mesa/src/gallium/drivers/iris/iris_state.c

2273 lines
82 KiB
C
Raw Normal View History

/*
* Copyright © 2017 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* on the rights to use, copy, modify, merge, publish, distribute, sub
* license, and/or sell copies of the Software, and to permit persons to whom
* the Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
* THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
* DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
* OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
* USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#include <stdio.h>
#include <errno.h>
#ifdef HAVE_VALGRIND
#include <valgrind.h>
#include <memcheck.h>
#define VG(x) x
#define __gen_validate_value(x) VALGRIND_CHECK_MEM_IS_DEFINED(&(x), sizeof(x))
#else
#define VG(x)
#endif
#include "pipe/p_defines.h"
#include "pipe/p_state.h"
#include "pipe/p_context.h"
#include "pipe/p_screen.h"
#include "util/u_inlines.h"
#include "util/u_transfer.h"
2018-01-25 01:53:52 -08:00
#include "i915_drm.h"
#include "intel/compiler/brw_compiler.h"
2018-01-25 21:23:45 -08:00
#include "intel/common/gen_l3_config.h"
2018-01-09 11:25:29 -08:00
#include "intel/common/gen_sample_positions.h"
2017-12-27 02:54:26 -08:00
#include "iris_batch.h"
#include "iris_context.h"
2018-01-11 22:18:54 -08:00
#include "iris_pipe.h"
#include "iris_resource.h"
2018-01-21 12:20:30 -08:00
#define __gen_address_type struct iris_address
#define __gen_user_data struct iris_batch
2018-01-25 21:53:41 -08:00
#define ARRAY_BYTES(x) (sizeof(uint32_t) * ARRAY_SIZE(x))
static uint64_t
2018-01-21 12:20:30 -08:00
__gen_combine_address(struct iris_batch *batch, void *location,
struct iris_address addr, uint32_t delta)
{
2018-01-21 12:20:30 -08:00
if (addr.bo == NULL)
return addr.offset + delta;
return iris_batch_reloc(batch, location - batch->cmdbuf.map, addr.bo,
addr.offset + delta, addr.reloc_flags);
}
#define __genxml_cmd_length(cmd) cmd ## _length
#define __genxml_cmd_length_bias(cmd) cmd ## _length_bias
#define __genxml_cmd_header(cmd) cmd ## _header
#define __genxml_cmd_pack(cmd) cmd ## _pack
static void *
get_command_space(struct iris_batch *batch, unsigned bytes)
{
iris_require_command_space(batch, bytes);
void *map = batch->cmdbuf.map_next;
batch->cmdbuf.map_next += bytes;
return map;
}
2018-01-25 01:53:52 -08:00
#define _iris_pack_command(batch, cmd, dst, name) \
for (struct cmd name = { __genxml_cmd_header(cmd) }, \
*_dst = (void *)(dst); __builtin_expect(_dst != NULL, 1); \
2018-01-25 01:53:52 -08:00
({ __genxml_cmd_pack(cmd)(batch, (void *)_dst, &name); \
_dst = NULL; \
}))
2018-01-25 01:53:52 -08:00
#define iris_pack_command(cmd, dst, name) \
_iris_pack_command(NULL, cmd, dst, name)
#define iris_pack_state(cmd, dst, name) \
for (struct cmd name = {}, \
*_dst = (void *)(dst); __builtin_expect(_dst != NULL, 1); \
__genxml_cmd_pack(cmd)(NULL, (void *)_dst, &name), \
_dst = NULL)
2017-12-27 02:54:26 -08:00
#define iris_emit_cmd(batch, cmd, name) \
2018-01-25 01:53:52 -08:00
_iris_pack_command(batch, cmd, get_command_space(batch, 4 * __genxml_cmd_length(cmd)), name)
2017-12-27 02:54:26 -08:00
#define iris_emit_merge(batch, dwords0, dwords1, num_dwords) \
do { \
uint32_t *dw = get_command_space(batch, 4 * num_dwords); \
for (uint32_t i = 0; i < num_dwords; i++) \
dw[i] = (dwords0)[i] | (dwords1)[i]; \
VG(VALGRIND_CHECK_MEM_IS_DEFINED(dw, num_dwords)); \
} while (0)
2018-01-21 15:28:59 -08:00
#define iris_emit_with_addr(batch, dwords, num_dw, addr_field, addr) \
2018-01-21 13:14:49 -08:00
do { \
2018-01-21 15:28:59 -08:00
STATIC_ASSERT((GENX(addr_field) % 64) == 0); \
assert(num_dw <= ARRAY_SIZE(dwords)); \
int addr_idx = GENX(addr_field) / 32; \
uint32_t *dw = get_command_space(batch, 4 * num_dw); \
2018-01-21 15:28:59 -08:00
for (uint32_t i = 0; i < addr_idx; i++) { \
dw[i] = (dwords)[i]; \
2018-01-21 13:14:49 -08:00
} \
2018-01-21 15:28:59 -08:00
uint64_t *qw = (uint64_t *) &dw[addr_idx]; \
*qw = iris_batch_reloc(batch, (void *)qw - batch->cmdbuf.map, \
addr.bo, \
addr.offset + (dwords)[addr_idx + 1], \
addr.reloc_flags); \
2018-01-21 15:28:59 -08:00
for (uint32_t i = addr_idx + 1; i < num_dw; i++) { \
dw[i] = (dwords)[i]; \
} \
VG(VALGRIND_CHECK_MEM_IS_DEFINED(dw, num_dw * 4)); \
2018-01-21 13:14:49 -08:00
} while (0)
#include "genxml/genX_pack.h"
#include "genxml/gen_macros.h"
2018-01-21 17:34:41 -08:00
#include "genxml/genX_bits.h"
#define MOCS_WB (2 << 1)
UNUSED static void pipe_asserts()
{
#define PIPE_ASSERT(x) STATIC_ASSERT((int)x)
/* pipe_logicop happens to match the hardware. */
PIPE_ASSERT(PIPE_LOGICOP_CLEAR == LOGICOP_CLEAR);
PIPE_ASSERT(PIPE_LOGICOP_NOR == LOGICOP_NOR);
PIPE_ASSERT(PIPE_LOGICOP_AND_INVERTED == LOGICOP_AND_INVERTED);
PIPE_ASSERT(PIPE_LOGICOP_COPY_INVERTED == LOGICOP_COPY_INVERTED);
PIPE_ASSERT(PIPE_LOGICOP_AND_REVERSE == LOGICOP_AND_REVERSE);
PIPE_ASSERT(PIPE_LOGICOP_INVERT == LOGICOP_INVERT);
PIPE_ASSERT(PIPE_LOGICOP_XOR == LOGICOP_XOR);
PIPE_ASSERT(PIPE_LOGICOP_NAND == LOGICOP_NAND);
PIPE_ASSERT(PIPE_LOGICOP_AND == LOGICOP_AND);
PIPE_ASSERT(PIPE_LOGICOP_EQUIV == LOGICOP_EQUIV);
PIPE_ASSERT(PIPE_LOGICOP_NOOP == LOGICOP_NOOP);
PIPE_ASSERT(PIPE_LOGICOP_OR_INVERTED == LOGICOP_OR_INVERTED);
PIPE_ASSERT(PIPE_LOGICOP_COPY == LOGICOP_COPY);
PIPE_ASSERT(PIPE_LOGICOP_OR_REVERSE == LOGICOP_OR_REVERSE);
PIPE_ASSERT(PIPE_LOGICOP_OR == LOGICOP_OR);
PIPE_ASSERT(PIPE_LOGICOP_SET == LOGICOP_SET);
/* pipe_blend_func happens to match the hardware. */
PIPE_ASSERT(PIPE_BLENDFACTOR_ONE == BLENDFACTOR_ONE);
PIPE_ASSERT(PIPE_BLENDFACTOR_SRC_COLOR == BLENDFACTOR_SRC_COLOR);
PIPE_ASSERT(PIPE_BLENDFACTOR_SRC_ALPHA == BLENDFACTOR_SRC_ALPHA);
PIPE_ASSERT(PIPE_BLENDFACTOR_DST_ALPHA == BLENDFACTOR_DST_ALPHA);
PIPE_ASSERT(PIPE_BLENDFACTOR_DST_COLOR == BLENDFACTOR_DST_COLOR);
PIPE_ASSERT(PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE == BLENDFACTOR_SRC_ALPHA_SATURATE);
PIPE_ASSERT(PIPE_BLENDFACTOR_CONST_COLOR == BLENDFACTOR_CONST_COLOR);
PIPE_ASSERT(PIPE_BLENDFACTOR_CONST_ALPHA == BLENDFACTOR_CONST_ALPHA);
PIPE_ASSERT(PIPE_BLENDFACTOR_SRC1_COLOR == BLENDFACTOR_SRC1_COLOR);
PIPE_ASSERT(PIPE_BLENDFACTOR_SRC1_ALPHA == BLENDFACTOR_SRC1_ALPHA);
PIPE_ASSERT(PIPE_BLENDFACTOR_ZERO == BLENDFACTOR_ZERO);
PIPE_ASSERT(PIPE_BLENDFACTOR_INV_SRC_COLOR == BLENDFACTOR_INV_SRC_COLOR);
PIPE_ASSERT(PIPE_BLENDFACTOR_INV_SRC_ALPHA == BLENDFACTOR_INV_SRC_ALPHA);
PIPE_ASSERT(PIPE_BLENDFACTOR_INV_DST_ALPHA == BLENDFACTOR_INV_DST_ALPHA);
PIPE_ASSERT(PIPE_BLENDFACTOR_INV_DST_COLOR == BLENDFACTOR_INV_DST_COLOR);
PIPE_ASSERT(PIPE_BLENDFACTOR_INV_CONST_COLOR == BLENDFACTOR_INV_CONST_COLOR);
PIPE_ASSERT(PIPE_BLENDFACTOR_INV_CONST_ALPHA == BLENDFACTOR_INV_CONST_ALPHA);
PIPE_ASSERT(PIPE_BLENDFACTOR_INV_SRC1_COLOR == BLENDFACTOR_INV_SRC1_COLOR);
PIPE_ASSERT(PIPE_BLENDFACTOR_INV_SRC1_ALPHA == BLENDFACTOR_INV_SRC1_ALPHA);
/* pipe_blend_func happens to match the hardware. */
PIPE_ASSERT(PIPE_BLEND_ADD == BLENDFUNCTION_ADD);
PIPE_ASSERT(PIPE_BLEND_SUBTRACT == BLENDFUNCTION_SUBTRACT);
PIPE_ASSERT(PIPE_BLEND_REVERSE_SUBTRACT == BLENDFUNCTION_REVERSE_SUBTRACT);
PIPE_ASSERT(PIPE_BLEND_MIN == BLENDFUNCTION_MIN);
PIPE_ASSERT(PIPE_BLEND_MAX == BLENDFUNCTION_MAX);
/* pipe_stencil_op happens to match the hardware. */
PIPE_ASSERT(PIPE_STENCIL_OP_KEEP == STENCILOP_KEEP);
PIPE_ASSERT(PIPE_STENCIL_OP_ZERO == STENCILOP_ZERO);
PIPE_ASSERT(PIPE_STENCIL_OP_REPLACE == STENCILOP_REPLACE);
PIPE_ASSERT(PIPE_STENCIL_OP_INCR == STENCILOP_INCRSAT);
PIPE_ASSERT(PIPE_STENCIL_OP_DECR == STENCILOP_DECRSAT);
PIPE_ASSERT(PIPE_STENCIL_OP_INCR_WRAP == STENCILOP_INCR);
PIPE_ASSERT(PIPE_STENCIL_OP_DECR_WRAP == STENCILOP_DECR);
PIPE_ASSERT(PIPE_STENCIL_OP_INVERT == STENCILOP_INVERT);
2018-01-29 15:06:04 -08:00
/* pipe_sprite_coord_mode happens to match 3DSTATE_SBE */
PIPE_ASSERT(PIPE_SPRITE_COORD_UPPER_LEFT == UPPERLEFT);
PIPE_ASSERT(PIPE_SPRITE_COORD_LOWER_LEFT == LOWERLEFT);
#undef PIPE_ASSERT
}
2018-01-10 00:19:29 -08:00
static unsigned
translate_prim_type(enum pipe_prim_type prim, uint8_t verts_per_patch)
{
static const unsigned map[] = {
[PIPE_PRIM_POINTS] = _3DPRIM_POINTLIST,
[PIPE_PRIM_LINES] = _3DPRIM_LINELIST,
[PIPE_PRIM_LINE_LOOP] = _3DPRIM_LINELOOP,
[PIPE_PRIM_LINE_STRIP] = _3DPRIM_LINESTRIP,
[PIPE_PRIM_TRIANGLES] = _3DPRIM_TRILIST,
[PIPE_PRIM_TRIANGLE_STRIP] = _3DPRIM_TRISTRIP,
[PIPE_PRIM_TRIANGLE_FAN] = _3DPRIM_TRIFAN,
[PIPE_PRIM_QUADS] = _3DPRIM_QUADLIST,
[PIPE_PRIM_QUAD_STRIP] = _3DPRIM_QUADSTRIP,
[PIPE_PRIM_POLYGON] = _3DPRIM_POLYGON,
[PIPE_PRIM_LINES_ADJACENCY] = _3DPRIM_LINELIST_ADJ,
[PIPE_PRIM_LINE_STRIP_ADJACENCY] = _3DPRIM_LINESTRIP_ADJ,
[PIPE_PRIM_TRIANGLES_ADJACENCY] = _3DPRIM_TRILIST_ADJ,
[PIPE_PRIM_TRIANGLE_STRIP_ADJACENCY] = _3DPRIM_TRISTRIP_ADJ,
[PIPE_PRIM_PATCHES] = _3DPRIM_PATCHLIST_1 - 1,
};
2018-01-20 01:05:13 -08:00
return map[prim] + (prim == PIPE_PRIM_PATCHES ? verts_per_patch : 0);
2018-01-10 00:19:29 -08:00
}
static unsigned
translate_compare_func(enum pipe_compare_func pipe_func)
{
static const unsigned map[] = {
[PIPE_FUNC_NEVER] = COMPAREFUNCTION_NEVER,
[PIPE_FUNC_LESS] = COMPAREFUNCTION_LESS,
[PIPE_FUNC_EQUAL] = COMPAREFUNCTION_EQUAL,
[PIPE_FUNC_LEQUAL] = COMPAREFUNCTION_LEQUAL,
[PIPE_FUNC_GREATER] = COMPAREFUNCTION_GREATER,
[PIPE_FUNC_NOTEQUAL] = COMPAREFUNCTION_NOTEQUAL,
[PIPE_FUNC_GEQUAL] = COMPAREFUNCTION_GEQUAL,
[PIPE_FUNC_ALWAYS] = COMPAREFUNCTION_ALWAYS,
};
return map[pipe_func];
}
static unsigned
translate_shadow_func(enum pipe_compare_func pipe_func)
{
/* Gallium specifies the result of shadow comparisons as:
*
* 1 if ref <op> texel,
* 0 otherwise.
*
* The hardware does:
*
* 0 if texel <op> ref,
* 1 otherwise.
*
* So we need to flip the operator and also negate.
*/
static const unsigned map[] = {
[PIPE_FUNC_NEVER] = PREFILTEROPALWAYS,
[PIPE_FUNC_LESS] = PREFILTEROPLEQUAL,
[PIPE_FUNC_EQUAL] = PREFILTEROPNOTEQUAL,
[PIPE_FUNC_LEQUAL] = PREFILTEROPLESS,
[PIPE_FUNC_GREATER] = PREFILTEROPGEQUAL,
[PIPE_FUNC_NOTEQUAL] = PREFILTEROPEQUAL,
[PIPE_FUNC_GEQUAL] = PREFILTEROPGREATER,
[PIPE_FUNC_ALWAYS] = PREFILTEROPNEVER,
};
return map[pipe_func];
}
static unsigned
translate_cull_mode(unsigned pipe_face)
{
static const unsigned map[4] = {
[PIPE_FACE_NONE] = CULLMODE_NONE,
[PIPE_FACE_FRONT] = CULLMODE_FRONT,
[PIPE_FACE_BACK] = CULLMODE_BACK,
[PIPE_FACE_FRONT_AND_BACK] = CULLMODE_BOTH,
};
return map[pipe_face];
}
static unsigned
translate_fill_mode(unsigned pipe_polymode)
{
static const unsigned map[4] = {
[PIPE_POLYGON_MODE_FILL] = FILL_MODE_SOLID,
[PIPE_POLYGON_MODE_LINE] = FILL_MODE_WIREFRAME,
[PIPE_POLYGON_MODE_POINT] = FILL_MODE_POINT,
[PIPE_POLYGON_MODE_FILL_RECTANGLE] = FILL_MODE_SOLID,
};
return map[pipe_polymode];
}
static struct iris_address
2018-01-21 12:20:30 -08:00
ro_bo(struct iris_bo *bo, uint32_t offset)
{
return (struct iris_address) { .bo = bo, .offset = offset };
}
static void
2018-01-25 01:53:52 -08:00
iris_emit_state_base_address(struct iris_batch *batch)
{
/* XXX: PIPE_CONTROLs */
iris_emit_cmd(batch, GENX(STATE_BASE_ADDRESS), sba) {
#if 0
// XXX: MOCS is stupid for this.
sba.GeneralStateMemoryObjectControlState = MOCS_WB;
sba.StatelessDataPortAccessMemoryObjectControlState = MOCS_WB;
sba.SurfaceStateMemoryObjectControlState = MOCS_WB;
sba.DynamicStateMemoryObjectControlState = MOCS_WB;
sba.IndirectObjectMemoryObjectControlState = MOCS_WB;
sba.InstructionMemoryObjectControlState = MOCS_WB;
sba.BindlessSurfaceStateMemoryObjectControlState = MOCS_WB;
#endif
sba.GeneralStateBaseAddressModifyEnable = true;
sba.SurfaceStateBaseAddressModifyEnable = true;
sba.DynamicStateBaseAddressModifyEnable = true;
sba.IndirectObjectBaseAddressModifyEnable = true;
sba.InstructionBaseAddressModifyEnable = true;
sba.GeneralStateBufferSizeModifyEnable = true;
sba.DynamicStateBufferSizeModifyEnable = true;
sba.BindlessSurfaceStateBaseAddressModifyEnable = true;
sba.IndirectObjectBufferSizeModifyEnable = true;
sba.InstructionBuffersizeModifyEnable = true;
sba.SurfaceStateBaseAddress = ro_bo(batch->statebuf.bo, 0);
sba.DynamicStateBaseAddress = ro_bo(batch->statebuf.bo, 0);
sba.GeneralStateBufferSize = 0xfffff;
sba.IndirectObjectBufferSize = 0xfffff;
sba.InstructionBufferSize = 0xfffff;
sba.DynamicStateBufferSize = ALIGN(MAX_STATE_SIZE, 4096);
}
}
static void
iris_init_render_context(struct iris_screen *screen,
struct iris_batch *batch,
struct pipe_debug_callback *dbg)
2018-01-09 11:25:29 -08:00
{
2018-01-25 01:53:52 -08:00
batch->emit_state_base_address = iris_emit_state_base_address;
iris_init_batch(batch, screen, dbg, I915_EXEC_RENDER);
2018-01-09 11:25:29 -08:00
iris_emit_cmd(batch, GENX(3DSTATE_DRAWING_RECTANGLE), rect) {
rect.ClippedDrawingRectangleXMax = UINT16_MAX;
rect.ClippedDrawingRectangleYMax = UINT16_MAX;
}
iris_emit_cmd(batch, GENX(3DSTATE_SAMPLE_PATTERN), pat) {
GEN_SAMPLE_POS_1X(pat._1xSample);
GEN_SAMPLE_POS_2X(pat._2xSample);
GEN_SAMPLE_POS_4X(pat._4xSample);
GEN_SAMPLE_POS_8X(pat._8xSample);
GEN_SAMPLE_POS_16X(pat._16xSample);
}
iris_emit_cmd(batch, GENX(3DSTATE_AA_LINE_PARAMETERS), foo);
iris_emit_cmd(batch, GENX(3DSTATE_WM_CHROMAKEY), foo);
iris_emit_cmd(batch, GENX(3DSTATE_WM_HZ_OP), foo);
2018-01-09 21:29:09 -08:00
/* XXX: may need to set an offset for origin-UL framebuffers */
iris_emit_cmd(batch, GENX(3DSTATE_POLY_STIPPLE_OFFSET), foo);
2018-01-11 23:01:28 -08:00
/* Just assign a static partitioning. */
for (int i = 0; i <= MESA_SHADER_FRAGMENT; i++) {
iris_emit_cmd(batch, GENX(3DSTATE_PUSH_CONSTANT_ALLOC_VS), alloc) {
alloc._3DCommandSubOpcode = 18 + i;
alloc.ConstantBufferOffset = 6 * i;
alloc.ConstantBufferSize = i == MESA_SHADER_FRAGMENT ? 8 : 6;
}
}
2018-01-09 11:25:29 -08:00
}
static void
iris_launch_grid(struct pipe_context *ctx, const struct pipe_grid_info *info)
{
}
static void
iris_set_blend_color(struct pipe_context *ctx,
const struct pipe_blend_color *state)
{
struct iris_context *ice = (struct iris_context *) ctx;
memcpy(&ice->state.blend_color, state, sizeof(struct pipe_blend_color));
ice->state.dirty |= IRIS_DIRTY_COLOR_CALC_STATE;
}
struct iris_blend_state {
uint32_t ps_blend[GENX(3DSTATE_PS_BLEND_length)];
2018-01-25 21:53:41 -08:00
uint32_t blend_state[GENX(BLEND_STATE_length) +
BRW_MAX_DRAW_BUFFERS * GENX(BLEND_STATE_ENTRY_length)];
2018-01-25 02:09:59 -08:00
bool alpha_to_coverage; /* for shader key */
};
static void *
iris_create_blend_state(struct pipe_context *ctx,
const struct pipe_blend_state *state)
{
struct iris_blend_state *cso = malloc(sizeof(struct iris_blend_state));
2018-01-25 21:53:41 -08:00
uint32_t *blend_state = cso->blend_state;
2018-01-25 02:09:59 -08:00
cso->alpha_to_coverage = state->alpha_to_coverage;
iris_pack_command(GENX(3DSTATE_PS_BLEND), cso->ps_blend, pb) {
2018-01-25 21:58:31 -08:00
/* pb.HasWriteableRT is filled in at draw time. */
/* pb.AlphaTestEnable is filled in at draw time. */
pb.AlphaToCoverageEnable = state->alpha_to_coverage;
pb.IndependentAlphaBlendEnable = state->independent_blend_enable;
pb.ColorBufferBlendEnable = state->rt[0].blend_enable;
pb.SourceBlendFactor = state->rt[0].rgb_src_factor;
pb.SourceAlphaBlendFactor = state->rt[0].alpha_func;
pb.DestinationBlendFactor = state->rt[0].rgb_dst_factor;
pb.DestinationAlphaBlendFactor = state->rt[0].alpha_dst_factor;
}
2018-01-25 21:53:41 -08:00
iris_pack_state(GENX(BLEND_STATE), blend_state, bs) {
bs.AlphaToCoverageEnable = state->alpha_to_coverage;
bs.IndependentAlphaBlendEnable = state->independent_blend_enable;
bs.AlphaToOneEnable = state->alpha_to_one;
bs.AlphaToCoverageDitherEnable = state->alpha_to_coverage;
bs.ColorDitherEnable = state->dither;
2018-01-25 21:58:31 -08:00
/* bl.AlphaTestEnable and bs.AlphaTestFunction are filled in later. */
2018-01-25 21:53:41 -08:00
}
blend_state += GENX(BLEND_STATE_length);
for (int i = 0; i < BRW_MAX_DRAW_BUFFERS; i++) {
2018-01-25 21:53:41 -08:00
iris_pack_state(GENX(BLEND_STATE_ENTRY), blend_state, be) {
be.LogicOpEnable = state->logicop_enable;
be.LogicOpFunction = state->logicop_func;
be.PreBlendSourceOnlyClampEnable = false;
be.ColorClampRange = COLORCLAMP_RTFORMAT;
be.PreBlendColorClampEnable = true;
be.PostBlendColorClampEnable = true;
be.ColorBufferBlendEnable = state->rt[i].blend_enable;
be.ColorBlendFunction = state->rt[i].rgb_func;
be.AlphaBlendFunction = state->rt[i].alpha_func;
be.SourceBlendFactor = state->rt[i].rgb_src_factor;
be.SourceAlphaBlendFactor = state->rt[i].alpha_func;
be.DestinationBlendFactor = state->rt[i].rgb_dst_factor;
be.DestinationAlphaBlendFactor = state->rt[i].alpha_dst_factor;
be.WriteDisableRed = state->rt[i].colormask & PIPE_MASK_R;
be.WriteDisableGreen = state->rt[i].colormask & PIPE_MASK_G;
be.WriteDisableBlue = state->rt[i].colormask & PIPE_MASK_B;
be.WriteDisableAlpha = state->rt[i].colormask & PIPE_MASK_A;
}
2018-01-25 21:53:41 -08:00
blend_state += GENX(BLEND_STATE_ENTRY_length);
}
return cso;
}
2017-12-27 02:54:26 -08:00
static void
iris_bind_blend_state(struct pipe_context *ctx, void *state)
{
struct iris_context *ice = (struct iris_context *) ctx;
ice->state.cso_blend = state;
ice->state.dirty |= IRIS_DIRTY_CC_VIEWPORT;
ice->state.dirty |= IRIS_DIRTY_WM_DEPTH_STENCIL;
}
struct iris_depth_stencil_alpha_state {
uint32_t wmds[GENX(3DSTATE_WM_DEPTH_STENCIL_length)];
uint32_t cc_vp[GENX(CC_VIEWPORT_length)];
struct pipe_alpha_state alpha; /* to BLEND_STATE, 3DSTATE_PS_BLEND */
};
static void *
2017-12-27 02:54:26 -08:00
iris_create_zsa_state(struct pipe_context *ctx,
const struct pipe_depth_stencil_alpha_state *state)
{
struct iris_depth_stencil_alpha_state *cso =
malloc(sizeof(struct iris_depth_stencil_alpha_state));
cso->alpha = state->alpha;
bool two_sided_stencil = state->stencil[1].enabled;
/* The state tracker needs to optimize away EQUAL writes for us. */
assert(!(state->depth.func == PIPE_FUNC_EQUAL && state->depth.writemask));
iris_pack_command(GENX(3DSTATE_WM_DEPTH_STENCIL), cso->wmds, wmds) {
wmds.StencilFailOp = state->stencil[0].fail_op;
wmds.StencilPassDepthFailOp = state->stencil[0].zfail_op;
wmds.StencilPassDepthPassOp = state->stencil[0].zpass_op;
wmds.StencilTestFunction =
translate_compare_func(state->stencil[0].func);
wmds.BackfaceStencilFailOp = state->stencil[1].fail_op;
wmds.BackfaceStencilPassDepthFailOp = state->stencil[1].zfail_op;
wmds.BackfaceStencilPassDepthPassOp = state->stencil[1].zpass_op;
wmds.BackfaceStencilTestFunction =
translate_compare_func(state->stencil[1].func);
wmds.DepthTestFunction = translate_compare_func(state->depth.func);
wmds.DoubleSidedStencilEnable = two_sided_stencil;
wmds.StencilTestEnable = state->stencil[0].enabled;
wmds.StencilBufferWriteEnable =
state->stencil[0].writemask != 0 ||
(two_sided_stencil && state->stencil[1].writemask != 0);
wmds.DepthTestEnable = state->depth.enabled;
wmds.DepthBufferWriteEnable = state->depth.writemask;
wmds.StencilTestMask = state->stencil[0].valuemask;
wmds.StencilWriteMask = state->stencil[0].writemask;
wmds.BackfaceStencilTestMask = state->stencil[1].valuemask;
wmds.BackfaceStencilWriteMask = state->stencil[1].writemask;
2018-01-09 11:25:29 -08:00
/* wmds.[Backface]StencilReferenceValue are merged later */
}
iris_pack_state(GENX(CC_VIEWPORT), cso->cc_vp, ccvp) {
ccvp.MinimumDepth = state->depth.bounds_min;
ccvp.MaximumDepth = state->depth.bounds_max;
}
return cso;
}
2017-12-27 02:54:26 -08:00
static void
iris_bind_zsa_state(struct pipe_context *ctx, void *state)
{
struct iris_context *ice = (struct iris_context *) ctx;
2018-01-10 00:36:44 -08:00
struct iris_depth_stencil_alpha_state *old_cso = ice->state.cso_zsa;
struct iris_depth_stencil_alpha_state *new_cso = state;
if (new_cso) {
if (!old_cso || old_cso->alpha.ref_value != new_cso->alpha.ref_value) {
ice->state.dirty |= IRIS_DIRTY_COLOR_CALC_STATE;
}
}
ice->state.cso_zsa = new_cso;
2017-12-27 02:54:26 -08:00
ice->state.dirty |= IRIS_DIRTY_CC_VIEWPORT;
ice->state.dirty |= IRIS_DIRTY_WM_DEPTH_STENCIL;
}
struct iris_rasterizer_state {
uint32_t sf[GENX(3DSTATE_SF_length)];
uint32_t clip[GENX(3DSTATE_CLIP_length)];
uint32_t raster[GENX(3DSTATE_RASTER_length)];
uint32_t wm[GENX(3DSTATE_WM_length)];
2018-01-20 00:55:16 -08:00
uint32_t line_stipple[GENX(3DSTATE_LINE_STIPPLE_length)];
bool flatshade; /* for shader state */
2018-01-25 02:09:59 -08:00
bool clamp_fragment_color; /* for shader state */
bool light_twoside; /* for shader state */
bool rasterizer_discard; /* for 3DSTATE_STREAMOUT */
2018-01-09 23:13:16 -08:00
bool half_pixel_center; /* for 3DSTATE_MULTISAMPLE */
enum pipe_sprite_coord_mode sprite_coord_mode; /* PIPE_SPRITE_* */
2018-01-29 15:06:04 -08:00
uint16_t sprite_coord_enable;
};
static void *
iris_create_rasterizer_state(struct pipe_context *ctx,
const struct pipe_rasterizer_state *state)
{
struct iris_rasterizer_state *cso =
malloc(sizeof(struct iris_rasterizer_state));
#if 0
point_quad_rasterization -> SBE?
not necessary?
{
poly_smooth
force_persample_interp - ?
bottom_edge_rule
offset_units_unscaled - cap not exposed
}
#endif
cso->flatshade = state->flatshade;
2018-01-25 02:09:59 -08:00
cso->clamp_fragment_color = state->clamp_fragment_color;
cso->light_twoside = state->light_twoside;
cso->rasterizer_discard = state->rasterizer_discard;
2018-01-09 23:13:16 -08:00
cso->half_pixel_center = state->half_pixel_center;
2018-01-29 15:06:04 -08:00
cso->sprite_coord_mode = state->sprite_coord_mode;
cso->sprite_coord_enable = state->sprite_coord_enable;
iris_pack_command(GENX(3DSTATE_SF), cso->sf, sf) {
sf.StatisticsEnable = true;
sf.ViewportTransformEnable = true;
sf.AALineDistanceMode = AALINEDISTANCE_TRUE;
sf.LineEndCapAntialiasingRegionWidth =
state->line_smooth ? _10pixels : _05pixels;
sf.LastPixelEnable = state->line_last_pixel;
sf.LineWidth = state->line_width;
sf.SmoothPointEnable = state->point_smooth;
sf.PointWidthSource = state->point_size_per_vertex ? Vertex : State;
sf.PointWidth = state->point_size;
if (state->flatshade_first) {
sf.TriangleStripListProvokingVertexSelect = 2;
sf.TriangleFanProvokingVertexSelect = 2;
sf.LineStripListProvokingVertexSelect = 1;
} else {
sf.TriangleFanProvokingVertexSelect = 1;
}
}
/* COMPLETE! */
iris_pack_command(GENX(3DSTATE_RASTER), cso->raster, rr) {
rr.FrontWinding = state->front_ccw ? CounterClockwise : Clockwise;
rr.CullMode = translate_cull_mode(state->cull_face);
rr.FrontFaceFillMode = translate_fill_mode(state->fill_front);
rr.BackFaceFillMode = translate_fill_mode(state->fill_back);
rr.DXMultisampleRasterizationEnable = state->multisample;
rr.GlobalDepthOffsetEnableSolid = state->offset_tri;
rr.GlobalDepthOffsetEnableWireframe = state->offset_line;
rr.GlobalDepthOffsetEnablePoint = state->offset_point;
rr.GlobalDepthOffsetConstant = state->offset_units;
rr.GlobalDepthOffsetScale = state->offset_scale;
rr.GlobalDepthOffsetClamp = state->offset_clamp;
rr.SmoothPointEnable = state->point_smooth;
rr.AntialiasingEnable = state->line_smooth;
rr.ScissorRectangleEnable = state->scissor;
rr.ViewportZNearClipTestEnable = state->depth_clip_near;
rr.ViewportZFarClipTestEnable = state->depth_clip_far;
//rr.ConservativeRasterizationEnable = not yet supported by Gallium...
}
iris_pack_command(GENX(3DSTATE_CLIP), cso->clip, cl) {
/* cl.NonPerspectiveBarycentricEnable is filled in at draw time from
* the FS program; cl.ForceZeroRTAIndexEnable is filled in from the FB.
*/
cl.StatisticsEnable = true;
cl.EarlyCullEnable = true;
cl.UserClipDistanceClipTestEnableBitmask = state->clip_plane_enable;
cl.ForceUserClipDistanceClipTestEnableBitmask = true;
cl.APIMode = state->clip_halfz ? APIMODE_D3D : APIMODE_OGL;
cl.GuardbandClipTestEnable = true;
cl.ClipMode = CLIPMODE_NORMAL;
cl.ClipEnable = true;
cl.ViewportXYClipTestEnable = state->point_tri_clip;
cl.MinimumPointWidth = 0.125;
cl.MaximumPointWidth = 255.875;
if (state->flatshade_first) {
cl.TriangleStripListProvokingVertexSelect = 2;
cl.TriangleFanProvokingVertexSelect = 2;
cl.LineStripListProvokingVertexSelect = 1;
} else {
cl.TriangleFanProvokingVertexSelect = 1;
}
}
iris_pack_command(GENX(3DSTATE_WM), cso->wm, wm) {
/* wm.BarycentricInterpolationMode and wm.EarlyDepthStencilControl are
* filled in at draw time from the FS program.
*/
wm.LineAntialiasingRegionWidth = _10pixels;
wm.LineEndCapAntialiasingRegionWidth = _05pixels;
wm.PointRasterizationRule = RASTRULE_UPPER_RIGHT;
wm.StatisticsEnable = true;
wm.LineStippleEnable = state->line_stipple_enable;
wm.PolygonStippleEnable = state->poly_stipple_enable;
}
2018-01-20 00:55:16 -08:00
/* Remap from 0..255 back to 1..256 */
const unsigned line_stipple_factor = state->line_stipple_factor + 1;
iris_pack_command(GENX(3DSTATE_LINE_STIPPLE), cso->line_stipple, line) {
line.LineStipplePattern = state->line_stipple_pattern;
line.LineStippleInverseRepeatCount = 1.0f / line_stipple_factor;
line.LineStippleRepeatCount = line_stipple_factor;
}
return cso;
}
static void
iris_bind_rasterizer_state(struct pipe_context *ctx, void *state)
{
struct iris_context *ice = (struct iris_context *) ctx;
2018-01-09 21:29:09 -08:00
struct iris_rasterizer_state *old_cso = ice->state.cso_rast;
struct iris_rasterizer_state *new_cso = state;
2018-01-10 00:36:44 -08:00
if (new_cso) {
2018-01-09 23:14:10 -08:00
/* Try to avoid re-emitting 3DSTATE_LINE_STIPPLE, it's non-pipelined */
2018-01-20 00:55:16 -08:00
if (!old_cso || memcmp(old_cso->line_stipple, new_cso->line_stipple,
sizeof(old_cso->line_stipple)) != 0) {
2018-01-09 23:14:10 -08:00
ice->state.dirty |= IRIS_DIRTY_LINE_STIPPLE;
}
2018-01-09 21:29:09 -08:00
2018-01-10 00:36:44 -08:00
if (!old_cso ||
old_cso->half_pixel_center != new_cso->half_pixel_center) {
2018-01-09 23:14:10 -08:00
ice->state.dirty |= IRIS_DIRTY_MULTISAMPLE;
}
2018-01-09 23:13:16 -08:00
}
2018-01-09 21:29:09 -08:00
ice->state.cso_rast = new_cso;
ice->state.dirty |= IRIS_DIRTY_RASTER;
}
static uint32_t
translate_wrap(unsigned pipe_wrap)
{
static const unsigned map[] = {
[PIPE_TEX_WRAP_REPEAT] = TCM_WRAP,
[PIPE_TEX_WRAP_CLAMP] = TCM_HALF_BORDER,
[PIPE_TEX_WRAP_CLAMP_TO_EDGE] = TCM_CLAMP,
[PIPE_TEX_WRAP_CLAMP_TO_BORDER] = TCM_CLAMP_BORDER,
[PIPE_TEX_WRAP_MIRROR_REPEAT] = TCM_MIRROR,
[PIPE_TEX_WRAP_MIRROR_CLAMP_TO_EDGE] = TCM_MIRROR_ONCE,
[PIPE_TEX_WRAP_MIRROR_CLAMP] = -1, // XXX: ???
[PIPE_TEX_WRAP_MIRROR_CLAMP_TO_BORDER] = -1, // XXX: ???
};
return map[pipe_wrap];
}
/**
* Return true if the given wrap mode requires the border color to exist.
*/
static bool
wrap_mode_needs_border_color(unsigned wrap_mode)
{
return wrap_mode == TCM_CLAMP_BORDER || wrap_mode == TCM_HALF_BORDER;
}
static unsigned
translate_mip_filter(enum pipe_tex_mipfilter pipe_mip)
{
static const unsigned map[] = {
[PIPE_TEX_MIPFILTER_NEAREST] = MIPFILTER_NEAREST,
[PIPE_TEX_MIPFILTER_LINEAR] = MIPFILTER_LINEAR,
[PIPE_TEX_MIPFILTER_NONE] = MIPFILTER_NONE,
};
return map[pipe_mip];
}
struct iris_sampler_state {
struct pipe_sampler_state base;
bool needs_border_color;
uint32_t sampler_state[GENX(SAMPLER_STATE_length)];
};
static void *
iris_create_sampler_state(struct pipe_context *pctx,
const struct pipe_sampler_state *state)
{
struct iris_sampler_state *cso = CALLOC_STRUCT(iris_sampler_state);
if (!cso)
return NULL;
STATIC_ASSERT(PIPE_TEX_FILTER_NEAREST == MAPFILTER_NEAREST);
STATIC_ASSERT(PIPE_TEX_FILTER_LINEAR == MAPFILTER_LINEAR);
unsigned wrap_s = translate_wrap(state->wrap_s);
unsigned wrap_t = translate_wrap(state->wrap_t);
unsigned wrap_r = translate_wrap(state->wrap_r);
cso->needs_border_color = wrap_mode_needs_border_color(wrap_s) ||
wrap_mode_needs_border_color(wrap_t) ||
wrap_mode_needs_border_color(wrap_r);
iris_pack_state(GENX(SAMPLER_STATE), cso->sampler_state, samp) {
samp.TCXAddressControlMode = wrap_s;
samp.TCYAddressControlMode = wrap_t;
samp.TCZAddressControlMode = wrap_r;
samp.CubeSurfaceControlMode = state->seamless_cube_map;
samp.NonnormalizedCoordinateEnable = !state->normalized_coords;
samp.MinModeFilter = state->min_img_filter;
samp.MagModeFilter = state->mag_img_filter;
samp.MipModeFilter = translate_mip_filter(state->min_mip_filter);
samp.MaximumAnisotropy = RATIO21;
if (state->max_anisotropy >= 2) {
if (state->min_img_filter == PIPE_TEX_FILTER_LINEAR) {
samp.MinModeFilter = MAPFILTER_ANISOTROPIC;
samp.AnisotropicAlgorithm = EWAApproximation;
}
if (state->mag_img_filter == PIPE_TEX_FILTER_LINEAR)
samp.MagModeFilter = MAPFILTER_ANISOTROPIC;
samp.MaximumAnisotropy =
MIN2((state->max_anisotropy - 2) / 2, RATIO161);
}
/* Set address rounding bits if not using nearest filtering. */
if (state->min_img_filter != PIPE_TEX_FILTER_NEAREST) {
samp.UAddressMinFilterRoundingEnable = true;
samp.VAddressMinFilterRoundingEnable = true;
samp.RAddressMinFilterRoundingEnable = true;
}
if (state->mag_img_filter != PIPE_TEX_FILTER_NEAREST) {
samp.UAddressMagFilterRoundingEnable = true;
samp.VAddressMagFilterRoundingEnable = true;
samp.RAddressMagFilterRoundingEnable = true;
}
if (state->compare_mode == PIPE_TEX_COMPARE_R_TO_TEXTURE)
samp.ShadowFunction = translate_shadow_func(state->compare_func);
const float hw_max_lod = GEN_GEN >= 7 ? 14 : 13;
samp.LODPreClampMode = CLAMP_MODE_OGL;
samp.MinLOD = CLAMP(state->min_lod, 0, hw_max_lod);
samp.MaxLOD = CLAMP(state->max_lod, 0, hw_max_lod);
samp.TextureLODBias = CLAMP(state->lod_bias, -16, 15);
//samp.BorderColorPointer = <<comes from elsewhere>>
}
return cso;
}
2018-01-11 22:18:54 -08:00
static void
iris_bind_sampler_states(struct pipe_context *ctx,
enum pipe_shader_type p_stage,
unsigned start, unsigned count,
void **states)
{
struct iris_context *ice = (struct iris_context *) ctx;
gl_shader_stage stage = stage_from_pipe(p_stage);
assert(start + count <= IRIS_MAX_TEXTURE_SAMPLERS);
for (int i = 0; i < count; i++) {
ice->state.samplers[stage][start + i] = states[i];
}
ice->state.dirty |= IRIS_DIRTY_SAMPLER_STATES_VS << stage;
2018-01-11 22:18:54 -08:00
}
2018-01-09 17:54:43 -08:00
struct iris_sampler_view {
struct pipe_sampler_view pipe;
struct isl_view view;
uint32_t surface_state[GENX(RENDER_SURFACE_STATE_length)];
};
/**
* Convert an swizzle enumeration (i.e. SWIZZLE_X) to one of the Gen7.5+
* "Shader Channel Select" enumerations (i.e. HSW_SCS_RED). The mappings are
*
* SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_W, SWIZZLE_ZERO, SWIZZLE_ONE
* 0 1 2 3 4 5
* 4 5 6 7 0 1
* SCS_RED, SCS_GREEN, SCS_BLUE, SCS_ALPHA, SCS_ZERO, SCS_ONE
*
* which is simply adding 4 then modding by 8 (or anding with 7).
*
* We then may need to apply workarounds for textureGather hardware bugs.
*/
static enum isl_channel_select
pipe_swizzle_to_isl_channel(enum pipe_swizzle swizzle)
2018-01-09 14:34:15 -08:00
{
2018-01-09 17:54:43 -08:00
return (swizzle + 4) & 7;
2018-01-09 14:34:15 -08:00
}
static struct pipe_sampler_view *
iris_create_sampler_view(struct pipe_context *ctx,
2018-01-09 17:54:43 -08:00
struct pipe_resource *tex,
const struct pipe_sampler_view *tmpl)
{
2018-01-09 17:54:43 -08:00
struct iris_screen *screen = (struct iris_screen *)ctx->screen;
struct iris_resource *itex = (struct iris_resource *) tex;
struct iris_sampler_view *isv = calloc(1, sizeof(struct iris_sampler_view));
2018-01-09 17:54:43 -08:00
if (!isv)
return NULL;
/* initialize base object */
2018-01-09 17:54:43 -08:00
isv->pipe = *tmpl;
isv->pipe.context = ctx;
isv->pipe.texture = NULL;
pipe_reference_init(&isv->pipe.reference, 1);
pipe_resource_reference(&isv->pipe.texture, tex);
/* XXX: do we need brw_get_texture_swizzle hacks here? */
isv->view = (struct isl_view) {
.format = iris_isl_format_for_pipe_format(tmpl->format),
.base_level = tmpl->u.tex.first_level,
.levels = tmpl->u.tex.last_level - tmpl->u.tex.first_level + 1,
.base_array_layer = tmpl->u.tex.first_layer,
.array_len = tmpl->u.tex.last_layer - tmpl->u.tex.first_layer + 1,
.swizzle = (struct isl_swizzle) {
.r = pipe_swizzle_to_isl_channel(tmpl->swizzle_r),
.g = pipe_swizzle_to_isl_channel(tmpl->swizzle_g),
.b = pipe_swizzle_to_isl_channel(tmpl->swizzle_b),
.a = pipe_swizzle_to_isl_channel(tmpl->swizzle_a),
},
.usage = ISL_SURF_USAGE_TEXTURE_BIT,
};
isl_surf_fill_state(&screen->isl_dev, isv->surface_state,
.surf = &itex->surf, .view = &isv->view,
.mocs = MOCS_WB);
// .address = ...
// .aux_surf =
// .clear_color = clear_color,
return &isv->pipe;
}
2018-01-09 14:34:15 -08:00
struct iris_surface {
struct pipe_surface pipe;
struct isl_view view;
uint32_t surface_state[GENX(RENDER_SURFACE_STATE_length)];
};
static struct pipe_surface *
iris_create_surface(struct pipe_context *ctx,
struct pipe_resource *tex,
2018-01-09 17:54:43 -08:00
const struct pipe_surface *tmpl)
{
2018-01-09 14:34:15 -08:00
struct iris_screen *screen = (struct iris_screen *)ctx->screen;
struct iris_surface *surf = calloc(1, sizeof(struct iris_surface));
struct pipe_surface *psurf = &surf->pipe;
struct iris_resource *itex = (struct iris_resource *) tex;
2018-01-09 14:34:15 -08:00
if (!surf)
return NULL;
2018-01-09 14:34:15 -08:00
pipe_reference_init(&psurf->reference, 1);
pipe_resource_reference(&psurf->texture, tex);
psurf->context = ctx;
2018-01-09 17:54:43 -08:00
psurf->format = tmpl->format;
2018-01-09 14:34:15 -08:00
psurf->width = tex->width0;
psurf->height = tex->height0;
psurf->texture = tex;
2018-01-09 17:54:43 -08:00
psurf->u.tex.first_layer = tmpl->u.tex.first_layer;
psurf->u.tex.last_layer = tmpl->u.tex.last_layer;
psurf->u.tex.level = tmpl->u.tex.level;
2018-01-09 14:34:15 -08:00
surf->view = (struct isl_view) {
2018-01-09 17:54:43 -08:00
.format = iris_isl_format_for_pipe_format(tmpl->format),
.base_level = tmpl->u.tex.level,
2018-01-09 14:34:15 -08:00
.levels = 1,
2018-01-09 17:54:43 -08:00
.base_array_layer = tmpl->u.tex.first_layer,
.array_len = tmpl->u.tex.last_layer - tmpl->u.tex.first_layer + 1,
2018-01-09 14:34:15 -08:00
.swizzle = ISL_SWIZZLE_IDENTITY,
2018-01-09 17:54:43 -08:00
// XXX: DEPTH_BIt, STENCIL_BIT...CUBE_BIT? Other bits?!
2018-01-09 14:34:15 -08:00
.usage = ISL_SURF_USAGE_RENDER_TARGET_BIT,
};
isl_surf_fill_state(&screen->isl_dev, surf->surface_state,
.surf = &itex->surf, .view = &surf->view,
.mocs = MOCS_WB);
// .address = ...
2018-01-09 17:54:43 -08:00
// .aux_surf =
2018-01-09 14:34:15 -08:00
// .clear_color = clear_color,
return psurf;
}
static void
iris_set_sampler_views(struct pipe_context *ctx,
enum pipe_shader_type shader,
unsigned start, unsigned count,
struct pipe_sampler_view **views)
{
}
static void
iris_set_clip_state(struct pipe_context *ctx,
const struct pipe_clip_state *state)
{
}
static void
iris_set_polygon_stipple(struct pipe_context *ctx,
const struct pipe_poly_stipple *state)
{
struct iris_context *ice = (struct iris_context *) ctx;
memcpy(&ice->state.poly_stipple, state, sizeof(*state));
ice->state.dirty |= IRIS_DIRTY_POLYGON_STIPPLE;
}
static void
2018-01-10 00:19:29 -08:00
iris_set_sample_mask(struct pipe_context *ctx, unsigned sample_mask)
{
2018-01-10 00:19:29 -08:00
struct iris_context *ice = (struct iris_context *) ctx;
ice->state.sample_mask = sample_mask;
ice->state.dirty |= IRIS_DIRTY_SAMPLE_MASK;
}
static void
iris_set_scissor_states(struct pipe_context *ctx,
unsigned start_slot,
unsigned num_scissors,
2018-01-21 21:23:48 -08:00
const struct pipe_scissor_state *states)
{
struct iris_context *ice = (struct iris_context *) ctx;
2018-01-09 11:51:34 -08:00
ice->state.num_scissors = num_scissors;
2018-01-21 21:23:48 -08:00
for (unsigned i = 0; i < num_scissors; i++) {
ice->state.scissors[start_slot + i] = states[i];
}
ice->state.dirty |= IRIS_DIRTY_SCISSOR_RECT;
}
static void
iris_set_stencil_ref(struct pipe_context *ctx,
const struct pipe_stencil_ref *state)
{
struct iris_context *ice = (struct iris_context *) ctx;
memcpy(&ice->state.stencil_ref, state, sizeof(*state));
ice->state.dirty |= IRIS_DIRTY_WM_DEPTH_STENCIL;
}
2017-12-23 14:33:04 -08:00
struct iris_viewport_state {
2018-01-09 23:17:43 -08:00
uint32_t sf_cl_vp[GENX(SF_CLIP_VIEWPORT_length)];
2017-12-23 14:33:04 -08:00
};
static float
extent_from_matrix(const struct pipe_viewport_state *state, int axis)
{
return fabsf(state->scale[axis]) * state->translate[axis];
}
#if 0
static void
calculate_guardband_size(uint32_t fb_width, uint32_t fb_height,
float m00, float m11, float m30, float m31,
float *xmin, float *xmax,
float *ymin, float *ymax)
{
/* According to the "Vertex X,Y Clamping and Quantization" section of the
* Strips and Fans documentation:
*
* "The vertex X and Y screen-space coordinates are also /clamped/ to the
* fixed-point "guardband" range supported by the rasterization hardware"
*
* and
*
* "In almost all circumstances, if an objects vertices are actually
* modified by this clamping (i.e., had X or Y coordinates outside of
* the guardband extent the rendered object will not match the intended
* result. Therefore software should take steps to ensure that this does
* not happen - e.g., by clipping objects such that they do not exceed
* these limits after the Drawing Rectangle is applied."
*
* I believe the fundamental restriction is that the rasterizer (in
* the SF/WM stages) have a limit on the number of pixels that can be
* rasterized. We need to ensure any coordinates beyond the rasterizer
* limit are handled by the clipper. So effectively that limit becomes
* the clipper's guardband size.
*
* It goes on to say:
*
* "In addition, in order to be correctly rendered, objects must have a
* screenspace bounding box not exceeding 8K in the X or Y direction.
* This additional restriction must also be comprehended by software,
* i.e., enforced by use of clipping."
*
* This makes no sense. Gen7+ hardware supports 16K render targets,
* and you definitely need to be able to draw polygons that fill the
* surface. Our assumption is that the rasterizer was limited to 8K
* on Sandybridge, which only supports 8K surfaces, and it was actually
* increased to 16K on Ivybridge and later.
*
* So, limit the guardband to 16K on Gen7+ and 8K on Sandybridge.
*/
const float gb_size = GEN_GEN >= 7 ? 16384.0f : 8192.0f;
if (m00 != 0 && m11 != 0) {
/* First, we compute the screen-space render area */
const float ss_ra_xmin = MIN3( 0, m30 + m00, m30 - m00);
const float ss_ra_xmax = MAX3( fb_width, m30 + m00, m30 - m00);
const float ss_ra_ymin = MIN3( 0, m31 + m11, m31 - m11);
const float ss_ra_ymax = MAX3(fb_height, m31 + m11, m31 - m11);
/* We want the guardband to be centered on that */
const float ss_gb_xmin = (ss_ra_xmin + ss_ra_xmax) / 2 - gb_size;
const float ss_gb_xmax = (ss_ra_xmin + ss_ra_xmax) / 2 + gb_size;
const float ss_gb_ymin = (ss_ra_ymin + ss_ra_ymax) / 2 - gb_size;
const float ss_gb_ymax = (ss_ra_ymin + ss_ra_ymax) / 2 + gb_size;
/* Now we need it in native device coordinates */
const float ndc_gb_xmin = (ss_gb_xmin - m30) / m00;
const float ndc_gb_xmax = (ss_gb_xmax - m30) / m00;
const float ndc_gb_ymin = (ss_gb_ymin - m31) / m11;
const float ndc_gb_ymax = (ss_gb_ymax - m31) / m11;
/* Thanks to Y-flipping and ORIGIN_UPPER_LEFT, the Y coordinates may be
* flipped upside-down. X should be fine though.
*/
assert(ndc_gb_xmin <= ndc_gb_xmax);
*xmin = ndc_gb_xmin;
*xmax = ndc_gb_xmax;
*ymin = MIN2(ndc_gb_ymin, ndc_gb_ymax);
*ymax = MAX2(ndc_gb_ymin, ndc_gb_ymax);
} else {
/* The viewport scales to 0, so nothing will be rendered. */
*xmin = 0.0f;
*xmax = 0.0f;
*ymin = 0.0f;
*ymax = 0.0f;
}
}
#endif
static void
iris_set_viewport_states(struct pipe_context *ctx,
unsigned start_slot,
unsigned num_viewports,
const struct pipe_viewport_state *state)
{
2018-01-09 11:58:28 -08:00
struct iris_context *ice = (struct iris_context *) ctx;
2017-12-23 14:33:04 -08:00
struct iris_viewport_state *cso =
malloc(sizeof(struct iris_viewport_state));
2018-01-21 21:23:48 -08:00
// XXX: sf_cl_vp is only big enough for one slot, we don't iterate right
2017-12-23 14:33:04 -08:00
for (unsigned i = start_slot; i < start_slot + num_viewports; i++) {
float x_extent = extent_from_matrix(&state[i], 0);
float y_extent = extent_from_matrix(&state[i], 1);
iris_pack_state(GENX(SF_CLIP_VIEWPORT), cso->sf_cl_vp, vp) {
vp.ViewportMatrixElementm00 = state[i].scale[0];
vp.ViewportMatrixElementm11 = state[i].scale[1];
vp.ViewportMatrixElementm22 = state[i].scale[2];
vp.ViewportMatrixElementm30 = state[i].translate[0];
vp.ViewportMatrixElementm31 = state[i].translate[1];
vp.ViewportMatrixElementm32 = state[i].translate[2];
/* XXX: in i965 this is computed based on the drawbuffer size,
* but we don't have that here...
*/
vp.XMinClipGuardband = -1.0;
vp.XMaxClipGuardband = 1.0;
vp.YMinClipGuardband = -1.0;
vp.YMaxClipGuardband = 1.0;
vp.XMinViewPort = -x_extent;
vp.XMaxViewPort = x_extent;
vp.YMinViewPort = -y_extent;
vp.YMaxViewPort = y_extent;
}
}
2018-01-09 11:58:28 -08:00
ice->state.cso_vp = cso;
// XXX: start_slot
ice->state.num_viewports = num_viewports;
ice->state.dirty |= IRIS_DIRTY_SF_CL_VIEWPORT;
}
struct iris_depth_state
{
uint32_t depth_buffer[GENX(3DSTATE_DEPTH_BUFFER_length)];
uint32_t hier_depth_buffer[GENX(3DSTATE_HIER_DEPTH_BUFFER_length)];
uint32_t stencil_buffer[GENX(3DSTATE_STENCIL_BUFFER_length)];
};
static void
iris_set_framebuffer_state(struct pipe_context *ctx,
const struct pipe_framebuffer_state *state)
{
2018-01-09 14:34:15 -08:00
struct iris_context *ice = (struct iris_context *) ctx;
2018-01-09 23:13:16 -08:00
struct pipe_framebuffer_state *cso = &ice->state.framebuffer;
2018-01-09 14:34:15 -08:00
2018-01-09 23:13:16 -08:00
if (cso->samples != state->samples) {
ice->state.dirty |= IRIS_DIRTY_MULTISAMPLE;
}
2018-01-09 14:34:15 -08:00
2018-01-09 23:13:16 -08:00
cso->width = state->width;
cso->height = state->height;
cso->layers = state->layers;
cso->samples = state->samples;
2018-01-09 14:34:15 -08:00
2018-01-09 23:13:16 -08:00
unsigned i;
for (i = 0; i < state->nr_cbufs; i++)
pipe_surface_reference(&cso->cbufs[i], state->cbufs[i]);
for (; i < cso->nr_cbufs; i++)
pipe_surface_reference(&cso->cbufs[i], NULL);
2018-01-09 14:34:15 -08:00
2018-01-09 23:13:16 -08:00
cso->nr_cbufs = state->nr_cbufs;
pipe_surface_reference(&cso->zsbuf, state->zsbuf);
2018-01-09 14:34:15 -08:00
struct isl_depth_stencil_hiz_emit_info info = {
.mocs = MOCS_WB,
};
// XXX: depth buffers
}
static void
iris_set_constant_buffer(struct pipe_context *ctx,
enum pipe_shader_type shader, uint index,
const struct pipe_constant_buffer *cb)
{
}
static void
iris_sampler_view_destroy(struct pipe_context *ctx,
struct pipe_sampler_view *state)
{
pipe_resource_reference(&state->texture, NULL);
free(state);
}
static void
iris_surface_destroy(struct pipe_context *ctx, struct pipe_surface *surface)
{
pipe_resource_reference(&surface->texture, NULL);
free(surface);
}
static void
iris_delete_state(struct pipe_context *ctx, void *state)
{
free(state);
}
struct iris_vertex_buffer_state {
uint32_t vertex_buffers[1 + 33 * GENX(VERTEX_BUFFER_STATE_length)];
2018-01-21 15:28:59 -08:00
struct iris_address bos[33];
2018-01-21 13:14:49 -08:00
unsigned num_buffers;
};
2018-01-21 13:14:49 -08:00
static void
iris_free_vertex_buffers(struct iris_vertex_buffer_state *cso)
{
if (cso) {
for (unsigned i = 0; i < cso->num_buffers; i++)
2018-01-21 15:28:59 -08:00
iris_bo_unreference(cso->bos[i].bo);
2018-01-21 13:14:49 -08:00
free(cso);
}
}
static void
iris_set_vertex_buffers(struct pipe_context *ctx,
unsigned start_slot, unsigned count,
const struct pipe_vertex_buffer *buffers)
{
2018-01-10 00:19:29 -08:00
struct iris_context *ice = (struct iris_context *) ctx;
struct iris_vertex_buffer_state *cso =
malloc(sizeof(struct iris_vertex_buffer_state));
/* If there are no buffers, do nothing. We can leave the stale
* 3DSTATE_VERTEX_BUFFERS in place - as long as there are no vertex
* elements that point to them, it should be fine.
*/
if (!buffers)
return;
2018-01-21 13:14:49 -08:00
iris_free_vertex_buffers(ice->state.cso_vertex_buffers);
cso->num_buffers = count;
2018-01-21 21:02:05 -08:00
iris_pack_command(GENX(3DSTATE_VERTEX_BUFFERS), cso->vertex_buffers, vb) {
2018-01-21 13:14:49 -08:00
vb.DWordLength = 4 * cso->num_buffers - 1;
}
uint32_t *vb_pack_dest = &cso->vertex_buffers[1];
for (unsigned i = 0; i < count; i++) {
assert(!buffers[i].is_user_buffer);
2018-01-21 15:28:59 -08:00
struct iris_resource *res = (void *) buffers[i].buffer.resource;
2018-01-21 13:14:49 -08:00
iris_bo_reference(res->bo);
2018-01-21 15:28:59 -08:00
cso->bos[i] = ro_bo(res->bo, buffers[i].buffer_offset);
2018-01-21 13:14:49 -08:00
iris_pack_state(GENX(VERTEX_BUFFER_STATE), vb_pack_dest, vb) {
vb.VertexBufferIndex = start_slot + i;
vb.MOCS = MOCS_WB;
vb.AddressModifyEnable = true;
vb.BufferPitch = buffers[i].stride;
2018-01-21 21:02:05 -08:00
vb.BufferSize = res->bo->size;
/* vb.BufferStartingAddress is filled in at draw time */
}
vb_pack_dest += GENX(VERTEX_BUFFER_STATE_length);
}
2018-01-20 00:57:01 -08:00
ice->state.cso_vertex_buffers = cso;
2018-01-10 00:19:29 -08:00
ice->state.dirty |= IRIS_DIRTY_VERTEX_BUFFERS;
}
struct iris_vertex_element_state {
uint32_t vertex_elements[1 + 33 * GENX(VERTEX_ELEMENT_STATE_length)];
2018-01-09 21:29:09 -08:00
uint32_t vf_instancing[GENX(3DSTATE_VF_INSTANCING_length)][33];
unsigned count;
};
static void *
iris_create_vertex_elements(struct pipe_context *ctx,
unsigned count,
const struct pipe_vertex_element *state)
{
struct iris_vertex_element_state *cso =
malloc(sizeof(struct iris_vertex_element_state));
cso->count = count;
/* TODO:
* - create edge flag one
* - create SGV ones
* - if those are necessary, use count + 1/2/3... OR in the length
*/
2018-01-21 21:02:05 -08:00
iris_pack_command(GENX(3DSTATE_VERTEX_ELEMENTS), cso->vertex_elements, ve);
uint32_t *ve_pack_dest = &cso->vertex_elements[1];
for (int i = 0; i < count; i++) {
iris_pack_state(GENX(VERTEX_ELEMENT_STATE), ve_pack_dest, ve) {
ve.VertexBufferIndex = state[i].vertex_buffer_index;
ve.Valid = true;
ve.SourceElementOffset = state[i].src_offset;
ve.SourceElementFormat =
iris_isl_format_for_pipe_format(state[i].src_format);
}
2018-01-21 21:02:05 -08:00
iris_pack_command(GENX(3DSTATE_VF_INSTANCING), cso->vf_instancing[i], vi) {
vi.VertexElementIndex = i;
vi.InstancingEnable = state[i].instance_divisor > 0;
vi.InstanceDataStepRate = state[i].instance_divisor;
}
ve_pack_dest += GENX(VERTEX_ELEMENT_STATE_length);
}
return cso;
}
2018-01-09 21:29:09 -08:00
static void
iris_bind_vertex_elements_state(struct pipe_context *ctx, void *state)
{
struct iris_context *ice = (struct iris_context *) ctx;
ice->state.cso_vertex_elements = state;
ice->state.dirty |= IRIS_DIRTY_VERTEX_ELEMENTS;
}
static void *
iris_create_compute_state(struct pipe_context *ctx,
const struct pipe_compute_state *state)
{
return malloc(1);
}
static struct pipe_stream_output_target *
iris_create_stream_output_target(struct pipe_context *ctx,
struct pipe_resource *res,
unsigned buffer_offset,
unsigned buffer_size)
{
struct pipe_stream_output_target *t =
CALLOC_STRUCT(pipe_stream_output_target);
if (!t)
return NULL;
pipe_reference_init(&t->reference, 1);
pipe_resource_reference(&t->buffer, res);
t->buffer_offset = buffer_offset;
t->buffer_size = buffer_size;
return t;
}
static void
iris_stream_output_target_destroy(struct pipe_context *ctx,
struct pipe_stream_output_target *t)
{
pipe_resource_reference(&t->buffer, NULL);
free(t);
}
static void
iris_set_stream_output_targets(struct pipe_context *ctx,
unsigned num_targets,
struct pipe_stream_output_target **targets,
const unsigned *offsets)
{
}
2018-01-29 15:06:04 -08:00
#if 0
static void
iris_compute_sbe(const struct iris_context *ice,
const struct brw_wm_prog_data *wm_prog_data)
{
uint32_t sbe_map[GENX(3DSTATE_SBE_length)];
struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
unsigned urb_read_offset, urb_read_length;
brw_compute_sbe_urb_slot_interval(fp->info.inputs_read,
ice->shaders.last_vue_map,
&urb_read_offset, &urb_read_length);
iris_pack_command(GENX(3DSTATE_SBE), sbe_map, sbe) {
sbe.AttributeSwizzleEnable = true;
sbe.NumberofSFOutputAttributes = wm_prog_data->num_varying_inputs;
sbe.PointSpriteTextureCoordinateOrigin = cso_rast->sprite_coord_mode;
sbe.VertexURBEntryReadOffset = urb_read_offset;
sbe.VertexURBEntryReadLength = urb_read_length;
sbe.ForceVertexURBEntryReadOffset = true;
sbe.ForceVertexURBEntryReadLength = true;
sbe.ConstantInterpolationEnable = wm_prog_data->flat_inputs;
for (int i = 0; i < urb_read_length * 2; i++) {
sbe.AttributeActiveComponentFormat[i] = ACTIVE_COMPONENT_XYZW;
}
}
}
#endif
static void
iris_bind_compute_state(struct pipe_context *ctx, void *state)
2017-12-27 02:54:26 -08:00
{
}
static void
iris_populate_vs_key(const struct iris_context *ice,
struct brw_vs_prog_key *key)
{
memset(key, 0, sizeof(*key));
}
static void
iris_populate_tcs_key(const struct iris_context *ice,
struct brw_tcs_prog_key *key)
{
memset(key, 0, sizeof(*key));
}
static void
iris_populate_tes_key(const struct iris_context *ice,
struct brw_tes_prog_key *key)
{
memset(key, 0, sizeof(*key));
}
static void
iris_populate_gs_key(const struct iris_context *ice,
struct brw_gs_prog_key *key)
{
memset(key, 0, sizeof(*key));
}
static void
iris_populate_fs_key(const struct iris_context *ice,
struct brw_wm_prog_key *key)
{
memset(key, 0, sizeof(*key));
/* XXX: dirty flags? */
2018-01-29 15:06:08 -08:00
const struct pipe_framebuffer_state *fb = &ice->state.framebuffer;
const struct iris_depth_stencil_alpha_state *zsa = ice->state.cso_zsa;
const struct iris_rasterizer_state *rast = ice->state.cso_rast;
const struct iris_blend_state *blend = ice->state.cso_blend;
key->nr_color_regions = fb->nr_cbufs;
2018-01-25 02:09:59 -08:00
key->clamp_fragment_color = rast->clamp_fragment_color;
key->replicate_alpha = fb->nr_cbufs > 1 &&
(zsa->alpha.enabled || blend->alpha_to_coverage);
// key->force_dual_color_blend for unigine
#if 0
if (cso_rast->multisample) {
key->persample_interp =
ctx->Multisample.SampleShading &&
(ctx->Multisample.MinSampleShadingValue *
_mesa_geometric_samples(ctx->DrawBuffer) > 1);
key->multisample_fbo = fb->samples > 1;
}
#endif
key->coherent_fb_fetch = true;
}
//pkt.SamplerCount = \
//DIV_ROUND_UP(CLAMP(stage_state->sampler_count, 0, 16), 4); \
//pkt.PerThreadScratchSpace = prog_data->total_scratch == 0 ? 0 : \
//ffs(stage_state->per_thread_scratch) - 11; \
2017-12-27 02:54:26 -08:00
2018-01-25 20:12:37 -08:00
static uint64_t
KSP(const struct iris_compiled_shader *shader)
{
struct iris_resource *res = (void *) shader->buffer;
return res->bo->gtt_offset + shader->offset;
}
#define INIT_THREAD_DISPATCH_FIELDS(pkt, prefix) \
2018-01-25 20:12:37 -08:00
pkt.KernelStartPointer = KSP(shader); \
pkt.BindingTableEntryCount = prog_data->binding_table.size_bytes / 4; \
pkt.FloatingPointMode = prog_data->use_alt_mode; \
\
pkt.DispatchGRFStartRegisterForURBData = \
prog_data->dispatch_grf_start_reg; \
pkt.prefix##URBEntryReadLength = vue_prog_data->urb_read_length; \
pkt.prefix##URBEntryReadOffset = 0; \
\
pkt.StatisticsEnable = true; \
pkt.Enable = true;
2017-12-27 02:54:26 -08:00
static void
iris_set_vs_state(const struct gen_device_info *devinfo,
struct iris_compiled_shader *shader)
{
struct brw_stage_prog_data *prog_data = shader->prog_data;
struct brw_vue_prog_data *vue_prog_data = (void *) prog_data;
iris_pack_command(GENX(3DSTATE_VS), shader->derived_data, vs) {
INIT_THREAD_DISPATCH_FIELDS(vs, Vertex);
vs.MaximumNumberofThreads = devinfo->max_vs_threads - 1;
vs.SIMD8DispatchEnable = true;
vs.UserClipDistanceCullTestEnableBitmask =
vue_prog_data->cull_distance_mask;
2018-01-09 11:51:34 -08:00
}
}
2018-01-09 11:51:34 -08:00
static void
iris_set_tcs_state(const struct gen_device_info *devinfo,
struct iris_compiled_shader *shader)
{
struct brw_stage_prog_data *prog_data = shader->prog_data;
struct brw_vue_prog_data *vue_prog_data = (void *) prog_data;
struct brw_tcs_prog_data *tcs_prog_data = (void *) prog_data;
2018-01-09 21:29:09 -08:00
iris_pack_command(GENX(3DSTATE_HS), shader->derived_data, hs) {
INIT_THREAD_DISPATCH_FIELDS(hs, Vertex);
hs.InstanceCount = tcs_prog_data->instances - 1;
hs.MaximumNumberofThreads = devinfo->max_tcs_threads - 1;
hs.IncludeVertexHandles = true;
2018-01-10 00:36:44 -08:00
}
}
2018-01-10 00:36:44 -08:00
static void
iris_set_tes_state(const struct gen_device_info *devinfo,
struct iris_compiled_shader *shader)
{
struct brw_stage_prog_data *prog_data = shader->prog_data;
struct brw_vue_prog_data *vue_prog_data = (void *) prog_data;
struct brw_tes_prog_data *tes_prog_data = (void *) prog_data;
2018-01-21 15:28:59 -08:00
uint32_t *te_state = (void *) shader->derived_data;
uint32_t *ds_state = te_state + GENX(3DSTATE_TE_length);
2018-01-21 17:34:41 -08:00
iris_pack_command(GENX(3DSTATE_TE), te_state, te) {
te.Partitioning = tes_prog_data->partitioning;
te.OutputTopology = tes_prog_data->output_topology;
te.TEDomain = tes_prog_data->domain;
te.TEEnable = true;
te.MaximumTessellationFactorOdd = 63.0;
te.MaximumTessellationFactorNotOdd = 64.0;
}
2018-01-21 17:34:41 -08:00
iris_pack_command(GENX(3DSTATE_DS), ds_state, ds) {
INIT_THREAD_DISPATCH_FIELDS(ds, Patch);
2018-01-21 15:28:59 -08:00
ds.DispatchMode = DISPATCH_MODE_SIMD8_SINGLE_PATCH;
ds.MaximumNumberofThreads = devinfo->max_tes_threads - 1;
ds.ComputeWCoordinateEnable =
tes_prog_data->domain == BRW_TESS_DOMAIN_TRI;
2018-01-10 00:19:29 -08:00
ds.UserClipDistanceCullTestEnableBitmask =
vue_prog_data->cull_distance_mask;
2018-01-09 23:13:16 -08:00
}
}
2018-01-09 21:29:09 -08:00
static void
iris_set_gs_state(const struct gen_device_info *devinfo,
struct iris_compiled_shader *shader)
{
struct brw_stage_prog_data *prog_data = shader->prog_data;
struct brw_vue_prog_data *vue_prog_data = (void *) prog_data;
struct brw_gs_prog_data *gs_prog_data = (void *) prog_data;
2018-01-10 00:19:29 -08:00
iris_pack_command(GENX(3DSTATE_GS), shader->derived_data, gs) {
INIT_THREAD_DISPATCH_FIELDS(gs, Vertex);
2018-01-22 22:40:51 -08:00
gs.OutputVertexSize = gs_prog_data->output_vertex_size_hwords * 2 - 1;
gs.OutputTopology = gs_prog_data->output_topology;
gs.ControlDataHeaderSize =
gs_prog_data->control_data_header_size_hwords;
gs.InstanceControl = gs_prog_data->invocations - 1;
gs.DispatchMode = SIMD8;
gs.IncludePrimitiveID = gs_prog_data->include_primitive_id;
gs.ControlDataFormat = gs_prog_data->control_data_format;
gs.ReorderMode = TRAILING;
gs.ExpectedVertexCount = gs_prog_data->vertices_in;
gs.MaximumNumberofThreads =
GEN_GEN == 8 ? (devinfo->max_gs_threads / 2 - 1)
: (devinfo->max_gs_threads - 1);
2018-01-22 22:40:51 -08:00
if (gs_prog_data->static_vertex_count != -1) {
gs.StaticOutput = true;
gs.StaticOutputVertexCount = gs_prog_data->static_vertex_count;
}
gs.IncludeVertexHandles = vue_prog_data->include_vue_handles;
gs.UserClipDistanceCullTestEnableBitmask =
vue_prog_data->cull_distance_mask;
const int urb_entry_write_offset = 1;
const uint32_t urb_entry_output_length =
DIV_ROUND_UP(vue_prog_data->vue_map.num_slots, 2) -
urb_entry_write_offset;
gs.VertexURBEntryOutputReadOffset = urb_entry_write_offset;
gs.VertexURBEntryOutputLength = MAX2(urb_entry_output_length, 1);
2018-01-22 23:39:38 -08:00
}
}
static void
iris_set_fs_state(const struct gen_device_info *devinfo,
struct iris_compiled_shader *shader)
{
struct brw_stage_prog_data *prog_data = shader->prog_data;
struct brw_wm_prog_data *wm_prog_data = (void *) shader->prog_data;
uint32_t *ps_state = (void *) shader->derived_data;
uint32_t *psx_state = ps_state + GENX(3DSTATE_PS_length);
iris_pack_command(GENX(3DSTATE_PS), ps_state, ps) {
ps.VectorMaskEnable = true;
//ps.SamplerCount = ...
ps.BindingTableEntryCount = prog_data->binding_table.size_bytes / 4;
ps.FloatingPointMode = prog_data->use_alt_mode;
ps.MaximumNumberofThreadsPerPSD = 64 - (GEN_GEN == 8 ? 2 : 1);
ps.PushConstantEnable = prog_data->nr_params > 0 ||
prog_data->ubo_ranges[0].length > 0;
/* From the documentation for this packet:
* "If the PS kernel does not need the Position XY Offsets to
* compute a Position Value, then this field should be programmed
* to POSOFFSET_NONE."
*
* "SW Recommendation: If the PS kernel needs the Position Offsets
* to compute a Position XY value, this field should match Position
* ZW Interpolation Mode to ensure a consistent position.xyzw
* computation."
*
* We only require XY sample offsets. So, this recommendation doesn't
* look useful at the moment. We might need this in future.
*/
ps.PositionXYOffsetSelect =
wm_prog_data->uses_pos_offset ? POSOFFSET_SAMPLE : POSOFFSET_NONE;
ps._8PixelDispatchEnable = wm_prog_data->dispatch_8;
ps._16PixelDispatchEnable = wm_prog_data->dispatch_16;
ps._32PixelDispatchEnable = wm_prog_data->dispatch_32;
2018-01-22 23:39:38 -08:00
// XXX: Disable SIMD32 with 16x MSAA
2018-01-22 23:39:38 -08:00
ps.DispatchGRFStartRegisterForConstantSetupData0 =
brw_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, ps, 0);
ps.DispatchGRFStartRegisterForConstantSetupData1 =
brw_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, ps, 1);
ps.DispatchGRFStartRegisterForConstantSetupData2 =
brw_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, ps, 2);
ps.KernelStartPointer0 =
2018-01-25 20:12:37 -08:00
KSP(shader) + brw_wm_prog_data_prog_offset(wm_prog_data, ps, 0);
ps.KernelStartPointer1 =
2018-01-25 20:12:37 -08:00
KSP(shader) + brw_wm_prog_data_prog_offset(wm_prog_data, ps, 1);
ps.KernelStartPointer2 =
2018-01-25 20:12:37 -08:00
KSP(shader) + brw_wm_prog_data_prog_offset(wm_prog_data, ps, 2);
2018-01-22 23:39:38 -08:00
}
iris_pack_command(GENX(3DSTATE_PS_EXTRA), psx_state, psx) {
psx.PixelShaderValid = true;
psx.PixelShaderComputedDepthMode = wm_prog_data->computed_depth_mode;
psx.PixelShaderKillsPixel = wm_prog_data->uses_kill;
psx.AttributeEnable = wm_prog_data->num_varying_inputs != 0;
psx.PixelShaderUsesSourceDepth = wm_prog_data->uses_src_depth;
psx.PixelShaderUsesSourceW = wm_prog_data->uses_src_w;
psx.PixelShaderIsPerSample = wm_prog_data->persample_dispatch;
2018-01-22 23:39:38 -08:00
if (wm_prog_data->uses_sample_mask) {
/* TODO: conservative rasterization */
if (wm_prog_data->post_depth_coverage)
psx.InputCoverageMaskState = ICMS_DEPTH_COVERAGE;
else
psx.InputCoverageMaskState = ICMS_NORMAL;
}
psx.oMaskPresenttoRenderTarget = wm_prog_data->uses_omask;
psx.PixelShaderPullsBary = wm_prog_data->pulls_bary;
psx.PixelShaderComputesStencil = wm_prog_data->computed_stencil;
2018-01-22 23:39:38 -08:00
// XXX: UAV bit
}
}
static unsigned
iris_derived_program_state_size(enum iris_program_cache_id cache_id)
{
assert(cache_id <= IRIS_CACHE_CS);
2018-01-22 23:39:38 -08:00
static const unsigned dwords[] = {
[IRIS_CACHE_VS] = GENX(3DSTATE_VS_length),
[IRIS_CACHE_TCS] = GENX(3DSTATE_HS_length),
[IRIS_CACHE_TES] = GENX(3DSTATE_TE_length) + GENX(3DSTATE_DS_length),
[IRIS_CACHE_GS] = GENX(3DSTATE_GS_length),
[IRIS_CACHE_FS] =
GENX(3DSTATE_PS_length) + GENX(3DSTATE_PS_EXTRA_length),
[IRIS_CACHE_CS] = 0,
[IRIS_CACHE_BLORP_BLIT] = 0,
};
return sizeof(uint32_t) * dwords[cache_id];
}
static void
iris_set_derived_program_state(const struct gen_device_info *devinfo,
enum iris_program_cache_id cache_id,
struct iris_compiled_shader *shader)
{
switch (cache_id) {
case IRIS_CACHE_VS:
iris_set_vs_state(devinfo, shader);
break;
case IRIS_CACHE_TCS:
iris_set_tcs_state(devinfo, shader);
break;
case IRIS_CACHE_TES:
iris_set_tes_state(devinfo, shader);
break;
case IRIS_CACHE_GS:
iris_set_gs_state(devinfo, shader);
break;
case IRIS_CACHE_FS:
iris_set_fs_state(devinfo, shader);
break;
case IRIS_CACHE_CS:
break;
default:
break;
2018-01-10 00:19:29 -08:00
}
}
2018-01-10 00:19:29 -08:00
2018-01-25 21:23:45 -08:00
static void
iris_upload_urb_config(struct iris_context *ice, struct iris_batch *batch)
{
const struct gen_device_info *devinfo = &batch->screen->devinfo;
const unsigned push_size_kB = 32;
unsigned entries[4];
unsigned start[4];
unsigned size[4];
for (int i = MESA_SHADER_VERTEX; i <= MESA_SHADER_GEOMETRY; i++) {
if (!ice->shaders.prog[i]) {
size[i] = 1;
} else {
struct brw_vue_prog_data *vue_prog_data =
(void *) ice->shaders.prog[i]->prog_data;
size[i] = vue_prog_data->urb_entry_size;
}
assert(size[i] != 0);
}
gen_get_urb_config(devinfo, 1024 * push_size_kB,
1024 * ice->shaders.urb_size,
ice->shaders.prog[MESA_SHADER_TESS_EVAL] != NULL,
ice->shaders.prog[MESA_SHADER_GEOMETRY] != NULL,
size, entries, start);
for (int i = MESA_SHADER_VERTEX; i <= MESA_SHADER_GEOMETRY; i++) {
iris_emit_cmd(batch, GENX(3DSTATE_URB_VS), urb) {
urb._3DCommandSubOpcode += i;
urb.VSURBStartingAddress = start[i];
urb.VSURBEntryAllocationSize = size[i] - 1;
urb.VSNumberofURBEntries = entries[i];
}
}
}
2018-01-25 21:39:44 -08:00
static const uint32_t push_constant_opcodes[] = {
[MESA_SHADER_VERTEX] = 21,
[MESA_SHADER_TESS_CTRL] = 25, /* HS */
[MESA_SHADER_TESS_EVAL] = 26, /* DS */
[MESA_SHADER_GEOMETRY] = 22,
[MESA_SHADER_FRAGMENT] = 23,
[MESA_SHADER_COMPUTE] = 0,
};
2018-01-30 01:40:14 -08:00
static uint32_t
emit_patched_surface_state(struct iris_batch *batch,
uint32_t *surface_state,
const struct iris_resource *res,
unsigned reloc_flags)
{
const int num_dwords = GENX(RENDER_SURFACE_STATE_length);
uint32_t offset;
uint32_t *dw = iris_alloc_state(batch, 4 * num_dwords, 64, &offset);
STATIC_ASSERT(GENX(RENDER_SURFACE_STATE_SurfaceBaseAddress_start) % 32 == 0);
int addr_idx = GENX(RENDER_SURFACE_STATE_SurfaceBaseAddress_start) / 32;
for (uint32_t i = 0; i < addr_idx; i++)
dw[i] = surface_state[i];
uint64_t *qw = (uint64_t *) &dw[addr_idx];
// XXX: mt->offset, if needed
*qw = iris_state_reloc(batch, (void *)qw - batch->statebuf.map, res->bo,
surface_state[addr_idx + 1], reloc_flags);
for (uint32_t i = addr_idx + 1; i < num_dwords; i++)
dw[i] = surface_state[i];
return offset;
}
static void
iris_upload_render_state(struct iris_context *ice,
struct iris_batch *batch,
const struct pipe_draw_info *draw)
{
const uint64_t dirty = ice->state.dirty;
struct brw_wm_prog_data *wm_prog_data = (void *)
ice->shaders.prog[MESA_SHADER_FRAGMENT]->prog_data;
if (dirty & IRIS_DIRTY_CC_VIEWPORT) {
struct iris_depth_stencil_alpha_state *cso = ice->state.cso_zsa;
iris_emit_cmd(batch, GENX(3DSTATE_VIEWPORT_STATE_POINTERS_CC), ptr) {
ptr.CCViewportPointer =
iris_emit_state(batch, cso->cc_vp, sizeof(cso->cc_vp), 32);
}
2018-01-22 23:39:38 -08:00
}
if (dirty & IRIS_DIRTY_SF_CL_VIEWPORT) {
struct iris_viewport_state *cso = ice->state.cso_vp;
iris_emit_cmd(batch, GENX(3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP), ptr) {
ptr.SFClipViewportPointer =
iris_emit_state(batch, cso->sf_cl_vp, sizeof(cso->sf_cl_vp), 64);
2018-01-10 00:19:29 -08:00
}
}
/* XXX: L3 State */
2018-01-10 00:19:29 -08:00
if (dirty & IRIS_DIRTY_URB) {
2018-01-25 21:23:45 -08:00
iris_upload_urb_config(ice, batch);
}
2018-01-10 00:19:29 -08:00
if (dirty & IRIS_DIRTY_BLEND_STATE) {
2018-01-25 21:53:41 -08:00
struct iris_blend_state *cso_blend = ice->state.cso_blend;
struct iris_depth_stencil_alpha_state *cso_zsa = ice->state.cso_zsa;
// XXX: 3DSTATE_BLEND_STATE_POINTERS - BLEND_STATE
// -> from iris_blend_state (most) + iris_depth_stencil_alpha_state
// (alpha test function/enable) + has writeable RT from ???????
2018-01-25 21:53:41 -08:00
uint32_t blend_offset;
uint32_t *blend_map =
iris_alloc_state(batch, sizeof(cso_blend->blend_state),
64, &blend_offset);
uint32_t blend_state_header;
iris_pack_state(GENX(BLEND_STATE), &blend_state_header, bs) {
bs.AlphaTestEnable = cso_zsa->alpha.enabled;
bs.AlphaTestFunction = translate_compare_func(cso_zsa->alpha.func);
}
blend_map[0] = blend_state_header | cso_blend->blend_state[0];
memcpy(&blend_map[1], &cso_blend->blend_state[1],
sizeof(cso_blend->blend_state) - sizeof(uint32_t));
iris_emit_cmd(batch, GENX(3DSTATE_BLEND_STATE_POINTERS), ptr) {
ptr.BlendStatePointer = blend_offset;
ptr.BlendStatePointerValid = true;
}
}
if (dirty & IRIS_DIRTY_COLOR_CALC_STATE) {
struct iris_depth_stencil_alpha_state *cso = ice->state.cso_zsa;
uint32_t cc_offset;
void *cc_map =
iris_alloc_state(batch,
sizeof(uint32_t) * GENX(COLOR_CALC_STATE_length),
64, &cc_offset);
iris_pack_state(GENX(COLOR_CALC_STATE), cc_map, cc) {
cc.AlphaTestFormat = ALPHATEST_FLOAT32;
cc.AlphaReferenceValueAsFLOAT32 = cso->alpha.ref_value;
cc.BlendConstantColorRed = ice->state.blend_color.color[0];
cc.BlendConstantColorGreen = ice->state.blend_color.color[1];
cc.BlendConstantColorBlue = ice->state.blend_color.color[2];
cc.BlendConstantColorAlpha = ice->state.blend_color.color[3];
}
iris_emit_cmd(batch, GENX(3DSTATE_CC_STATE_POINTERS), ptr) {
ptr.ColorCalcStatePointer = cc_offset;
ptr.ColorCalcStatePointerValid = true;
2018-01-10 00:19:29 -08:00
}
2018-01-20 01:07:41 -08:00
}
2018-01-10 00:19:29 -08:00
2018-01-25 21:39:44 -08:00
for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
if (!(dirty & (IRIS_DIRTY_CONSTANTS_VS << stage)))
continue;
iris_emit_cmd(batch, GENX(3DSTATE_CONSTANT_VS), pkt) {
pkt._3DCommandSubOpcode = push_constant_opcodes[stage];
if (ice->shaders.prog[stage]) {
// XXX: 3DSTATE_CONSTANT_XS
}
}
}
2018-01-25 02:13:28 -08:00
// Surfaces:
// - pull constants
// - ubos/ssbos/abos
// - images
// - textures
// - render targets - write and read
// XXX: 3DSTATE_BINDING_TABLE_POINTERS_XS
2018-01-22 23:39:38 -08:00
2018-01-30 01:40:14 -08:00
for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
struct iris_compiled_shader *shader = ice->shaders.prog[stage];
if (!shader) // XXX: dirty bits...also, emit a disable maybe?
2018-01-30 01:40:14 -08:00
continue;
struct brw_stage_prog_data *prog_data = (void *) shader->prog_data;
uint32_t bt_offset = 0;
uint32_t *bt_map = NULL;
if (prog_data->binding_table.size_bytes != 0) {
bt_map = iris_alloc_state(batch, prog_data->binding_table.size_bytes,
64, &bt_offset);
}
iris_emit_cmd(batch, GENX(3DSTATE_BINDING_TABLE_POINTERS_VS), ptr) {
ptr._3DCommandSubOpcode = 38 + stage;
ptr.PointertoVSBindingTable = bt_offset;
}
if (stage == MESA_SHADER_FRAGMENT) {
struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
for (unsigned i = 0; i < cso_fb->nr_cbufs; i++) {
struct iris_surface *surf = (void *) cso_fb->cbufs[i];
struct iris_resource *res = (void *) surf->pipe.texture;
*bt_map++ = emit_patched_surface_state(batch, surf->surface_state,
res, RELOC_WRITE);
}
}
}
for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
if (!(dirty & (IRIS_DIRTY_SAMPLER_STATES_VS << stage)) ||
!ice->shaders.prog[stage])
continue;
2018-01-22 23:39:38 -08:00
// XXX: get sampler count from shader; don't emit them all...
const int count = IRIS_MAX_TEXTURE_SAMPLERS;
2018-01-22 23:39:38 -08:00
uint32_t offset;
uint32_t *map = iris_alloc_state(batch,
count * 4 * GENX(SAMPLER_STATE_length),
32, &offset);
2018-01-22 23:39:38 -08:00
for (int i = 0; i < count; i++) {
// XXX: when we have a correct count, these better be bound
if (!ice->state.samplers[stage][i])
continue;
memcpy(map, ice->state.samplers[stage][i]->sampler_state,
4 * GENX(SAMPLER_STATE_length));
map += GENX(SAMPLER_STATE_length);
}
iris_emit_cmd(batch, GENX(3DSTATE_SAMPLER_STATE_POINTERS_VS), ptr) {
ptr._3DCommandSubOpcode = 43 + stage;
ptr.PointertoVSSamplerState = offset;
2018-01-22 23:39:38 -08:00
}
}
if (dirty & IRIS_DIRTY_MULTISAMPLE) {
iris_emit_cmd(batch, GENX(3DSTATE_MULTISAMPLE), ms) {
ms.PixelLocation =
ice->state.cso_rast->half_pixel_center ? CENTER : UL_CORNER;
if (ice->state.framebuffer.samples > 0)
ms.NumberofMultisamples = ffs(ice->state.framebuffer.samples) - 1;
2018-01-22 23:39:38 -08:00
}
}
if (dirty & IRIS_DIRTY_SAMPLE_MASK) {
iris_emit_cmd(batch, GENX(3DSTATE_SAMPLE_MASK), ms) {
ms.SampleMask = ice->state.sample_mask;
2018-01-22 23:39:38 -08:00
}
}
for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
if (!(dirty & (IRIS_DIRTY_VS << stage)))
continue;
if (ice->shaders.prog[stage]) {
iris_batch_emit(batch, ice->shaders.prog[stage]->derived_data,
iris_derived_program_state_size(stage));
} else {
if (stage == MESA_SHADER_TESS_EVAL) {
iris_emit_cmd(batch, GENX(3DSTATE_HS), hs);
iris_emit_cmd(batch, GENX(3DSTATE_TE), te);
iris_emit_cmd(batch, GENX(3DSTATE_DS), ds);
} else if (stage == MESA_SHADER_GEOMETRY) {
iris_emit_cmd(batch, GENX(3DSTATE_GS), gs);
2018-01-22 23:39:38 -08:00
}
}
}
2018-01-25 02:13:28 -08:00
// XXX: SOL:
// 3DSTATE_STREAMOUT
// 3DSTATE_SO_BUFFER
// 3DSTATE_SO_DECL_LIST
2018-01-10 00:19:29 -08:00
if (dirty & IRIS_DIRTY_CLIP) {
struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
2018-01-10 00:19:29 -08:00
uint32_t dynamic_clip[GENX(3DSTATE_CLIP_length)];
iris_pack_command(GENX(3DSTATE_CLIP), &dynamic_clip, cl) {
if (wm_prog_data->barycentric_interp_modes &
BRW_BARYCENTRIC_NONPERSPECTIVE_BITS)
cl.NonPerspectiveBarycentricEnable = true;
2018-01-10 00:19:29 -08:00
cl.ForceZeroRTAIndexEnable = cso_fb->layers == 0;
2018-01-10 00:19:29 -08:00
}
iris_emit_merge(batch, cso_rast->clip, dynamic_clip,
ARRAY_SIZE(cso_rast->clip));
2018-01-10 00:19:29 -08:00
}
2017-12-27 02:54:26 -08:00
if (dirty & IRIS_DIRTY_RASTER) {
struct iris_rasterizer_state *cso = ice->state.cso_rast;
iris_batch_emit(batch, cso->raster, sizeof(cso->raster));
iris_batch_emit(batch, cso->sf, sizeof(cso->sf));
2017-12-27 02:54:26 -08:00
}
2017-12-27 02:54:26 -08:00
if (dirty & (IRIS_DIRTY_RASTER | IRIS_DIRTY_FS)) {
struct iris_rasterizer_state *cso = ice->state.cso_rast;
uint32_t dynamic_wm[GENX(3DSTATE_WM_length)];
2017-12-27 02:54:26 -08:00
iris_pack_command(GENX(3DSTATE_WM), &dynamic_wm, wm) {
wm.BarycentricInterpolationMode =
wm_prog_data->barycentric_interp_modes;
2017-12-27 02:54:26 -08:00
if (wm_prog_data->early_fragment_tests)
wm.EarlyDepthStencilControl = EDSC_PREPS;
else if (wm_prog_data->has_side_effects)
wm.EarlyDepthStencilControl = EDSC_PSEXEC;
}
iris_emit_merge(batch, cso->wm, dynamic_wm, ARRAY_SIZE(cso->wm));
}
2017-12-27 02:54:26 -08:00
2018-01-29 15:06:04 -08:00
if (1) {
// XXX: 3DSTATE_SBE, 3DSTATE_SBE_SWIZ
// -> iris_raster_state (point sprite texture coordinate origin)
// -> bunch of shader state...
iris_emit_cmd(batch, GENX(3DSTATE_SBE), sbe) {
}
iris_emit_cmd(batch, GENX(3DSTATE_SBE_SWIZ), sbe) {
}
}
2017-12-27 02:54:26 -08:00
if (dirty & IRIS_DIRTY_PS_BLEND) {
2018-01-25 21:58:31 -08:00
struct iris_blend_state *cso_blend = ice->state.cso_blend;
struct iris_depth_stencil_alpha_state *cso_zsa = ice->state.cso_zsa;
uint32_t dynamic_pb[GENX(3DSTATE_PS_BLEND_length)];
iris_pack_command(GENX(3DSTATE_PS_BLEND), &dynamic_pb, pb) {
pb.HasWriteableRT = true; // XXX: comes from somewhere :(
pb.AlphaTestEnable = cso_zsa->alpha.enabled;
}
iris_emit_merge(batch, cso_blend->ps_blend, dynamic_pb,
ARRAY_SIZE(cso_blend->ps_blend));
}
2017-12-27 02:54:26 -08:00
if (dirty & IRIS_DIRTY_WM_DEPTH_STENCIL) {
struct iris_depth_stencil_alpha_state *cso = ice->state.cso_zsa;
struct pipe_stencil_ref *p_stencil_refs = &ice->state.stencil_ref;
2018-01-21 23:55:04 -08:00
uint32_t stencil_refs[GENX(3DSTATE_WM_DEPTH_STENCIL_length)];
iris_pack_command(GENX(3DSTATE_WM_DEPTH_STENCIL), &stencil_refs, wmds) {
wmds.StencilReferenceValue = p_stencil_refs->ref_value[0];
wmds.BackfaceStencilReferenceValue = p_stencil_refs->ref_value[1];
}
iris_emit_merge(batch, cso->wmds, stencil_refs, ARRAY_SIZE(cso->wmds));
}
2018-01-21 23:55:04 -08:00
if (dirty & IRIS_DIRTY_SCISSOR) {
uint32_t scissor_offset =
iris_emit_state(batch, ice->state.scissors,
sizeof(struct pipe_scissor_state) *
ice->state.num_scissors, 32);
2018-01-21 23:55:04 -08:00
iris_emit_cmd(batch, GENX(3DSTATE_SCISSOR_STATE_POINTERS), ptr) {
ptr.ScissorRectPointer = scissor_offset;
}
2018-01-21 23:55:04 -08:00
}
2018-01-25 02:13:28 -08:00
// XXX: 3DSTATE_DEPTH_BUFFER
// XXX: 3DSTATE_HIER_DEPTH_BUFFER
// XXX: 3DSTATE_STENCIL_BUFFER
// XXX: 3DSTATE_CLEAR_PARAMS
2018-01-21 23:55:04 -08:00
if (dirty & IRIS_DIRTY_POLYGON_STIPPLE) {
iris_emit_cmd(batch, GENX(3DSTATE_POLY_STIPPLE_PATTERN), poly) {
for (int i = 0; i < 32; i++) {
poly.PatternRow[i] = ice->state.poly_stipple.stipple[i];
}
}
2018-01-21 23:55:04 -08:00
}
if (dirty & IRIS_DIRTY_LINE_STIPPLE) {
struct iris_rasterizer_state *cso = ice->state.cso_rast;
iris_batch_emit(batch, cso->line_stipple, sizeof(cso->line_stipple));
}
2018-01-22 23:25:18 -08:00
if (1) {
iris_emit_cmd(batch, GENX(3DSTATE_VF_TOPOLOGY), topo) {
topo.PrimitiveTopologyType =
translate_prim_type(draw->mode, draw->vertices_per_patch);
}
2018-01-22 23:25:18 -08:00
}
if (draw->index_size > 0) {
struct iris_resource *res = (struct iris_resource *)draw->index.resource;
2018-01-21 23:55:04 -08:00
assert(!draw->has_user_indices);
2018-01-21 23:55:04 -08:00
iris_emit_cmd(batch, GENX(3DSTATE_INDEX_BUFFER), ib) {
ib.IndexFormat = draw->index_size;
ib.MOCS = MOCS_WB;
ib.BufferSize = res->bo->size;
ib.BufferStartingAddress = ro_bo(res->bo, 0);
}
2018-01-21 23:55:04 -08:00
}
2018-01-22 23:25:18 -08:00
if (dirty & IRIS_DIRTY_VERTEX_BUFFERS) {
struct iris_vertex_buffer_state *cso = ice->state.cso_vertex_buffers;
2018-01-21 23:55:04 -08:00
STATIC_ASSERT(GENX(VERTEX_BUFFER_STATE_length) == 4);
STATIC_ASSERT((GENX(VERTEX_BUFFER_STATE_BufferStartingAddress_bits) % 32) == 0);
2018-01-21 23:55:04 -08:00
uint64_t *addr = batch->cmdbuf.map_next + sizeof(uint32_t) *
(GENX(VERTEX_BUFFER_STATE_BufferStartingAddress_bits) / 32);
uint32_t *delta = cso->vertex_buffers +
(1 + GENX(VERTEX_BUFFER_STATE_BufferStartingAddress_bits) / 32);
2018-01-21 23:55:04 -08:00
iris_batch_emit(batch, cso->vertex_buffers,
sizeof(uint32_t) * (1 + 4 * cso->num_buffers));
2018-01-21 23:55:04 -08:00
for (unsigned i = 0; i < cso->num_buffers; i++) {
*addr = iris_batch_reloc(batch, (void *) addr - batch->cmdbuf.map,
cso->bos[i].bo, cso->bos[i].offset +
*delta, cso->bos[i].reloc_flags);
addr = (void *) addr + 16;
delta = (void *) delta + 16;
2018-01-21 23:55:04 -08:00
}
}
if (dirty & IRIS_DIRTY_VERTEX_ELEMENTS) {
struct iris_vertex_element_state *cso = ice->state.cso_vertex_elements;
iris_batch_emit(batch, cso->vertex_elements, sizeof(uint32_t) *
(1 + cso->count * GENX(VERTEX_ELEMENT_STATE_length)));
for (int i = 0; i < cso->count; i++) {
iris_batch_emit(batch, cso->vf_instancing[i], sizeof(uint32_t) *
(cso->count * GENX(3DSTATE_VF_INSTANCING_length)));
}
for (int i = 0; i < cso->count; i++) {
/* TODO: vertexid, instanceid support */
iris_emit_cmd(batch, GENX(3DSTATE_VF_SGVS), sgvs);
}
}
2018-01-21 23:55:04 -08:00
if (1) {
iris_emit_cmd(batch, GENX(3DSTATE_VF), vf) {
if (draw->primitive_restart) {
vf.IndexedDrawCutIndexEnable = true;
vf.CutIndex = draw->restart_index;
}
}
}
2018-01-21 23:55:04 -08:00
// XXX: Gen8 - PMA fix
2018-01-21 23:55:04 -08:00
assert(!draw->indirect); // XXX: indirect support
2018-01-21 23:55:04 -08:00
iris_emit_cmd(batch, GENX(3DPRIMITIVE), prim) {
prim.StartInstanceLocation = draw->start_instance;
prim.InstanceCount = draw->instance_count;
prim.VertexCountPerInstance = draw->count;
prim.VertexAccessType = draw->index_size > 0 ? RANDOM : SEQUENTIAL;
2018-01-21 23:55:04 -08:00
// XXX: this is probably bonkers.
prim.StartVertexLocation = draw->start;
2018-01-21 23:55:04 -08:00
if (draw->index_size) {
prim.BaseVertexLocation += draw->index_bias;
} else {
prim.StartVertexLocation += draw->index_bias;
}
2018-01-21 23:55:04 -08:00
//prim.BaseVertexLocation = ...;
2018-01-21 23:55:04 -08:00
}
2018-01-22 22:31:27 -08:00
}
static void
2018-01-09 14:34:15 -08:00
iris_destroy_state(struct iris_context *ice)
{
// XXX: unreference resources/surfaces.
2018-01-09 23:13:16 -08:00
for (unsigned i = 0; i < ice->state.framebuffer.nr_cbufs; i++) {
pipe_surface_reference(&ice->state.framebuffer.cbufs[i], NULL);
}
pipe_surface_reference(&ice->state.framebuffer.zsbuf, NULL);
2018-01-09 14:34:15 -08:00
}
void
genX(init_state)(struct iris_context *ice)
{
2018-01-21 18:04:05 -08:00
struct pipe_context *ctx = &ice->ctx;
ctx->create_blend_state = iris_create_blend_state;
2017-12-27 02:54:26 -08:00
ctx->create_depth_stencil_alpha_state = iris_create_zsa_state;
ctx->create_rasterizer_state = iris_create_rasterizer_state;
ctx->create_sampler_state = iris_create_sampler_state;
ctx->create_sampler_view = iris_create_sampler_view;
ctx->create_surface = iris_create_surface;
ctx->create_vertex_elements_state = iris_create_vertex_elements;
ctx->create_compute_state = iris_create_compute_state;
2017-12-27 02:54:26 -08:00
ctx->bind_blend_state = iris_bind_blend_state;
ctx->bind_depth_stencil_alpha_state = iris_bind_zsa_state;
ctx->bind_sampler_states = iris_bind_sampler_states;
ctx->bind_rasterizer_state = iris_bind_rasterizer_state;
2018-01-09 21:29:09 -08:00
ctx->bind_vertex_elements_state = iris_bind_vertex_elements_state;
2018-01-21 21:20:44 -08:00
ctx->bind_compute_state = iris_bind_compute_state;
ctx->delete_blend_state = iris_delete_state;
ctx->delete_depth_stencil_alpha_state = iris_delete_state;
ctx->delete_fs_state = iris_delete_state;
ctx->delete_rasterizer_state = iris_delete_state;
ctx->delete_sampler_state = iris_delete_state;
ctx->delete_vertex_elements_state = iris_delete_state;
ctx->delete_compute_state = iris_delete_state;
ctx->delete_tcs_state = iris_delete_state;
ctx->delete_tes_state = iris_delete_state;
ctx->delete_gs_state = iris_delete_state;
ctx->delete_vs_state = iris_delete_state;
ctx->set_blend_color = iris_set_blend_color;
ctx->set_clip_state = iris_set_clip_state;
ctx->set_constant_buffer = iris_set_constant_buffer;
ctx->set_sampler_views = iris_set_sampler_views;
ctx->set_framebuffer_state = iris_set_framebuffer_state;
ctx->set_polygon_stipple = iris_set_polygon_stipple;
ctx->set_sample_mask = iris_set_sample_mask;
ctx->set_scissor_states = iris_set_scissor_states;
ctx->set_stencil_ref = iris_set_stencil_ref;
ctx->set_vertex_buffers = iris_set_vertex_buffers;
ctx->set_viewport_states = iris_set_viewport_states;
ctx->sampler_view_destroy = iris_sampler_view_destroy;
ctx->surface_destroy = iris_surface_destroy;
ctx->draw_vbo = iris_draw_vbo;
ctx->launch_grid = iris_launch_grid;
ctx->create_stream_output_target = iris_create_stream_output_target;
ctx->stream_output_target_destroy = iris_stream_output_target_destroy;
ctx->set_stream_output_targets = iris_set_stream_output_targets;
ice->state.destroy_state = iris_destroy_state;
2018-01-25 01:53:52 -08:00
ice->state.init_render_context = iris_init_render_context;
ice->state.upload_render_state = iris_upload_render_state;
ice->state.derived_program_state_size = iris_derived_program_state_size;
ice->state.set_derived_program_state = iris_set_derived_program_state;
ice->state.populate_vs_key = iris_populate_vs_key;
ice->state.populate_tcs_key = iris_populate_tcs_key;
ice->state.populate_tes_key = iris_populate_tes_key;
ice->state.populate_gs_key = iris_populate_gs_key;
ice->state.populate_fs_key = iris_populate_fs_key;
ice->state.dirty = ~0ull;
}