if (draw->drawid == 0) {
mi_predicate = MI_PREDICATE | MI_PREDICATE_LOADOP_LOADINV |
MI_PREDICATE_COMBINEOP_SET |
MI_PREDICATE_COMPAREOP_SRCS_EQUAL;
} else {
/* While draw_index < draw_count the predicate's result will be
* (draw_index == draw_count) ^ TRUE = TRUE
* When draw_index == draw_count the result is
* (TRUE) ^ TRUE = FALSE
* After this all results will be:
* (FALSE) ^ FALSE = FALSE
*/
mi_predicate = MI_PREDICATE | MI_PREDICATE_LOADOP_LOAD |
MI_PREDICATE_COMBINEOP_XOR |
MI_PREDICATE_COMPAREOP_SRCS_EQUAL;
}
iris_batch_emit(batch, &mi_predicate, sizeof(uint32_t));
}
}
struct iris_bo *bo = iris_resource_bo(indirect->buffer);
2018-07-14 22:15:39 -07:00
assert(bo);
iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
lrm.RegisterAddress = _3DPRIM_VERTEX_COUNT;
lrm.MemoryAddress = ro_bo(bo, indirect->offset + 0);
2018-07-14 22:15:39 -07:00
}
iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
lrm.RegisterAddress = _3DPRIM_INSTANCE_COUNT;
lrm.MemoryAddress = ro_bo(bo, indirect->offset + 4);
2018-07-14 22:15:39 -07:00
}
iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
lrm.RegisterAddress = _3DPRIM_START_VERTEX;
lrm.MemoryAddress = ro_bo(bo, indirect->offset + 8);
2018-07-14 22:15:39 -07:00
}
if (draw->index_size) {
iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
lrm.RegisterAddress = _3DPRIM_BASE_VERTEX;
lrm.MemoryAddress = ro_bo(bo, indirect->offset + 12);
2018-07-14 22:15:39 -07:00
}
iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
lrm.RegisterAddress = _3DPRIM_START_INSTANCE;
lrm.MemoryAddress = ro_bo(bo, indirect->offset + 16);
2018-07-14 22:15:39 -07:00
}
} else {
iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
lrm.RegisterAddress = _3DPRIM_START_INSTANCE;
lrm.MemoryAddress = ro_bo(bo, indirect->offset + 12);
2018-07-14 22:15:39 -07:00
}
iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_IMM), lri) {
lri.RegisterOffset = _3DPRIM_BASE_VERTEX;
lri.DataDWord = 0;
}
}
} else if (indirect && indirect->count_from_stream_output) {
struct iris_stream_output_target *so =
(void *) indirect->count_from_stream_output;
2019-01-24 09:26:38 -08:00
/* XXX: Replace with actual cache tracking */
iris_emit_pipe_control_flush(batch,
"draw count from stream output stall",
PIPE_CONTROL_CS_STALL);
struct mi_builder b;
mi_builder_init(&b, &batch->screen->devinfo, batch);
struct iris_address addr =
ro_bo(iris_resource_bo(so->offset.res), so->offset.offset);
struct mi_value offset =
mi_iadd_imm(&b, mi_mem32(addr), -so->base.buffer_offset);
mi_store(&b, mi_reg32(_3DPRIM_VERTEX_COUNT),
mi_udiv32_imm(&b, offset, so->stride));
_iris_emit_lri(batch, _3DPRIM_START_VERTEX, 0);
_iris_emit_lri(batch, _3DPRIM_BASE_VERTEX, 0);
_iris_emit_lri(batch, _3DPRIM_START_INSTANCE, 0);
_iris_emit_lri(batch, _3DPRIM_INSTANCE_COUNT, draw->instance_count);
2018-07-14 22:15:39 -07:00
}
2018-01-21 23:55:04 -08:00
iris_measure_snapshot(ice, batch, INTEL_SNAPSHOT_DRAW, draw, indirect, sc);
iris_emit_cmd(batch, GENX(3DPRIMITIVE), prim) {
prim.VertexAccessType = draw->index_size > 0 ? RANDOM : SEQUENTIAL;
prim.PredicateEnable = use_predicate;
if (indirect) {
prim.IndirectParameterEnable = true;
} else {
prim.StartInstanceLocation = draw->start_instance;
prim.InstanceCount = draw->instance_count;
prim.VertexCountPerInstance = sc->count;
prim.StartVertexLocation = sc->start;
2018-01-21 23:55:04 -08:00
if (draw->index_size) {
prim.BaseVertexLocation += draw->index_bias;
}
}
2018-01-21 23:55:04 -08:00
}
iris_batch_sync_region_end(batch);
2018-01-22 22:31:27 -08:00
}
static void
iris_load_indirect_location(struct iris_context *ice,
struct iris_batch *batch,
const struct pipe_grid_info *grid)
{
#define GPGPU_DISPATCHDIMX 0x2500
#define GPGPU_DISPATCHDIMY 0x2504
#define GPGPU_DISPATCHDIMZ 0x2508
assert(grid->indirect);
struct iris_state_ref *grid_size = &ice->state.grid_size;
struct iris_bo *bo = iris_resource_bo(grid_size->res);
iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
lrm.RegisterAddress = GPGPU_DISPATCHDIMX;
lrm.MemoryAddress = ro_bo(bo, grid_size->offset + 0);
}
iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
lrm.RegisterAddress = GPGPU_DISPATCHDIMY;
lrm.MemoryAddress = ro_bo(bo, grid_size->offset + 4);
}
iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
lrm.RegisterAddress = GPGPU_DISPATCHDIMZ;
lrm.MemoryAddress = ro_bo(bo, grid_size->offset + 8);
}
}
#if GFX_VERx10 >= 125
static void
iris_upload_compute_walker(struct iris_context *ice,
struct iris_batch *batch,
const struct pipe_grid_info *grid)
{
const uint64_t stage_dirty = ice->state.stage_dirty;
struct iris_screen *screen = batch->screen;
const struct gen_device_info *devinfo = &screen->devinfo;
struct iris_binder *binder = &ice->state.binder;
struct iris_shader_state *shs = &ice->state.shaders[MESA_SHADER_COMPUTE];
struct iris_compiled_shader *shader =
ice->shaders.prog[MESA_SHADER_COMPUTE];
struct brw_stage_prog_data *prog_data = shader->prog_data;
struct brw_cs_prog_data *cs_prog_data = (void *) prog_data;
const uint32_t group_size = grid->block[0] * grid->block[1] * grid->block[2];
const unsigned simd_size =
brw_cs_simd_size_for_group_size(devinfo, cs_prog_data, group_size);
const unsigned threads = DIV_ROUND_UP(group_size, simd_size);
if (stage_dirty & IRIS_STAGE_DIRTY_CS) {
iris_emit_cmd(batch, GENX(CFE_STATE), cfe) {
/* TODO: Enable gfx12-hp scratch support*/
assert(prog_data->total_scratch == 0);
cfe.MaximumNumberofThreads =
devinfo->max_cs_threads * screen->subslice_total - 1;
}
}
if (grid->indirect)
iris_load_indirect_location(ice, batch, grid);
const uint32_t last_mask = brw_cs_right_mask(group_size, simd_size);
iris_emit_cmd(batch, GENX(COMPUTE_WALKER), cw) {
cw.IndirectParameterEnable = grid->indirect;
cw.SIMDSize = simd_size / 16;
cw.LocalXMaximum = grid->block[0] - 1;
cw.LocalYMaximum = grid->block[1] - 1;
cw.LocalZMaximum = grid->block[2] - 1;
cw.ThreadGroupIDXDimension = grid->grid[0];
cw.ThreadGroupIDYDimension = grid->grid[1];
cw.ThreadGroupIDZDimension = grid->grid[2];
cw.ExecutionMask = last_mask;
cw.InterfaceDescriptor = (struct GENX(INTERFACE_DESCRIPTOR_DATA)) {
.KernelStartPointer = KSP(shader),
.NumberofThreadsinGPGPUThreadGroup = threads,
.SharedLocalMemorySize =
encode_slm_size(GFX_VER, prog_data->total_shared),
.BarrierEnable = cs_prog_data->uses_barrier,
.SamplerStatePointer = shs->sampler_table.offset,
.BindingTablePointer = binder->bt_offset[MESA_SHADER_COMPUTE],
};
assert(brw_cs_push_const_total_size(cs_prog_data, threads) == 0);
}
}
#else /* #if GFX_VERx10 >= 125 */
2018-07-26 21:59:20 -07:00
static void
iris_upload_gpgpu_walker(struct iris_context *ice,
struct iris_batch *batch,
const struct pipe_grid_info *grid)
2018-07-26 21:59:20 -07:00
{
const uint64_t stage_dirty = ice->state.stage_dirty;
2018-07-26 21:59:20 -07:00
struct iris_screen *screen = batch->screen;
const struct gen_device_info *devinfo = &screen->devinfo;
struct iris_binder *binder = &ice->state.binder;
struct iris_shader_state *shs = &ice->state.shaders[MESA_SHADER_COMPUTE];
struct iris_uncompiled_shader *ish =
ice->shaders.uncompiled[MESA_SHADER_COMPUTE];
2018-07-26 21:59:20 -07:00
struct iris_compiled_shader *shader =
ice->shaders.prog[MESA_SHADER_COMPUTE];
struct brw_stage_prog_data *prog_data = shader->prog_data;
struct brw_cs_prog_data *cs_prog_data = (void *) prog_data;
const uint32_t group_size = grid->block[0] * grid->block[1] * grid->block[2];
const unsigned simd_size =
brw_cs_simd_size_for_group_size(devinfo, cs_prog_data, group_size);
const unsigned threads = DIV_ROUND_UP(group_size, simd_size);
if (stage_dirty & IRIS_STAGE_DIRTY_CS) {
/* The MEDIA_VFE_STATE documentation for Gfx8+ says:
2018-10-19 01:29:05 -07:00
*
* "A stalling PIPE_CONTROL is required before MEDIA_VFE_STATE unless
* the only bits that are changed are scoreboard related: Scoreboard
* Enable, Scoreboard Type, Scoreboard Mask, Scoreboard Delta. For
* these scoreboard related states, a MEDIA_STATE_FLUSH is
* sufficient."
*/
iris_emit_pipe_control_flush(batch,
"workaround: stall before MEDIA_VFE_STATE",
PIPE_CONTROL_CS_STALL);
2018-07-26 21:59:20 -07:00
2018-10-19 01:29:05 -07:00
iris_emit_cmd(batch, GENX(MEDIA_VFE_STATE), vfe) {
if (prog_data->total_scratch) {
uint32_t scratch_addr =
pin_scratch_space(ice, batch, prog_data, MESA_SHADER_COMPUTE);
vfe.PerThreadScratchSpace = ffs(prog_data->total_scratch) - 11;
vfe.ScratchSpaceBasePointer =
rw_bo(NULL, scratch_addr, IRIS_DOMAIN_NONE);
2018-10-19 01:29:05 -07:00
}
2018-07-26 21:59:20 -07:00
2018-10-19 01:29:05 -07:00
vfe.MaximumNumberofThreads =
devinfo->max_cs_threads * screen->subslice_total - 1;
#if GFX_VER < 11
2018-10-19 01:29:05 -07:00
vfe.ResetGatewayTimer =
Resettingrelativetimerandlatchingtheglobaltimestamp;
2018-07-26 21:59:20 -07:00
#endif
#if GFX_VER == 8
vfe.BypassGatewayControl = true;
#endif
2018-10-19 01:29:05 -07:00
vfe.NumberofURBEntries = 2;
vfe.URBEntryAllocationSize = 2;
2018-07-26 21:59:20 -07:00
2018-10-19 01:29:05 -07:00
vfe.CURBEAllocationSize =
ALIGN(cs_prog_data->push.per_thread.regs * threads +
2018-10-19 01:29:05 -07:00
cs_prog_data->push.cross_thread.regs, 2);
}
2018-07-26 21:59:20 -07:00
}
2019-01-24 09:26:38 -08:00
/* TODO: Combine subgroup-id with cbuf0 so we can push regular uniforms */
if ((stage_dirty & IRIS_STAGE_DIRTY_CS) ||
cs_prog_data->local_size[0] == 0 /* Variable local group size */) {
uint32_t curbe_data_offset = 0;
assert(cs_prog_data->push.cross_thread.dwords == 0 &&
cs_prog_data->push.per_thread.dwords == 1 &&
cs_prog_data->base.param[0] == BRW_PARAM_BUILTIN_SUBGROUP_ID);
const unsigned push_const_size =
brw_cs_push_const_total_size(cs_prog_data, threads);
uint32_t *curbe_data_map =
stream_state(batch, ice->state.dynamic_uploader,
&ice->state.last_res.cs_thread_ids,
ALIGN(push_const_size, 64), 64,
&curbe_data_offset);
assert(curbe_data_map);
memset(curbe_data_map, 0x5a, ALIGN(push_const_size, 64));
iris_fill_cs_push_const_buffer(cs_prog_data, threads, curbe_data_map);
2018-10-19 01:29:05 -07:00
iris_emit_cmd(batch, GENX(MEDIA_CURBE_LOAD), curbe) {
curbe.CURBETotalDataLength = ALIGN(push_const_size, 64);
2018-10-19 01:29:05 -07:00
curbe.CURBEDataStartAddress = curbe_data_offset;
}
2018-07-26 21:59:20 -07:00
}
for (unsigned i = 0; i < IRIS_MAX_GLOBAL_BINDINGS; i++) {
struct pipe_resource *res = ice->state.global_bindings[i];
if (!res)
continue;
iris_use_pinned_bo(batch, iris_resource_bo(res),
true, IRIS_DOMAIN_NONE);
}
if (stage_dirty & (IRIS_STAGE_DIRTY_SAMPLER_STATES_CS |
IRIS_STAGE_DIRTY_BINDINGS_CS |
IRIS_STAGE_DIRTY_CONSTANTS_CS |
IRIS_STAGE_DIRTY_CS)) {
2018-10-19 01:29:05 -07:00
uint32_t desc[GENX(INTERFACE_DESCRIPTOR_DATA_length)];
2018-07-26 21:59:20 -07:00
2018-10-19 01:29:05 -07:00
iris_pack_state(GENX(INTERFACE_DESCRIPTOR_DATA), desc, idd) {
idd.SharedLocalMemorySize =
encode_slm_size(GFX_VER, ish->kernel_shared_size);
idd.KernelStartPointer =
KSP(shader) + brw_cs_prog_data_prog_offset(cs_prog_data, simd_size);
2018-10-19 01:29:05 -07:00
idd.SamplerStatePointer = shs->sampler_table.offset;
idd.BindingTablePointer = binder->bt_offset[MESA_SHADER_COMPUTE];
idd.NumberofThreadsinGPGPUThreadGroup = threads;
2018-10-19 01:29:05 -07:00
}
2018-07-26 21:59:20 -07:00
2018-10-19 01:29:05 -07:00
for (int i = 0; i < GENX(INTERFACE_DESCRIPTOR_DATA_length); i++)
desc[i] |= ((uint32_t *) shader->derived_data)[i];
2018-07-26 21:59:20 -07:00
2018-10-19 01:29:05 -07:00
iris_emit_cmd(batch, GENX(MEDIA_INTERFACE_DESCRIPTOR_LOAD), load) {
load.InterfaceDescriptorTotalLength =
GENX(INTERFACE_DESCRIPTOR_DATA_length) * sizeof(uint32_t);
load.InterfaceDescriptorDataStartAddress =
emit_state(batch, ice->state.dynamic_uploader,
&ice->state.last_res.cs_desc, desc, sizeof(desc), 64);
2018-10-19 01:29:05 -07:00
}
}
2018-07-26 21:59:20 -07:00
if (grid->indirect)
iris_load_indirect_location(ice, batch, grid);
const uint32_t right_mask = brw_cs_right_mask(group_size, simd_size);
iris_measure_snapshot(ice, batch, INTEL_SNAPSHOT_COMPUTE, NULL, NULL, NULL);
2018-07-26 21:59:20 -07:00
iris_emit_cmd(batch, GENX(GPGPU_WALKER), ggw) {
ggw.IndirectParameterEnable = grid->indirect != NULL;
ggw.SIMDSize = simd_size / 16;
2018-07-26 21:59:20 -07:00
ggw.ThreadDepthCounterMaximum = 0;
ggw.ThreadHeightCounterMaximum = 0;
ggw.ThreadWidthCounterMaximum = threads - 1;
ggw.ThreadGroupIDXDimension = grid->grid[0];
ggw.ThreadGroupIDYDimension = grid->grid[1];
ggw.ThreadGroupIDZDimension = grid->grid[2];
2018-07-26 21:59:20 -07:00
ggw.RightExecutionMask = right_mask;
ggw.BottomExecutionMask = 0xffffffff;
}
iris_emit_cmd(batch, GENX(MEDIA_STATE_FLUSH), msf);
}
#endif /* #if GFX_VERx10 >= 125 */
static void
iris_upload_compute_state(struct iris_context *ice,
struct iris_batch *batch,
const struct pipe_grid_info *grid)
{
const uint64_t stage_dirty = ice->state.stage_dirty;
struct iris_shader_state *shs = &ice->state.shaders[MESA_SHADER_COMPUTE];
struct iris_compiled_shader *shader =
ice->shaders.prog[MESA_SHADER_COMPUTE];
iris_batch_sync_region_start(batch);
/* Always pin the binder. If we're emitting new binding table pointers,
* we need it. If not, we're probably inheriting old tables via the
* context, and need it anyway. Since true zero-bindings cases are
* practically non-existent, just pin it and avoid last_res tracking.
*/
iris_use_pinned_bo(batch, ice->state.binder.bo, false, IRIS_DOMAIN_NONE);
if (((stage_dirty & IRIS_STAGE_DIRTY_CONSTANTS_CS) &&
shs->sysvals_need_upload) ||
shader->kernel_input_size > 0)
upload_sysvals(ice, MESA_SHADER_COMPUTE, grid);
if (stage_dirty & IRIS_STAGE_DIRTY_BINDINGS_CS)
iris_populate_binding_table(ice, batch, MESA_SHADER_COMPUTE, false);
if (stage_dirty & IRIS_STAGE_DIRTY_SAMPLER_STATES_CS)
iris_upload_sampler_states(ice, MESA_SHADER_COMPUTE);
iris_use_optional_res(batch, shs->sampler_table.res, false,
IRIS_DOMAIN_NONE);
iris_use_pinned_bo(batch, iris_resource_bo(shader->assembly.res), false,
IRIS_DOMAIN_NONE);
if (ice->state.need_border_colors)
iris_use_pinned_bo(batch, ice->state.border_color_pool.bo, false,
IRIS_DOMAIN_NONE);
#if GFX_VER >= 12
genX(invalidate_aux_map_state)(batch);
#endif
#if GFX_VERx10 >= 125
iris_upload_compute_walker(ice, batch, grid);
#else
iris_upload_gpgpu_walker(ice, batch, grid);
#endif
if (!batch->contains_draw_with_next_seqno) {
iris_restore_compute_saved_bos(ice, batch, grid);
batch->contains_draw_with_next_seqno = batch->contains_draw = true;
2018-07-26 21:59:20 -07:00
}
iris_batch_sync_region_end(batch);
2018-07-26 21:59:20 -07:00
}
2018-06-16 09:56:59 -07:00
/**
* State module teardown.
*/
static void
2018-01-09 14:34:15 -08:00
iris_destroy_state(struct iris_context *ice)
{
struct iris_genx_state *genx = ice->state.genx;
pipe_resource_reference(&ice->draw.draw_params.res, NULL);
pipe_resource_reference(&ice->draw.derived_draw_params.res, NULL);
/* Loop over all VBOs, including ones for draw parameters */
for (unsigned i = 0; i < ARRAY_SIZE(genx->vertex_buffers); i++) {
pipe_resource_reference(&genx->vertex_buffers[i].resource, NULL);
}
free(ice->state.genx);
2018-06-16 09:56:59 -07:00
for (int i = 0; i < 4; i++) {
pipe_so_target_reference(&ice->state.so_target[i], NULL);
}
2018-01-09 23:13:16 -08:00
for (unsigned i = 0; i < ice->state.framebuffer.nr_cbufs; i++) {
pipe_surface_reference(&ice->state.framebuffer.cbufs[i], NULL);
}
pipe_surface_reference(&ice->state.framebuffer.zsbuf, NULL);
2018-06-16 09:56:59 -07:00
for (int stage = 0; stage < MESA_SHADER_STAGES; stage++) {
struct iris_shader_state *shs = &ice->state.shaders[stage];
pipe_resource_reference(&shs->sampler_table.res, NULL);
for (int i = 0; i < PIPE_MAX_CONSTANT_BUFFERS; i++) {
pipe_resource_reference(&shs->constbuf[i].buffer, NULL);
pipe_resource_reference(&shs->constbuf_surf_state[i].res, NULL);
}
for (int i = 0; i < PIPE_MAX_SHADER_IMAGES; i++) {
pipe_resource_reference(&shs->image[i].base.resource, NULL);
pipe_resource_reference(&shs->image[i].surface_state.ref.res, NULL);
free(shs->image[i].surface_state.cpu);
}
for (int i = 0; i < PIPE_MAX_SHADER_BUFFERS; i++) {
pipe_resource_reference(&shs->ssbo[i].buffer, NULL);
pipe_resource_reference(&shs->ssbo_surf_state[i].res, NULL);
}
for (int i = 0; i < IRIS_MAX_TEXTURE_SAMPLERS; i++) {
pipe_sampler_view_reference((struct pipe_sampler_view **)
&shs->textures[i], NULL);
}
}
2018-06-16 09:56:59 -07:00
pipe_resource_reference(&ice->state.grid_size.res, NULL);
pipe_resource_reference(&ice->state.grid_surf_state.res, NULL);
pipe_resource_reference(&ice->state.null_fb.res, NULL);
pipe_resource_reference(&ice->state.unbound_tex.res, NULL);
2018-06-16 09:56:59 -07:00
pipe_resource_reference(&ice->state.last_res.cc_vp, NULL);
pipe_resource_reference(&ice->state.last_res.sf_cl_vp, NULL);
pipe_resource_reference(&ice->state.last_res.color_calc, NULL);
pipe_resource_reference(&ice->state.last_res.scissor, NULL);
pipe_resource_reference(&ice->state.last_res.blend, NULL);
pipe_resource_reference(&ice->state.last_res.index_buffer, NULL);
pipe_resource_reference(&ice->state.last_res.cs_thread_ids, NULL);
pipe_resource_reference(&ice->state.last_res.cs_desc, NULL);
2018-01-09 14:34:15 -08:00
}
/* ------------------------------------------------------------------- */
static void
iris_rebind_buffer(struct iris_context *ice,
struct iris_resource *res)
{
struct pipe_context *ctx = &ice->ctx;
struct iris_genx_state *genx = ice->state.genx;
assert(res->base.b.target == PIPE_BUFFER);
/* Buffers can't be framebuffer attachments, nor display related,
* and we don't have upstream Clover support.
*/
assert(!(res->bind_history & (PIPE_BIND_DEPTH_STENCIL |
PIPE_BIND_RENDER_TARGET |
PIPE_BIND_BLENDABLE |
PIPE_BIND_DISPLAY_TARGET |
PIPE_BIND_CURSOR |
PIPE_BIND_COMPUTE_RESOURCE |
PIPE_BIND_GLOBAL)));
if (res->bind_history & PIPE_BIND_VERTEX_BUFFER) {
uint64_t bound_vbs = ice->state.bound_vertex_buffers;
while (bound_vbs) {
const int i = u_bit_scan64(&bound_vbs);
struct iris_vertex_buffer_state *state = &genx->vertex_buffers[i];
/* Update the CPU struct */
STATIC_ASSERT(GENX(VERTEX_BUFFER_STATE_BufferStartingAddress_start) == 32);
STATIC_ASSERT(GENX(VERTEX_BUFFER_STATE_BufferStartingAddress_bits) == 64);
uint64_t *addr = (uint64_t *) &state->state[1];
struct iris_bo *bo = iris_resource_bo(state->resource);
if (*addr != bo->gtt_offset + state->offset) {
*addr = bo->gtt_offset + state->offset;
ice->state.dirty |= IRIS_DIRTY_VERTEX_BUFFERS;
}
}
}
/* We don't need to handle PIPE_BIND_INDEX_BUFFER here: we re-emit
* the 3DSTATE_INDEX_BUFFER packet whenever the address changes.
*
* There is also no need to handle these:
* - PIPE_BIND_COMMAND_ARGS_BUFFER (emitted for every indirect draw)
* - PIPE_BIND_QUERY_BUFFER (no persistent state references)
*/
if (res->bind_history & PIPE_BIND_STREAM_OUTPUT) {
uint32_t *so_buffers = genx->so_buffers;
for (unsigned i = 0; i < 4; i++,
so_buffers += GENX(3DSTATE_SO_BUFFER_length)) {
/* There are no other fields in bits 127:64 */
uint64_t *addr = (uint64_t *) &so_buffers[2];
STATIC_ASSERT(GENX(3DSTATE_SO_BUFFER_SurfaceBaseAddress_start) == 66);
STATIC_ASSERT(GENX(3DSTATE_SO_BUFFER_SurfaceBaseAddress_bits) == 46);
struct pipe_stream_output_target *tgt = ice->state.so_target[i];
if (tgt) {
struct iris_bo *bo = iris_resource_bo(tgt->buffer);
if (*addr != bo->gtt_offset + tgt->buffer_offset) {
*addr = bo->gtt_offset + tgt->buffer_offset;
ice->state.dirty |= IRIS_DIRTY_SO_BUFFERS;
}
}
}
}
for (int s = MESA_SHADER_VERTEX; s < MESA_SHADER_STAGES; s++) {
struct iris_shader_state *shs = &ice->state.shaders[s];
enum pipe_shader_type p_stage = stage_to_pipe(s);
if (!(res->bind_stages & (1 << s)))
continue;
if (res->bind_history & PIPE_BIND_CONSTANT_BUFFER) {
/* Skip constant buffer 0, it's for regular uniforms, not UBOs */
uint32_t bound_cbufs = shs->bound_cbufs & ~1u;
while (bound_cbufs) {
const int i = u_bit_scan(&bound_cbufs);
struct pipe_shader_buffer *cbuf = &shs->constbuf[i];
struct iris_state_ref *surf_state = &shs->constbuf_surf_state[i];
if (res->bo == iris_resource_bo(cbuf->buffer)) {
pipe_resource_reference(&surf_state->res, NULL);
ice->state.stage_dirty |= IRIS_STAGE_DIRTY_CONSTANTS_VS << s;
}
}
}
if (res->bind_history & PIPE_BIND_SHADER_BUFFER) {
uint32_t bound_ssbos = shs->bound_ssbos;
while (bound_ssbos) {
const int i = u_bit_scan(&bound_ssbos);
struct pipe_shader_buffer *ssbo = &shs->ssbo[i];
if (res->bo == iris_resource_bo(ssbo->buffer)) {
struct pipe_shader_buffer buf = {
.buffer = &res->base.b,
.buffer_offset = ssbo->buffer_offset,
.buffer_size = ssbo->buffer_size,
};
iris_set_shader_buffers(ctx, p_stage, i, 1, &buf,
(shs->writable_ssbos >> i) & 1);
}
}
}
if (res->bind_history & PIPE_BIND_SAMPLER_VIEW) {
uint32_t bound_sampler_views = shs->bound_sampler_views;
while (bound_sampler_views) {
const int i = u_bit_scan(&bound_sampler_views);
struct iris_sampler_view *isv = shs->textures[i];
struct iris_bo *bo = isv->res->bo;
if (update_surface_state_addrs(ice->state.surface_uploader,
&isv->surface_state, bo)) {
ice->state.stage_dirty |= IRIS_STAGE_DIRTY_BINDINGS_VS << s;
}
}
}
if (res->bind_history & PIPE_BIND_SHADER_IMAGE) {
uint32_t bound_image_views = shs->bound_image_views;
while (bound_image_views) {
const int i = u_bit_scan(&bound_image_views);
struct iris_image_view *iv = &shs->image[i];
struct iris_bo *bo = iris_resource_bo(iv->base.resource);
if (update_surface_state_addrs(ice->state.surface_uploader,
&iv->surface_state, bo)) {
ice->state.stage_dirty |= IRIS_STAGE_DIRTY_BINDINGS_VS << s;
}
}
}
}
}
/* ------------------------------------------------------------------- */
/**
* Introduce a batch synchronization boundary, and update its cache coherency
* status to reflect the execution of a PIPE_CONTROL command with the
* specified flags.
*/
static void
batch_mark_sync_for_pipe_control(struct iris_batch *batch, uint32_t flags)
{
iris_batch_sync_boundary(batch);
if ((flags & PIPE_CONTROL_CS_STALL)) {
if ((flags & PIPE_CONTROL_RENDER_TARGET_FLUSH))
iris_batch_mark_flush_sync(batch, IRIS_DOMAIN_RENDER_WRITE);
if ((flags & PIPE_CONTROL_DEPTH_CACHE_FLUSH))
iris_batch_mark_flush_sync(batch, IRIS_DOMAIN_DEPTH_WRITE);
if ((flags & PIPE_CONTROL_FLUSH_ENABLE))
iris_batch_mark_flush_sync(batch, IRIS_DOMAIN_OTHER_WRITE);
if ((flags & (PIPE_CONTROL_CACHE_FLUSH_BITS |
PIPE_CONTROL_STALL_AT_SCOREBOARD)))
iris_batch_mark_flush_sync(batch, IRIS_DOMAIN_OTHER_READ);
}
if ((flags & PIPE_CONTROL_RENDER_TARGET_FLUSH))
iris_batch_mark_invalidate_sync(batch, IRIS_DOMAIN_RENDER_WRITE);
if ((flags & PIPE_CONTROL_DEPTH_CACHE_FLUSH))
iris_batch_mark_invalidate_sync(batch, IRIS_DOMAIN_DEPTH_WRITE);
if ((flags & PIPE_CONTROL_FLUSH_ENABLE))
iris_batch_mark_invalidate_sync(batch, IRIS_DOMAIN_OTHER_WRITE);
if ((flags & PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE) &&
(flags & PIPE_CONTROL_CONST_CACHE_INVALIDATE))
iris_batch_mark_invalidate_sync(batch, IRIS_DOMAIN_OTHER_READ);
}
static unsigned
flags_to_post_sync_op(uint32_t flags)
{
if (flags & PIPE_CONTROL_WRITE_IMMEDIATE)
return WriteImmediateData;
if (flags & PIPE_CONTROL_WRITE_DEPTH_COUNT)
return WritePSDepthCount;
if (flags & PIPE_CONTROL_WRITE_TIMESTAMP)
return WriteTimestamp;
return 0;
}
/**
* Do the given flags have a Post Sync or LRI Post Sync operation?
*/
static enum pipe_control_flags
get_post_sync_flags(enum pipe_control_flags flags)
{
flags &= PIPE_CONTROL_WRITE_IMMEDIATE |
PIPE_CONTROL_WRITE_DEPTH_COUNT |
PIPE_CONTROL_WRITE_TIMESTAMP |
PIPE_CONTROL_LRI_POST_SYNC_OP;
/* Only one "Post Sync Op" is allowed, and it's mutually exclusive with
* "LRI Post Sync Operation". So more than one bit set would be illegal.
*/
assert(util_bitcount(flags) <= 1);
return flags;
}
#define IS_COMPUTE_PIPELINE(batch) (batch->name == IRIS_BATCH_COMPUTE)
/**
* Emit a series of PIPE_CONTROL commands, taking into account any
* workarounds necessary to actually accomplish the caller's request.
*
* Unless otherwise noted, spec quotations in this function come from:
*
* Synchronization of the 3D Pipeline > PIPE_CONTROL Command > Programming
* Restrictions for PIPE_CONTROL.
*
* You should not use this function directly. Use the helpers in
* iris_pipe_control.c instead, which may split the pipe control further.
*/
static void
iris_emit_raw_pipe_control(struct iris_batch *batch,
const char *reason,
uint32_t flags,
struct iris_bo *bo,
uint32_t offset,
uint64_t imm)
{
UNUSED const struct gen_device_info *devinfo = &batch->screen->devinfo;
enum pipe_control_flags post_sync_flags = get_post_sync_flags(flags);
enum pipe_control_flags non_lri_post_sync_flags =
post_sync_flags & ~PIPE_CONTROL_LRI_POST_SYNC_OP;
/* Recursive PIPE_CONTROL workarounds --------------------------------
* (http://knowyourmeme.com/memes/xzibit-yo-dawg)
*
* We do these first because we want to look at the original operation,
* rather than any workarounds we set.
*/
if (GFX_VER == 9 && (flags & PIPE_CONTROL_VF_CACHE_INVALIDATE)) {
/* The PIPE_CONTROL "VF Cache Invalidation Enable" bit description
* lists several workarounds:
*
* "Project: SKL, KBL, BXT
*
* If the VF Cache Invalidation Enable is set to a 1 in a
* PIPE_CONTROL, a separate Null PIPE_CONTROL, all bitfields
* sets to 0, with the VF Cache Invalidation Enable set to 0
* needs to be sent prior to the PIPE_CONTROL with VF Cache
* Invalidation Enable set to a 1."
*/
iris_emit_raw_pipe_control(batch,
"workaround: recursive VF cache invalidate",
0, NULL, 0, 0);
}
/* Wa_1409226450, Wait for EU to be idle before pipe control which
* invalidates the instruction cache
*/
if (GFX_VER == 12 && (flags & PIPE_CONTROL_INSTRUCTION_INVALIDATE)) {
iris_emit_raw_pipe_control(batch,
"workaround: CS stall before instruction "
"cache invalidate",
PIPE_CONTROL_CS_STALL |
PIPE_CONTROL_STALL_AT_SCOREBOARD, bo, offset,
imm);
}
if ((GFX_VER == 9 || (GFX_VER == 12 && devinfo->revision == 0 /* A0*/)) &&
IS_COMPUTE_PIPELINE(batch) && post_sync_flags) {
/* Project: SKL / Argument: LRI Post Sync Operation [23]
*
* "PIPECONTROL command with “Command Streamer Stall Enable” must be
* programmed prior to programming a PIPECONTROL command with "LRI
* Post Sync Operation" in GPGPU mode of operation (i.e when
* PIPELINE_SELECT command is set to GPGPU mode of operation)."
*
* The same text exists a few rows below for Post Sync Op.
*
* On Gfx12 this is Wa_1607156449.
*/
iris_emit_raw_pipe_control(batch,
"workaround: CS stall before gpgpu post-sync",
PIPE_CONTROL_CS_STALL, bo, offset, imm);
}
/* "Flush Types" workarounds ---------------------------------------------
* We do these now because they may add post-sync operations or CS stalls.
*/
if (GFX_VER < 11 && flags & PIPE_CONTROL_VF_CACHE_INVALIDATE) {
/* Project: BDW, SKL+ (stopping at CNL) / Argument: VF Invalidate
*
* "'Post Sync Operation' must be enabled to 'Write Immediate Data' or
* 'Write PS Depth Count' or 'Write Timestamp'."
*/
if (!bo) {
flags |= PIPE_CONTROL_WRITE_IMMEDIATE;
post_sync_flags |= PIPE_CONTROL_WRITE_IMMEDIATE;
non_lri_post_sync_flags |= PIPE_CONTROL_WRITE_IMMEDIATE;
bo = batch->screen->workaround_address.bo;
offset = batch->screen->workaround_address.offset;
}
}
if (flags & PIPE_CONTROL_DEPTH_STALL) {
/* From the PIPE_CONTROL instruction table, bit 13 (Depth Stall Enable):
*
* "This bit must be DISABLED for operations other than writing
* PS_DEPTH_COUNT."
*
* This seems like nonsense. An Ivybridge workaround requires us to
* emit a PIPE_CONTROL with a depth stall and write immediate post-sync
* operation. Gfx8+ requires us to emit depth stalls and depth cache
* flushes together. So, it's hard to imagine this means anything other
* than "we originally intended this to be used for PS_DEPTH_COUNT".
*
* We ignore the supposed restriction and do nothing.
*/
}
if (flags & (PIPE_CONTROL_RENDER_TARGET_FLUSH |
PIPE_CONTROL_STALL_AT_SCOREBOARD)) {
/* From the PIPE_CONTROL instruction table, bit 12 and bit 1:
*
* "This bit must be DISABLED for End-of-pipe (Read) fences,
* PS_DEPTH_COUNT or TIMESTAMP queries."
*
* TODO: Implement end-of-pipe checking.
*/
assert(!(post_sync_flags & (PIPE_CONTROL_WRITE_DEPTH_COUNT |
PIPE_CONTROL_WRITE_TIMESTAMP)));
}
if (GFX_VER < 11 && (flags & PIPE_CONTROL_STALL_AT_SCOREBOARD)) {
/* From the PIPE_CONTROL instruction table, bit 1:
*
* "This bit is ignored if Depth Stall Enable is set.
* Further, the render cache is not flushed even if Write Cache
* Flush Enable bit is set."
*
* We assert that the caller doesn't do this combination, to try and
* prevent mistakes. It shouldn't hurt the GPU, though.
*
* We skip this check on Gfx11+ as the "Stall at Pixel Scoreboard"
* and "Render Target Flush" combo is explicitly required for BTI
* update workarounds.
*/
assert(!(flags & (PIPE_CONTROL_DEPTH_STALL |
PIPE_CONTROL_RENDER_TARGET_FLUSH)));
}
/* PIPE_CONTROL page workarounds ------------------------------------- */
if (GFX_VER <= 8 && (flags & PIPE_CONTROL_STATE_CACHE_INVALIDATE)) {
/* From the PIPE_CONTROL page itself:
*
* "IVB, HSW, BDW
* Restriction: Pipe_control with CS-stall bit set must be issued
* before a pipe-control command that has the State Cache
* Invalidate bit set."
*/
flags |= PIPE_CONTROL_CS_STALL;
}
if (flags & PIPE_CONTROL_FLUSH_LLC) {
/* From the PIPE_CONTROL instruction table, bit 26 (Flush LLC):
*
* "Project: ALL
* SW must always program Post-Sync Operation to "Write Immediate
* Data" when Flush LLC is set."
*
* For now, we just require the caller to do it.
*/
assert(flags & PIPE_CONTROL_WRITE_IMMEDIATE);
}
/* "Post-Sync Operation" workarounds -------------------------------- */
/* Project: All / Argument: Global Snapshot Count Reset [19]
*
* "This bit must not be exercised on any product.
* Requires stall bit ([20] of DW1) set."
*
* We don't use this, so we just assert that it isn't used. The
* PIPE_CONTROL instruction page indicates that they intended this
* as a debug feature and don't think it is useful in production,
* but it may actually be usable, should we ever want to.
*/
assert((flags & PIPE_CONTROL_GLOBAL_SNAPSHOT_COUNT_RESET) == 0);
if (flags & (PIPE_CONTROL_MEDIA_STATE_CLEAR |
PIPE_CONTROL_INDIRECT_STATE_POINTERS_DISABLE)) {
/* Project: All / Arguments:
*
* - Generic Media State Clear [16]
* - Indirect State Pointers Disable [16]
*
* "Requires stall bit ([20] of DW1) set."
*
* Also, the PIPE_CONTROL instruction table, bit 16 (Generic Media
* State Clear) says:
*
* "PIPECONTROL command with “Command Streamer Stall Enable” must be
* programmed prior to programming a PIPECONTROL command with "Media
* State Clear" set in GPGPU mode of operation"
*
* This is a subset of the earlier rule, so there's nothing to do.
*/
flags |= PIPE_CONTROL_CS_STALL;
}
if (flags & PIPE_CONTROL_STORE_DATA_INDEX) {
/* Project: All / Argument: Store Data Index
*
* "Post-Sync Operation ([15:14] of DW1) must be set to something other
* than '0'."
*
* For now, we just assert that the caller does this. We might want to
* automatically add a write to the workaround BO...
*/
assert(non_lri_post_sync_flags != 0);
}
if (flags & PIPE_CONTROL_SYNC_GFDT) {
/* Project: All / Argument: Sync GFDT
*
* "Post-Sync Operation ([15:14] of DW1) must be set to something other
* than '0' or 0x2520[13] must be set."
*
* For now, we just assert that the caller does this.
*/
assert(non_lri_post_sync_flags != 0);
}
if (flags & PIPE_CONTROL_TLB_INVALIDATE) {
/* Project: IVB+ / Argument: TLB inv
*
* "Requires stall bit ([20] of DW1) set."
*
* Also, from the PIPE_CONTROL instruction table:
*
* "Project: SKL+
* Post Sync Operation or CS stall must be set to ensure a TLB
* invalidation occurs. Otherwise no cycle will occur to the TLB
* cache to invalidate."
*
* This is not a subset of the earlier rule, so there's nothing to do.
*/
flags |= PIPE_CONTROL_CS_STALL;
}
if (GFX_VER >= 12 && ((flags & PIPE_CONTROL_RENDER_TARGET_FLUSH) ||
(flags & PIPE_CONTROL_DEPTH_CACHE_FLUSH))) {
/* From the PIPE_CONTROL instruction table, bit 28 (Tile Cache Flush
* Enable):
*
* Unified Cache (Tile Cache Disabled):
*
* When the Color and Depth (Z) streams are enabled to be cached in
* the DC space of L2, Software must use "Render Target Cache Flush
* Enable" and "Depth Cache Flush Enable" along with "Tile Cache
* Flush" for getting the color and depth (Z) write data to be
* globally observable. In this mode of operation it is not required
* to set "CS Stall" upon setting "Tile Cache Flush" bit.
*/
flags |= PIPE_CONTROL_TILE_CACHE_FLUSH;
}
if (GFX_VER == 9 && devinfo->gt == 4) {
/* TODO: The big Skylake GT4 post sync op workaround */
}
/* "GPGPU specific workarounds" (both post-sync and flush) ------------ */
if (IS_COMPUTE_PIPELINE(batch)) {
if (GFX_VER >= 9 && (flags & PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE)) {
/* Project: SKL+ / Argument: Tex Invalidate
* "Requires stall bit ([20] of DW) set for all GPGPU Workloads."
*/
flags |= PIPE_CONTROL_CS_STALL;
}
if (GFX_VER == 8 && (post_sync_flags ||
(flags & (PIPE_CONTROL_NOTIFY_ENABLE |
PIPE_CONTROL_DEPTH_STALL |
PIPE_CONTROL_RENDER_TARGET_FLUSH |
PIPE_CONTROL_DEPTH_CACHE_FLUSH |
PIPE_CONTROL_DATA_CACHE_FLUSH)))) {
/* Project: BDW / Arguments:
*
* - LRI Post Sync Operation [23]
* - Post Sync Op [15:14]
* - Notify En [8]
* - Depth Stall [13]
* - Render Target Cache Flush [12]
* - Depth Cache Flush [0]
* - DC Flush Enable [5]
*
* "Requires stall bit ([20] of DW) set for all GPGPU and Media
* Workloads."
*/
flags |= PIPE_CONTROL_CS_STALL;
/* Also, from the PIPE_CONTROL instruction table, bit 20:
*
* "Project: BDW
* This bit must be always set when PIPE_CONTROL command is
* programmed by GPGPU and MEDIA workloads, except for the cases
* when only Read Only Cache Invalidation bits are set (State
* Cache Invalidation Enable, Instruction cache Invalidation
* Enable, Texture Cache Invalidation Enable, Constant Cache
* Invalidation Enable). This is to WA FFDOP CG issue, this WA
* need not implemented when FF_DOP_CG is disable via "Fixed
* Function DOP Clock Gate Disable" bit in RC_PSMI_CTRL register."
*
* It sounds like we could avoid CS stalls in some cases, but we
* don't currently bother. This list isn't exactly the list above,
* either...
*/
}
}
/* "Stall" workarounds ----------------------------------------------
* These have to come after the earlier ones because we may have added
* some additional CS stalls above.
*/
if (GFX_VER < 9 && (flags & PIPE_CONTROL_CS_STALL)) {
/* Project: PRE-SKL, VLV, CHV
*
* "[All Stepping][All SKUs]:
*
* One of the following must also be set:
*
* - Render Target Cache Flush Enable ([12] of DW1)
* - Depth Cache Flush Enable ([0] of DW1)
* - Stall at Pixel Scoreboard ([1] of DW1)
* - Depth Stall ([13] of DW1)
* - Post-Sync Operation ([13] of DW1)
* - DC Flush Enable ([5] of DW1)"
*
* If we don't already have one of those bits set, we choose to add
* "Stall at Pixel Scoreboard". Some of the other bits require a
* CS stall as a workaround (see above), which would send us into
* an infinite recursion of PIPE_CONTROLs. "Stall at Pixel Scoreboard"
* appears to be safe, so we choose that.
*/
const uint32_t wa_bits = PIPE_CONTROL_RENDER_TARGET_FLUSH |
PIPE_CONTROL_DEPTH_CACHE_FLUSH |
PIPE_CONTROL_WRITE_IMMEDIATE |
PIPE_CONTROL_WRITE_DEPTH_COUNT |
PIPE_CONTROL_WRITE_TIMESTAMP |
PIPE_CONTROL_STALL_AT_SCOREBOARD |
PIPE_CONTROL_DEPTH_STALL |
PIPE_CONTROL_DATA_CACHE_FLUSH;
if (!(flags & wa_bits))
flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
}
if (GFX_VER >= 12 && (flags & PIPE_CONTROL_DEPTH_CACHE_FLUSH)) {
/* Wa_1409600907:
*
* "PIPE_CONTROL with Depth Stall Enable bit must be set
* with any PIPE_CONTROL with Depth Flush Enable bit set.
*/
flags |= PIPE_CONTROL_DEPTH_STALL;
}
/* Emit --------------------------------------------------------------- */
if (INTEL_DEBUG & DEBUG_PIPE_CONTROL) {
fprintf(stderr,
" PC [%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%"PRIx64"]: %s\n",
(flags & PIPE_CONTROL_FLUSH_ENABLE) ? "PipeCon " : "",
(flags & PIPE_CONTROL_CS_STALL) ? "CS " : "",
(flags & PIPE_CONTROL_STALL_AT_SCOREBOARD) ? "Scoreboard " : "",
(flags & PIPE_CONTROL_VF_CACHE_INVALIDATE) ? "VF " : "",
(flags & PIPE_CONTROL_RENDER_TARGET_FLUSH) ? "RT " : "",
(flags & PIPE_CONTROL_CONST_CACHE_INVALIDATE) ? "Const " : "",
(flags & PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE) ? "TC " : "",
(flags & PIPE_CONTROL_DATA_CACHE_FLUSH) ? "DC " : "",
(flags & PIPE_CONTROL_DEPTH_CACHE_FLUSH) ? "ZFlush " : "",
(flags & PIPE_CONTROL_DEPTH_STALL) ? "ZStall " : "",
(flags & PIPE_CONTROL_STATE_CACHE_INVALIDATE) ? "State " : "",
(flags & PIPE_CONTROL_TLB_INVALIDATE) ? "TLB " : "",
(flags & PIPE_CONTROL_INSTRUCTION_INVALIDATE) ? "Inst " : "",
(flags & PIPE_CONTROL_MEDIA_STATE_CLEAR) ? "MediaClear " : "",
(flags & PIPE_CONTROL_NOTIFY_ENABLE) ? "Notify " : "",
(flags & PIPE_CONTROL_GLOBAL_SNAPSHOT_COUNT_RESET) ?
"SnapRes" : "",
(flags & PIPE_CONTROL_INDIRECT_STATE_POINTERS_DISABLE) ?
"ISPDis" : "",
(flags & PIPE_CONTROL_WRITE_IMMEDIATE) ? "WriteImm " : "",
(flags & PIPE_CONTROL_WRITE_DEPTH_COUNT) ? "WriteZCount " : "",
(flags & PIPE_CONTROL_WRITE_TIMESTAMP) ? "WriteTimestamp " : "",
(flags & PIPE_CONTROL_FLUSH_HDC) ? "HDC " : "",
imm, reason);
}
batch_mark_sync_for_pipe_control(batch, flags);
iris_batch_sync_region_start(batch);
iris_emit_cmd(batch, GENX(PIPE_CONTROL), pc) {
#if GFX_VER >= 12
pc.TileCacheFlushEnable = flags & PIPE_CONTROL_TILE_CACHE_FLUSH;
#endif
#if GFX_VER >= 11
pc.HDCPipelineFlushEnable = flags & PIPE_CONTROL_FLUSH_HDC;
#endif
pc.LRIPostSyncOperation = NoLRIOperation;
pc.PipeControlFlushEnable = flags & PIPE_CONTROL_FLUSH_ENABLE;
pc.DCFlushEnable = flags & PIPE_CONTROL_DATA_CACHE_FLUSH;
pc.StoreDataIndex = 0;
pc.CommandStreamerStallEnable = flags & PIPE_CONTROL_CS_STALL;
pc.GlobalSnapshotCountReset =
flags & PIPE_CONTROL_GLOBAL_SNAPSHOT_COUNT_RESET;
pc.TLBInvalidate = flags & PIPE_CONTROL_TLB_INVALIDATE;
pc.GenericMediaStateClear = flags & PIPE_CONTROL_MEDIA_STATE_CLEAR;
pc.StallAtPixelScoreboard = flags & PIPE_CONTROL_STALL_AT_SCOREBOARD;
pc.RenderTargetCacheFlushEnable =
flags & PIPE_CONTROL_RENDER_TARGET_FLUSH;
pc.DepthCacheFlushEnable = flags & PIPE_CONTROL_DEPTH_CACHE_FLUSH;
pc.StateCacheInvalidationEnable =
flags & PIPE_CONTROL_STATE_CACHE_INVALIDATE;
pc.VFCacheInvalidationEnable = flags & PIPE_CONTROL_VF_CACHE_INVALIDATE;
pc.ConstantCacheInvalidationEnable =
flags & PIPE_CONTROL_CONST_CACHE_INVALIDATE;
pc.PostSyncOperation = flags_to_post_sync_op(flags);
pc.DepthStallEnable = flags & PIPE_CONTROL_DEPTH_STALL;
pc.InstructionCacheInvalidateEnable =
flags & PIPE_CONTROL_INSTRUCTION_INVALIDATE;
pc.NotifyEnable = flags & PIPE_CONTROL_NOTIFY_ENABLE;
pc.IndirectStatePointersDisable =
flags & PIPE_CONTROL_INDIRECT_STATE_POINTERS_DISABLE;
pc.TextureCacheInvalidationEnable =
flags & PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
pc.Address = rw_bo(bo, offset, IRIS_DOMAIN_OTHER_WRITE);
pc.ImmediateData = imm;
}
iris_batch_sync_region_end(batch);
}
#if GFX_VER == 9
/**
* Preemption on Gfx9 has to be enabled or disabled in various cases.
*
* See these workarounds for preemption:
* - WaDisableMidObjectPreemptionForGSLineStripAdj
* - WaDisableMidObjectPreemptionForTrifanOrPolygon
* - WaDisableMidObjectPreemptionForLineLoop
* - WA#0798
*
* We don't put this in the vtable because it's only used on Gfx9.
*/
void
gfx9_toggle_preemption(struct iris_context *ice,
struct iris_batch *batch,
const struct pipe_draw_info *draw)
{
struct iris_genx_state *genx = ice->state.genx;
bool object_preemption = true;
/* WaDisableMidObjectPreemptionForGSLineStripAdj
*
* "WA: Disable mid-draw preemption when draw-call is a linestrip_adj
* and GS is enabled."
*/
if (draw->mode == PIPE_PRIM_LINE_STRIP_ADJACENCY &&
ice->shaders.prog[MESA_SHADER_GEOMETRY])
object_preemption = false;
/* WaDisableMidObjectPreemptionForTrifanOrPolygon
*
* "TriFan miscompare in Execlist Preemption test. Cut index that is
* on a previous context. End the previous, the resume another context
* with a tri-fan or polygon, and the vertex count is corrupted. If we
* prempt again we will cause corruption.
*
* WA: Disable mid-draw preemption when draw-call has a tri-fan."
*/
if (draw->mode == PIPE_PRIM_TRIANGLE_FAN)
object_preemption = false;
/* WaDisableMidObjectPreemptionForLineLoop
*
* "VF Stats Counters Missing a vertex when preemption enabled.
*
* WA: Disable mid-draw preemption when the draw uses a lineloop
* topology."
*/
if (draw->mode == PIPE_PRIM_LINE_LOOP)
object_preemption = false;
/* WA#0798
*
* "VF is corrupting GAFS data when preempted on an instance boundary
* and replayed with instancing enabled.
*
* WA: Disable preemption when using instanceing."
*/
if (draw->instance_count > 1)
object_preemption = false;
if (genx->object_preemption != object_preemption) {
iris_enable_obj_preemption(batch, object_preemption);
genx->object_preemption = object_preemption;
}
}
#endif
static void
iris_lost_genx_state(struct iris_context *ice, struct iris_batch *batch)
{
struct iris_genx_state *genx = ice->state.genx;
memset(genx->last_index_buffer, 0, sizeof(genx->last_index_buffer));
}
static void
iris_emit_mi_report_perf_count(struct iris_batch *batch,
struct iris_bo *bo,
uint32_t offset_in_bytes,
uint32_t report_id)
{
iris_batch_sync_region_start(batch);
iris_emit_cmd(batch, GENX(MI_REPORT_PERF_COUNT), mi_rpc) {
mi_rpc.MemoryAddress = rw_bo(bo, offset_in_bytes,
IRIS_DOMAIN_OTHER_WRITE);
mi_rpc.ReportID = report_id;
}
iris_batch_sync_region_end(batch);
}
/**
* Update the pixel hashing modes that determine the balancing of PS threads
* across subslices and slices.
*
* \param width Width bound of the rendering area (already scaled down if \p
* scale is greater than 1).
* \param height Height bound of the rendering area (already scaled down if \p
* scale is greater than 1).
* \param scale The number of framebuffer samples that could potentially be
* affected by an individual channel of the PS thread. This is
* typically one for single-sampled rendering, but for operations
* like CCS resolves and fast clears a single PS invocation may
* update a huge number of pixels, in which case a finer
* balancing is desirable in order to maximally utilize the
* bandwidth available. UINT_MAX can be used as shorthand for
* "finest hashing mode available".
*/
void
genX(emit_hashing_mode)(struct iris_context *ice, struct iris_batch *batch,
unsigned width, unsigned height, unsigned scale)
{
#if GFX_VER == 9
const struct gen_device_info *devinfo = &batch->screen->devinfo;
const unsigned slice_hashing[] = {
/* Because all Gfx9 platforms with more than one slice require
* three-way subslice hashing, a single "normal" 16x16 slice hashing
* block is guaranteed to suffer from substantial imbalance, with one
* subslice receiving twice as much work as the other two in the
* slice.
*
* The performance impact of that would be particularly severe when
* three-way hashing is also in use for slice balancing (which is the
* case for all Gfx9 GT4 platforms), because one of the slices
* receives one every three 16x16 blocks in either direction, which
* is roughly the periodicity of the underlying subslice imbalance
* pattern ("roughly" because in reality the hardware's
* implementation of three-way hashing doesn't do exact modulo 3
* arithmetic, which somewhat decreases the magnitude of this effect
* in practice). This leads to a systematic subslice imbalance
* within that slice regardless of the size of the primitive. The
* 32x32 hashing mode guarantees that the subslice imbalance within a
* single slice hashing block is minimal, largely eliminating this
* effect.
*/
_32x32,
/* Finest slice hashing mode available. */
NORMAL
};
const unsigned subslice_hashing[] = {
/* 16x16 would provide a slight cache locality benefit especially
* visible in the sampler L1 cache efficiency of low-bandwidth
* non-LLC platforms, but it comes at the cost of greater subslice
* imbalance for primitives of dimensions approximately intermediate
* between 16x4 and 16x16.
*/
_16x4,
/* Finest subslice hashing mode available. */
_8x4
};
/* Dimensions of the smallest hashing block of a given hashing mode. If
* the rendering area is smaller than this there can't possibly be any
* benefit from switching to this mode, so we optimize out the
* transition.
*/
const unsigned min_size[][2] = {
{ 16, 4 },
{ 8, 4 }
};
const unsigned idx = scale > 1;
if (width > min_size[idx][0] || height > min_size[idx][1]) {
iris_emit_raw_pipe_control(batch,
"workaround: CS stall before GT_MODE LRI",
PIPE_CONTROL_STALL_AT_SCOREBOARD |
PIPE_CONTROL_CS_STALL,
NULL, 0, 0);
iris_emit_reg(batch, GENX(GT_MODE), reg) {
reg.SliceHashing = (devinfo->num_slices > 1 ? slice_hashing[idx] : 0);
reg.SliceHashingMask = (devinfo->num_slices > 1 ? -1 : 0);
reg.SubsliceHashing = subslice_hashing[idx];
reg.SubsliceHashingMask = -1;
};
ice->state.current_hash_scale = scale;
}
#endif
}
static void
iris_set_frontend_noop(struct pipe_context *ctx, bool enable)
{
struct iris_context *ice = (struct iris_context *) ctx;
if (iris_batch_prepare_noop(&ice->batches[IRIS_BATCH_RENDER], enable)) {
ice->state.dirty |= IRIS_ALL_DIRTY_FOR_RENDER;
ice->state.stage_dirty |= IRIS_ALL_STAGE_DIRTY_FOR_RENDER;
}
if (iris_batch_prepare_noop(&ice->batches[IRIS_BATCH_COMPUTE], enable)) {
ice->state.dirty |= IRIS_ALL_DIRTY_FOR_COMPUTE;
ice->state.stage_dirty |= IRIS_ALL_STAGE_DIRTY_FOR_COMPUTE;
}
}
iris: initialize shared screen->vtbl only once Screen is shared among contexts, other context might be already using vtbl while another initializes it again. ==45872== Possible data race during write of size 8 at 0x5DDAE78 by thread #549 ==45872== Locks held: 1, at address 0x5D1B6F8 ==45872== at 0x6D66D91: gen9_init_state (iris_state.c:7816) ==45872== by 0x6BA0A31: iris_create_context (iris_context.c:342) ==45872== by 0x621F390: st_api_create_context (st_manager.c:917) ==45872== by 0x620E6F9: dri_create_context (dri_context.c:163) ==45872== by 0x6A40DB1: driCreateContextAttribs (dri_util.c:480) ==45872== by 0x540B963: dri2_create_context (egl_dri2.c:1583) ==45872== by 0x53FB84E: eglCreateContext (eglapi.c:821) ==45872== ==45872== This conflicts with a previous read of size 8 by thread #544 ==45872== Locks held: 1, at address 0x5F6E0E0 ==45872== at 0x6CB779E: blorp_alloc_binding_table (iris_blorp.c:167) ==45872== by 0x6CAEF70: blorp_emit_surface_states (blorp_genX_exec.h:1540) ==45872== by 0x6CB67F9: blorp_exec (blorp_genX_exec.h:2016) ==45872== by 0x6CB7AFE: iris_blorp_exec (iris_blorp.c:307) ==45872== by 0x70F5916: try_blorp_blit (blorp_blit.c:2145) ==45872== by 0x70F5FCA: do_blorp_blit (blorp_blit.c:2273) ==45872== by 0x70F778F: blorp_copy (blorp_blit.c:2803) ==45872== by 0x6BB9EB6: iris_copy_region (iris_blit.c:725) v2: move as genX(init_screen_state) (Lionel) Signed-off-by: Tapani Pälli <tapani.palli@intel.com> Reviewed-by: Lionel Landwerlin <lionel.g.landwerlin@intel.com> Cc: mesa-stable Part-of: <https://gitlab.freedesktop.org/mesa/mesa/-/merge_requests/7544>
2020-11-11 08:59:46 +02:00
void
genX(init_screen_state)(struct iris_screen *screen)
{
assert(screen->devinfo.verx10 == GFX_VERx10);
iris: initialize shared screen->vtbl only once Screen is shared among contexts, other context might be already using vtbl while another initializes it again. ==45872== Possible data race during write of size 8 at 0x5DDAE78 by thread #549 ==45872== Locks held: 1, at address 0x5D1B6F8 ==45872== at 0x6D66D91: gen9_init_state (iris_state.c:7816) ==45872== by 0x6BA0A31: iris_create_context (iris_context.c:342) ==45872== by 0x621F390: st_api_create_context (st_manager.c:917) ==45872== by 0x620E6F9: dri_create_context (dri_context.c:163) ==45872== by 0x6A40DB1: driCreateContextAttribs (dri_util.c:480) ==45872== by 0x540B963: dri2_create_context (egl_dri2.c:1583) ==45872== by 0x53FB84E: eglCreateContext (eglapi.c:821) ==45872== ==45872== This conflicts with a previous read of size 8 by thread #544 ==45872== Locks held: 1, at address 0x5F6E0E0 ==45872== at 0x6CB779E: blorp_alloc_binding_table (iris_blorp.c:167) ==45872== by 0x6CAEF70: blorp_emit_surface_states (blorp_genX_exec.h:1540) ==45872== by 0x6CB67F9: blorp_exec (blorp_genX_exec.h:2016) ==45872== by 0x6CB7AFE: iris_blorp_exec (iris_blorp.c:307) ==45872== by 0x70F5916: try_blorp_blit (blorp_blit.c:2145) ==45872== by 0x70F5FCA: do_blorp_blit (blorp_blit.c:2273) ==45872== by 0x70F778F: blorp_copy (blorp_blit.c:2803) ==45872== by 0x6BB9EB6: iris_copy_region (iris_blit.c:725) v2: move as genX(init_screen_state) (Lionel) Signed-off-by: Tapani Pälli <tapani.palli@intel.com> Reviewed-by: Lionel Landwerlin <lionel.g.landwerlin@intel.com> Cc: mesa-stable Part-of: <https://gitlab.freedesktop.org/mesa/mesa/-/merge_requests/7544>
2020-11-11 08:59:46 +02:00
screen->vtbl.destroy_state = iris_destroy_state;
screen->vtbl.init_render_context = iris_init_render_context;
screen->vtbl.init_compute_context = iris_init_compute_context;
screen->vtbl.upload_render_state = iris_upload_render_state;
screen->vtbl.update_surface_base_address = iris_update_surface_base_address;
screen->vtbl.upload_compute_state = iris_upload_compute_state;
screen->vtbl.emit_raw_pipe_control = iris_emit_raw_pipe_control;
screen->vtbl.emit_mi_report_perf_count = iris_emit_mi_report_perf_count;
screen->vtbl.rebind_buffer = iris_rebind_buffer;
screen->vtbl.load_register_reg32 = iris_load_register_reg32;
screen->vtbl.load_register_reg64 = iris_load_register_reg64;
screen->vtbl.load_register_imm32 = iris_load_register_imm32;
screen->vtbl.load_register_imm64 = iris_load_register_imm64;
screen->vtbl.load_register_mem32 = iris_load_register_mem32;
screen->vtbl.load_register_mem64 = iris_load_register_mem64;
screen->vtbl.store_register_mem32 = iris_store_register_mem32;
screen->vtbl.store_register_mem64 = iris_store_register_mem64;
screen->vtbl.store_data_imm32 = iris_store_data_imm32;
screen->vtbl.store_data_imm64 = iris_store_data_imm64;
screen->vtbl.copy_mem_mem = iris_copy_mem_mem;
screen->vtbl.derived_program_state_size = iris_derived_program_state_size;
screen->vtbl.store_derived_program_state = iris_store_derived_program_state;
screen->vtbl.create_so_decl_list = iris_create_so_decl_list;
screen->vtbl.populate_vs_key = iris_populate_vs_key;
screen->vtbl.populate_tcs_key = iris_populate_tcs_key;
screen->vtbl.populate_tes_key = iris_populate_tes_key;
screen->vtbl.populate_gs_key = iris_populate_gs_key;
screen->vtbl.populate_fs_key = iris_populate_fs_key;
screen->vtbl.populate_cs_key = iris_populate_cs_key;
screen->vtbl.lost_genx_state = iris_lost_genx_state;
}
void
genX(init_state)(struct iris_context *ice)
{
2018-01-21 18:04:05 -08:00
struct pipe_context *ctx = &ice->ctx;
struct iris_screen *screen = (struct iris_screen *)ctx->screen;
2018-01-21 18:04:05 -08:00
ctx->create_blend_state = iris_create_blend_state;
2017-12-27 02:54:26 -08:00
ctx->create_depth_stencil_alpha_state = iris_create_zsa_state;
ctx->create_rasterizer_state = iris_create_rasterizer_state;
ctx->create_sampler_state = iris_create_sampler_state;
ctx->create_sampler_view = iris_create_sampler_view;
ctx->create_surface = iris_create_surface;
ctx->create_vertex_elements_state = iris_create_vertex_elements;
2017-12-27 02:54:26 -08:00
ctx->bind_blend_state = iris_bind_blend_state;
ctx->bind_depth_stencil_alpha_state = iris_bind_zsa_state;
ctx->bind_sampler_states = iris_bind_sampler_states;
ctx->bind_rasterizer_state = iris_bind_rasterizer_state;
2018-01-09 21:29:09 -08:00
ctx->bind_vertex_elements_state = iris_bind_vertex_elements_state;
ctx->delete_blend_state = iris_delete_state;
ctx->delete_depth_stencil_alpha_state = iris_delete_state;
ctx->delete_rasterizer_state = iris_delete_state;
ctx->delete_sampler_state = iris_delete_state;
ctx->delete_vertex_elements_state = iris_delete_state;
ctx->set_blend_color = iris_set_blend_color;
ctx->set_clip_state = iris_set_clip_state;
ctx->set_constant_buffer = iris_set_constant_buffer;
ctx->set_shader_buffers = iris_set_shader_buffers;
2018-08-30 15:45:36 -07:00
ctx->set_shader_images = iris_set_shader_images;
ctx->set_sampler_views = iris_set_sampler_views;
ctx->set_compute_resources = iris_set_compute_resources;
ctx->set_global_binding = iris_set_global_binding;
ctx->set_tess_state = iris_set_tess_state;
ctx->set_framebuffer_state = iris_set_framebuffer_state;
ctx->set_polygon_stipple = iris_set_polygon_stipple;
ctx->set_sample_mask = iris_set_sample_mask;
ctx->set_scissor_states = iris_set_scissor_states;
ctx->set_stencil_ref = iris_set_stencil_ref;
ctx->set_vertex_buffers = iris_set_vertex_buffers;
ctx->set_viewport_states = iris_set_viewport_states;
ctx->sampler_view_destroy = iris_sampler_view_destroy;
ctx->surface_destroy = iris_surface_destroy;
ctx->draw_vbo = iris_draw_vbo;
ctx->launch_grid = iris_launch_grid;
ctx->create_stream_output_target = iris_create_stream_output_target;
ctx->stream_output_target_destroy = iris_stream_output_target_destroy;
ctx->set_stream_output_targets = iris_set_stream_output_targets;
ctx->set_frontend_noop = iris_set_frontend_noop;
ice->state.dirty = ~0ull;
ice->state.stage_dirty = ~0ull;
2018-06-18 00:23:25 -07:00
ice->state.statistics_counters_enabled = true;
ice->state.sample_mask = 0xffff;
ice->state.num_viewports = 1;
ice->state.prim_mode = PIPE_PRIM_MAX;
ice->state.genx = calloc(1, sizeof(struct iris_genx_state));
ice->draw.derived_params.drawid = -1;
/* Make a 1x1x1 null surface for unbound textures */
2018-06-28 00:57:49 -07:00
void *null_surf_map =
upload_state(ice->state.surface_uploader, &ice->state.unbound_tex,
4 * GENX(RENDER_SURFACE_STATE_length), 64);
isl_null_fill_state(&screen->isl_dev, null_surf_map, isl_extent3d(1, 1, 1));
ice->state.unbound_tex.offset +=
iris_bo_offset_from_base_address(iris_resource_bo(ice->state.unbound_tex.res));
/* Default all scissor rectangles to be empty regions. */
for (int i = 0; i < IRIS_MAX_VIEWPORTS; i++) {
ice->state.scissors[i] = (struct pipe_scissor_state) {
.minx = 1, .maxx = 0, .miny = 1, .maxy = 0,
};
}
}