2011-01-18 17:16:49 -08:00
|
|
|
/*
|
|
|
|
|
* Copyright © 2010 Intel Corporation
|
|
|
|
|
*
|
|
|
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
|
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
|
|
|
* to deal in the Software without restriction, including without limitation
|
|
|
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
|
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
|
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
|
|
|
*
|
|
|
|
|
* The above copyright notice and this permission notice (including the next
|
|
|
|
|
* paragraph) shall be included in all copies or substantial portions of the
|
|
|
|
|
* Software.
|
|
|
|
|
*
|
|
|
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
|
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
|
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
|
|
|
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
|
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
|
|
|
|
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
|
|
|
|
|
* IN THE SOFTWARE.
|
|
|
|
|
*
|
|
|
|
|
* Authors:
|
|
|
|
|
* Eric Anholt <eric@anholt.net>
|
|
|
|
|
*
|
|
|
|
|
*/
|
|
|
|
|
|
2020-10-22 13:25:33 +03:00
|
|
|
#include "brw_eu.h"
|
2025-02-05 14:25:15 -08:00
|
|
|
#include "brw_shader.h"
|
2024-12-06 19:48:54 -08:00
|
|
|
#include "brw_analysis.h"
|
2014-08-31 21:19:47 -07:00
|
|
|
#include "brw_cfg.h"
|
2023-10-20 10:32:54 -07:00
|
|
|
#include <new>
|
2011-01-18 17:16:49 -08:00
|
|
|
|
2024-07-13 00:19:44 -07:00
|
|
|
/** @file
|
2011-01-18 17:16:49 -08:00
|
|
|
*
|
|
|
|
|
* List scheduling of FS instructions.
|
|
|
|
|
*
|
|
|
|
|
* The basic model of the list scheduler is to take a basic block,
|
|
|
|
|
* compute a DAG of the dependencies (RAW ordering with latency, WAW
|
2013-03-28 10:46:17 -07:00
|
|
|
* ordering with latency, WAR ordering), and make a list of the DAG heads.
|
2011-01-18 17:16:49 -08:00
|
|
|
* Heuristically pick a DAG head, then put all the children that are
|
|
|
|
|
* now DAG heads into the list of things to schedule.
|
|
|
|
|
*
|
|
|
|
|
* The heuristic is the important part. We're trying to be cheap,
|
|
|
|
|
* since actually computing the optimal scheduling is NP complete.
|
|
|
|
|
* What we do is track a "current clock". When we schedule a node, we
|
|
|
|
|
* update the earliest-unblocked clock time of its children, and
|
|
|
|
|
* increment the clock. Then, when trying to schedule, we just pick
|
|
|
|
|
* the earliest-unblocked instruction to schedule.
|
|
|
|
|
*
|
|
|
|
|
* Note that often there will be many things which could execute
|
|
|
|
|
* immediately, and there are a range of heuristic options to choose
|
|
|
|
|
* from in picking among those.
|
|
|
|
|
*/
|
|
|
|
|
|
2012-12-04 13:52:19 -08:00
|
|
|
static bool debug = false;
|
|
|
|
|
|
2023-10-15 23:38:56 -07:00
|
|
|
struct schedule_node_child;
|
2013-11-05 23:30:33 -08:00
|
|
|
|
2011-01-18 17:16:49 -08:00
|
|
|
class schedule_node : public exec_node
|
|
|
|
|
{
|
|
|
|
|
public:
|
2024-02-15 02:27:44 -08:00
|
|
|
void set_latency(const struct brw_isa_info *isa);
|
2012-12-05 15:24:07 -08:00
|
|
|
|
2024-12-07 00:23:07 -08:00
|
|
|
brw_inst *inst;
|
2023-10-15 23:38:56 -07:00
|
|
|
schedule_node_child *children;
|
|
|
|
|
int children_count;
|
|
|
|
|
int children_cap;
|
2023-10-20 10:11:11 -07:00
|
|
|
int initial_parent_count;
|
|
|
|
|
int initial_unblocked_time;
|
2011-01-18 17:16:49 -08:00
|
|
|
int latency;
|
2013-10-28 00:11:45 -07:00
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* This is the sum of the instruction's latency plus the maximum delay of
|
|
|
|
|
* its children, or just the issue_time if it's a leaf node.
|
|
|
|
|
*/
|
|
|
|
|
int delay;
|
2016-08-16 00:56:04 -07:00
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* Preferred exit node among the (direct or indirect) successors of this
|
|
|
|
|
* node. Among the scheduler nodes blocked by this node, this will be the
|
|
|
|
|
* one that may cause earliest program termination, or NULL if none of the
|
|
|
|
|
* successors is an exit node.
|
|
|
|
|
*/
|
|
|
|
|
schedule_node *exit;
|
2023-10-16 23:25:00 -07:00
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* How many cycles this instruction takes to issue.
|
|
|
|
|
*
|
|
|
|
|
* Instructions in gen hardware are handled one simd4 vector at a time,
|
|
|
|
|
* with 1 cycle per vector dispatched. Thus SIMD8 pixel shaders take 2
|
|
|
|
|
* cycles to dispatch and SIMD16 (compressed) instructions take 4.
|
|
|
|
|
*/
|
|
|
|
|
int issue_time;
|
2023-10-20 10:11:11 -07:00
|
|
|
|
2024-03-14 19:29:36 +02:00
|
|
|
/**
|
|
|
|
|
* Whether the instruction reads any part of the address register (to speed
|
|
|
|
|
* up instruction checks).
|
|
|
|
|
*/
|
|
|
|
|
schedule_node **address_read;
|
|
|
|
|
int address_read_count;
|
|
|
|
|
int address_read_cap;
|
|
|
|
|
|
2023-10-20 10:11:11 -07:00
|
|
|
/* Temporary data used during the scheduling process. */
|
|
|
|
|
struct {
|
|
|
|
|
int parent_count;
|
|
|
|
|
int unblocked_time;
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* Which iteration of pushing groups of children onto the candidates list
|
|
|
|
|
* this node was a part of.
|
|
|
|
|
*/
|
|
|
|
|
unsigned cand_generation;
|
|
|
|
|
} tmp;
|
2011-01-18 17:16:49 -08:00
|
|
|
};
|
|
|
|
|
|
2023-10-15 23:38:56 -07:00
|
|
|
struct schedule_node_child {
|
|
|
|
|
schedule_node *n;
|
|
|
|
|
int effective_latency;
|
|
|
|
|
};
|
|
|
|
|
|
2023-10-20 10:11:11 -07:00
|
|
|
static inline void
|
|
|
|
|
reset_node_tmp(schedule_node *n)
|
|
|
|
|
{
|
|
|
|
|
n->tmp.parent_count = n->initial_parent_count;
|
|
|
|
|
n->tmp.unblocked_time = n->initial_unblocked_time;
|
|
|
|
|
n->tmp.cand_generation = 0;
|
|
|
|
|
}
|
|
|
|
|
|
2016-08-16 00:56:04 -07:00
|
|
|
/**
|
|
|
|
|
* Lower bound of the scheduling time after which one of the instructions
|
|
|
|
|
* blocked by this node may lead to program termination.
|
|
|
|
|
*
|
|
|
|
|
* exit_unblocked_time() determines a strict partial ordering relation '«' on
|
|
|
|
|
* the set of scheduler nodes as follows:
|
|
|
|
|
*
|
|
|
|
|
* n « m <-> exit_unblocked_time(n) < exit_unblocked_time(m)
|
|
|
|
|
*
|
|
|
|
|
* which can be used to heuristically order nodes according to how early they
|
|
|
|
|
* can unblock an exit node and lead to program termination.
|
|
|
|
|
*/
|
|
|
|
|
static inline int
|
2023-10-20 10:11:11 -07:00
|
|
|
exit_tmp_unblocked_time(const schedule_node *n)
|
|
|
|
|
{
|
|
|
|
|
return n->exit ? n->exit->tmp.unblocked_time : INT_MAX;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
static inline int
|
|
|
|
|
exit_initial_unblocked_time(const schedule_node *n)
|
2016-08-16 00:56:04 -07:00
|
|
|
{
|
2023-10-20 10:11:11 -07:00
|
|
|
return n->exit ? n->exit->initial_unblocked_time : INT_MAX;
|
2016-08-16 00:56:04 -07:00
|
|
|
}
|
|
|
|
|
|
2012-12-05 15:24:07 -08:00
|
|
|
void
|
2024-02-15 02:27:44 -08:00
|
|
|
schedule_node::set_latency(const struct brw_isa_info *isa)
|
2012-12-05 15:24:07 -08:00
|
|
|
{
|
2012-12-05 16:19:43 -08:00
|
|
|
switch (inst->opcode) {
|
|
|
|
|
case BRW_OPCODE_MAD:
|
2013-03-28 11:15:20 -07:00
|
|
|
/* 2 cycles
|
|
|
|
|
* (since the last two src operands are in different register banks):
|
2014-03-08 11:07:10 -08:00
|
|
|
* mad(8) g4<1>F g2.2<4,4,1>F.x g2<4,4,1>F.x g3.1<4,4,1>F.x { align16 WE_normal 1Q };
|
2013-03-28 11:15:20 -07:00
|
|
|
*
|
|
|
|
|
* 3 cycles on IVB, 4 on HSW
|
|
|
|
|
* (since the last two src operands are in the same register bank):
|
2014-03-08 11:07:10 -08:00
|
|
|
* mad(8) g4<1>F g2.2<4,4,1>F.x g2<4,4,1>F.x g2.1<4,4,1>F.x { align16 WE_normal 1Q };
|
2012-12-05 16:19:43 -08:00
|
|
|
*
|
2013-03-28 11:15:20 -07:00
|
|
|
* 18 cycles on IVB, 16 on HSW
|
|
|
|
|
* (since the last two src operands are in different register banks):
|
2014-03-08 11:07:10 -08:00
|
|
|
* mad(8) g4<1>F g2.2<4,4,1>F.x g2<4,4,1>F.x g3.1<4,4,1>F.x { align16 WE_normal 1Q };
|
2013-03-28 11:15:20 -07:00
|
|
|
* mov(8) null g4<4,5,1>F { align16 WE_normal 1Q };
|
|
|
|
|
*
|
|
|
|
|
* 20 cycles on IVB, 18 on HSW
|
|
|
|
|
* (since the last two src operands are in the same register bank):
|
2014-03-08 11:07:10 -08:00
|
|
|
* mad(8) g4<1>F g2.2<4,4,1>F.x g2<4,4,1>F.x g2.1<4,4,1>F.x { align16 WE_normal 1Q };
|
2012-12-05 16:19:43 -08:00
|
|
|
* mov(8) null g4<4,4,1>F { align16 WE_normal 1Q };
|
|
|
|
|
*/
|
2013-03-28 11:15:20 -07:00
|
|
|
|
|
|
|
|
/* Our register allocator doesn't know about register banks, so use the
|
|
|
|
|
* higher latency.
|
|
|
|
|
*/
|
2024-02-15 02:27:44 -08:00
|
|
|
latency = 18;
|
2012-12-05 16:19:43 -08:00
|
|
|
break;
|
|
|
|
|
|
2013-03-28 10:57:34 -07:00
|
|
|
case BRW_OPCODE_LRP:
|
|
|
|
|
/* 2 cycles
|
|
|
|
|
* (since the last two src operands are in different register banks):
|
2014-03-08 11:07:10 -08:00
|
|
|
* lrp(8) g4<1>F g2.2<4,4,1>F.x g2<4,4,1>F.x g3.1<4,4,1>F.x { align16 WE_normal 1Q };
|
2013-03-28 10:57:34 -07:00
|
|
|
*
|
|
|
|
|
* 3 cycles on IVB, 4 on HSW
|
|
|
|
|
* (since the last two src operands are in the same register bank):
|
2014-03-08 11:07:10 -08:00
|
|
|
* lrp(8) g4<1>F g2.2<4,4,1>F.x g2<4,4,1>F.x g2.1<4,4,1>F.x { align16 WE_normal 1Q };
|
2013-03-28 10:57:34 -07:00
|
|
|
*
|
|
|
|
|
* 16 cycles on IVB, 14 on HSW
|
|
|
|
|
* (since the last two src operands are in different register banks):
|
2014-03-08 11:07:10 -08:00
|
|
|
* lrp(8) g4<1>F g2.2<4,4,1>F.x g2<4,4,1>F.x g3.1<4,4,1>F.x { align16 WE_normal 1Q };
|
2013-03-28 10:57:34 -07:00
|
|
|
* mov(8) null g4<4,4,1>F { align16 WE_normal 1Q };
|
|
|
|
|
*
|
|
|
|
|
* 16 cycles
|
|
|
|
|
* (since the last two src operands are in the same register bank):
|
2014-03-08 11:07:10 -08:00
|
|
|
* lrp(8) g4<1>F g2.2<4,4,1>F.x g2<4,4,1>F.x g2.1<4,4,1>F.x { align16 WE_normal 1Q };
|
2013-03-28 10:57:34 -07:00
|
|
|
* mov(8) null g4<4,4,1>F { align16 WE_normal 1Q };
|
|
|
|
|
*/
|
|
|
|
|
|
|
|
|
|
/* Our register allocator doesn't know about register banks, so use the
|
|
|
|
|
* higher latency.
|
|
|
|
|
*/
|
|
|
|
|
latency = 14;
|
|
|
|
|
break;
|
|
|
|
|
|
2012-12-05 16:19:43 -08:00
|
|
|
case SHADER_OPCODE_RCP:
|
|
|
|
|
case SHADER_OPCODE_RSQ:
|
|
|
|
|
case SHADER_OPCODE_SQRT:
|
|
|
|
|
case SHADER_OPCODE_LOG2:
|
|
|
|
|
case SHADER_OPCODE_EXP2:
|
|
|
|
|
case SHADER_OPCODE_SIN:
|
|
|
|
|
case SHADER_OPCODE_COS:
|
|
|
|
|
/* 2 cycles:
|
|
|
|
|
* math inv(8) g4<1>F g2<0,1,0>F null { align1 WE_normal 1Q };
|
|
|
|
|
*
|
|
|
|
|
* 18 cycles:
|
|
|
|
|
* math inv(8) g4<1>F g2<0,1,0>F null { align1 WE_normal 1Q };
|
|
|
|
|
* mov(8) null g4<8,8,1>F { align1 WE_normal 1Q };
|
|
|
|
|
*
|
|
|
|
|
* Same for exp2, log2, rsq, sqrt, sin, cos.
|
|
|
|
|
*/
|
2024-02-15 02:27:44 -08:00
|
|
|
latency = 16;
|
2012-12-05 16:19:43 -08:00
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
case SHADER_OPCODE_POW:
|
|
|
|
|
/* 2 cycles:
|
|
|
|
|
* math pow(8) g4<1>F g2<0,1,0>F g2.1<0,1,0>F { align1 WE_normal 1Q };
|
|
|
|
|
*
|
|
|
|
|
* 26 cycles:
|
|
|
|
|
* math pow(8) g4<1>F g2<0,1,0>F g2.1<0,1,0>F { align1 WE_normal 1Q };
|
|
|
|
|
* mov(8) null g4<8,8,1>F { align1 WE_normal 1Q };
|
|
|
|
|
*/
|
2024-02-15 02:27:44 -08:00
|
|
|
latency = 24;
|
2012-12-05 16:19:43 -08:00
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
|
|
|
|
|
/* testing using varying-index pull constants:
|
|
|
|
|
*
|
|
|
|
|
* 16 cycles:
|
|
|
|
|
* mov(8) g4<1>D g2.1<0,1,0>F { align1 WE_normal 1Q };
|
|
|
|
|
* send(8) g4<1>F g4<8,8,1>D
|
|
|
|
|
* data (9, 2, 3) mlen 1 rlen 1 { align1 WE_normal 1Q };
|
|
|
|
|
*
|
|
|
|
|
* ~480 cycles:
|
|
|
|
|
* mov(8) g4<1>D g2.1<0,1,0>F { align1 WE_normal 1Q };
|
|
|
|
|
* send(8) g4<1>F g4<8,8,1>D
|
|
|
|
|
* data (9, 2, 3) mlen 1 rlen 1 { align1 WE_normal 1Q };
|
|
|
|
|
* mov(8) null g4<8,8,1>F { align1 WE_normal 1Q };
|
|
|
|
|
*
|
|
|
|
|
* ~620 cycles:
|
|
|
|
|
* mov(8) g4<1>D g2.1<0,1,0>F { align1 WE_normal 1Q };
|
|
|
|
|
* send(8) g4<1>F g4<8,8,1>D
|
|
|
|
|
* data (9, 2, 3) mlen 1 rlen 1 { align1 WE_normal 1Q };
|
|
|
|
|
* mov(8) null g4<8,8,1>F { align1 WE_normal 1Q };
|
|
|
|
|
* send(8) g4<1>F g4<8,8,1>D
|
|
|
|
|
* data (9, 2, 3) mlen 1 rlen 1 { align1 WE_normal 1Q };
|
|
|
|
|
* mov(8) null g4<8,8,1>F { align1 WE_normal 1Q };
|
|
|
|
|
*
|
|
|
|
|
* So, if it's cache-hot, it's about 140. If it's cache cold, it's
|
|
|
|
|
* about 460. We expect to mostly be cache hot, so pick something more
|
|
|
|
|
* in that direction.
|
|
|
|
|
*/
|
|
|
|
|
latency = 200;
|
|
|
|
|
break;
|
|
|
|
|
|
2018-10-29 15:06:14 -05:00
|
|
|
case SHADER_OPCODE_SEND:
|
|
|
|
|
switch (inst->sfid) {
|
2018-10-30 15:47:39 -05:00
|
|
|
case BRW_SFID_SAMPLER: {
|
|
|
|
|
unsigned msg_type = (inst->desc >> 12) & 0x1f;
|
|
|
|
|
switch (msg_type) {
|
2021-03-29 15:16:59 -07:00
|
|
|
case GFX5_SAMPLER_MESSAGE_SAMPLE_RESINFO:
|
|
|
|
|
case GFX6_SAMPLER_MESSAGE_SAMPLE_SAMPLEINFO:
|
2024-02-28 16:12:20 -08:00
|
|
|
/* Testing textureSize(sampler2D, 0), one load was 420 +/- 41
|
|
|
|
|
* cycles (n=15):
|
|
|
|
|
* mov(8) g114<1>UD 0D { align1 WE_normal 1Q };
|
|
|
|
|
* send(8) g6<1>UW g114<8,8,1>F
|
|
|
|
|
* sampler (10, 0, 10, 1) mlen 1 rlen 4 { align1 WE_normal 1Q };
|
|
|
|
|
* mov(16) g6<1>F g6<8,8,1>D { align1 WE_normal 1Q };
|
|
|
|
|
*
|
|
|
|
|
*
|
|
|
|
|
* Two loads was 535 +/- 30 cycles (n=19):
|
|
|
|
|
* mov(16) g114<1>UD 0D { align1 WE_normal 1H };
|
|
|
|
|
* send(16) g6<1>UW g114<8,8,1>F
|
|
|
|
|
* sampler (10, 0, 10, 2) mlen 2 rlen 8 { align1 WE_normal 1H };
|
|
|
|
|
* mov(16) g114<1>UD 0D { align1 WE_normal 1H };
|
|
|
|
|
* mov(16) g6<1>F g6<8,8,1>D { align1 WE_normal 1H };
|
|
|
|
|
* send(16) g8<1>UW g114<8,8,1>F
|
|
|
|
|
* sampler (10, 0, 10, 2) mlen 2 rlen 8 { align1 WE_normal 1H };
|
|
|
|
|
* mov(16) g8<1>F g8<8,8,1>D { align1 WE_normal 1H };
|
|
|
|
|
* add(16) g6<1>F g6<8,8,1>F g8<8,8,1>F { align1 WE_normal 1H };
|
|
|
|
|
*
|
|
|
|
|
* Since the only caches that should matter are just the
|
|
|
|
|
* instruction/state cache containing the surface state,
|
|
|
|
|
* assume that we always have hot caches.
|
|
|
|
|
*/
|
2018-10-30 15:47:39 -05:00
|
|
|
latency = 100;
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
default:
|
2024-02-28 16:12:20 -08:00
|
|
|
/* 18 cycles:
|
|
|
|
|
* mov(8) g115<1>F 0F { align1 WE_normal 1Q };
|
|
|
|
|
* mov(8) g114<1>F 0F { align1 WE_normal 1Q };
|
|
|
|
|
* send(8) g4<1>UW g114<8,8,1>F
|
|
|
|
|
* sampler (10, 0, 0, 1) mlen 2 rlen 4 { align1 WE_normal 1Q };
|
|
|
|
|
*
|
|
|
|
|
* 697 +/-49 cycles (min 610, n=26):
|
|
|
|
|
* mov(8) g115<1>F 0F { align1 WE_normal 1Q };
|
|
|
|
|
* mov(8) g114<1>F 0F { align1 WE_normal 1Q };
|
|
|
|
|
* send(8) g4<1>UW g114<8,8,1>F
|
|
|
|
|
* sampler (10, 0, 0, 1) mlen 2 rlen 4 { align1 WE_normal 1Q };
|
|
|
|
|
* mov(8) null g4<8,8,1>F { align1 WE_normal 1Q };
|
|
|
|
|
*
|
|
|
|
|
* So the latency on our first texture load of the batchbuffer
|
|
|
|
|
* takes ~700 cycles, since the caches are cold at that point.
|
|
|
|
|
*
|
|
|
|
|
* 840 +/- 92 cycles (min 720, n=25):
|
|
|
|
|
* mov(8) g115<1>F 0F { align1 WE_normal 1Q };
|
|
|
|
|
* mov(8) g114<1>F 0F { align1 WE_normal 1Q };
|
|
|
|
|
* send(8) g4<1>UW g114<8,8,1>F
|
|
|
|
|
* sampler (10, 0, 0, 1) mlen 2 rlen 4 { align1 WE_normal 1Q };
|
|
|
|
|
* mov(8) null g4<8,8,1>F { align1 WE_normal 1Q };
|
|
|
|
|
* send(8) g4<1>UW g114<8,8,1>F
|
|
|
|
|
* sampler (10, 0, 0, 1) mlen 2 rlen 4 { align1 WE_normal 1Q };
|
|
|
|
|
* mov(8) null g4<8,8,1>F { align1 WE_normal 1Q };
|
|
|
|
|
*
|
|
|
|
|
* On the second load, it takes just an extra ~140 cycles, and
|
|
|
|
|
* after accounting for the 14 cycles of the MOV's latency, that
|
|
|
|
|
* makes ~130.
|
|
|
|
|
*
|
|
|
|
|
* 683 +/- 49 cycles (min = 602, n=47):
|
|
|
|
|
* mov(8) g115<1>F 0F { align1 WE_normal 1Q };
|
|
|
|
|
* mov(8) g114<1>F 0F { align1 WE_normal 1Q };
|
|
|
|
|
* send(8) g4<1>UW g114<8,8,1>F
|
|
|
|
|
* sampler (10, 0, 0, 1) mlen 2 rlen 4 { align1 WE_normal 1Q };
|
|
|
|
|
* send(8) g50<1>UW g114<8,8,1>F
|
|
|
|
|
* sampler (10, 0, 0, 1) mlen 2 rlen 4 { align1 WE_normal 1Q };
|
|
|
|
|
* mov(8) null g4<8,8,1>F { align1 WE_normal 1Q };
|
|
|
|
|
*
|
|
|
|
|
* The unit appears to be pipelined, since this matches up with
|
|
|
|
|
* the cache-cold case, despite there being two loads here. If
|
|
|
|
|
* you replace the g4 in the MOV to null with g50, it's still
|
|
|
|
|
* 693 +/- 52 (n=39).
|
|
|
|
|
*
|
|
|
|
|
* So, take some number between the cache-hot 140 cycles and the
|
|
|
|
|
* cache-cold 700 cycles. No particular tuning was done on this.
|
|
|
|
|
*
|
|
|
|
|
* I haven't done significant testing of the non-TEX opcodes.
|
|
|
|
|
* TXL at least looked about the same as TEX.
|
|
|
|
|
*/
|
2018-10-30 15:47:39 -05:00
|
|
|
latency = 200;
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
|
brw: Rename shared function enums for clarity
Our name for this enum was brw_message_target, but it's better known as
shared function ID or SFID. Call it brw_sfid to make it easier to find.
Now that brw only supports Gfx9+, we don't particularly care whether
SFIDs were introduced on Gfx4, Gfx6, or Gfx7.5. Also, the LSC SFIDs
were confusingly tagged "GFX12" but aren't available on Gfx12.0; they
were introduced with Alchemist/Meteorlake.
GFX6_SFID_DATAPORT_SAMPLER_CACHE in particular was confusing. It sounds
like the SFID to use for the sampler on Gfx6+, however it has nothing to
do with the sampler at all. BRW_SFID_SAMPLER remains the sampler SFID.
On Haswell, we ran out of messages on the main data cache data port, and
so they introduced two additional ones, for more messages. The modern
Tigerlake PRMs simply call these DP_DC0, DP_DC1, and DP_DC2. I think
the "sampler" name came from some idea about reorganizing messages that
never materialized (instead, the LSC came as a much larger cleanup).
Recently we've adopted the term "HDC" for the legacy data cluster, as
opposed to "LSC" for the modern Load/Store Cache. To make clear which
SFIDs target the legacy HDC dataports, we use BRW_SFID_HDC0/1/2.
We were also citing the G45, Sandybridge, and Ivybridge PRMs for a
compiler that supports none of those platforms. Cite modern docs.
Reviewed-by: Caio Oliveira <caio.oliveira@intel.com>
Part-of: <https://gitlab.freedesktop.org/mesa/mesa/-/merge_requests/33650>
2025-02-10 16:28:48 -08:00
|
|
|
case BRW_SFID_HDC_READ_ONLY:
|
2022-12-21 20:16:27 +02:00
|
|
|
/* See FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD */
|
|
|
|
|
latency = 200;
|
|
|
|
|
break;
|
|
|
|
|
|
brw: Rename shared function enums for clarity
Our name for this enum was brw_message_target, but it's better known as
shared function ID or SFID. Call it brw_sfid to make it easier to find.
Now that brw only supports Gfx9+, we don't particularly care whether
SFIDs were introduced on Gfx4, Gfx6, or Gfx7.5. Also, the LSC SFIDs
were confusingly tagged "GFX12" but aren't available on Gfx12.0; they
were introduced with Alchemist/Meteorlake.
GFX6_SFID_DATAPORT_SAMPLER_CACHE in particular was confusing. It sounds
like the SFID to use for the sampler on Gfx6+, however it has nothing to
do with the sampler at all. BRW_SFID_SAMPLER remains the sampler SFID.
On Haswell, we ran out of messages on the main data cache data port, and
so they introduced two additional ones, for more messages. The modern
Tigerlake PRMs simply call these DP_DC0, DP_DC1, and DP_DC2. I think
the "sampler" name came from some idea about reorganizing messages that
never materialized (instead, the LSC came as a much larger cleanup).
Recently we've adopted the term "HDC" for the legacy data cluster, as
opposed to "LSC" for the modern Load/Store Cache. To make clear which
SFIDs target the legacy HDC dataports, we use BRW_SFID_HDC0/1/2.
We were also citing the G45, Sandybridge, and Ivybridge PRMs for a
compiler that supports none of those platforms. Cite modern docs.
Reviewed-by: Caio Oliveira <caio.oliveira@intel.com>
Part-of: <https://gitlab.freedesktop.org/mesa/mesa/-/merge_requests/33650>
2025-02-10 16:28:48 -08:00
|
|
|
case BRW_SFID_RENDER_CACHE:
|
2022-06-29 14:13:31 -07:00
|
|
|
switch (brw_fb_desc_msg_type(isa->devinfo, inst->desc)) {
|
2021-03-29 15:16:59 -07:00
|
|
|
case GFX7_DATAPORT_RC_TYPED_SURFACE_WRITE:
|
|
|
|
|
case GFX7_DATAPORT_RC_TYPED_SURFACE_READ:
|
2018-10-30 12:23:44 -05:00
|
|
|
/* See also SHADER_OPCODE_TYPED_SURFACE_READ */
|
|
|
|
|
latency = 600;
|
|
|
|
|
break;
|
|
|
|
|
|
2021-03-29 15:16:59 -07:00
|
|
|
case GFX7_DATAPORT_RC_TYPED_ATOMIC_OP:
|
2025-01-27 16:22:05 -08:00
|
|
|
case GFX7_DATAPORT_RC_MEMORY_FENCE:
|
2018-10-30 12:23:44 -05:00
|
|
|
/* See also SHADER_OPCODE_TYPED_ATOMIC */
|
|
|
|
|
latency = 14000;
|
|
|
|
|
break;
|
|
|
|
|
|
2021-03-29 15:16:59 -07:00
|
|
|
case GFX6_DATAPORT_WRITE_MESSAGE_RENDER_TARGET_WRITE:
|
2019-08-26 00:05:21 -07:00
|
|
|
/* completely fabricated number */
|
|
|
|
|
latency = 600;
|
|
|
|
|
break;
|
|
|
|
|
|
2018-10-30 12:23:44 -05:00
|
|
|
default:
|
|
|
|
|
unreachable("Unknown render cache message");
|
|
|
|
|
}
|
|
|
|
|
break;
|
|
|
|
|
|
brw: Rename shared function enums for clarity
Our name for this enum was brw_message_target, but it's better known as
shared function ID or SFID. Call it brw_sfid to make it easier to find.
Now that brw only supports Gfx9+, we don't particularly care whether
SFIDs were introduced on Gfx4, Gfx6, or Gfx7.5. Also, the LSC SFIDs
were confusingly tagged "GFX12" but aren't available on Gfx12.0; they
were introduced with Alchemist/Meteorlake.
GFX6_SFID_DATAPORT_SAMPLER_CACHE in particular was confusing. It sounds
like the SFID to use for the sampler on Gfx6+, however it has nothing to
do with the sampler at all. BRW_SFID_SAMPLER remains the sampler SFID.
On Haswell, we ran out of messages on the main data cache data port, and
so they introduced two additional ones, for more messages. The modern
Tigerlake PRMs simply call these DP_DC0, DP_DC1, and DP_DC2. I think
the "sampler" name came from some idea about reorganizing messages that
never materialized (instead, the LSC came as a much larger cleanup).
Recently we've adopted the term "HDC" for the legacy data cluster, as
opposed to "LSC" for the modern Load/Store Cache. To make clear which
SFIDs target the legacy HDC dataports, we use BRW_SFID_HDC0/1/2.
We were also citing the G45, Sandybridge, and Ivybridge PRMs for a
compiler that supports none of those platforms. Cite modern docs.
Reviewed-by: Caio Oliveira <caio.oliveira@intel.com>
Part-of: <https://gitlab.freedesktop.org/mesa/mesa/-/merge_requests/33650>
2025-02-10 16:28:48 -08:00
|
|
|
case BRW_SFID_HDC0:
|
2018-10-30 12:23:44 -05:00
|
|
|
switch ((inst->desc >> 14) & 0x1f) {
|
2020-10-08 14:41:43 -05:00
|
|
|
case BRW_DATAPORT_READ_MESSAGE_OWORD_BLOCK_READ:
|
2021-03-29 15:16:59 -07:00
|
|
|
case GFX7_DATAPORT_DC_UNALIGNED_OWORD_BLOCK_READ:
|
|
|
|
|
case GFX6_DATAPORT_WRITE_MESSAGE_OWORD_BLOCK_WRITE:
|
2020-10-08 14:41:43 -05:00
|
|
|
/* We have no data for this but assume it's a little faster than
|
|
|
|
|
* untyped surface read/write.
|
|
|
|
|
*/
|
|
|
|
|
latency = 200;
|
|
|
|
|
break;
|
|
|
|
|
|
2021-03-29 15:16:59 -07:00
|
|
|
case GFX7_DATAPORT_DC_DWORD_SCATTERED_READ:
|
|
|
|
|
case GFX6_DATAPORT_WRITE_MESSAGE_DWORD_SCATTERED_WRITE:
|
2018-10-30 12:23:44 -05:00
|
|
|
case HSW_DATAPORT_DC_PORT0_BYTE_SCATTERED_READ:
|
|
|
|
|
case HSW_DATAPORT_DC_PORT0_BYTE_SCATTERED_WRITE:
|
|
|
|
|
/* We have no data for this but assume it's roughly the same as
|
|
|
|
|
* untyped surface read/write.
|
|
|
|
|
*/
|
|
|
|
|
latency = 300;
|
|
|
|
|
break;
|
|
|
|
|
|
2021-03-29 15:16:59 -07:00
|
|
|
case GFX7_DATAPORT_DC_UNTYPED_SURFACE_READ:
|
|
|
|
|
case GFX7_DATAPORT_DC_UNTYPED_SURFACE_WRITE:
|
2019-02-21 10:32:01 -06:00
|
|
|
/* Test code:
|
|
|
|
|
* mov(8) g112<1>UD 0x00000000UD { align1 WE_all 1Q };
|
|
|
|
|
* mov(1) g112.7<1>UD g1.7<0,1,0>UD { align1 WE_all };
|
|
|
|
|
* mov(8) g113<1>UD 0x00000000UD { align1 WE_normal 1Q };
|
|
|
|
|
* send(8) g4<1>UD g112<8,8,1>UD
|
|
|
|
|
* data (38, 6, 5) mlen 2 rlen 1 { align1 WE_normal 1Q };
|
|
|
|
|
* .
|
|
|
|
|
* . [repeats 8 times]
|
|
|
|
|
* .
|
|
|
|
|
* mov(8) g112<1>UD 0x00000000UD { align1 WE_all 1Q };
|
|
|
|
|
* mov(1) g112.7<1>UD g1.7<0,1,0>UD { align1 WE_all };
|
|
|
|
|
* mov(8) g113<1>UD 0x00000000UD { align1 WE_normal 1Q };
|
|
|
|
|
* send(8) g4<1>UD g112<8,8,1>UD
|
|
|
|
|
* data (38, 6, 5) mlen 2 rlen 1 { align1 WE_normal 1Q };
|
|
|
|
|
*
|
|
|
|
|
* Running it 100 times as fragment shader on a 128x128 quad
|
|
|
|
|
* gives an average latency of 583 cycles per surface read,
|
|
|
|
|
* standard deviation 0.9%.
|
|
|
|
|
*/
|
2018-10-30 12:23:44 -05:00
|
|
|
latency = 600;
|
|
|
|
|
break;
|
|
|
|
|
|
2021-03-29 15:16:59 -07:00
|
|
|
case GFX7_DATAPORT_DC_UNTYPED_ATOMIC_OP:
|
2019-02-21 10:32:01 -06:00
|
|
|
/* Test code:
|
|
|
|
|
* mov(8) g112<1>ud 0x00000000ud { align1 WE_all 1Q };
|
|
|
|
|
* mov(1) g112.7<1>ud g1.7<0,1,0>ud { align1 WE_all };
|
|
|
|
|
* mov(8) g113<1>ud 0x00000000ud { align1 WE_normal 1Q };
|
|
|
|
|
* send(8) g4<1>ud g112<8,8,1>ud
|
|
|
|
|
* data (38, 5, 6) mlen 2 rlen 1 { align1 WE_normal 1Q };
|
|
|
|
|
*
|
|
|
|
|
* Running it 100 times as fragment shader on a 128x128 quad
|
|
|
|
|
* gives an average latency of 13867 cycles per atomic op,
|
|
|
|
|
* standard deviation 3%. Note that this is a rather
|
|
|
|
|
* pessimistic estimate, the actual latency in cases with few
|
|
|
|
|
* collisions between threads and favorable pipelining has been
|
|
|
|
|
* seen to be reduced by a factor of 100.
|
|
|
|
|
*/
|
2018-10-30 12:23:44 -05:00
|
|
|
latency = 14000;
|
|
|
|
|
break;
|
|
|
|
|
|
2025-01-27 16:22:05 -08:00
|
|
|
case GFX7_DATAPORT_DC_MEMORY_FENCE:
|
|
|
|
|
latency = 14000;
|
|
|
|
|
break;
|
|
|
|
|
|
2018-10-30 12:23:44 -05:00
|
|
|
default:
|
|
|
|
|
unreachable("Unknown data cache message");
|
|
|
|
|
}
|
|
|
|
|
break;
|
|
|
|
|
|
brw: Rename shared function enums for clarity
Our name for this enum was brw_message_target, but it's better known as
shared function ID or SFID. Call it brw_sfid to make it easier to find.
Now that brw only supports Gfx9+, we don't particularly care whether
SFIDs were introduced on Gfx4, Gfx6, or Gfx7.5. Also, the LSC SFIDs
were confusingly tagged "GFX12" but aren't available on Gfx12.0; they
were introduced with Alchemist/Meteorlake.
GFX6_SFID_DATAPORT_SAMPLER_CACHE in particular was confusing. It sounds
like the SFID to use for the sampler on Gfx6+, however it has nothing to
do with the sampler at all. BRW_SFID_SAMPLER remains the sampler SFID.
On Haswell, we ran out of messages on the main data cache data port, and
so they introduced two additional ones, for more messages. The modern
Tigerlake PRMs simply call these DP_DC0, DP_DC1, and DP_DC2. I think
the "sampler" name came from some idea about reorganizing messages that
never materialized (instead, the LSC came as a much larger cleanup).
Recently we've adopted the term "HDC" for the legacy data cluster, as
opposed to "LSC" for the modern Load/Store Cache. To make clear which
SFIDs target the legacy HDC dataports, we use BRW_SFID_HDC0/1/2.
We were also citing the G45, Sandybridge, and Ivybridge PRMs for a
compiler that supports none of those platforms. Cite modern docs.
Reviewed-by: Caio Oliveira <caio.oliveira@intel.com>
Part-of: <https://gitlab.freedesktop.org/mesa/mesa/-/merge_requests/33650>
2025-02-10 16:28:48 -08:00
|
|
|
case BRW_SFID_HDC1:
|
2023-01-27 15:51:09 +02:00
|
|
|
switch (brw_dp_desc_msg_type(isa->devinfo, inst->desc)) {
|
2018-10-30 12:23:44 -05:00
|
|
|
case HSW_DATAPORT_DC_PORT1_UNTYPED_SURFACE_READ:
|
|
|
|
|
case HSW_DATAPORT_DC_PORT1_UNTYPED_SURFACE_WRITE:
|
|
|
|
|
case HSW_DATAPORT_DC_PORT1_TYPED_SURFACE_READ:
|
|
|
|
|
case HSW_DATAPORT_DC_PORT1_TYPED_SURFACE_WRITE:
|
2021-03-29 15:16:59 -07:00
|
|
|
case GFX8_DATAPORT_DC_PORT1_A64_UNTYPED_SURFACE_WRITE:
|
|
|
|
|
case GFX8_DATAPORT_DC_PORT1_A64_UNTYPED_SURFACE_READ:
|
|
|
|
|
case GFX8_DATAPORT_DC_PORT1_A64_SCATTERED_WRITE:
|
|
|
|
|
case GFX9_DATAPORT_DC_PORT1_A64_SCATTERED_READ:
|
|
|
|
|
case GFX9_DATAPORT_DC_PORT1_A64_OWORD_BLOCK_READ:
|
|
|
|
|
case GFX9_DATAPORT_DC_PORT1_A64_OWORD_BLOCK_WRITE:
|
|
|
|
|
/* See also GFX7_DATAPORT_DC_UNTYPED_SURFACE_READ */
|
2018-10-30 12:23:44 -05:00
|
|
|
latency = 300;
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
case HSW_DATAPORT_DC_PORT1_UNTYPED_ATOMIC_OP:
|
|
|
|
|
case HSW_DATAPORT_DC_PORT1_UNTYPED_ATOMIC_OP_SIMD4X2:
|
|
|
|
|
case HSW_DATAPORT_DC_PORT1_TYPED_ATOMIC_OP_SIMD4X2:
|
|
|
|
|
case HSW_DATAPORT_DC_PORT1_TYPED_ATOMIC_OP:
|
2021-03-29 15:16:59 -07:00
|
|
|
case GFX9_DATAPORT_DC_PORT1_UNTYPED_ATOMIC_FLOAT_OP:
|
|
|
|
|
case GFX8_DATAPORT_DC_PORT1_A64_UNTYPED_ATOMIC_OP:
|
|
|
|
|
case GFX9_DATAPORT_DC_PORT1_A64_UNTYPED_ATOMIC_FLOAT_OP:
|
|
|
|
|
case GFX12_DATAPORT_DC_PORT1_A64_UNTYPED_ATOMIC_HALF_INT_OP:
|
|
|
|
|
case GFX12_DATAPORT_DC_PORT1_A64_UNTYPED_ATOMIC_HALF_FLOAT_OP:
|
|
|
|
|
/* See also GFX7_DATAPORT_DC_UNTYPED_ATOMIC_OP */
|
2018-10-30 12:23:44 -05:00
|
|
|
latency = 14000;
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
default:
|
|
|
|
|
unreachable("Unknown data cache message");
|
|
|
|
|
}
|
|
|
|
|
break;
|
|
|
|
|
|
brw: Rename shared function enums for clarity
Our name for this enum was brw_message_target, but it's better known as
shared function ID or SFID. Call it brw_sfid to make it easier to find.
Now that brw only supports Gfx9+, we don't particularly care whether
SFIDs were introduced on Gfx4, Gfx6, or Gfx7.5. Also, the LSC SFIDs
were confusingly tagged "GFX12" but aren't available on Gfx12.0; they
were introduced with Alchemist/Meteorlake.
GFX6_SFID_DATAPORT_SAMPLER_CACHE in particular was confusing. It sounds
like the SFID to use for the sampler on Gfx6+, however it has nothing to
do with the sampler at all. BRW_SFID_SAMPLER remains the sampler SFID.
On Haswell, we ran out of messages on the main data cache data port, and
so they introduced two additional ones, for more messages. The modern
Tigerlake PRMs simply call these DP_DC0, DP_DC1, and DP_DC2. I think
the "sampler" name came from some idea about reorganizing messages that
never materialized (instead, the LSC came as a much larger cleanup).
Recently we've adopted the term "HDC" for the legacy data cluster, as
opposed to "LSC" for the modern Load/Store Cache. To make clear which
SFIDs target the legacy HDC dataports, we use BRW_SFID_HDC0/1/2.
We were also citing the G45, Sandybridge, and Ivybridge PRMs for a
compiler that supports none of those platforms. Cite modern docs.
Reviewed-by: Caio Oliveira <caio.oliveira@intel.com>
Part-of: <https://gitlab.freedesktop.org/mesa/mesa/-/merge_requests/33650>
2025-02-10 16:28:48 -08:00
|
|
|
case BRW_SFID_PIXEL_INTERPOLATOR:
|
2021-11-19 17:57:42 -06:00
|
|
|
latency = 50; /* TODO */
|
|
|
|
|
break;
|
|
|
|
|
|
brw: Rename shared function enums for clarity
Our name for this enum was brw_message_target, but it's better known as
shared function ID or SFID. Call it brw_sfid to make it easier to find.
Now that brw only supports Gfx9+, we don't particularly care whether
SFIDs were introduced on Gfx4, Gfx6, or Gfx7.5. Also, the LSC SFIDs
were confusingly tagged "GFX12" but aren't available on Gfx12.0; they
were introduced with Alchemist/Meteorlake.
GFX6_SFID_DATAPORT_SAMPLER_CACHE in particular was confusing. It sounds
like the SFID to use for the sampler on Gfx6+, however it has nothing to
do with the sampler at all. BRW_SFID_SAMPLER remains the sampler SFID.
On Haswell, we ran out of messages on the main data cache data port, and
so they introduced two additional ones, for more messages. The modern
Tigerlake PRMs simply call these DP_DC0, DP_DC1, and DP_DC2. I think
the "sampler" name came from some idea about reorganizing messages that
never materialized (instead, the LSC came as a much larger cleanup).
Recently we've adopted the term "HDC" for the legacy data cluster, as
opposed to "LSC" for the modern Load/Store Cache. To make clear which
SFIDs target the legacy HDC dataports, we use BRW_SFID_HDC0/1/2.
We were also citing the G45, Sandybridge, and Ivybridge PRMs for a
compiler that supports none of those platforms. Cite modern docs.
Reviewed-by: Caio Oliveira <caio.oliveira@intel.com>
Part-of: <https://gitlab.freedesktop.org/mesa/mesa/-/merge_requests/33650>
2025-02-10 16:28:48 -08:00
|
|
|
case BRW_SFID_UGM:
|
|
|
|
|
case BRW_SFID_TGM:
|
|
|
|
|
case BRW_SFID_SLM:
|
2022-06-29 14:13:31 -07:00
|
|
|
switch (lsc_msg_desc_opcode(isa->devinfo, inst->desc)) {
|
2021-04-29 23:58:26 -07:00
|
|
|
case LSC_OP_LOAD:
|
|
|
|
|
case LSC_OP_STORE:
|
2021-01-26 14:01:43 -08:00
|
|
|
case LSC_OP_LOAD_CMASK:
|
|
|
|
|
case LSC_OP_STORE_CMASK:
|
2023-08-01 16:07:57 -07:00
|
|
|
case LSC_OP_LOAD_CMASK_MSRT:
|
|
|
|
|
case LSC_OP_STORE_CMASK_MSRT:
|
2021-01-26 14:01:43 -08:00
|
|
|
latency = 300;
|
|
|
|
|
break;
|
2021-05-25 11:31:10 +03:00
|
|
|
case LSC_OP_FENCE:
|
2021-04-29 18:48:03 -07:00
|
|
|
case LSC_OP_ATOMIC_INC:
|
|
|
|
|
case LSC_OP_ATOMIC_DEC:
|
|
|
|
|
case LSC_OP_ATOMIC_LOAD:
|
|
|
|
|
case LSC_OP_ATOMIC_STORE:
|
|
|
|
|
case LSC_OP_ATOMIC_ADD:
|
|
|
|
|
case LSC_OP_ATOMIC_SUB:
|
|
|
|
|
case LSC_OP_ATOMIC_MIN:
|
|
|
|
|
case LSC_OP_ATOMIC_MAX:
|
|
|
|
|
case LSC_OP_ATOMIC_UMIN:
|
|
|
|
|
case LSC_OP_ATOMIC_UMAX:
|
|
|
|
|
case LSC_OP_ATOMIC_CMPXCHG:
|
2021-04-29 20:50:42 -07:00
|
|
|
case LSC_OP_ATOMIC_FADD:
|
|
|
|
|
case LSC_OP_ATOMIC_FSUB:
|
|
|
|
|
case LSC_OP_ATOMIC_FMIN:
|
|
|
|
|
case LSC_OP_ATOMIC_FMAX:
|
|
|
|
|
case LSC_OP_ATOMIC_FCMPXCHG:
|
2021-04-29 18:48:03 -07:00
|
|
|
case LSC_OP_ATOMIC_AND:
|
|
|
|
|
case LSC_OP_ATOMIC_OR:
|
|
|
|
|
case LSC_OP_ATOMIC_XOR:
|
|
|
|
|
latency = 1400;
|
|
|
|
|
break;
|
2021-04-29 12:48:02 -07:00
|
|
|
default:
|
|
|
|
|
unreachable("unsupported new data port message instruction");
|
|
|
|
|
}
|
|
|
|
|
break;
|
|
|
|
|
|
2024-02-28 02:58:00 -08:00
|
|
|
case BRW_SFID_MESSAGE_GATEWAY:
|
brw: Rename shared function enums for clarity
Our name for this enum was brw_message_target, but it's better known as
shared function ID or SFID. Call it brw_sfid to make it easier to find.
Now that brw only supports Gfx9+, we don't particularly care whether
SFIDs were introduced on Gfx4, Gfx6, or Gfx7.5. Also, the LSC SFIDs
were confusingly tagged "GFX12" but aren't available on Gfx12.0; they
were introduced with Alchemist/Meteorlake.
GFX6_SFID_DATAPORT_SAMPLER_CACHE in particular was confusing. It sounds
like the SFID to use for the sampler on Gfx6+, however it has nothing to
do with the sampler at all. BRW_SFID_SAMPLER remains the sampler SFID.
On Haswell, we ran out of messages on the main data cache data port, and
so they introduced two additional ones, for more messages. The modern
Tigerlake PRMs simply call these DP_DC0, DP_DC1, and DP_DC2. I think
the "sampler" name came from some idea about reorganizing messages that
never materialized (instead, the LSC came as a much larger cleanup).
Recently we've adopted the term "HDC" for the legacy data cluster, as
opposed to "LSC" for the modern Load/Store Cache. To make clear which
SFIDs target the legacy HDC dataports, we use BRW_SFID_HDC0/1/2.
We were also citing the G45, Sandybridge, and Ivybridge PRMs for a
compiler that supports none of those platforms. Cite modern docs.
Reviewed-by: Caio Oliveira <caio.oliveira@intel.com>
Part-of: <https://gitlab.freedesktop.org/mesa/mesa/-/merge_requests/33650>
2025-02-10 16:28:48 -08:00
|
|
|
case BRW_SFID_BINDLESS_THREAD_DISPATCH: /* or THREAD_SPAWNER */
|
|
|
|
|
case BRW_SFID_RAY_TRACE_ACCELERATOR:
|
2020-10-21 14:46:50 -05:00
|
|
|
/* TODO.
|
|
|
|
|
*
|
|
|
|
|
* We'll assume for the moment that this is pretty quick as it
|
|
|
|
|
* doesn't actually return any data.
|
|
|
|
|
*/
|
|
|
|
|
latency = 200;
|
|
|
|
|
break;
|
|
|
|
|
|
2022-06-27 15:34:01 -07:00
|
|
|
case BRW_SFID_URB:
|
|
|
|
|
latency = 200;
|
|
|
|
|
break;
|
|
|
|
|
|
2018-10-29 15:06:14 -05:00
|
|
|
default:
|
|
|
|
|
unreachable("Unknown SFID");
|
|
|
|
|
}
|
|
|
|
|
break;
|
|
|
|
|
|
2023-09-20 12:42:24 -07:00
|
|
|
case BRW_OPCODE_DPAS:
|
|
|
|
|
switch (inst->rcount) {
|
|
|
|
|
case 1:
|
|
|
|
|
latency = 21;
|
|
|
|
|
break;
|
|
|
|
|
case 2:
|
|
|
|
|
latency = 22;
|
|
|
|
|
break;
|
|
|
|
|
case 8:
|
|
|
|
|
default:
|
|
|
|
|
latency = 32;
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
break;
|
|
|
|
|
|
2012-12-05 16:19:43 -08:00
|
|
|
default:
|
|
|
|
|
/* 2 cycles:
|
|
|
|
|
* mul(8) g4<1>F g2<0,1,0>F 0.5F { align1 WE_normal 1Q };
|
|
|
|
|
*
|
|
|
|
|
* 16 cycles:
|
|
|
|
|
* mul(8) g4<1>F g2<0,1,0>F 0.5F { align1 WE_normal 1Q };
|
|
|
|
|
* mov(8) null g4<8,8,1>F { align1 WE_normal 1Q };
|
|
|
|
|
*/
|
|
|
|
|
latency = 14;
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
2024-12-06 22:39:15 -08:00
|
|
|
class brw_instruction_scheduler {
|
2011-01-18 17:16:49 -08:00
|
|
|
public:
|
2024-12-07 10:25:45 -08:00
|
|
|
brw_instruction_scheduler(void *mem_ctx, const brw_shader *s, int grf_count, int hw_reg_count,
|
2024-02-28 13:39:45 -08:00
|
|
|
int block_count, bool post_reg_alloc);
|
2011-01-18 17:16:49 -08:00
|
|
|
|
|
|
|
|
void add_barrier_deps(schedule_node *n);
|
2023-04-03 14:52:59 +03:00
|
|
|
void add_cross_lane_deps(schedule_node *n);
|
2011-01-18 17:16:49 -08:00
|
|
|
void add_dep(schedule_node *before, schedule_node *after, int latency);
|
2011-05-20 14:13:59 -07:00
|
|
|
void add_dep(schedule_node *before, schedule_node *after);
|
2024-03-14 19:29:36 +02:00
|
|
|
void add_address_dep(schedule_node *before, schedule_node *after);
|
2011-01-18 17:16:49 -08:00
|
|
|
|
2025-03-11 13:20:09 -07:00
|
|
|
void set_current_block(bblock_t *block, const brw_ip_ranges &ips);
|
2016-08-16 00:01:31 -07:00
|
|
|
void compute_delays();
|
2016-08-16 00:56:04 -07:00
|
|
|
void compute_exits();
|
2013-10-14 11:38:09 -07:00
|
|
|
|
2023-10-20 00:58:25 -07:00
|
|
|
void schedule(schedule_node *chosen);
|
|
|
|
|
void update_children(schedule_node *chosen);
|
2011-03-23 13:53:26 -07:00
|
|
|
|
2024-02-28 13:39:45 -08:00
|
|
|
void calculate_deps();
|
2024-12-07 00:23:07 -08:00
|
|
|
bool is_compressed(const brw_inst *inst);
|
2024-06-18 23:42:59 -07:00
|
|
|
bool register_needs_barrier(const brw_reg ®);
|
2024-03-14 19:29:36 +02:00
|
|
|
bool address_register_interfere(const schedule_node *n);
|
2024-02-28 13:39:45 -08:00
|
|
|
schedule_node *choose_instruction_to_schedule();
|
2024-12-07 00:23:07 -08:00
|
|
|
int calculate_issue_time(const brw_inst *inst);
|
2024-02-28 13:39:45 -08:00
|
|
|
|
2024-12-07 00:23:07 -08:00
|
|
|
void count_reads_remaining(const brw_inst *inst);
|
2024-02-28 13:39:45 -08:00
|
|
|
void setup_liveness(cfg_t *cfg);
|
2024-12-07 00:23:07 -08:00
|
|
|
void update_register_pressure(const brw_inst *inst);
|
|
|
|
|
int get_register_pressure_benefit(const brw_inst *inst);
|
2024-02-28 13:39:45 -08:00
|
|
|
void clear_last_grf_write();
|
|
|
|
|
|
|
|
|
|
void schedule_instructions();
|
2024-12-06 22:39:15 -08:00
|
|
|
void run(brw_instruction_scheduler_mode mode);
|
2024-02-28 13:39:45 -08:00
|
|
|
|
2024-06-18 23:42:59 -07:00
|
|
|
int grf_index(const brw_reg ®);
|
2024-03-14 18:09:33 +02:00
|
|
|
|
2011-01-18 17:16:49 -08:00
|
|
|
void *mem_ctx;
|
2023-10-10 15:24:38 -07:00
|
|
|
linear_ctx *lin_ctx;
|
2011-01-18 17:16:49 -08:00
|
|
|
|
2023-10-19 22:07:53 -07:00
|
|
|
schedule_node *nodes;
|
|
|
|
|
int nodes_len;
|
|
|
|
|
|
2023-10-20 00:09:37 -07:00
|
|
|
/* Current block being processed. */
|
|
|
|
|
struct {
|
|
|
|
|
bblock_t *block;
|
|
|
|
|
|
|
|
|
|
/* Range of nodes in the block. End will point to first node
|
|
|
|
|
* address after the block, i.e. the range is [start, end).
|
|
|
|
|
*/
|
|
|
|
|
schedule_node *start;
|
|
|
|
|
schedule_node *end;
|
|
|
|
|
int len;
|
|
|
|
|
|
2023-10-20 00:58:25 -07:00
|
|
|
int scheduled;
|
|
|
|
|
|
|
|
|
|
unsigned cand_generation;
|
2023-10-20 00:09:37 -07:00
|
|
|
int time;
|
2023-10-20 00:39:04 -07:00
|
|
|
exec_list available;
|
2024-03-14 19:29:36 +02:00
|
|
|
|
|
|
|
|
/* Currently used address register */
|
|
|
|
|
uint32_t address_register[16];
|
2023-10-20 00:09:37 -07:00
|
|
|
} current;
|
|
|
|
|
|
2012-12-03 17:58:03 -08:00
|
|
|
bool post_reg_alloc;
|
|
|
|
|
int grf_count;
|
2024-12-07 10:25:45 -08:00
|
|
|
const brw_shader *s;
|
2013-10-14 11:38:09 -07:00
|
|
|
|
2023-10-20 01:30:19 -07:00
|
|
|
/**
|
|
|
|
|
* Last instruction to have written the grf (or a channel in the grf, for the
|
|
|
|
|
* scalar backend)
|
|
|
|
|
*/
|
|
|
|
|
schedule_node **last_grf_write;
|
|
|
|
|
|
|
|
|
|
unsigned hw_reg_count;
|
|
|
|
|
int reg_pressure;
|
2024-12-06 22:39:15 -08:00
|
|
|
brw_instruction_scheduler_mode mode;
|
2013-11-06 17:38:23 -08:00
|
|
|
|
2015-06-09 10:26:53 -07:00
|
|
|
/*
|
|
|
|
|
* The register pressure at the beginning of each basic block.
|
2013-10-14 11:38:09 -07:00
|
|
|
*/
|
|
|
|
|
|
2015-06-09 10:26:53 -07:00
|
|
|
int *reg_pressure_in;
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
* The virtual GRF's whose range overlaps the beginning of each basic block.
|
|
|
|
|
*/
|
|
|
|
|
|
|
|
|
|
BITSET_WORD **livein;
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
* The virtual GRF's whose range overlaps the end of each basic block.
|
|
|
|
|
*/
|
|
|
|
|
|
|
|
|
|
BITSET_WORD **liveout;
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
* The hardware GRF's whose range overlaps the end of each basic block.
|
|
|
|
|
*/
|
|
|
|
|
|
|
|
|
|
BITSET_WORD **hw_liveout;
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
* Whether we've scheduled a write for this virtual GRF yet.
|
2013-10-14 11:38:09 -07:00
|
|
|
*/
|
2015-06-09 10:26:53 -07:00
|
|
|
|
|
|
|
|
bool *written;
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
* How many reads we haven't scheduled for this virtual GRF yet.
|
|
|
|
|
*/
|
|
|
|
|
|
|
|
|
|
int *reads_remaining;
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
* How many reads we haven't scheduled for this hardware GRF yet.
|
|
|
|
|
*/
|
|
|
|
|
|
|
|
|
|
int *hw_reads_remaining;
|
2011-01-18 17:16:49 -08:00
|
|
|
};
|
|
|
|
|
|
2024-12-07 10:25:45 -08:00
|
|
|
brw_instruction_scheduler::brw_instruction_scheduler(void *mem_ctx, const brw_shader *s,
|
2024-02-28 13:39:45 -08:00
|
|
|
int grf_count, int hw_reg_count,
|
|
|
|
|
int block_count, bool post_reg_alloc)
|
|
|
|
|
: s(s)
|
2013-04-29 14:05:33 -07:00
|
|
|
{
|
2024-02-28 13:39:45 -08:00
|
|
|
this->mem_ctx = mem_ctx;
|
|
|
|
|
this->lin_ctx = linear_context(this->mem_ctx);
|
|
|
|
|
this->grf_count = grf_count;
|
|
|
|
|
this->post_reg_alloc = post_reg_alloc;
|
|
|
|
|
|
2024-03-14 18:09:33 +02:00
|
|
|
const unsigned grf_write_scale = MAX_VGRF_SIZE(s->devinfo);
|
2024-02-28 13:39:45 -08:00
|
|
|
this->last_grf_write = linear_zalloc_array(lin_ctx, schedule_node *, grf_count * grf_write_scale);
|
|
|
|
|
|
2025-03-11 10:48:00 -07:00
|
|
|
this->nodes_len = s->cfg->total_instructions;
|
2024-02-28 13:39:45 -08:00
|
|
|
this->nodes = linear_zalloc_array(lin_ctx, schedule_node, this->nodes_len);
|
|
|
|
|
|
|
|
|
|
const struct brw_isa_info *isa = &s->compiler->isa;
|
|
|
|
|
|
|
|
|
|
schedule_node *n = nodes;
|
2024-12-07 00:23:07 -08:00
|
|
|
foreach_block_and_inst(block, brw_inst, inst, s->cfg) {
|
2024-02-28 13:39:45 -08:00
|
|
|
n->inst = inst;
|
|
|
|
|
|
|
|
|
|
if (!post_reg_alloc)
|
|
|
|
|
n->latency = 1;
|
|
|
|
|
else
|
|
|
|
|
n->set_latency(isa);
|
|
|
|
|
|
|
|
|
|
n++;
|
|
|
|
|
}
|
|
|
|
|
assert(n == nodes + nodes_len);
|
|
|
|
|
|
|
|
|
|
current.block = NULL;
|
|
|
|
|
current.start = NULL;
|
|
|
|
|
current.end = NULL;
|
|
|
|
|
current.len = 0;
|
|
|
|
|
current.time = 0;
|
|
|
|
|
current.cand_generation = 0;
|
|
|
|
|
current.available.make_empty();
|
|
|
|
|
|
2023-10-20 01:30:19 -07:00
|
|
|
this->hw_reg_count = hw_reg_count;
|
2024-12-06 22:39:15 -08:00
|
|
|
this->mode = BRW_SCHEDULE_NONE;
|
2023-10-20 01:30:19 -07:00
|
|
|
this->reg_pressure = 0;
|
|
|
|
|
|
|
|
|
|
if (!post_reg_alloc) {
|
|
|
|
|
this->reg_pressure_in = linear_zalloc_array(lin_ctx, int, block_count);
|
|
|
|
|
|
|
|
|
|
this->livein = linear_alloc_array(lin_ctx, BITSET_WORD *, block_count);
|
|
|
|
|
for (int i = 0; i < block_count; i++)
|
|
|
|
|
this->livein[i] = linear_zalloc_array(lin_ctx, BITSET_WORD,
|
|
|
|
|
BITSET_WORDS(grf_count));
|
|
|
|
|
|
|
|
|
|
this->liveout = linear_alloc_array(lin_ctx, BITSET_WORD *, block_count);
|
|
|
|
|
for (int i = 0; i < block_count; i++)
|
|
|
|
|
this->liveout[i] = linear_zalloc_array(lin_ctx, BITSET_WORD,
|
|
|
|
|
BITSET_WORDS(grf_count));
|
|
|
|
|
|
|
|
|
|
this->hw_liveout = linear_alloc_array(lin_ctx, BITSET_WORD *, block_count);
|
|
|
|
|
for (int i = 0; i < block_count; i++)
|
|
|
|
|
this->hw_liveout[i] = linear_zalloc_array(lin_ctx, BITSET_WORD,
|
|
|
|
|
BITSET_WORDS(hw_reg_count));
|
|
|
|
|
|
2024-02-28 13:39:45 -08:00
|
|
|
setup_liveness(s->cfg);
|
2023-10-20 09:45:14 -07:00
|
|
|
|
2023-10-20 02:15:59 -07:00
|
|
|
this->written = linear_alloc_array(lin_ctx, bool, grf_count);
|
2023-10-20 01:30:19 -07:00
|
|
|
|
2023-10-20 02:15:59 -07:00
|
|
|
this->reads_remaining = linear_alloc_array(lin_ctx, int, grf_count);
|
2023-10-20 01:30:19 -07:00
|
|
|
|
2023-10-20 02:15:59 -07:00
|
|
|
this->hw_reads_remaining = linear_alloc_array(lin_ctx, int, hw_reg_count);
|
2023-10-20 01:30:19 -07:00
|
|
|
} else {
|
|
|
|
|
this->reg_pressure_in = NULL;
|
|
|
|
|
this->livein = NULL;
|
|
|
|
|
this->liveout = NULL;
|
|
|
|
|
this->hw_liveout = NULL;
|
|
|
|
|
this->written = NULL;
|
|
|
|
|
this->reads_remaining = NULL;
|
|
|
|
|
this->hw_reads_remaining = NULL;
|
|
|
|
|
}
|
2023-10-20 09:45:14 -07:00
|
|
|
|
2025-03-11 13:20:09 -07:00
|
|
|
const brw_ip_ranges &ips = s->ip_ranges_analysis.require();
|
|
|
|
|
|
2024-02-28 13:39:45 -08:00
|
|
|
foreach_block(block, s->cfg) {
|
2025-03-11 13:20:09 -07:00
|
|
|
set_current_block(block, ips);
|
2023-10-20 09:45:14 -07:00
|
|
|
|
|
|
|
|
for (schedule_node *n = current.start; n < current.end; n++)
|
|
|
|
|
n->issue_time = calculate_issue_time(n->inst);
|
|
|
|
|
|
|
|
|
|
calculate_deps();
|
|
|
|
|
compute_delays();
|
|
|
|
|
compute_exits();
|
|
|
|
|
}
|
2013-04-29 14:05:33 -07:00
|
|
|
}
|
|
|
|
|
|
2015-06-09 10:26:53 -07:00
|
|
|
static bool
|
2024-12-07 00:23:07 -08:00
|
|
|
is_src_duplicate(const brw_inst *inst, int src)
|
2015-06-09 10:26:53 -07:00
|
|
|
{
|
|
|
|
|
for (int i = 0; i < src; i++)
|
|
|
|
|
if (inst->src[i].equals(inst->src[src]))
|
|
|
|
|
return true;
|
|
|
|
|
|
|
|
|
|
return false;
|
|
|
|
|
}
|
|
|
|
|
|
2013-10-14 11:38:09 -07:00
|
|
|
void
|
2024-12-07 00:23:07 -08:00
|
|
|
brw_instruction_scheduler::count_reads_remaining(const brw_inst *inst)
|
2013-10-14 11:38:09 -07:00
|
|
|
{
|
2023-10-20 02:15:59 -07:00
|
|
|
assert(reads_remaining);
|
2013-10-14 11:38:09 -07:00
|
|
|
|
2014-03-17 10:39:43 -07:00
|
|
|
for (int i = 0; i < inst->sources; i++) {
|
2015-06-09 10:26:53 -07:00
|
|
|
if (is_src_duplicate(inst, i))
|
|
|
|
|
continue;
|
|
|
|
|
|
2015-10-26 17:09:25 -07:00
|
|
|
if (inst->src[i].file == VGRF) {
|
2015-10-26 04:35:14 -07:00
|
|
|
reads_remaining[inst->src[i].nr]++;
|
2015-10-26 17:52:57 -07:00
|
|
|
} else if (inst->src[i].file == FIXED_GRF) {
|
2015-10-24 15:29:03 -07:00
|
|
|
if (inst->src[i].nr >= hw_reg_count)
|
2015-06-09 10:26:53 -07:00
|
|
|
continue;
|
|
|
|
|
|
2024-06-19 10:50:51 -07:00
|
|
|
for (unsigned j = 0; j < regs_read(s->devinfo, inst, i); j++)
|
2015-10-24 15:29:03 -07:00
|
|
|
hw_reads_remaining[inst->src[i].nr + j]++;
|
2015-06-09 10:26:53 -07:00
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void
|
2024-12-06 22:39:15 -08:00
|
|
|
brw_instruction_scheduler::setup_liveness(cfg_t *cfg)
|
2015-06-09 10:26:53 -07:00
|
|
|
{
|
2024-12-06 21:20:58 -08:00
|
|
|
const brw_live_variables &live = s->live_analysis.require();
|
2025-03-11 13:20:09 -07:00
|
|
|
const brw_ip_ranges &ips = s->ip_ranges_analysis.require();
|
2016-03-13 16:25:57 -07:00
|
|
|
|
2015-06-09 10:26:53 -07:00
|
|
|
/* First, compute liveness on a per-GRF level using the in/out sets from
|
|
|
|
|
* liveness calculation.
|
|
|
|
|
*/
|
|
|
|
|
for (int block = 0; block < cfg->num_blocks; block++) {
|
2016-03-13 16:25:57 -07:00
|
|
|
for (int i = 0; i < live.num_vars; i++) {
|
|
|
|
|
if (BITSET_TEST(live.block_data[block].livein, i)) {
|
|
|
|
|
int vgrf = live.vgrf_from_var[i];
|
2015-06-09 10:26:53 -07:00
|
|
|
if (!BITSET_TEST(livein[block], vgrf)) {
|
2024-02-28 13:39:45 -08:00
|
|
|
reg_pressure_in[block] += s->alloc.sizes[vgrf];
|
2015-06-09 10:26:53 -07:00
|
|
|
BITSET_SET(livein[block], vgrf);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
2016-03-13 16:25:57 -07:00
|
|
|
if (BITSET_TEST(live.block_data[block].liveout, i))
|
|
|
|
|
BITSET_SET(liveout[block], live.vgrf_from_var[i]);
|
2015-06-09 10:26:53 -07:00
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Now, extend the live in/live out sets for when a range crosses a block
|
|
|
|
|
* boundary, which matches what our register allocator/interference code
|
|
|
|
|
* does to account for force_writemask_all and incompatible exec_mask's.
|
|
|
|
|
*/
|
|
|
|
|
for (int block = 0; block < cfg->num_blocks - 1; block++) {
|
|
|
|
|
for (int i = 0; i < grf_count; i++) {
|
2025-03-27 08:23:36 -07:00
|
|
|
const int block_end = ips.range(cfg->blocks[block]).last();
|
2025-03-26 14:16:16 -07:00
|
|
|
const brw_range vgrf_range = live.vgrf_range[i];
|
2025-03-13 15:48:37 -07:00
|
|
|
|
2025-03-26 13:26:28 -07:00
|
|
|
if (vgrf_range.contains(block_end) &&
|
|
|
|
|
vgrf_range.contains(block_end + 1)) {
|
2015-06-09 10:26:53 -07:00
|
|
|
if (!BITSET_TEST(livein[block + 1], i)) {
|
2024-02-28 13:39:45 -08:00
|
|
|
reg_pressure_in[block + 1] += s->alloc.sizes[i];
|
2015-06-09 10:26:53 -07:00
|
|
|
BITSET_SET(livein[block + 1], i);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
BITSET_SET(liveout[block], i);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
2025-01-06 20:51:32 -08:00
|
|
|
int *payload_last_use_ip = ralloc_array(NULL, int, hw_reg_count);
|
intel/brw: Only force g0's liveness to be the whole program if spilling
We don't actually need to extend g0's live range to the EOT message
generally - most messages that end a shader are headerless. The main
implicit use of g0 is for constructing scratch headers. With the last
two patches, we now consider scratch access that may exist in the IR
and already extend the liveness appropriately.
There is one remaining problem: spilling. The register allocator will
create new scratch messages when spilling a register, which need to
create scratch headers, which need g0. So, every new spill or fill
might extend the live range of g0, which would create new interference,
altering the graph. This can be problematic.
However, when compiling SIMD16 or SIMD32 fragment shaders, we don't
allow spilling anyway. So, why not use allow g0? Also, when trying
various scheduling modes, we first try allocation without spilling.
If it works, great, if not, we try a (hopefully) less aggressive
schedule, and only allow spilling on the lowest-pressure schedule.
So, even for regular SIMD8 shaders, we can potentially gain the use
of g0 on the first few tries at scheduling+allocation.
Once we try to allocate with spilling, we go back to reserving g0
for the entire program, so that we can construct scratch headers at
any point. We could possibly do better here, but this is simple and
reliable with some benefit.
Thanks to Ian Romanick for suggesting I try this approach.
fossil-db on Alchemist shows some more spill/fill improvements:
Totals:
Instrs: 149062395 -> 149053010 (-0.01%); split: -0.01%, +0.00%
Cycles: 12609496913 -> 12611652181 (+0.02%); split: -0.45%, +0.47%
Spill count: 52891 -> 52471 (-0.79%)
Fill count: 101599 -> 100818 (-0.77%)
Scratch Memory Size: 3292160 -> 3197952 (-2.86%)
Totals from 416541 (66.59% of 625484) affected shaders:
Instrs: 124058587 -> 124049202 (-0.01%); split: -0.01%, +0.01%
Cycles: 3567164271 -> 3569319539 (+0.06%); split: -1.61%, +1.67%
Spill count: 420 -> 0 (-inf%)
Fill count: 781 -> 0 (-inf%)
Scratch Memory Size: 94208 -> 0 (-inf%)
Witcher 3 shows a 33% reduction in scratch memory size, for example.
Reviewed-by: Ian Romanick <ian.d.romanick@intel.com>
Part-of: <https://gitlab.freedesktop.org/mesa/mesa/-/merge_requests/30319>
2024-07-22 17:22:47 -07:00
|
|
|
s->calculate_payload_ranges(true, hw_reg_count, payload_last_use_ip);
|
2015-06-09 10:26:53 -07:00
|
|
|
|
2018-12-10 14:49:49 -08:00
|
|
|
for (unsigned i = 0; i < hw_reg_count; i++) {
|
2015-06-09 10:26:53 -07:00
|
|
|
if (payload_last_use_ip[i] == -1)
|
2013-10-14 11:38:09 -07:00
|
|
|
continue;
|
|
|
|
|
|
2015-06-09 10:26:53 -07:00
|
|
|
for (int block = 0; block < cfg->num_blocks; block++) {
|
2025-03-13 15:48:37 -07:00
|
|
|
brw_range range = ips.range(cfg->blocks[block]);
|
|
|
|
|
|
|
|
|
|
if (range.start <= payload_last_use_ip[i])
|
2015-06-09 10:26:53 -07:00
|
|
|
reg_pressure_in[block]++;
|
|
|
|
|
|
2025-03-27 08:23:36 -07:00
|
|
|
if (range.last() <= payload_last_use_ip[i])
|
2015-06-09 10:26:53 -07:00
|
|
|
BITSET_SET(hw_liveout[block], i);
|
|
|
|
|
}
|
2013-10-14 11:38:09 -07:00
|
|
|
}
|
2025-01-06 20:51:32 -08:00
|
|
|
|
|
|
|
|
ralloc_free(payload_last_use_ip);
|
2013-10-14 11:38:09 -07:00
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void
|
2024-12-07 00:23:07 -08:00
|
|
|
brw_instruction_scheduler::update_register_pressure(const brw_inst *inst)
|
2013-10-14 11:38:09 -07:00
|
|
|
{
|
2023-10-20 02:15:59 -07:00
|
|
|
assert(reads_remaining);
|
2013-10-14 11:38:09 -07:00
|
|
|
|
2015-10-26 17:09:25 -07:00
|
|
|
if (inst->dst.file == VGRF) {
|
2015-10-26 04:35:14 -07:00
|
|
|
written[inst->dst.nr] = true;
|
2013-10-14 11:38:09 -07:00
|
|
|
}
|
|
|
|
|
|
2014-03-17 10:39:43 -07:00
|
|
|
for (int i = 0; i < inst->sources; i++) {
|
2015-06-09 10:26:53 -07:00
|
|
|
if (is_src_duplicate(inst, i))
|
|
|
|
|
continue;
|
|
|
|
|
|
2015-10-26 17:09:25 -07:00
|
|
|
if (inst->src[i].file == VGRF) {
|
2015-10-26 04:35:14 -07:00
|
|
|
reads_remaining[inst->src[i].nr]--;
|
2015-10-26 17:52:57 -07:00
|
|
|
} else if (inst->src[i].file == FIXED_GRF &&
|
2015-10-24 15:29:03 -07:00
|
|
|
inst->src[i].nr < hw_reg_count) {
|
2024-06-19 10:50:51 -07:00
|
|
|
for (unsigned off = 0; off < regs_read(s->devinfo, inst, i); off++)
|
2015-10-24 15:29:03 -07:00
|
|
|
hw_reads_remaining[inst->src[i].nr + off]--;
|
2013-10-14 11:38:09 -07:00
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
int
|
2024-12-07 00:23:07 -08:00
|
|
|
brw_instruction_scheduler::get_register_pressure_benefit(const brw_inst *inst)
|
2013-10-14 11:38:09 -07:00
|
|
|
{
|
|
|
|
|
int benefit = 0;
|
2023-10-20 00:09:37 -07:00
|
|
|
const int block_idx = current.block->num;
|
2013-10-14 11:38:09 -07:00
|
|
|
|
2015-10-26 17:09:25 -07:00
|
|
|
if (inst->dst.file == VGRF) {
|
2015-10-26 04:35:14 -07:00
|
|
|
if (!BITSET_TEST(livein[block_idx], inst->dst.nr) &&
|
|
|
|
|
!written[inst->dst.nr])
|
2024-02-28 13:39:45 -08:00
|
|
|
benefit -= s->alloc.sizes[inst->dst.nr];
|
2013-10-14 11:38:09 -07:00
|
|
|
}
|
|
|
|
|
|
2014-03-17 10:39:43 -07:00
|
|
|
for (int i = 0; i < inst->sources; i++) {
|
2015-06-09 10:26:53 -07:00
|
|
|
if (is_src_duplicate(inst, i))
|
2013-10-14 11:38:09 -07:00
|
|
|
continue;
|
|
|
|
|
|
2015-10-26 17:09:25 -07:00
|
|
|
if (inst->src[i].file == VGRF &&
|
2015-10-26 04:35:14 -07:00
|
|
|
!BITSET_TEST(liveout[block_idx], inst->src[i].nr) &&
|
|
|
|
|
reads_remaining[inst->src[i].nr] == 1)
|
2024-02-28 13:39:45 -08:00
|
|
|
benefit += s->alloc.sizes[inst->src[i].nr];
|
2015-06-09 10:26:53 -07:00
|
|
|
|
2015-10-26 17:52:57 -07:00
|
|
|
if (inst->src[i].file == FIXED_GRF &&
|
2015-10-24 15:29:03 -07:00
|
|
|
inst->src[i].nr < hw_reg_count) {
|
2024-06-19 10:50:51 -07:00
|
|
|
for (unsigned off = 0; off < regs_read(s->devinfo, inst, i); off++) {
|
2015-10-24 15:29:03 -07:00
|
|
|
int reg = inst->src[i].nr + off;
|
2015-06-09 10:26:53 -07:00
|
|
|
if (!BITSET_TEST(hw_liveout[block_idx], reg) &&
|
|
|
|
|
hw_reads_remaining[reg] == 1) {
|
|
|
|
|
benefit++;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
2013-10-14 11:38:09 -07:00
|
|
|
}
|
|
|
|
|
|
|
|
|
|
return benefit;
|
|
|
|
|
}
|
|
|
|
|
|
2011-01-18 17:16:49 -08:00
|
|
|
void
|
2025-03-11 13:20:09 -07:00
|
|
|
brw_instruction_scheduler::set_current_block(bblock_t *block, const brw_ip_ranges &ips)
|
2011-01-18 17:16:49 -08:00
|
|
|
{
|
2023-10-20 00:09:37 -07:00
|
|
|
current.block = block;
|
2025-03-13 15:48:37 -07:00
|
|
|
current.start = nodes + ips.range(block).start;
|
2025-03-11 13:20:09 -07:00
|
|
|
current.len = block->num_instructions;
|
2023-10-20 00:09:37 -07:00
|
|
|
current.end = current.start + current.len;
|
|
|
|
|
current.time = 0;
|
2023-10-20 00:58:25 -07:00
|
|
|
current.scheduled = 0;
|
|
|
|
|
current.cand_generation = 1;
|
2011-01-18 17:16:49 -08:00
|
|
|
}
|
|
|
|
|
|
2016-08-16 00:01:31 -07:00
|
|
|
/** Computation of the delay member of each node. */
|
2013-10-28 00:11:45 -07:00
|
|
|
void
|
2024-12-06 22:39:15 -08:00
|
|
|
brw_instruction_scheduler::compute_delays()
|
2013-10-28 00:11:45 -07:00
|
|
|
{
|
2023-10-20 00:09:37 -07:00
|
|
|
for (schedule_node *n = current.end - 1; n >= current.start; n--) {
|
2023-10-15 23:38:56 -07:00
|
|
|
if (!n->children_count) {
|
2023-10-16 23:25:00 -07:00
|
|
|
n->delay = n->issue_time;
|
2016-08-16 00:01:31 -07:00
|
|
|
} else {
|
2023-10-15 23:38:56 -07:00
|
|
|
for (int i = 0; i < n->children_count; i++) {
|
2024-03-14 19:29:36 +02:00
|
|
|
if (n->children[i].n->delay == 0) {
|
|
|
|
|
/* This is a special case for address register, where a child
|
|
|
|
|
* could be a prior instruction.
|
|
|
|
|
*
|
|
|
|
|
* This ensures that a address register write instruction will
|
|
|
|
|
* always unblock the reader of the address register. Otherwise
|
|
|
|
|
* we could end up with scheduling deadlocks.
|
|
|
|
|
*/
|
|
|
|
|
assert(n->children[i].n->inst->dst.is_address());
|
|
|
|
|
n->delay = MAX2(n->delay, 1);
|
|
|
|
|
} else {
|
|
|
|
|
n->delay = MAX2(n->delay, n->latency + n->children[i].n->delay);
|
|
|
|
|
}
|
2016-08-16 00:01:31 -07:00
|
|
|
}
|
2013-10-28 00:11:45 -07:00
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
2016-08-16 00:56:04 -07:00
|
|
|
void
|
2024-12-06 22:39:15 -08:00
|
|
|
brw_instruction_scheduler::compute_exits()
|
2016-08-16 00:56:04 -07:00
|
|
|
{
|
|
|
|
|
/* Calculate a lower bound of the scheduling time of each node in the
|
|
|
|
|
* graph. This is analogous to the node's critical path but calculated
|
|
|
|
|
* from the top instead of from the bottom of the block.
|
|
|
|
|
*/
|
2023-10-20 00:09:37 -07:00
|
|
|
for (schedule_node *n = current.start; n < current.end; n++) {
|
2023-10-15 23:38:56 -07:00
|
|
|
for (int i = 0; i < n->children_count; i++) {
|
|
|
|
|
schedule_node_child *child = &n->children[i];
|
2023-10-20 10:11:11 -07:00
|
|
|
child->n->initial_unblocked_time =
|
|
|
|
|
MAX2(child->n->initial_unblocked_time,
|
|
|
|
|
n->initial_unblocked_time + n->issue_time + child->effective_latency);
|
2016-08-16 00:56:04 -07:00
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Calculate the exit of each node by induction based on the exit nodes of
|
|
|
|
|
* its children. The preferred exit of a node is the one among the exit
|
|
|
|
|
* nodes of its children which can be unblocked first according to the
|
|
|
|
|
* optimistic unblocked time estimate calculated above.
|
|
|
|
|
*/
|
2023-10-20 00:09:37 -07:00
|
|
|
for (schedule_node *n = current.end - 1; n >= current.start; n--) {
|
2020-11-30 17:24:51 -06:00
|
|
|
n->exit = (n->inst->opcode == BRW_OPCODE_HALT ? n : NULL);
|
2016-08-16 00:56:04 -07:00
|
|
|
|
2023-10-15 23:38:56 -07:00
|
|
|
for (int i = 0; i < n->children_count; i++) {
|
2023-10-20 10:11:11 -07:00
|
|
|
if (exit_initial_unblocked_time(n->children[i].n) < exit_initial_unblocked_time(n))
|
2023-10-15 23:38:56 -07:00
|
|
|
n->exit = n->children[i].n->exit;
|
2016-08-16 00:56:04 -07:00
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
2011-01-18 17:16:49 -08:00
|
|
|
/**
|
|
|
|
|
* Add a dependency between two instruction nodes.
|
|
|
|
|
*
|
|
|
|
|
* The @after node will be scheduled after @before. We will try to
|
|
|
|
|
* schedule it @latency cycles after @before, but no guarantees there.
|
|
|
|
|
*/
|
|
|
|
|
void
|
2024-12-06 22:39:15 -08:00
|
|
|
brw_instruction_scheduler::add_dep(schedule_node *before, schedule_node *after,
|
2014-11-12 10:17:36 -08:00
|
|
|
int latency)
|
2011-01-18 17:16:49 -08:00
|
|
|
{
|
|
|
|
|
if (!before || !after)
|
|
|
|
|
return;
|
|
|
|
|
|
|
|
|
|
assert(before != after);
|
|
|
|
|
|
2023-10-15 23:38:56 -07:00
|
|
|
for (int i = 0; i < before->children_count; i++) {
|
|
|
|
|
schedule_node_child *child = &before->children[i];
|
|
|
|
|
if (child->n == after) {
|
|
|
|
|
child->effective_latency = MAX2(child->effective_latency, latency);
|
2014-11-12 10:17:36 -08:00
|
|
|
return;
|
2011-01-18 17:16:49 -08:00
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
2023-10-15 23:38:56 -07:00
|
|
|
if (before->children_cap <= before->children_count) {
|
|
|
|
|
if (before->children_cap < 16)
|
|
|
|
|
before->children_cap = 16;
|
2011-01-18 17:16:49 -08:00
|
|
|
else
|
2023-10-15 23:38:56 -07:00
|
|
|
before->children_cap *= 2;
|
2011-01-18 17:16:49 -08:00
|
|
|
|
2011-01-21 14:32:31 -08:00
|
|
|
before->children = reralloc(mem_ctx, before->children,
|
2023-10-15 23:38:56 -07:00
|
|
|
schedule_node_child,
|
|
|
|
|
before->children_cap);
|
2011-01-18 17:16:49 -08:00
|
|
|
}
|
|
|
|
|
|
2023-10-15 23:38:56 -07:00
|
|
|
schedule_node_child *child = &before->children[before->children_count];
|
|
|
|
|
child->n = after;
|
|
|
|
|
child->effective_latency = latency;
|
|
|
|
|
before->children_count++;
|
2023-10-20 10:11:11 -07:00
|
|
|
after->initial_parent_count++;
|
2024-03-14 19:29:36 +02:00
|
|
|
|
|
|
|
|
/* Propagate the dependency to the address register instructions. */
|
|
|
|
|
for (int i = 0; i < after->address_read_count; i++)
|
|
|
|
|
add_dep(before, after->address_read[i]);
|
2011-01-18 17:16:49 -08:00
|
|
|
}
|
|
|
|
|
|
2011-05-20 14:13:59 -07:00
|
|
|
void
|
2024-12-06 22:39:15 -08:00
|
|
|
brw_instruction_scheduler::add_dep(schedule_node *before, schedule_node *after)
|
2011-05-20 14:13:59 -07:00
|
|
|
{
|
|
|
|
|
if (!before)
|
|
|
|
|
return;
|
|
|
|
|
|
|
|
|
|
add_dep(before, after, before->latency);
|
|
|
|
|
}
|
|
|
|
|
|
2024-03-14 19:29:36 +02:00
|
|
|
void
|
2024-12-06 22:39:15 -08:00
|
|
|
brw_instruction_scheduler::add_address_dep(schedule_node *before, schedule_node *after)
|
2024-03-14 19:29:36 +02:00
|
|
|
{
|
|
|
|
|
assert(before && after);
|
|
|
|
|
|
|
|
|
|
add_dep(before, after, before->latency);
|
|
|
|
|
|
|
|
|
|
if (after->address_read_cap <= after->address_read_count) {
|
|
|
|
|
after->address_read_cap = MAX2(2 * after->address_read_cap, 1);
|
|
|
|
|
|
|
|
|
|
after->address_read = reralloc(mem_ctx, after->address_read,
|
|
|
|
|
schedule_node *,
|
|
|
|
|
after->address_read_cap);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
after->address_read[after->address_read_count++] = before;
|
|
|
|
|
}
|
|
|
|
|
|
2017-10-17 23:19:20 -07:00
|
|
|
static bool
|
2024-12-07 00:23:07 -08:00
|
|
|
is_scheduling_barrier(const brw_inst *inst)
|
2017-10-17 23:19:20 -07:00
|
|
|
{
|
2020-11-19 09:32:27 -06:00
|
|
|
return inst->opcode == SHADER_OPCODE_HALT_TARGET ||
|
2025-01-09 16:31:52 -08:00
|
|
|
(inst->is_control_flow() && inst->opcode != BRW_OPCODE_HALT) ||
|
2017-10-17 23:19:20 -07:00
|
|
|
inst->has_side_effects();
|
|
|
|
|
}
|
|
|
|
|
|
2023-04-03 14:52:59 +03:00
|
|
|
static bool
|
2024-12-07 00:23:07 -08:00
|
|
|
has_cross_lane_access(const brw_inst *inst)
|
2023-04-03 14:52:59 +03:00
|
|
|
{
|
|
|
|
|
/* FINISHME:
|
|
|
|
|
*
|
|
|
|
|
* This function is likely incomplete in terms of identify cross lane
|
|
|
|
|
* accesses.
|
|
|
|
|
*/
|
|
|
|
|
if (inst->opcode == SHADER_OPCODE_BROADCAST ||
|
|
|
|
|
inst->opcode == SHADER_OPCODE_CLUSTER_BROADCAST ||
|
|
|
|
|
inst->opcode == SHADER_OPCODE_SHUFFLE ||
|
|
|
|
|
inst->opcode == FS_OPCODE_LOAD_LIVE_CHANNELS ||
|
2024-01-05 09:19:38 -08:00
|
|
|
inst->opcode == SHADER_OPCODE_LOAD_LIVE_CHANNELS ||
|
2023-04-03 14:52:59 +03:00
|
|
|
inst->opcode == SHADER_OPCODE_FIND_LAST_LIVE_CHANNEL ||
|
|
|
|
|
inst->opcode == SHADER_OPCODE_FIND_LIVE_CHANNEL)
|
|
|
|
|
return true;
|
|
|
|
|
|
|
|
|
|
for (unsigned s = 0; s < inst->sources; s++) {
|
|
|
|
|
if (inst->src[s].file == VGRF) {
|
|
|
|
|
if (inst->src[s].stride == 0)
|
|
|
|
|
return true;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
return false;
|
|
|
|
|
}
|
|
|
|
|
|
2024-05-29 14:19:18 +03:00
|
|
|
/**
|
|
|
|
|
* Some register access need dependencies on other instructions.
|
|
|
|
|
*/
|
|
|
|
|
bool
|
2024-12-06 22:39:15 -08:00
|
|
|
brw_instruction_scheduler::register_needs_barrier(const brw_reg ®)
|
2024-05-29 14:19:18 +03:00
|
|
|
{
|
|
|
|
|
if (reg.file != ARF || reg.is_null())
|
|
|
|
|
return false;
|
|
|
|
|
|
|
|
|
|
/* If you look at SR register layout, there is nothing in there that
|
|
|
|
|
* depends on other instructions. This is just fixed dispatch information.
|
|
|
|
|
*
|
|
|
|
|
* ATSM PRMs, Volume 9: Render Engine, State Register Fields :
|
|
|
|
|
* sr0.0:
|
|
|
|
|
* - 0:2 TID
|
|
|
|
|
* - 4:13 Slice, DSS, Subslice, EU IDs
|
|
|
|
|
* - 20:22 Priority
|
|
|
|
|
* - 23:23 Priority class
|
|
|
|
|
* - 24:27 FFID
|
|
|
|
|
* sr0.1:
|
|
|
|
|
* - 0:5 IEEE Exception
|
|
|
|
|
* - 21:31 FFTID
|
|
|
|
|
* sr0.2:
|
|
|
|
|
* - 0:31 Dispatch Mask
|
|
|
|
|
* sr0.3:
|
|
|
|
|
* - 0:31 Vector Mask
|
|
|
|
|
*/
|
|
|
|
|
if (reg.nr == BRW_ARF_STATE)
|
|
|
|
|
return false;
|
|
|
|
|
|
|
|
|
|
return true;
|
|
|
|
|
}
|
|
|
|
|
|
2011-01-18 17:16:49 -08:00
|
|
|
/**
|
|
|
|
|
* Sometimes we really want this node to execute after everything that
|
|
|
|
|
* was before it and before everything that followed it. This adds
|
|
|
|
|
* the deps to do so.
|
|
|
|
|
*/
|
|
|
|
|
void
|
2024-12-06 22:39:15 -08:00
|
|
|
brw_instruction_scheduler::add_barrier_deps(schedule_node *n)
|
2011-01-18 17:16:49 -08:00
|
|
|
{
|
2023-10-20 00:09:37 -07:00
|
|
|
for (schedule_node *prev = n - 1; prev >= current.start; prev--) {
|
|
|
|
|
add_dep(prev, n, 0);
|
|
|
|
|
if (is_scheduling_barrier(prev->inst))
|
|
|
|
|
break;
|
2011-01-18 17:16:49 -08:00
|
|
|
}
|
|
|
|
|
|
2023-10-20 00:09:37 -07:00
|
|
|
for (schedule_node *next = n + 1; next < current.end; next++) {
|
|
|
|
|
add_dep(n, next, 0);
|
|
|
|
|
if (is_scheduling_barrier(next->inst))
|
|
|
|
|
break;
|
2011-01-18 17:16:49 -08:00
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
2023-04-03 14:52:59 +03:00
|
|
|
/**
|
|
|
|
|
* Because some instructions like HALT can disable lanes, scheduling prior to
|
|
|
|
|
* a cross lane access should not be allowed, otherwise we could end up with
|
|
|
|
|
* later instructions accessing uninitialized data.
|
|
|
|
|
*/
|
|
|
|
|
void
|
2024-12-06 22:39:15 -08:00
|
|
|
brw_instruction_scheduler::add_cross_lane_deps(schedule_node *n)
|
2023-04-03 14:52:59 +03:00
|
|
|
{
|
2023-10-20 00:09:37 -07:00
|
|
|
for (schedule_node *prev = n - 1; prev >= current.start; prev--) {
|
2024-12-07 00:23:07 -08:00
|
|
|
if (has_cross_lane_access((brw_inst*)prev->inst))
|
2023-10-20 00:09:37 -07:00
|
|
|
add_dep(prev, n, 0);
|
2023-04-03 14:52:59 +03:00
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
2011-03-23 13:53:26 -07:00
|
|
|
/* instruction scheduling needs to be aware of when an MRF write
|
|
|
|
|
* actually writes 2 MRFs.
|
|
|
|
|
*/
|
|
|
|
|
bool
|
2024-12-07 00:23:07 -08:00
|
|
|
brw_instruction_scheduler::is_compressed(const brw_inst *inst)
|
2011-03-23 13:53:26 -07:00
|
|
|
{
|
2014-08-16 11:34:56 -07:00
|
|
|
return inst->exec_size == 16;
|
2011-03-23 13:53:26 -07:00
|
|
|
}
|
|
|
|
|
|
2023-06-13 14:18:28 -07:00
|
|
|
/* Clears last_grf_write to be ready to start calculating deps for a block
|
|
|
|
|
* again.
|
|
|
|
|
*
|
|
|
|
|
* Since pre-ra grf_count scales with instructions, and instructions scale with
|
|
|
|
|
* BBs, we don't want to memset all of last_grf_write per block or you'll end up
|
|
|
|
|
* O(n^2) with number of blocks. For shaders using softfp64, we get a *lot* of
|
|
|
|
|
* blocks.
|
|
|
|
|
*
|
|
|
|
|
* We don't bother being careful for post-ra, since then grf_count doesn't scale
|
|
|
|
|
* with instructions.
|
|
|
|
|
*/
|
|
|
|
|
void
|
2024-12-06 22:39:15 -08:00
|
|
|
brw_instruction_scheduler::clear_last_grf_write()
|
2023-06-13 14:18:28 -07:00
|
|
|
{
|
|
|
|
|
if (!post_reg_alloc) {
|
2023-10-20 00:09:37 -07:00
|
|
|
for (schedule_node *n = current.start; n < current.end; n++) {
|
2024-12-07 00:23:07 -08:00
|
|
|
brw_inst *inst = n->inst;
|
2023-06-13 14:18:28 -07:00
|
|
|
|
|
|
|
|
if (inst->dst.file == VGRF) {
|
|
|
|
|
/* Don't bother being careful with regs_written(), quicker to just clear 2 cachelines. */
|
2024-03-14 18:09:33 +02:00
|
|
|
memset(&last_grf_write[inst->dst.nr * MAX_VGRF_SIZE(s->devinfo)], 0,
|
|
|
|
|
sizeof(*last_grf_write) * MAX_VGRF_SIZE(s->devinfo));
|
2023-06-13 14:18:28 -07:00
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
} else {
|
2024-03-14 18:09:33 +02:00
|
|
|
memset(last_grf_write, 0,
|
|
|
|
|
sizeof(*last_grf_write) * grf_count * MAX_VGRF_SIZE(s->devinfo));
|
2023-06-13 14:18:28 -07:00
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
2024-03-14 18:09:33 +02:00
|
|
|
int
|
2024-12-06 22:39:15 -08:00
|
|
|
brw_instruction_scheduler::grf_index(const brw_reg ®)
|
2024-03-14 18:09:33 +02:00
|
|
|
{
|
|
|
|
|
if (post_reg_alloc)
|
|
|
|
|
return reg.nr;
|
|
|
|
|
return reg.nr * MAX_VGRF_SIZE(s->devinfo) + reg.offset / REG_SIZE;
|
|
|
|
|
}
|
|
|
|
|
|
2011-01-18 17:16:49 -08:00
|
|
|
void
|
2024-12-06 22:39:15 -08:00
|
|
|
brw_instruction_scheduler::calculate_deps()
|
2011-01-18 17:16:49 -08:00
|
|
|
{
|
2013-10-08 22:54:46 -07:00
|
|
|
/* Pre-register-allocation, this tracks the last write per VGRF offset.
|
2012-12-03 17:58:03 -08:00
|
|
|
* After register allocation, reg_offsets are gone and we track individual
|
|
|
|
|
* GRF registers.
|
|
|
|
|
*/
|
2017-12-12 12:05:02 -08:00
|
|
|
schedule_node *last_conditional_mod[8] = {};
|
2014-04-04 16:51:59 +03:00
|
|
|
schedule_node *last_accumulator_write = NULL;
|
2011-05-23 09:12:07 -07:00
|
|
|
/* Fixed HW registers are assumed to be separate from the virtual
|
|
|
|
|
* GRFs, so they can be tracked separately. We don't really write
|
|
|
|
|
* to fixed GRFs much, so don't bother tracking them on a more
|
|
|
|
|
* granular level.
|
|
|
|
|
*/
|
|
|
|
|
schedule_node *last_fixed_grf_write = NULL;
|
2024-03-14 19:29:36 +02:00
|
|
|
schedule_node *last_address_write[16] = {};
|
2011-01-18 17:16:49 -08:00
|
|
|
|
|
|
|
|
/* top-to-bottom dependencies: RAW and WAW. */
|
2024-03-14 19:29:36 +02:00
|
|
|
|
|
|
|
|
if (!post_reg_alloc) {
|
|
|
|
|
/* Address registers have virtual identifier, allowing us to identify
|
|
|
|
|
* what instructions needs the values written to the register. The
|
|
|
|
|
* address register is written/read in pairs of instructions (enforced
|
2024-12-07 10:54:40 -08:00
|
|
|
* by the brw_validate.cpp).
|
2024-03-14 19:29:36 +02:00
|
|
|
*
|
|
|
|
|
* To allow scheduling of SEND messages, out of order, without the
|
|
|
|
|
* address register tracking generating serialized dependency between
|
|
|
|
|
* all the messages, we first track all the dependencies of the address
|
|
|
|
|
* register. Those dependencies are added to the instructions consuming
|
|
|
|
|
* the address register value. Then when doing the normal dependency
|
|
|
|
|
* tracking, any node adding a dependency to an instruction consuming
|
|
|
|
|
* the address register is also added as dependency to the instruction
|
|
|
|
|
* writing the value to the address register.
|
|
|
|
|
*
|
|
|
|
|
* This scheme allows the scheduling done by
|
|
|
|
|
* choose_instruction_to_schedule() to ensure that once an instruction
|
|
|
|
|
* writing the address register is scheduled, we can always schedule all
|
|
|
|
|
* instructions making use of the address register value. Otherwise we
|
|
|
|
|
* could run into scheduling deadlocks.
|
|
|
|
|
*
|
|
|
|
|
* Here is a deadlock example :
|
|
|
|
|
*
|
|
|
|
|
* mov a0, 0x42
|
|
|
|
|
* send grf1, ..., a0
|
|
|
|
|
* mov a0, 0x43
|
|
|
|
|
* send grf2, grf1, a0
|
|
|
|
|
*
|
|
|
|
|
* Let say choose_instruction_to_schedule() chooses the second mov
|
|
|
|
|
* instruction first (mov a0, 0x43). Then it cannot schedule the second
|
|
|
|
|
* send instruction because the first send instruction populating grf1
|
|
|
|
|
* and has not been scheduled and we cannot schedule the first mov
|
|
|
|
|
* either because the address register is already in use for another
|
|
|
|
|
* message.
|
|
|
|
|
*
|
|
|
|
|
* In post-register-allocation mode, this scheme cannot work as all GRFs
|
|
|
|
|
* can get reused and we have to serializae all address register usages
|
|
|
|
|
* (like the accumulator, flag, etc...).
|
|
|
|
|
*/
|
|
|
|
|
for (schedule_node *n = current.start; n < current.end; n++) {
|
2024-12-07 00:23:07 -08:00
|
|
|
brw_inst *inst = n->inst;
|
2024-03-14 19:29:36 +02:00
|
|
|
|
|
|
|
|
/* Pre pass going over instruction using the register flag as a
|
|
|
|
|
* source.
|
|
|
|
|
*/
|
|
|
|
|
for (int i = 0; i < inst->sources; i++) {
|
|
|
|
|
if (!inst->src[i].is_address())
|
|
|
|
|
continue;
|
|
|
|
|
|
|
|
|
|
for (unsigned byte = 0; byte < inst->size_read(s->devinfo, i); byte += 2) {
|
|
|
|
|
assert(inst->src[i].address_slot(byte) < ARRAY_SIZE(last_address_write));
|
|
|
|
|
schedule_node *write_addr_node =
|
|
|
|
|
last_address_write[inst->src[i].address_slot(byte)];
|
|
|
|
|
assert(write_addr_node->inst->dst.nr == inst->src[i].nr);
|
|
|
|
|
add_address_dep(write_addr_node, n);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (inst->dst.is_address()) {
|
|
|
|
|
for (unsigned byte = 0; byte < inst->size_written; byte += 2) {
|
|
|
|
|
last_address_write[inst->dst.address_slot(byte)] = n;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
2023-10-20 00:09:37 -07:00
|
|
|
for (schedule_node *n = current.start; n < current.end; n++) {
|
2024-12-07 00:23:07 -08:00
|
|
|
brw_inst *inst = n->inst;
|
2011-01-18 17:16:49 -08:00
|
|
|
|
2016-03-12 21:15:19 -08:00
|
|
|
if (is_scheduling_barrier(inst))
|
2013-03-27 23:19:39 -07:00
|
|
|
add_barrier_deps(n);
|
|
|
|
|
|
2023-04-03 14:52:59 +03:00
|
|
|
if (inst->opcode == BRW_OPCODE_HALT ||
|
|
|
|
|
inst->opcode == SHADER_OPCODE_HALT_TARGET)
|
|
|
|
|
add_cross_lane_deps(n);
|
|
|
|
|
|
2011-01-18 17:16:49 -08:00
|
|
|
/* read-after-write deps. */
|
2014-03-17 10:39:43 -07:00
|
|
|
for (int i = 0; i < inst->sources; i++) {
|
2015-10-26 17:09:25 -07:00
|
|
|
if (inst->src[i].file == VGRF) {
|
2024-06-19 10:50:51 -07:00
|
|
|
for (unsigned r = 0; r < regs_read(s->devinfo, inst, i); r++)
|
2024-03-14 18:09:33 +02:00
|
|
|
add_dep(last_grf_write[grf_index(inst->src[i]) + r], n);
|
2015-10-26 17:52:57 -07:00
|
|
|
} else if (inst->src[i].file == FIXED_GRF) {
|
2014-11-12 10:17:36 -08:00
|
|
|
if (post_reg_alloc) {
|
2024-06-19 10:50:51 -07:00
|
|
|
for (unsigned r = 0; r < regs_read(s->devinfo, inst, i); r++)
|
2015-10-24 15:29:03 -07:00
|
|
|
add_dep(last_grf_write[inst->src[i].nr + r], n);
|
2012-12-03 17:58:03 -08:00
|
|
|
} else {
|
|
|
|
|
add_dep(last_fixed_grf_write, n);
|
|
|
|
|
}
|
2014-05-07 09:58:43 +02:00
|
|
|
} else if (inst->src[i].is_accumulator()) {
|
2014-04-04 16:51:59 +03:00
|
|
|
add_dep(last_accumulator_write, n);
|
2024-03-14 19:29:36 +02:00
|
|
|
} else if (inst->src[i].is_address()) {
|
|
|
|
|
if (post_reg_alloc) {
|
|
|
|
|
for (unsigned byte = 0; byte < inst->size_read(s->devinfo, i); byte += 2)
|
|
|
|
|
add_dep(last_address_write[inst->src[i].address_slot(byte)], n);
|
|
|
|
|
}
|
2024-05-29 14:19:18 +03:00
|
|
|
} else if (register_needs_barrier(inst->src[i])) {
|
2014-11-12 10:17:36 -08:00
|
|
|
add_barrier_deps(n);
|
|
|
|
|
}
|
2011-01-18 17:16:49 -08:00
|
|
|
}
|
|
|
|
|
|
2024-02-28 13:39:45 -08:00
|
|
|
if (const unsigned mask = inst->flags_read(s->devinfo)) {
|
2016-05-18 22:13:52 -07:00
|
|
|
assert(mask < (1 << ARRAY_SIZE(last_conditional_mod)));
|
|
|
|
|
|
|
|
|
|
for (unsigned i = 0; i < ARRAY_SIZE(last_conditional_mod); i++) {
|
|
|
|
|
if (mask & (1 << i))
|
|
|
|
|
add_dep(last_conditional_mod[i], n);
|
|
|
|
|
}
|
2011-01-18 17:16:49 -08:00
|
|
|
}
|
|
|
|
|
|
2014-04-04 16:51:59 +03:00
|
|
|
if (inst->reads_accumulator_implicitly()) {
|
2014-05-07 09:58:43 +02:00
|
|
|
add_dep(last_accumulator_write, n);
|
2014-04-04 16:51:59 +03:00
|
|
|
}
|
|
|
|
|
|
2011-01-18 17:16:49 -08:00
|
|
|
/* write-after-write deps. */
|
2015-10-26 17:09:25 -07:00
|
|
|
if (inst->dst.file == VGRF) {
|
2024-03-14 18:09:33 +02:00
|
|
|
int grf_idx = grf_index(inst->dst);
|
|
|
|
|
for (unsigned r = 0; r < regs_written(inst); r++) {
|
|
|
|
|
add_dep(last_grf_write[grf_idx + r], n);
|
|
|
|
|
last_grf_write[grf_idx + r] = n;
|
2012-12-03 17:58:03 -08:00
|
|
|
}
|
2015-10-26 17:52:57 -07:00
|
|
|
} else if (inst->dst.file == FIXED_GRF) {
|
2012-12-03 17:58:03 -08:00
|
|
|
if (post_reg_alloc) {
|
2021-03-17 21:30:52 +02:00
|
|
|
for (unsigned r = 0; r < regs_written(inst); r++) {
|
|
|
|
|
add_dep(last_grf_write[inst->dst.nr + r], n);
|
2015-10-24 15:29:03 -07:00
|
|
|
last_grf_write[inst->dst.nr + r] = n;
|
2021-03-17 21:30:52 +02:00
|
|
|
}
|
2012-12-03 17:58:03 -08:00
|
|
|
} else {
|
2021-03-17 21:30:52 +02:00
|
|
|
add_dep(last_fixed_grf_write, n);
|
2012-12-03 17:58:03 -08:00
|
|
|
last_fixed_grf_write = n;
|
|
|
|
|
}
|
2014-05-07 09:58:43 +02:00
|
|
|
} else if (inst->dst.is_accumulator()) {
|
2014-04-04 16:51:59 +03:00
|
|
|
add_dep(last_accumulator_write, n);
|
|
|
|
|
last_accumulator_write = n;
|
2024-03-14 19:29:36 +02:00
|
|
|
} else if (inst->dst.is_address()) {
|
|
|
|
|
if (post_reg_alloc) {
|
|
|
|
|
for (unsigned byte = 0; byte < inst->size_written; byte += 2) {
|
|
|
|
|
add_dep(last_address_write[inst->dst.address_slot(byte)], n);
|
|
|
|
|
last_address_write[inst->dst.address_slot(byte)] = n;
|
|
|
|
|
}
|
|
|
|
|
}
|
2024-05-29 14:19:18 +03:00
|
|
|
} else if (register_needs_barrier(inst->dst)) {
|
2014-11-12 10:17:36 -08:00
|
|
|
add_barrier_deps(n);
|
2011-01-18 17:16:49 -08:00
|
|
|
}
|
|
|
|
|
|
2024-02-28 13:39:45 -08:00
|
|
|
if (const unsigned mask = inst->flags_written(s->devinfo)) {
|
2016-05-18 22:13:52 -07:00
|
|
|
assert(mask < (1 << ARRAY_SIZE(last_conditional_mod)));
|
|
|
|
|
|
|
|
|
|
for (unsigned i = 0; i < ARRAY_SIZE(last_conditional_mod); i++) {
|
|
|
|
|
if (mask & (1 << i)) {
|
|
|
|
|
add_dep(last_conditional_mod[i], n, 0);
|
|
|
|
|
last_conditional_mod[i] = n;
|
|
|
|
|
}
|
|
|
|
|
}
|
2011-01-18 17:16:49 -08:00
|
|
|
}
|
2014-04-04 16:51:59 +03:00
|
|
|
|
2024-02-28 13:39:45 -08:00
|
|
|
if (inst->writes_accumulator_implicitly(s->devinfo) &&
|
2014-05-07 09:58:43 +02:00
|
|
|
!inst->dst.is_accumulator()) {
|
|
|
|
|
add_dep(last_accumulator_write, n);
|
|
|
|
|
last_accumulator_write = n;
|
2014-04-04 16:51:59 +03:00
|
|
|
}
|
2024-03-14 19:29:36 +02:00
|
|
|
|
|
|
|
|
if (post_reg_alloc && inst->uses_address_register_implicitly()) {
|
|
|
|
|
for (unsigned i = 0; i < ARRAY_SIZE(last_address_write); i++) {
|
|
|
|
|
add_dep(last_address_write[i], n);
|
|
|
|
|
last_address_write[i] = n;
|
|
|
|
|
}
|
|
|
|
|
}
|
2011-01-18 17:16:49 -08:00
|
|
|
}
|
|
|
|
|
|
2023-06-13 14:18:28 -07:00
|
|
|
clear_last_grf_write();
|
|
|
|
|
|
2011-01-18 17:16:49 -08:00
|
|
|
/* bottom-to-top dependencies: WAR */
|
2012-12-06 10:36:11 -08:00
|
|
|
memset(last_conditional_mod, 0, sizeof(last_conditional_mod));
|
2014-04-04 16:51:59 +03:00
|
|
|
last_accumulator_write = NULL;
|
2011-05-23 09:12:07 -07:00
|
|
|
last_fixed_grf_write = NULL;
|
2024-03-14 19:29:36 +02:00
|
|
|
memset(last_address_write, 0, sizeof(last_address_write));
|
2011-01-18 17:16:49 -08:00
|
|
|
|
2023-10-20 00:09:37 -07:00
|
|
|
for (schedule_node *n = current.end - 1; n >= current.start; n--) {
|
2024-12-07 00:23:07 -08:00
|
|
|
brw_inst *inst = n->inst;
|
2011-01-18 17:16:49 -08:00
|
|
|
|
|
|
|
|
/* write-after-read deps. */
|
2014-03-17 10:39:43 -07:00
|
|
|
for (int i = 0; i < inst->sources; i++) {
|
2015-10-26 17:09:25 -07:00
|
|
|
if (inst->src[i].file == VGRF) {
|
2024-06-19 10:50:51 -07:00
|
|
|
for (unsigned r = 0; r < regs_read(s->devinfo, inst, i); r++)
|
2024-03-14 18:09:33 +02:00
|
|
|
add_dep(n, last_grf_write[grf_index(inst->src[i]) + r], 0);
|
2015-10-26 17:52:57 -07:00
|
|
|
} else if (inst->src[i].file == FIXED_GRF) {
|
2014-11-12 10:17:36 -08:00
|
|
|
if (post_reg_alloc) {
|
2024-06-19 10:50:51 -07:00
|
|
|
for (unsigned r = 0; r < regs_read(s->devinfo, inst, i); r++)
|
2015-10-24 15:29:03 -07:00
|
|
|
add_dep(n, last_grf_write[inst->src[i].nr + r], 0);
|
2012-12-03 17:58:03 -08:00
|
|
|
} else {
|
2015-06-07 00:37:27 -04:00
|
|
|
add_dep(n, last_fixed_grf_write, 0);
|
2012-12-03 17:58:03 -08:00
|
|
|
}
|
2014-05-07 09:58:43 +02:00
|
|
|
} else if (inst->src[i].is_accumulator()) {
|
2015-06-07 00:37:27 -04:00
|
|
|
add_dep(n, last_accumulator_write, 0);
|
2024-03-14 19:29:36 +02:00
|
|
|
} else if (inst->src[i].is_address()) {
|
|
|
|
|
if (post_reg_alloc) {
|
|
|
|
|
for (unsigned byte = 0; byte < inst->size_read(s->devinfo, i); byte += 2) {
|
|
|
|
|
add_dep(n, last_address_write[inst->src[i].address_slot(byte)], 0);
|
|
|
|
|
}
|
|
|
|
|
}
|
2024-05-29 14:19:18 +03:00
|
|
|
} else if (register_needs_barrier(inst->src[i])) {
|
2014-11-12 10:17:36 -08:00
|
|
|
add_barrier_deps(n);
|
|
|
|
|
}
|
2011-01-18 17:16:49 -08:00
|
|
|
}
|
|
|
|
|
|
2024-02-28 13:39:45 -08:00
|
|
|
if (const unsigned mask = inst->flags_read(s->devinfo)) {
|
2016-05-18 22:13:52 -07:00
|
|
|
assert(mask < (1 << ARRAY_SIZE(last_conditional_mod)));
|
|
|
|
|
|
|
|
|
|
for (unsigned i = 0; i < ARRAY_SIZE(last_conditional_mod); i++) {
|
|
|
|
|
if (mask & (1 << i))
|
|
|
|
|
add_dep(n, last_conditional_mod[i]);
|
|
|
|
|
}
|
2011-01-18 17:16:49 -08:00
|
|
|
}
|
|
|
|
|
|
2014-04-04 16:51:59 +03:00
|
|
|
if (inst->reads_accumulator_implicitly()) {
|
2014-05-07 09:58:43 +02:00
|
|
|
add_dep(n, last_accumulator_write);
|
2014-04-04 16:51:59 +03:00
|
|
|
}
|
|
|
|
|
|
2024-03-14 19:29:36 +02:00
|
|
|
if (post_reg_alloc && inst->uses_address_register_implicitly()) {
|
|
|
|
|
for (unsigned i = 0; i < ARRAY_SIZE(last_address_write); i++)
|
|
|
|
|
last_address_write[i] = n;
|
|
|
|
|
}
|
|
|
|
|
|
2011-01-18 17:16:49 -08:00
|
|
|
/* Update the things this instruction wrote, so earlier reads
|
|
|
|
|
* can mark this as WAR dependency.
|
|
|
|
|
*/
|
2015-10-26 17:09:25 -07:00
|
|
|
if (inst->dst.file == VGRF) {
|
2024-03-14 18:09:33 +02:00
|
|
|
for (unsigned r = 0; r < regs_written(inst); r++)
|
|
|
|
|
last_grf_write[grf_index(inst->dst) + r] = n;
|
2015-10-26 17:52:57 -07:00
|
|
|
} else if (inst->dst.file == FIXED_GRF) {
|
2012-12-03 17:58:03 -08:00
|
|
|
if (post_reg_alloc) {
|
2016-09-07 16:59:35 -07:00
|
|
|
for (unsigned r = 0; r < regs_written(inst); r++)
|
2015-10-24 15:29:03 -07:00
|
|
|
last_grf_write[inst->dst.nr + r] = n;
|
2012-12-03 17:58:03 -08:00
|
|
|
} else {
|
|
|
|
|
last_fixed_grf_write = n;
|
|
|
|
|
}
|
2014-05-07 09:58:43 +02:00
|
|
|
} else if (inst->dst.is_accumulator()) {
|
2014-04-04 16:51:59 +03:00
|
|
|
last_accumulator_write = n;
|
2024-03-14 19:29:36 +02:00
|
|
|
} else if (inst->dst.is_address()) {
|
|
|
|
|
if (post_reg_alloc) {
|
|
|
|
|
for (unsigned byte = 0; byte < inst->size_written; byte += 2)
|
|
|
|
|
last_address_write[inst->dst.address_slot(byte)] = n;
|
|
|
|
|
}
|
2024-05-29 14:19:18 +03:00
|
|
|
} else if (register_needs_barrier(inst->dst)) {
|
2014-11-12 10:17:36 -08:00
|
|
|
add_barrier_deps(n);
|
2011-01-18 17:16:49 -08:00
|
|
|
}
|
|
|
|
|
|
2024-02-28 13:39:45 -08:00
|
|
|
if (const unsigned mask = inst->flags_written(s->devinfo)) {
|
2016-05-18 22:13:52 -07:00
|
|
|
assert(mask < (1 << ARRAY_SIZE(last_conditional_mod)));
|
|
|
|
|
|
|
|
|
|
for (unsigned i = 0; i < ARRAY_SIZE(last_conditional_mod); i++) {
|
|
|
|
|
if (mask & (1 << i))
|
|
|
|
|
last_conditional_mod[i] = n;
|
|
|
|
|
}
|
2012-06-18 14:50:04 -07:00
|
|
|
}
|
2014-04-04 16:51:59 +03:00
|
|
|
|
2024-02-28 13:39:45 -08:00
|
|
|
if (inst->writes_accumulator_implicitly(s->devinfo)) {
|
2014-05-07 09:58:43 +02:00
|
|
|
last_accumulator_write = n;
|
2014-04-04 16:51:59 +03:00
|
|
|
}
|
2011-01-18 17:16:49 -08:00
|
|
|
}
|
2023-06-13 14:18:28 -07:00
|
|
|
|
|
|
|
|
clear_last_grf_write();
|
2011-01-18 17:16:49 -08:00
|
|
|
}
|
|
|
|
|
|
2024-03-14 19:29:36 +02:00
|
|
|
bool
|
2024-12-06 22:39:15 -08:00
|
|
|
brw_instruction_scheduler::address_register_interfere(const schedule_node *n)
|
2024-03-14 19:29:36 +02:00
|
|
|
{
|
|
|
|
|
if (n->inst->uses_address_register_implicitly()) {
|
|
|
|
|
for (unsigned i = 0; i < ARRAY_SIZE(current.address_register); i++)
|
|
|
|
|
if (current.address_register[i] != 0)
|
|
|
|
|
return true;
|
|
|
|
|
return false;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (n->inst->dst.is_address()) {
|
|
|
|
|
for (unsigned byte = 0; byte < n->inst->size_written; byte += 2) {
|
|
|
|
|
if (current.address_register[n->inst->dst.address_slot(byte)] != 0 &&
|
|
|
|
|
current.address_register[n->inst->dst.address_slot(byte)] != n->inst->dst.nr)
|
|
|
|
|
return true;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (n->address_read_count > 0) {
|
|
|
|
|
for (unsigned i = 0; i < n->inst->sources; i++) {
|
|
|
|
|
if (!n->inst->src[i].is_address())
|
|
|
|
|
continue;
|
|
|
|
|
for (unsigned byte = 0; byte < n->inst->size_read(s->devinfo, i); byte += 2) {
|
|
|
|
|
if (current.address_register[n->inst->src[i].address_slot(byte)] !=
|
|
|
|
|
n->inst->src[i].nr)
|
|
|
|
|
return true;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
return false;
|
|
|
|
|
}
|
|
|
|
|
|
2013-04-29 16:45:10 -07:00
|
|
|
schedule_node *
|
2024-12-06 22:39:15 -08:00
|
|
|
brw_instruction_scheduler::choose_instruction_to_schedule()
|
2013-04-29 16:45:10 -07:00
|
|
|
{
|
|
|
|
|
schedule_node *chosen = NULL;
|
|
|
|
|
|
2024-12-06 22:39:15 -08:00
|
|
|
if (mode == BRW_SCHEDULE_PRE || mode == BRW_SCHEDULE_POST) {
|
2013-04-29 16:45:10 -07:00
|
|
|
int chosen_time = 0;
|
|
|
|
|
|
2016-08-12 16:13:16 -07:00
|
|
|
/* Of the instructions ready to execute or the closest to being ready,
|
|
|
|
|
* choose the one most likely to unblock an early program exit, or
|
|
|
|
|
* otherwise the oldest one.
|
2013-04-29 16:45:10 -07:00
|
|
|
*/
|
2023-10-20 00:39:04 -07:00
|
|
|
foreach_in_list(schedule_node, n, ¤t.available) {
|
2024-03-14 19:29:36 +02:00
|
|
|
if (!post_reg_alloc && address_register_interfere(n))
|
|
|
|
|
continue;
|
|
|
|
|
|
2016-08-12 16:13:16 -07:00
|
|
|
if (!chosen ||
|
2023-10-20 10:11:11 -07:00
|
|
|
exit_tmp_unblocked_time(n) < exit_tmp_unblocked_time(chosen) ||
|
|
|
|
|
(exit_tmp_unblocked_time(n) == exit_tmp_unblocked_time(chosen) &&
|
|
|
|
|
n->tmp.unblocked_time < chosen_time)) {
|
2013-04-29 16:45:10 -07:00
|
|
|
chosen = n;
|
2023-10-20 10:11:11 -07:00
|
|
|
chosen_time = n->tmp.unblocked_time;
|
2013-04-29 16:45:10 -07:00
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
} else {
|
2021-01-25 18:43:06 +01:00
|
|
|
int chosen_register_pressure_benefit = 0;
|
|
|
|
|
|
2013-04-29 16:45:10 -07:00
|
|
|
/* Before register allocation, we don't care about the latencies of
|
|
|
|
|
* instructions. All we care about is reducing live intervals of
|
2013-11-12 15:33:27 -08:00
|
|
|
* variables so that we can avoid register spilling, or get SIMD16
|
2013-04-29 16:45:10 -07:00
|
|
|
* shaders which naturally do a better job of hiding instruction
|
|
|
|
|
* latency.
|
|
|
|
|
*/
|
2023-10-20 00:39:04 -07:00
|
|
|
foreach_in_list(schedule_node, n, ¤t.available) {
|
2024-03-14 19:29:36 +02:00
|
|
|
if (!post_reg_alloc && address_register_interfere(n))
|
|
|
|
|
continue;
|
|
|
|
|
|
2013-10-28 15:17:07 -07:00
|
|
|
if (!chosen) {
|
|
|
|
|
chosen = n;
|
2021-01-25 18:43:06 +01:00
|
|
|
chosen_register_pressure_benefit =
|
|
|
|
|
get_register_pressure_benefit(chosen->inst);
|
2013-10-28 15:17:07 -07:00
|
|
|
continue;
|
|
|
|
|
}
|
|
|
|
|
|
2013-10-14 11:38:09 -07:00
|
|
|
/* Most important: If we can definitely reduce register pressure, do
|
|
|
|
|
* so immediately.
|
|
|
|
|
*/
|
|
|
|
|
int register_pressure_benefit = get_register_pressure_benefit(n->inst);
|
|
|
|
|
|
|
|
|
|
if (register_pressure_benefit > 0 &&
|
|
|
|
|
register_pressure_benefit > chosen_register_pressure_benefit) {
|
|
|
|
|
chosen = n;
|
2021-01-25 18:43:06 +01:00
|
|
|
chosen_register_pressure_benefit = register_pressure_benefit;
|
2013-10-14 11:38:09 -07:00
|
|
|
continue;
|
|
|
|
|
} else if (chosen_register_pressure_benefit > 0 &&
|
|
|
|
|
(register_pressure_benefit <
|
|
|
|
|
chosen_register_pressure_benefit)) {
|
|
|
|
|
continue;
|
|
|
|
|
}
|
|
|
|
|
|
2024-12-06 22:39:15 -08:00
|
|
|
if (mode == BRW_SCHEDULE_PRE_LIFO) {
|
2013-11-06 17:38:23 -08:00
|
|
|
/* Prefer instructions that recently became available for
|
|
|
|
|
* scheduling. These are the things that are most likely to
|
|
|
|
|
* (eventually) make a variable dead and reduce register pressure.
|
|
|
|
|
* Typical register pressure estimates don't work for us because
|
|
|
|
|
* most of our pressure comes from texturing, where no single
|
|
|
|
|
* instruction to schedule will make a vec4 value dead.
|
2013-10-28 15:17:07 -07:00
|
|
|
*/
|
2023-10-20 10:11:11 -07:00
|
|
|
if (n->tmp.cand_generation > chosen->tmp.cand_generation) {
|
2013-10-28 15:17:07 -07:00
|
|
|
chosen = n;
|
2021-01-25 18:43:06 +01:00
|
|
|
chosen_register_pressure_benefit = register_pressure_benefit;
|
2013-10-28 15:17:07 -07:00
|
|
|
continue;
|
2023-10-20 10:11:11 -07:00
|
|
|
} else if (n->tmp.cand_generation < chosen->tmp.cand_generation) {
|
2013-10-28 15:17:07 -07:00
|
|
|
continue;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* For instructions pushed on the cands list at the same time, prefer
|
|
|
|
|
* the one with the highest delay to the end of the program. This is
|
|
|
|
|
* most likely to have its values able to be consumed first (such as
|
|
|
|
|
* for a large tree of lowered ubo loads, which appear reversed in
|
|
|
|
|
* the instruction stream with respect to when they can be consumed).
|
|
|
|
|
*/
|
|
|
|
|
if (n->delay > chosen->delay) {
|
|
|
|
|
chosen = n;
|
2021-01-25 18:43:06 +01:00
|
|
|
chosen_register_pressure_benefit = register_pressure_benefit;
|
2013-10-28 15:17:07 -07:00
|
|
|
continue;
|
|
|
|
|
} else if (n->delay < chosen->delay) {
|
|
|
|
|
continue;
|
|
|
|
|
}
|
|
|
|
|
|
2016-08-12 16:13:16 -07:00
|
|
|
/* Prefer the node most likely to unblock an early program exit.
|
|
|
|
|
*/
|
2023-10-20 10:11:11 -07:00
|
|
|
if (exit_tmp_unblocked_time(n) < exit_tmp_unblocked_time(chosen)) {
|
2016-08-12 16:13:16 -07:00
|
|
|
chosen = n;
|
2021-01-25 18:43:06 +01:00
|
|
|
chosen_register_pressure_benefit = register_pressure_benefit;
|
2016-08-12 16:13:16 -07:00
|
|
|
continue;
|
2023-10-20 10:11:11 -07:00
|
|
|
} else if (exit_tmp_unblocked_time(n) > exit_tmp_unblocked_time(chosen)) {
|
2016-08-12 16:13:16 -07:00
|
|
|
continue;
|
|
|
|
|
}
|
|
|
|
|
|
2013-10-28 15:17:07 -07:00
|
|
|
/* If all other metrics are equal, we prefer the first instruction in
|
|
|
|
|
* the list (program execution).
|
|
|
|
|
*/
|
2013-04-29 16:45:10 -07:00
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
return chosen;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
int
|
2024-12-07 00:23:07 -08:00
|
|
|
brw_instruction_scheduler::calculate_issue_time(const brw_inst *inst)
|
2013-04-29 16:45:10 -07:00
|
|
|
{
|
2024-02-28 13:39:45 -08:00
|
|
|
const struct brw_isa_info *isa = &s->compiler->isa;
|
|
|
|
|
const unsigned overhead = s->grf_used && has_bank_conflict(isa, inst) ?
|
2020-04-02 16:20:34 -07:00
|
|
|
DIV_ROUND_UP(inst->dst.component_size(inst->exec_size), REG_SIZE) : 0;
|
|
|
|
|
if (is_compressed(inst))
|
2017-12-06 11:42:54 -08:00
|
|
|
return 4 + overhead;
|
2013-04-29 16:45:10 -07:00
|
|
|
else
|
2017-12-06 11:42:54 -08:00
|
|
|
return 2 + overhead;
|
2013-04-29 16:45:10 -07:00
|
|
|
}
|
|
|
|
|
|
2011-01-18 17:16:49 -08:00
|
|
|
void
|
2024-12-06 22:39:15 -08:00
|
|
|
brw_instruction_scheduler::schedule(schedule_node *chosen)
|
2023-10-20 00:58:25 -07:00
|
|
|
{
|
|
|
|
|
assert(current.scheduled < current.len);
|
|
|
|
|
current.scheduled++;
|
|
|
|
|
|
|
|
|
|
assert(chosen);
|
|
|
|
|
chosen->remove();
|
|
|
|
|
current.block->instructions.push_tail(chosen->inst);
|
|
|
|
|
|
|
|
|
|
/* If we expected a delay for scheduling, then bump the clock to reflect
|
|
|
|
|
* that. In reality, the hardware will switch to another hyperthread
|
|
|
|
|
* and may not return to dispatching our thread for a while even after
|
|
|
|
|
* we're unblocked. After this, we have the time when the chosen
|
|
|
|
|
* instruction will start executing.
|
|
|
|
|
*/
|
2023-10-20 10:11:11 -07:00
|
|
|
current.time = MAX2(current.time, chosen->tmp.unblocked_time);
|
2023-10-20 00:58:25 -07:00
|
|
|
|
|
|
|
|
/* Update the clock for how soon an instruction could start after the
|
|
|
|
|
* chosen one.
|
|
|
|
|
*/
|
2023-10-16 23:25:00 -07:00
|
|
|
current.time += chosen->issue_time;
|
2023-10-20 00:58:25 -07:00
|
|
|
|
|
|
|
|
if (debug) {
|
|
|
|
|
fprintf(stderr, "clock %4d, scheduled: ", current.time);
|
2024-07-12 16:32:36 -07:00
|
|
|
brw_print_instruction(*s, chosen->inst);
|
2023-10-20 00:58:25 -07:00
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void
|
2024-12-06 22:39:15 -08:00
|
|
|
brw_instruction_scheduler::update_children(schedule_node *chosen)
|
2011-01-18 17:16:49 -08:00
|
|
|
{
|
2024-03-14 19:29:36 +02:00
|
|
|
if (chosen->address_read_count > 0) {
|
|
|
|
|
for (unsigned i = 0; i < chosen->inst->sources; i++) {
|
|
|
|
|
if (!chosen->inst->src[i].is_address())
|
|
|
|
|
continue;
|
|
|
|
|
for (unsigned byte = 0; byte < chosen->inst->size_read(s->devinfo, i); byte += 2) {
|
|
|
|
|
assert(chosen->inst->src[i].address_slot(byte) <
|
|
|
|
|
ARRAY_SIZE(current.address_register));
|
|
|
|
|
current.address_register[chosen->inst->src[i].address_slot(byte)] = 0;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (chosen->inst->dst.is_address()) {
|
|
|
|
|
for (unsigned byte = 0; byte < chosen->inst->size_written; byte += 2) {
|
|
|
|
|
assert(chosen->inst->dst.address_slot(byte) <
|
|
|
|
|
ARRAY_SIZE(current.address_register));
|
|
|
|
|
current.address_register[
|
|
|
|
|
chosen->inst->dst.address_slot(byte)] = chosen->inst->dst.nr;
|
|
|
|
|
}
|
|
|
|
|
} else if (chosen->inst->uses_address_register_implicitly()) {
|
|
|
|
|
memset(current.address_register, 0, sizeof(current.address_register));
|
|
|
|
|
}
|
|
|
|
|
|
2023-10-20 00:58:25 -07:00
|
|
|
/* Now that we've scheduled a new instruction, some of its
|
|
|
|
|
* children can be promoted to the list of instructions ready to
|
|
|
|
|
* be scheduled. Update the children's unblocked time for this
|
|
|
|
|
* DAG edge as we do so.
|
|
|
|
|
*/
|
2023-10-15 23:38:56 -07:00
|
|
|
for (int i = chosen->children_count - 1; i >= 0; i--) {
|
|
|
|
|
schedule_node_child *child = &chosen->children[i];
|
2023-10-20 00:58:25 -07:00
|
|
|
|
2023-10-20 10:11:11 -07:00
|
|
|
child->n->tmp.unblocked_time = MAX2(child->n->tmp.unblocked_time,
|
|
|
|
|
current.time + child->effective_latency);
|
2023-10-20 00:58:25 -07:00
|
|
|
|
|
|
|
|
if (debug) {
|
2023-10-20 10:11:11 -07:00
|
|
|
fprintf(stderr, "\tchild %d, %d parents: ", i, child->n->tmp.parent_count);
|
2024-07-12 16:32:36 -07:00
|
|
|
brw_print_instruction(*s, child->n->inst);
|
2023-10-20 00:58:25 -07:00
|
|
|
}
|
|
|
|
|
|
2023-10-20 10:11:11 -07:00
|
|
|
child->n->tmp.cand_generation = current.cand_generation;
|
|
|
|
|
child->n->tmp.parent_count--;
|
|
|
|
|
if (child->n->tmp.parent_count == 0) {
|
2023-10-20 00:58:25 -07:00
|
|
|
if (debug) {
|
|
|
|
|
fprintf(stderr, "\t\tnow available\n");
|
|
|
|
|
}
|
2023-10-15 23:38:56 -07:00
|
|
|
current.available.push_head(child->n);
|
2023-10-20 00:58:25 -07:00
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
current.cand_generation++;
|
|
|
|
|
}
|
2016-04-28 15:19:28 -07:00
|
|
|
|
2023-10-20 00:58:25 -07:00
|
|
|
void
|
2024-12-06 22:39:15 -08:00
|
|
|
brw_instruction_scheduler::schedule_instructions()
|
2023-10-20 00:58:25 -07:00
|
|
|
{
|
2015-06-09 10:26:53 -07:00
|
|
|
if (!post_reg_alloc)
|
2023-10-20 00:09:37 -07:00
|
|
|
reg_pressure = reg_pressure_in[current.block->num];
|
|
|
|
|
|
2023-10-20 00:58:25 -07:00
|
|
|
assert(current.available.is_empty());
|
2023-10-20 00:09:37 -07:00
|
|
|
for (schedule_node *n = current.start; n < current.end; n++) {
|
2023-10-20 10:11:11 -07:00
|
|
|
reset_node_tmp(n);
|
|
|
|
|
|
|
|
|
|
/* Add DAG heads to the list of available instructions. */
|
|
|
|
|
if (n->tmp.parent_count == 0)
|
2023-10-20 00:39:04 -07:00
|
|
|
current.available.push_tail(n);
|
2011-01-18 17:16:49 -08:00
|
|
|
}
|
|
|
|
|
|
2023-10-20 12:16:18 -07:00
|
|
|
current.block->instructions.make_empty();
|
|
|
|
|
|
2024-03-14 19:29:36 +02:00
|
|
|
memset(current.address_register, 0, sizeof(current.address_register));
|
|
|
|
|
|
2023-10-20 00:39:04 -07:00
|
|
|
while (!current.available.is_empty()) {
|
2013-04-29 16:45:10 -07:00
|
|
|
schedule_node *chosen = choose_instruction_to_schedule();
|
2023-10-20 00:58:25 -07:00
|
|
|
schedule(chosen);
|
2015-06-09 10:26:53 -07:00
|
|
|
|
|
|
|
|
if (!post_reg_alloc) {
|
|
|
|
|
reg_pressure -= get_register_pressure_benefit(chosen->inst);
|
|
|
|
|
update_register_pressure(chosen->inst);
|
2023-10-20 00:58:25 -07:00
|
|
|
if (debug)
|
2015-06-09 10:26:53 -07:00
|
|
|
fprintf(stderr, "(register pressure %d)\n", reg_pressure);
|
2012-12-04 13:52:19 -08:00
|
|
|
}
|
|
|
|
|
|
2023-10-20 00:58:25 -07:00
|
|
|
update_children(chosen);
|
2011-01-18 17:16:49 -08:00
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void
|
2024-12-06 22:39:15 -08:00
|
|
|
brw_instruction_scheduler::run(brw_instruction_scheduler_mode mode)
|
2011-01-18 17:16:49 -08:00
|
|
|
{
|
2023-10-20 10:32:54 -07:00
|
|
|
this->mode = mode;
|
|
|
|
|
|
2015-06-09 10:26:53 -07:00
|
|
|
if (debug && !post_reg_alloc) {
|
2013-12-22 23:29:31 -08:00
|
|
|
fprintf(stderr, "\nInstructions before scheduling (reg_alloc %d)\n",
|
|
|
|
|
post_reg_alloc);
|
2024-07-12 16:32:36 -07:00
|
|
|
brw_print_instructions(*s);
|
2012-12-04 13:52:19 -08:00
|
|
|
}
|
|
|
|
|
|
2023-10-20 02:15:59 -07:00
|
|
|
if (!post_reg_alloc) {
|
|
|
|
|
memset(reads_remaining, 0, grf_count * sizeof(*reads_remaining));
|
|
|
|
|
memset(hw_reads_remaining, 0, hw_reg_count * sizeof(*hw_reads_remaining));
|
2023-06-13 12:50:02 -07:00
|
|
|
memset(written, 0, grf_count * sizeof(*written));
|
|
|
|
|
}
|
|
|
|
|
|
2025-03-11 13:20:09 -07:00
|
|
|
const brw_ip_ranges &ips = s->ip_ranges_analysis.require();
|
|
|
|
|
|
2024-02-28 13:39:45 -08:00
|
|
|
foreach_block(block, s->cfg) {
|
2025-03-11 13:20:09 -07:00
|
|
|
set_current_block(block, ips);
|
2011-01-18 17:16:49 -08:00
|
|
|
|
2023-10-20 09:45:14 -07:00
|
|
|
if (!post_reg_alloc) {
|
|
|
|
|
for (schedule_node *n = current.start; n < current.end; n++)
|
2023-10-20 02:15:59 -07:00
|
|
|
count_reads_remaining(n->inst);
|
|
|
|
|
}
|
2023-10-16 23:25:00 -07:00
|
|
|
|
2023-10-20 00:09:37 -07:00
|
|
|
schedule_instructions();
|
2011-01-18 17:16:49 -08:00
|
|
|
}
|
|
|
|
|
|
2015-06-09 10:26:53 -07:00
|
|
|
if (debug && !post_reg_alloc) {
|
2013-12-22 23:29:31 -08:00
|
|
|
fprintf(stderr, "\nInstructions after scheduling (reg_alloc %d)\n",
|
|
|
|
|
post_reg_alloc);
|
2024-07-12 16:32:36 -07:00
|
|
|
brw_print_instructions(*s);
|
2013-04-29 14:05:33 -07:00
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
2024-12-06 22:39:15 -08:00
|
|
|
brw_instruction_scheduler *
|
2024-12-07 10:25:45 -08:00
|
|
|
brw_prepare_scheduler(brw_shader &s, void *mem_ctx)
|
2023-10-20 10:32:54 -07:00
|
|
|
{
|
2024-07-12 16:55:33 -07:00
|
|
|
const int grf_count = s.alloc.count;
|
2023-10-20 10:32:54 -07:00
|
|
|
|
2024-12-06 22:39:15 -08:00
|
|
|
brw_instruction_scheduler *empty = rzalloc(mem_ctx, brw_instruction_scheduler);
|
|
|
|
|
return new (empty) brw_instruction_scheduler(mem_ctx, &s, grf_count, s.first_non_payload_grf,
|
|
|
|
|
s.cfg->num_blocks, /* post_reg_alloc */ false);
|
2023-10-20 10:32:54 -07:00
|
|
|
}
|
|
|
|
|
|
2013-04-29 14:05:33 -07:00
|
|
|
void
|
2024-12-07 10:25:45 -08:00
|
|
|
brw_schedule_instructions_pre_ra(brw_shader &s, brw_instruction_scheduler *sched,
|
2024-12-06 22:39:15 -08:00
|
|
|
brw_instruction_scheduler_mode mode)
|
2013-04-29 14:05:33 -07:00
|
|
|
{
|
2024-12-06 22:39:15 -08:00
|
|
|
if (mode == BRW_SCHEDULE_NONE)
|
2023-08-14 19:19:45 -07:00
|
|
|
return;
|
|
|
|
|
|
2023-10-20 10:32:54 -07:00
|
|
|
sched->run(mode);
|
|
|
|
|
|
2024-12-06 20:52:05 -08:00
|
|
|
s.invalidate_analysis(BRW_DEPENDENCY_INSTRUCTIONS);
|
2023-10-20 10:32:54 -07:00
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void
|
2024-12-07 10:25:45 -08:00
|
|
|
brw_schedule_instructions_post_ra(brw_shader &s)
|
2023-10-20 10:32:54 -07:00
|
|
|
{
|
|
|
|
|
const bool post_reg_alloc = true;
|
2024-07-12 16:55:33 -07:00
|
|
|
const int grf_count = reg_unit(s.devinfo) * s.grf_used;
|
2013-04-29 14:05:33 -07:00
|
|
|
|
2023-10-20 02:31:20 -07:00
|
|
|
void *mem_ctx = ralloc_context(NULL);
|
|
|
|
|
|
2024-12-06 22:39:15 -08:00
|
|
|
brw_instruction_scheduler sched(mem_ctx, &s, grf_count, s.first_non_payload_grf,
|
|
|
|
|
s.cfg->num_blocks, post_reg_alloc);
|
|
|
|
|
sched.run(BRW_SCHEDULE_POST);
|
2013-04-29 14:05:33 -07:00
|
|
|
|
2023-10-20 02:31:20 -07:00
|
|
|
ralloc_free(mem_ctx);
|
|
|
|
|
|
2024-12-06 20:52:05 -08:00
|
|
|
s.invalidate_analysis(BRW_DEPENDENCY_INSTRUCTIONS);
|
2011-01-18 17:16:49 -08:00
|
|
|
}
|