2010-02-22 13:19:34 -08:00
|
|
|
/*
|
|
|
|
|
* Copyright © 2010 Intel Corporation
|
|
|
|
|
*
|
|
|
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
|
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
|
|
|
* to deal in the Software without restriction, including without limitation
|
|
|
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
|
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
|
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
|
|
|
*
|
|
|
|
|
* The above copyright notice and this permission notice (including the next
|
|
|
|
|
* paragraph) shall be included in all copies or substantial portions of the
|
|
|
|
|
* Software.
|
|
|
|
|
*
|
|
|
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
|
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
|
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
|
|
|
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
|
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
|
|
|
|
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
|
|
|
|
|
* DEALINGS IN THE SOFTWARE.
|
|
|
|
|
*/
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* \file ast_to_hir.c
|
|
|
|
|
* Convert abstract syntax to to high-level intermediate reprensentation (HIR).
|
|
|
|
|
*
|
|
|
|
|
* During the conversion to HIR, the majority of the symantic checking is
|
|
|
|
|
* preformed on the program. This includes:
|
|
|
|
|
*
|
|
|
|
|
* * Symbol table management
|
|
|
|
|
* * Type checking
|
|
|
|
|
* * Function binding
|
|
|
|
|
*
|
|
|
|
|
* The majority of this work could be done during parsing, and the parser could
|
|
|
|
|
* probably generate HIR directly. However, this results in frequent changes
|
|
|
|
|
* to the parser code. Since we do not assume that every system this complier
|
|
|
|
|
* is built on will have Flex and Bison installed, we have to store the code
|
|
|
|
|
* generated by these tools in our version control system. In other parts of
|
|
|
|
|
* the system we've seen problems where a parser was changed but the generated
|
|
|
|
|
* code was not committed, merge conflicts where created because two developers
|
|
|
|
|
* had slightly different versions of Bison installed, etc.
|
|
|
|
|
*
|
|
|
|
|
* I have also noticed that running Bison generated parsers in GDB is very
|
|
|
|
|
* irritating. When you get a segfault on '$$ = $1->foo', you can't very
|
|
|
|
|
* well 'print $1' in GDB.
|
|
|
|
|
*
|
|
|
|
|
* As a result, my preference is to put as little C code as possible in the
|
|
|
|
|
* parser (and lexer) sources.
|
|
|
|
|
*/
|
2010-06-22 10:38:52 -07:00
|
|
|
|
2010-08-23 17:51:42 +08:00
|
|
|
#include "main/core.h" /* for struct gl_extensions */
|
2010-03-19 11:57:24 -07:00
|
|
|
#include "glsl_symbol_table.h"
|
2010-02-22 13:19:34 -08:00
|
|
|
#include "glsl_parser_extras.h"
|
|
|
|
|
#include "ast.h"
|
|
|
|
|
#include "glsl_types.h"
|
2012-01-30 08:50:14 -08:00
|
|
|
#include "program/hash_table.h"
|
2010-02-22 13:19:34 -08:00
|
|
|
#include "ir.h"
|
|
|
|
|
|
2012-03-29 17:29:20 -07:00
|
|
|
static void
|
|
|
|
|
detect_conflicting_assignments(struct _mesa_glsl_parse_state *state,
|
|
|
|
|
exec_list *instructions);
|
|
|
|
|
|
2010-03-10 09:55:22 -08:00
|
|
|
void
|
|
|
|
|
_mesa_ast_to_hir(exec_list *instructions, struct _mesa_glsl_parse_state *state)
|
|
|
|
|
{
|
2010-03-10 10:43:16 -08:00
|
|
|
_mesa_glsl_initialize_variables(instructions, state);
|
|
|
|
|
|
2012-08-01 17:44:02 -07:00
|
|
|
state->symbols->separate_function_namespace = state->language_version == 110;
|
2010-09-05 00:31:28 -07:00
|
|
|
|
2010-03-19 17:08:05 -07:00
|
|
|
state->current_function = NULL;
|
|
|
|
|
|
2011-07-29 15:28:52 -07:00
|
|
|
state->toplevel_ir = instructions;
|
|
|
|
|
|
2010-08-23 14:52:06 -07:00
|
|
|
/* Section 4.2 of the GLSL 1.20 specification states:
|
|
|
|
|
* "The built-in functions are scoped in a scope outside the global scope
|
|
|
|
|
* users declare global variables in. That is, a shader's global scope,
|
|
|
|
|
* available for user-defined functions and global variables, is nested
|
|
|
|
|
* inside the scope containing the built-in functions."
|
|
|
|
|
*
|
|
|
|
|
* Since built-in functions like ftransform() access built-in variables,
|
|
|
|
|
* it follows that those must be in the outer scope as well.
|
|
|
|
|
*
|
|
|
|
|
* We push scope here to create this nesting effect...but don't pop.
|
|
|
|
|
* This way, a shader's globals are still in the symbol table for use
|
|
|
|
|
* by the linker.
|
|
|
|
|
*/
|
|
|
|
|
state->symbols->push_scope();
|
|
|
|
|
|
2010-05-10 17:42:05 -07:00
|
|
|
foreach_list_typed (ast_node, ast, link, & state->translation_unit)
|
2010-05-10 11:17:53 -07:00
|
|
|
ast->hir(instructions, state);
|
2011-07-11 10:46:01 -07:00
|
|
|
|
|
|
|
|
detect_recursion_unlinked(state, instructions);
|
2012-03-29 17:29:20 -07:00
|
|
|
detect_conflicting_assignments(state, instructions);
|
2011-07-29 15:28:52 -07:00
|
|
|
|
|
|
|
|
state->toplevel_ir = NULL;
|
2010-03-10 09:55:22 -08:00
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
2010-03-29 16:17:56 -07:00
|
|
|
/**
|
|
|
|
|
* If a conversion is available, convert one operand to a different type
|
|
|
|
|
*
|
|
|
|
|
* The \c from \c ir_rvalue is converted "in place".
|
|
|
|
|
*
|
|
|
|
|
* \param to Type that the operand it to be converted to
|
|
|
|
|
* \param from Operand that is being converted
|
|
|
|
|
* \param state GLSL compiler state
|
|
|
|
|
*
|
|
|
|
|
* \return
|
|
|
|
|
* If a conversion is possible (or unnecessary), \c true is returned.
|
|
|
|
|
* Otherwise \c false is returned.
|
|
|
|
|
*/
|
2010-09-01 20:03:17 -07:00
|
|
|
bool
|
2010-03-29 16:32:55 -07:00
|
|
|
apply_implicit_conversion(const glsl_type *to, ir_rvalue * &from,
|
2010-03-29 16:17:56 -07:00
|
|
|
struct _mesa_glsl_parse_state *state)
|
|
|
|
|
{
|
2010-06-25 13:14:37 -07:00
|
|
|
void *ctx = state;
|
2010-03-29 16:32:55 -07:00
|
|
|
if (to->base_type == from->type->base_type)
|
2010-03-29 16:17:56 -07:00
|
|
|
return true;
|
|
|
|
|
|
|
|
|
|
/* This conversion was added in GLSL 1.20. If the compilation mode is
|
|
|
|
|
* GLSL 1.10, the conversion is skipped.
|
|
|
|
|
*/
|
2012-08-01 14:50:05 -07:00
|
|
|
if (!state->is_version(120, 0))
|
2010-03-29 16:17:56 -07:00
|
|
|
return false;
|
|
|
|
|
|
|
|
|
|
/* From page 27 (page 33 of the PDF) of the GLSL 1.50 spec:
|
|
|
|
|
*
|
|
|
|
|
* "There are no implicit array or structure conversions. For
|
|
|
|
|
* example, an array of int cannot be implicitly converted to an
|
|
|
|
|
* array of float. There are no implicit conversions between
|
|
|
|
|
* signed and unsigned integers."
|
|
|
|
|
*/
|
|
|
|
|
/* FINISHME: The above comment is partially a lie. There is int/uint
|
|
|
|
|
* FINISHME: conversion for immediate constants.
|
|
|
|
|
*/
|
2010-03-29 16:32:55 -07:00
|
|
|
if (!to->is_float() || !from->type->is_numeric())
|
2010-03-29 16:17:56 -07:00
|
|
|
return false;
|
|
|
|
|
|
2010-06-29 15:59:27 -07:00
|
|
|
/* Convert to a floating point type with the same number of components
|
|
|
|
|
* as the original type - i.e. int to float, not int to vec4.
|
|
|
|
|
*/
|
|
|
|
|
to = glsl_type::get_instance(GLSL_TYPE_FLOAT, from->type->vector_elements,
|
|
|
|
|
from->type->matrix_columns);
|
|
|
|
|
|
2010-03-29 16:32:55 -07:00
|
|
|
switch (from->type->base_type) {
|
2010-03-29 16:17:56 -07:00
|
|
|
case GLSL_TYPE_INT:
|
2010-06-23 18:11:51 -07:00
|
|
|
from = new(ctx) ir_expression(ir_unop_i2f, to, from, NULL);
|
2010-03-29 16:17:56 -07:00
|
|
|
break;
|
|
|
|
|
case GLSL_TYPE_UINT:
|
2010-06-23 18:11:51 -07:00
|
|
|
from = new(ctx) ir_expression(ir_unop_u2f, to, from, NULL);
|
2010-03-29 16:17:56 -07:00
|
|
|
break;
|
|
|
|
|
case GLSL_TYPE_BOOL:
|
2010-06-23 18:11:51 -07:00
|
|
|
from = new(ctx) ir_expression(ir_unop_b2f, to, from, NULL);
|
2010-04-02 02:13:43 -10:00
|
|
|
break;
|
2010-03-29 16:17:56 -07:00
|
|
|
default:
|
|
|
|
|
assert(0);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
return true;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
2010-02-22 13:19:34 -08:00
|
|
|
static const struct glsl_type *
|
2010-03-29 16:32:55 -07:00
|
|
|
arithmetic_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
|
2010-02-22 13:19:34 -08:00
|
|
|
bool multiply,
|
2010-03-31 16:38:11 -10:00
|
|
|
struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
|
2010-02-22 13:19:34 -08:00
|
|
|
{
|
2010-05-19 10:38:37 -07:00
|
|
|
const glsl_type *type_a = value_a->type;
|
|
|
|
|
const glsl_type *type_b = value_b->type;
|
2010-03-29 16:17:56 -07:00
|
|
|
|
2010-02-22 13:19:34 -08:00
|
|
|
/* From GLSL 1.50 spec, page 56:
|
|
|
|
|
*
|
|
|
|
|
* "The arithmetic binary operators add (+), subtract (-),
|
|
|
|
|
* multiply (*), and divide (/) operate on integer and
|
|
|
|
|
* floating-point scalars, vectors, and matrices."
|
|
|
|
|
*/
|
2010-03-24 17:08:13 -07:00
|
|
|
if (!type_a->is_numeric() || !type_b->is_numeric()) {
|
2010-03-31 16:38:11 -10:00
|
|
|
_mesa_glsl_error(loc, state,
|
|
|
|
|
"Operands to arithmetic operators must be numeric");
|
2010-03-26 14:33:41 -07:00
|
|
|
return glsl_type::error_type;
|
2010-02-22 13:19:34 -08:00
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/* "If one operand is floating-point based and the other is
|
|
|
|
|
* not, then the conversions from Section 4.1.10 "Implicit
|
|
|
|
|
* Conversions" are applied to the non-floating-point-based operand."
|
|
|
|
|
*/
|
2010-03-29 16:17:56 -07:00
|
|
|
if (!apply_implicit_conversion(type_a, value_b, state)
|
|
|
|
|
&& !apply_implicit_conversion(type_b, value_a, state)) {
|
2010-03-31 16:38:11 -10:00
|
|
|
_mesa_glsl_error(loc, state,
|
|
|
|
|
"Could not implicitly convert operands to "
|
|
|
|
|
"arithmetic operator");
|
2010-03-29 16:17:56 -07:00
|
|
|
return glsl_type::error_type;
|
2010-02-22 13:19:34 -08:00
|
|
|
}
|
2010-05-19 10:38:37 -07:00
|
|
|
type_a = value_a->type;
|
|
|
|
|
type_b = value_b->type;
|
|
|
|
|
|
2010-02-22 13:19:34 -08:00
|
|
|
/* "If the operands are integer types, they must both be signed or
|
|
|
|
|
* both be unsigned."
|
|
|
|
|
*
|
|
|
|
|
* From this rule and the preceeding conversion it can be inferred that
|
|
|
|
|
* both types must be GLSL_TYPE_FLOAT, or GLSL_TYPE_UINT, or GLSL_TYPE_INT.
|
2010-03-24 17:08:13 -07:00
|
|
|
* The is_numeric check above already filtered out the case where either
|
|
|
|
|
* type is not one of these, so now the base types need only be tested for
|
|
|
|
|
* equality.
|
2010-02-22 13:19:34 -08:00
|
|
|
*/
|
|
|
|
|
if (type_a->base_type != type_b->base_type) {
|
2010-03-31 16:38:11 -10:00
|
|
|
_mesa_glsl_error(loc, state,
|
|
|
|
|
"base type mismatch for arithmetic operator");
|
2010-03-26 14:33:41 -07:00
|
|
|
return glsl_type::error_type;
|
2010-02-22 13:19:34 -08:00
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* "All arithmetic binary operators result in the same fundamental type
|
|
|
|
|
* (signed integer, unsigned integer, or floating-point) as the
|
|
|
|
|
* operands they operate on, after operand type conversion. After
|
|
|
|
|
* conversion, the following cases are valid
|
|
|
|
|
*
|
|
|
|
|
* * The two operands are scalars. In this case the operation is
|
|
|
|
|
* applied, resulting in a scalar."
|
|
|
|
|
*/
|
2010-03-09 15:51:22 -08:00
|
|
|
if (type_a->is_scalar() && type_b->is_scalar())
|
2010-02-22 13:19:34 -08:00
|
|
|
return type_a;
|
|
|
|
|
|
|
|
|
|
/* "* One operand is a scalar, and the other is a vector or matrix.
|
|
|
|
|
* In this case, the scalar operation is applied independently to each
|
|
|
|
|
* component of the vector or matrix, resulting in the same size
|
|
|
|
|
* vector or matrix."
|
|
|
|
|
*/
|
2010-03-09 15:51:22 -08:00
|
|
|
if (type_a->is_scalar()) {
|
|
|
|
|
if (!type_b->is_scalar())
|
2010-02-22 13:19:34 -08:00
|
|
|
return type_b;
|
2010-03-09 15:51:22 -08:00
|
|
|
} else if (type_b->is_scalar()) {
|
2010-02-22 13:19:34 -08:00
|
|
|
return type_a;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* All of the combinations of <scalar, scalar>, <vector, scalar>,
|
|
|
|
|
* <scalar, vector>, <scalar, matrix>, and <matrix, scalar> have been
|
|
|
|
|
* handled.
|
|
|
|
|
*/
|
2010-03-24 17:08:13 -07:00
|
|
|
assert(!type_a->is_scalar());
|
|
|
|
|
assert(!type_b->is_scalar());
|
2010-02-22 13:19:34 -08:00
|
|
|
|
|
|
|
|
/* "* The two operands are vectors of the same size. In this case, the
|
|
|
|
|
* operation is done component-wise resulting in the same size
|
|
|
|
|
* vector."
|
|
|
|
|
*/
|
2010-03-09 15:55:16 -08:00
|
|
|
if (type_a->is_vector() && type_b->is_vector()) {
|
2010-03-31 16:38:11 -10:00
|
|
|
if (type_a == type_b) {
|
|
|
|
|
return type_a;
|
|
|
|
|
} else {
|
|
|
|
|
_mesa_glsl_error(loc, state,
|
|
|
|
|
"vector size mismatch for arithmetic operator");
|
|
|
|
|
return glsl_type::error_type;
|
|
|
|
|
}
|
2010-02-22 13:19:34 -08:00
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* All of the combinations of <scalar, scalar>, <vector, scalar>,
|
|
|
|
|
* <scalar, vector>, <scalar, matrix>, <matrix, scalar>, and
|
|
|
|
|
* <vector, vector> have been handled. At least one of the operands must
|
|
|
|
|
* be matrix. Further, since there are no integer matrix types, the base
|
|
|
|
|
* type of both operands must be float.
|
|
|
|
|
*/
|
2010-03-24 17:08:13 -07:00
|
|
|
assert(type_a->is_matrix() || type_b->is_matrix());
|
2010-02-22 13:19:34 -08:00
|
|
|
assert(type_a->base_type == GLSL_TYPE_FLOAT);
|
|
|
|
|
assert(type_b->base_type == GLSL_TYPE_FLOAT);
|
|
|
|
|
|
|
|
|
|
/* "* The operator is add (+), subtract (-), or divide (/), and the
|
|
|
|
|
* operands are matrices with the same number of rows and the same
|
|
|
|
|
* number of columns. In this case, the operation is done component-
|
|
|
|
|
* wise resulting in the same size matrix."
|
|
|
|
|
* * The operator is multiply (*), where both operands are matrices or
|
|
|
|
|
* one operand is a vector and the other a matrix. A right vector
|
|
|
|
|
* operand is treated as a column vector and a left vector operand as a
|
|
|
|
|
* row vector. In all these cases, it is required that the number of
|
|
|
|
|
* columns of the left operand is equal to the number of rows of the
|
|
|
|
|
* right operand. Then, the multiply (*) operation does a linear
|
|
|
|
|
* algebraic multiply, yielding an object that has the same number of
|
|
|
|
|
* rows as the left operand and the same number of columns as the right
|
|
|
|
|
* operand. Section 5.10 "Vector and Matrix Operations" explains in
|
|
|
|
|
* more detail how vectors and matrices are operated on."
|
|
|
|
|
*/
|
|
|
|
|
if (! multiply) {
|
2010-03-31 16:38:11 -10:00
|
|
|
if (type_a == type_b)
|
|
|
|
|
return type_a;
|
2010-02-22 13:19:34 -08:00
|
|
|
} else {
|
2010-03-09 15:58:52 -08:00
|
|
|
if (type_a->is_matrix() && type_b->is_matrix()) {
|
2010-03-25 13:06:58 -07:00
|
|
|
/* Matrix multiply. The columns of A must match the rows of B. Given
|
|
|
|
|
* the other previously tested constraints, this means the vector type
|
|
|
|
|
* of a row from A must be the same as the vector type of a column from
|
|
|
|
|
* B.
|
|
|
|
|
*/
|
|
|
|
|
if (type_a->row_type() == type_b->column_type()) {
|
|
|
|
|
/* The resulting matrix has the number of columns of matrix B and
|
|
|
|
|
* the number of rows of matrix A. We get the row count of A by
|
|
|
|
|
* looking at the size of a vector that makes up a column. The
|
|
|
|
|
* transpose (size of a row) is done for B.
|
|
|
|
|
*/
|
2010-03-31 16:38:11 -10:00
|
|
|
const glsl_type *const type =
|
2010-03-25 13:06:58 -07:00
|
|
|
glsl_type::get_instance(type_a->base_type,
|
|
|
|
|
type_a->column_type()->vector_elements,
|
|
|
|
|
type_b->row_type()->vector_elements);
|
2010-03-31 16:38:11 -10:00
|
|
|
assert(type != glsl_type::error_type);
|
|
|
|
|
|
|
|
|
|
return type;
|
2010-02-22 13:19:34 -08:00
|
|
|
}
|
2010-03-09 15:58:52 -08:00
|
|
|
} else if (type_a->is_matrix()) {
|
2010-02-22 13:19:34 -08:00
|
|
|
/* A is a matrix and B is a column vector. Columns of A must match
|
2010-03-25 13:06:58 -07:00
|
|
|
* rows of B. Given the other previously tested constraints, this
|
|
|
|
|
* means the vector type of a row from A must be the same as the
|
|
|
|
|
* vector the type of B.
|
2010-02-22 13:19:34 -08:00
|
|
|
*/
|
2010-07-22 14:56:14 -07:00
|
|
|
if (type_a->row_type() == type_b) {
|
|
|
|
|
/* The resulting vector has a number of elements equal to
|
|
|
|
|
* the number of rows of matrix A. */
|
|
|
|
|
const glsl_type *const type =
|
|
|
|
|
glsl_type::get_instance(type_a->base_type,
|
|
|
|
|
type_a->column_type()->vector_elements,
|
|
|
|
|
1);
|
|
|
|
|
assert(type != glsl_type::error_type);
|
|
|
|
|
|
|
|
|
|
return type;
|
|
|
|
|
}
|
2010-02-22 13:19:34 -08:00
|
|
|
} else {
|
2010-03-09 15:58:52 -08:00
|
|
|
assert(type_b->is_matrix());
|
2010-02-22 13:19:34 -08:00
|
|
|
|
2010-03-25 13:06:58 -07:00
|
|
|
/* A is a row vector and B is a matrix. Columns of A must match rows
|
|
|
|
|
* of B. Given the other previously tested constraints, this means
|
|
|
|
|
* the type of A must be the same as the vector type of a column from
|
|
|
|
|
* B.
|
2010-02-22 13:19:34 -08:00
|
|
|
*/
|
2010-07-22 14:56:14 -07:00
|
|
|
if (type_a == type_b->column_type()) {
|
|
|
|
|
/* The resulting vector has a number of elements equal to
|
|
|
|
|
* the number of columns of matrix B. */
|
|
|
|
|
const glsl_type *const type =
|
|
|
|
|
glsl_type::get_instance(type_a->base_type,
|
|
|
|
|
type_b->row_type()->vector_elements,
|
|
|
|
|
1);
|
|
|
|
|
assert(type != glsl_type::error_type);
|
|
|
|
|
|
|
|
|
|
return type;
|
|
|
|
|
}
|
2010-02-22 13:19:34 -08:00
|
|
|
}
|
2010-03-31 16:38:11 -10:00
|
|
|
|
|
|
|
|
_mesa_glsl_error(loc, state, "size mismatch for matrix multiplication");
|
|
|
|
|
return glsl_type::error_type;
|
2010-02-22 13:19:34 -08:00
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/* "All other cases are illegal."
|
|
|
|
|
*/
|
2010-03-31 16:38:11 -10:00
|
|
|
_mesa_glsl_error(loc, state, "type mismatch");
|
2010-03-26 14:33:41 -07:00
|
|
|
return glsl_type::error_type;
|
2010-02-22 13:19:34 -08:00
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
static const struct glsl_type *
|
2010-03-31 16:45:20 -10:00
|
|
|
unary_arithmetic_result_type(const struct glsl_type *type,
|
|
|
|
|
struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
|
2010-02-22 13:19:34 -08:00
|
|
|
{
|
|
|
|
|
/* From GLSL 1.50 spec, page 57:
|
|
|
|
|
*
|
|
|
|
|
* "The arithmetic unary operators negate (-), post- and pre-increment
|
|
|
|
|
* and decrement (-- and ++) operate on integer or floating-point
|
|
|
|
|
* values (including vectors and matrices). All unary operators work
|
|
|
|
|
* component-wise on their operands. These result with the same type
|
|
|
|
|
* they operated on."
|
|
|
|
|
*/
|
2010-03-31 16:45:20 -10:00
|
|
|
if (!type->is_numeric()) {
|
|
|
|
|
_mesa_glsl_error(loc, state,
|
|
|
|
|
"Operands to arithmetic operators must be numeric");
|
2010-03-26 14:33:41 -07:00
|
|
|
return glsl_type::error_type;
|
2010-03-31 16:45:20 -10:00
|
|
|
}
|
2010-02-22 13:19:34 -08:00
|
|
|
|
|
|
|
|
return type;
|
|
|
|
|
}
|
|
|
|
|
|
2010-10-15 11:28:05 -07:00
|
|
|
/**
|
|
|
|
|
* \brief Return the result type of a bit-logic operation.
|
|
|
|
|
*
|
|
|
|
|
* If the given types to the bit-logic operator are invalid, return
|
|
|
|
|
* glsl_type::error_type.
|
|
|
|
|
*
|
|
|
|
|
* \param type_a Type of LHS of bit-logic op
|
|
|
|
|
* \param type_b Type of RHS of bit-logic op
|
|
|
|
|
*/
|
|
|
|
|
static const struct glsl_type *
|
|
|
|
|
bit_logic_result_type(const struct glsl_type *type_a,
|
|
|
|
|
const struct glsl_type *type_b,
|
|
|
|
|
ast_operators op,
|
|
|
|
|
struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
|
|
|
|
|
{
|
2012-08-05 09:57:01 -07:00
|
|
|
if (!state->check_bitwise_operations_allowed(loc)) {
|
2010-10-15 11:28:05 -07:00
|
|
|
return glsl_type::error_type;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* From page 50 (page 56 of PDF) of GLSL 1.30 spec:
|
|
|
|
|
*
|
|
|
|
|
* "The bitwise operators and (&), exclusive-or (^), and inclusive-or
|
|
|
|
|
* (|). The operands must be of type signed or unsigned integers or
|
|
|
|
|
* integer vectors."
|
|
|
|
|
*/
|
|
|
|
|
if (!type_a->is_integer()) {
|
|
|
|
|
_mesa_glsl_error(loc, state, "LHS of `%s' must be an integer",
|
|
|
|
|
ast_expression::operator_string(op));
|
|
|
|
|
return glsl_type::error_type;
|
|
|
|
|
}
|
|
|
|
|
if (!type_b->is_integer()) {
|
|
|
|
|
_mesa_glsl_error(loc, state, "RHS of `%s' must be an integer",
|
|
|
|
|
ast_expression::operator_string(op));
|
|
|
|
|
return glsl_type::error_type;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* "The fundamental types of the operands (signed or unsigned) must
|
|
|
|
|
* match,"
|
|
|
|
|
*/
|
|
|
|
|
if (type_a->base_type != type_b->base_type) {
|
|
|
|
|
_mesa_glsl_error(loc, state, "operands of `%s' must have the same "
|
|
|
|
|
"base type", ast_expression::operator_string(op));
|
|
|
|
|
return glsl_type::error_type;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* "The operands cannot be vectors of differing size." */
|
|
|
|
|
if (type_a->is_vector() &&
|
|
|
|
|
type_b->is_vector() &&
|
|
|
|
|
type_a->vector_elements != type_b->vector_elements) {
|
|
|
|
|
_mesa_glsl_error(loc, state, "operands of `%s' cannot be vectors of "
|
|
|
|
|
"different sizes", ast_expression::operator_string(op));
|
|
|
|
|
return glsl_type::error_type;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* "If one operand is a scalar and the other a vector, the scalar is
|
|
|
|
|
* applied component-wise to the vector, resulting in the same type as
|
|
|
|
|
* the vector. The fundamental types of the operands [...] will be the
|
|
|
|
|
* resulting fundamental type."
|
|
|
|
|
*/
|
|
|
|
|
if (type_a->is_scalar())
|
|
|
|
|
return type_b;
|
|
|
|
|
else
|
|
|
|
|
return type_a;
|
|
|
|
|
}
|
2010-02-22 13:19:34 -08:00
|
|
|
|
|
|
|
|
static const struct glsl_type *
|
|
|
|
|
modulus_result_type(const struct glsl_type *type_a,
|
2010-03-31 16:45:20 -10:00
|
|
|
const struct glsl_type *type_b,
|
|
|
|
|
struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
|
2010-02-22 13:19:34 -08:00
|
|
|
{
|
2012-08-02 08:18:12 -07:00
|
|
|
if (!state->check_version(130, 300, loc, "operator '%%' is reserved")) {
|
2011-02-04 12:18:56 -08:00
|
|
|
return glsl_type::error_type;
|
|
|
|
|
}
|
|
|
|
|
|
2010-02-22 13:19:34 -08:00
|
|
|
/* From GLSL 1.50 spec, page 56:
|
|
|
|
|
* "The operator modulus (%) operates on signed or unsigned integers or
|
|
|
|
|
* integer vectors. The operand types must both be signed or both be
|
|
|
|
|
* unsigned."
|
|
|
|
|
*/
|
2011-06-14 22:21:41 -07:00
|
|
|
if (!type_a->is_integer()) {
|
|
|
|
|
_mesa_glsl_error(loc, state, "LHS of operator %% must be an integer.");
|
|
|
|
|
return glsl_type::error_type;
|
|
|
|
|
}
|
|
|
|
|
if (!type_b->is_integer()) {
|
|
|
|
|
_mesa_glsl_error(loc, state, "RHS of operator %% must be an integer.");
|
|
|
|
|
return glsl_type::error_type;
|
|
|
|
|
}
|
|
|
|
|
if (type_a->base_type != type_b->base_type) {
|
|
|
|
|
_mesa_glsl_error(loc, state,
|
|
|
|
|
"operands of %% must have the same base type");
|
2010-03-26 14:33:41 -07:00
|
|
|
return glsl_type::error_type;
|
2010-02-22 13:19:34 -08:00
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* "The operands cannot be vectors of differing size. If one operand is
|
|
|
|
|
* a scalar and the other vector, then the scalar is applied component-
|
|
|
|
|
* wise to the vector, resulting in the same type as the vector. If both
|
|
|
|
|
* are vectors of the same size, the result is computed component-wise."
|
|
|
|
|
*/
|
2010-03-09 15:55:16 -08:00
|
|
|
if (type_a->is_vector()) {
|
|
|
|
|
if (!type_b->is_vector()
|
2010-02-22 13:19:34 -08:00
|
|
|
|| (type_a->vector_elements == type_b->vector_elements))
|
|
|
|
|
return type_a;
|
|
|
|
|
} else
|
|
|
|
|
return type_b;
|
|
|
|
|
|
|
|
|
|
/* "The operator modulus (%) is not defined for any other data types
|
|
|
|
|
* (non-integer types)."
|
|
|
|
|
*/
|
2010-03-31 16:45:20 -10:00
|
|
|
_mesa_glsl_error(loc, state, "type mismatch");
|
2010-03-26 14:33:41 -07:00
|
|
|
return glsl_type::error_type;
|
2010-02-22 13:19:34 -08:00
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
static const struct glsl_type *
|
2010-03-29 16:32:55 -07:00
|
|
|
relational_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
|
2010-03-31 16:45:20 -10:00
|
|
|
struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
|
2010-02-22 13:19:34 -08:00
|
|
|
{
|
2010-05-19 10:38:37 -07:00
|
|
|
const glsl_type *type_a = value_a->type;
|
|
|
|
|
const glsl_type *type_b = value_b->type;
|
2010-03-29 16:20:07 -07:00
|
|
|
|
2010-02-22 13:19:34 -08:00
|
|
|
/* From GLSL 1.50 spec, page 56:
|
|
|
|
|
* "The relational operators greater than (>), less than (<), greater
|
|
|
|
|
* than or equal (>=), and less than or equal (<=) operate only on
|
|
|
|
|
* scalar integer and scalar floating-point expressions."
|
|
|
|
|
*/
|
2010-03-26 14:40:37 -07:00
|
|
|
if (!type_a->is_numeric()
|
|
|
|
|
|| !type_b->is_numeric()
|
2010-03-09 15:51:22 -08:00
|
|
|
|| !type_a->is_scalar()
|
2010-03-31 16:45:20 -10:00
|
|
|
|| !type_b->is_scalar()) {
|
|
|
|
|
_mesa_glsl_error(loc, state,
|
|
|
|
|
"Operands to relational operators must be scalar and "
|
|
|
|
|
"numeric");
|
2010-03-26 14:33:41 -07:00
|
|
|
return glsl_type::error_type;
|
2010-03-31 16:45:20 -10:00
|
|
|
}
|
2010-02-22 13:19:34 -08:00
|
|
|
|
|
|
|
|
/* "Either the operands' types must match, or the conversions from
|
|
|
|
|
* Section 4.1.10 "Implicit Conversions" will be applied to the integer
|
|
|
|
|
* operand, after which the types must match."
|
|
|
|
|
*/
|
2010-03-29 16:20:07 -07:00
|
|
|
if (!apply_implicit_conversion(type_a, value_b, state)
|
|
|
|
|
&& !apply_implicit_conversion(type_b, value_a, state)) {
|
2010-03-31 16:45:20 -10:00
|
|
|
_mesa_glsl_error(loc, state,
|
|
|
|
|
"Could not implicitly convert operands to "
|
|
|
|
|
"relational operator");
|
2010-03-29 16:20:07 -07:00
|
|
|
return glsl_type::error_type;
|
2010-02-22 13:19:34 -08:00
|
|
|
}
|
2010-05-19 10:38:37 -07:00
|
|
|
type_a = value_a->type;
|
|
|
|
|
type_b = value_b->type;
|
2010-02-22 13:19:34 -08:00
|
|
|
|
2010-03-31 16:45:20 -10:00
|
|
|
if (type_a->base_type != type_b->base_type) {
|
|
|
|
|
_mesa_glsl_error(loc, state, "base type mismatch");
|
2010-03-26 14:33:41 -07:00
|
|
|
return glsl_type::error_type;
|
2010-03-31 16:45:20 -10:00
|
|
|
}
|
2010-02-22 13:19:34 -08:00
|
|
|
|
|
|
|
|
/* "The result is scalar Boolean."
|
|
|
|
|
*/
|
2010-03-26 14:33:41 -07:00
|
|
|
return glsl_type::bool_type;
|
2010-02-22 13:19:34 -08:00
|
|
|
}
|
|
|
|
|
|
2010-10-15 09:49:46 -07:00
|
|
|
/**
|
|
|
|
|
* \brief Return the result type of a bit-shift operation.
|
|
|
|
|
*
|
|
|
|
|
* If the given types to the bit-shift operator are invalid, return
|
|
|
|
|
* glsl_type::error_type.
|
|
|
|
|
*
|
|
|
|
|
* \param type_a Type of LHS of bit-shift op
|
|
|
|
|
* \param type_b Type of RHS of bit-shift op
|
|
|
|
|
*/
|
|
|
|
|
static const struct glsl_type *
|
|
|
|
|
shift_result_type(const struct glsl_type *type_a,
|
|
|
|
|
const struct glsl_type *type_b,
|
|
|
|
|
ast_operators op,
|
|
|
|
|
struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
|
|
|
|
|
{
|
2012-08-05 09:57:01 -07:00
|
|
|
if (!state->check_bitwise_operations_allowed(loc)) {
|
2010-10-15 09:49:46 -07:00
|
|
|
return glsl_type::error_type;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* From page 50 (page 56 of the PDF) of the GLSL 1.30 spec:
|
|
|
|
|
*
|
|
|
|
|
* "The shift operators (<<) and (>>). For both operators, the operands
|
|
|
|
|
* must be signed or unsigned integers or integer vectors. One operand
|
|
|
|
|
* can be signed while the other is unsigned."
|
|
|
|
|
*/
|
|
|
|
|
if (!type_a->is_integer()) {
|
|
|
|
|
_mesa_glsl_error(loc, state, "LHS of operator %s must be an integer or "
|
|
|
|
|
"integer vector", ast_expression::operator_string(op));
|
|
|
|
|
return glsl_type::error_type;
|
|
|
|
|
|
|
|
|
|
}
|
|
|
|
|
if (!type_b->is_integer()) {
|
|
|
|
|
_mesa_glsl_error(loc, state, "RHS of operator %s must be an integer or "
|
|
|
|
|
"integer vector", ast_expression::operator_string(op));
|
|
|
|
|
return glsl_type::error_type;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* "If the first operand is a scalar, the second operand has to be
|
|
|
|
|
* a scalar as well."
|
|
|
|
|
*/
|
|
|
|
|
if (type_a->is_scalar() && !type_b->is_scalar()) {
|
|
|
|
|
_mesa_glsl_error(loc, state, "If the first operand of %s is scalar, the "
|
|
|
|
|
"second must be scalar as well",
|
|
|
|
|
ast_expression::operator_string(op));
|
|
|
|
|
return glsl_type::error_type;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* If both operands are vectors, check that they have same number of
|
|
|
|
|
* elements.
|
|
|
|
|
*/
|
|
|
|
|
if (type_a->is_vector() &&
|
|
|
|
|
type_b->is_vector() &&
|
|
|
|
|
type_a->vector_elements != type_b->vector_elements) {
|
|
|
|
|
_mesa_glsl_error(loc, state, "Vector operands to operator %s must "
|
|
|
|
|
"have same number of elements",
|
|
|
|
|
ast_expression::operator_string(op));
|
|
|
|
|
return glsl_type::error_type;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* "In all cases, the resulting type will be the same type as the left
|
|
|
|
|
* operand."
|
|
|
|
|
*/
|
|
|
|
|
return type_a;
|
|
|
|
|
}
|
2010-02-22 13:19:34 -08:00
|
|
|
|
2010-03-23 13:23:31 -07:00
|
|
|
/**
|
|
|
|
|
* Validates that a value can be assigned to a location with a specified type
|
|
|
|
|
*
|
|
|
|
|
* Validates that \c rhs can be assigned to some location. If the types are
|
|
|
|
|
* not an exact match but an automatic conversion is possible, \c rhs will be
|
|
|
|
|
* converted.
|
|
|
|
|
*
|
|
|
|
|
* \return
|
|
|
|
|
* \c NULL if \c rhs cannot be assigned to a location with type \c lhs_type.
|
|
|
|
|
* Otherwise the actual RHS to be assigned will be returned. This may be
|
|
|
|
|
* \c rhs, or it may be \c rhs after some type conversion.
|
|
|
|
|
*
|
|
|
|
|
* \note
|
|
|
|
|
* In addition to being used for assignments, this function is used to
|
|
|
|
|
* type-check return values.
|
|
|
|
|
*/
|
2010-03-26 00:25:36 -07:00
|
|
|
ir_rvalue *
|
2010-05-19 10:38:37 -07:00
|
|
|
validate_assignment(struct _mesa_glsl_parse_state *state,
|
2011-03-15 16:33:27 -07:00
|
|
|
const glsl_type *lhs_type, ir_rvalue *rhs,
|
|
|
|
|
bool is_initializer)
|
2010-03-23 13:23:31 -07:00
|
|
|
{
|
|
|
|
|
/* If there is already some error in the RHS, just return it. Anything
|
|
|
|
|
* else will lead to an avalanche of error message back to the user.
|
|
|
|
|
*/
|
2010-12-10 15:47:11 -08:00
|
|
|
if (rhs->type->is_error())
|
2010-03-23 13:23:31 -07:00
|
|
|
return rhs;
|
|
|
|
|
|
|
|
|
|
/* If the types are identical, the assignment can trivially proceed.
|
|
|
|
|
*/
|
2010-12-10 15:47:11 -08:00
|
|
|
if (rhs->type == lhs_type)
|
2010-03-23 13:23:31 -07:00
|
|
|
return rhs;
|
|
|
|
|
|
2010-04-02 17:44:39 -07:00
|
|
|
/* If the array element types are the same and the size of the LHS is zero,
|
2011-03-15 16:33:27 -07:00
|
|
|
* the assignment is okay for initializers embedded in variable
|
|
|
|
|
* declarations.
|
2010-04-02 17:44:39 -07:00
|
|
|
*
|
|
|
|
|
* Note: Whole-array assignments are not permitted in GLSL 1.10, but this
|
|
|
|
|
* is handled by ir_dereference::is_lvalue.
|
|
|
|
|
*/
|
2011-03-15 16:33:27 -07:00
|
|
|
if (is_initializer && lhs_type->is_array() && rhs->type->is_array()
|
2010-04-02 17:44:39 -07:00
|
|
|
&& (lhs_type->element_type() == rhs->type->element_type())
|
|
|
|
|
&& (lhs_type->array_size() == 0)) {
|
|
|
|
|
return rhs;
|
|
|
|
|
}
|
|
|
|
|
|
2010-05-19 10:38:37 -07:00
|
|
|
/* Check for implicit conversion in GLSL 1.20 */
|
|
|
|
|
if (apply_implicit_conversion(lhs_type, rhs, state)) {
|
2010-12-10 15:47:11 -08:00
|
|
|
if (rhs->type == lhs_type)
|
2010-05-19 10:38:37 -07:00
|
|
|
return rhs;
|
|
|
|
|
}
|
|
|
|
|
|
2010-03-23 13:23:31 -07:00
|
|
|
return NULL;
|
|
|
|
|
}
|
|
|
|
|
|
2011-08-05 21:40:50 -07:00
|
|
|
static void
|
|
|
|
|
mark_whole_array_access(ir_rvalue *access)
|
|
|
|
|
{
|
|
|
|
|
ir_dereference_variable *deref = access->as_dereference_variable();
|
|
|
|
|
|
|
|
|
|
if (deref && deref->var) {
|
|
|
|
|
deref->var->max_array_access = deref->type->length - 1;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
2010-03-26 11:53:37 -07:00
|
|
|
ir_rvalue *
|
|
|
|
|
do_assignment(exec_list *instructions, struct _mesa_glsl_parse_state *state,
|
2011-12-23 09:56:29 -08:00
|
|
|
const char *non_lvalue_description,
|
2011-03-15 16:33:27 -07:00
|
|
|
ir_rvalue *lhs, ir_rvalue *rhs, bool is_initializer,
|
2010-03-26 11:53:37 -07:00
|
|
|
YYLTYPE lhs_loc)
|
|
|
|
|
{
|
2010-06-25 13:14:37 -07:00
|
|
|
void *ctx = state;
|
2010-03-26 11:53:37 -07:00
|
|
|
bool error_emitted = (lhs->type->is_error() || rhs->type->is_error());
|
|
|
|
|
|
2012-03-29 17:02:15 -07:00
|
|
|
ir_variable *lhs_var = lhs->variable_referenced();
|
|
|
|
|
if (lhs_var)
|
|
|
|
|
lhs_var->assigned = true;
|
|
|
|
|
|
2010-03-26 11:53:37 -07:00
|
|
|
if (!error_emitted) {
|
2011-12-23 09:56:29 -08:00
|
|
|
if (non_lvalue_description != NULL) {
|
|
|
|
|
_mesa_glsl_error(&lhs_loc, state,
|
|
|
|
|
"assignment to %s",
|
|
|
|
|
non_lvalue_description);
|
|
|
|
|
error_emitted = true;
|
|
|
|
|
} else if (lhs->variable_referenced() != NULL
|
|
|
|
|
&& lhs->variable_referenced()->read_only) {
|
2011-01-21 13:44:08 -08:00
|
|
|
_mesa_glsl_error(&lhs_loc, state,
|
|
|
|
|
"assignment to read-only variable '%s'",
|
|
|
|
|
lhs->variable_referenced()->name);
|
|
|
|
|
error_emitted = true;
|
|
|
|
|
|
2012-08-05 09:57:01 -07:00
|
|
|
} else if (lhs->type->is_array() &&
|
2012-08-02 08:18:12 -07:00
|
|
|
!state->check_version(120, 300, &lhs_loc,
|
2012-08-05 09:57:01 -07:00
|
|
|
"whole array assignment forbidden")) {
|
2011-09-07 12:03:36 -07:00
|
|
|
/* From page 32 (page 38 of the PDF) of the GLSL 1.10 spec:
|
|
|
|
|
*
|
|
|
|
|
* "Other binary or unary expressions, non-dereferenced
|
|
|
|
|
* arrays, function names, swizzles with repeated fields,
|
|
|
|
|
* and constants cannot be l-values."
|
2012-08-02 08:18:12 -07:00
|
|
|
*
|
|
|
|
|
* The restriction on arrays is lifted in GLSL 1.20 and GLSL ES 3.00.
|
2011-09-07 12:03:36 -07:00
|
|
|
*/
|
|
|
|
|
error_emitted = true;
|
2011-01-21 13:44:08 -08:00
|
|
|
} else if (!lhs->is_lvalue()) {
|
2010-03-26 11:53:37 -07:00
|
|
|
_mesa_glsl_error(& lhs_loc, state, "non-lvalue in assignment");
|
|
|
|
|
error_emitted = true;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
2011-03-15 16:33:27 -07:00
|
|
|
ir_rvalue *new_rhs =
|
|
|
|
|
validate_assignment(state, lhs->type, rhs, is_initializer);
|
2010-03-26 11:53:37 -07:00
|
|
|
if (new_rhs == NULL) {
|
|
|
|
|
_mesa_glsl_error(& lhs_loc, state, "type mismatch");
|
|
|
|
|
} else {
|
|
|
|
|
rhs = new_rhs;
|
2010-04-02 17:44:39 -07:00
|
|
|
|
|
|
|
|
/* If the LHS array was not declared with a size, it takes it size from
|
|
|
|
|
* the RHS. If the LHS is an l-value and a whole array, it must be a
|
|
|
|
|
* dereference of a variable. Any other case would require that the LHS
|
|
|
|
|
* is either not an l-value or not a whole array.
|
|
|
|
|
*/
|
|
|
|
|
if (lhs->type->array_size() == 0) {
|
|
|
|
|
ir_dereference *const d = lhs->as_dereference();
|
|
|
|
|
|
|
|
|
|
assert(d != NULL);
|
|
|
|
|
|
2010-05-19 13:52:29 +02:00
|
|
|
ir_variable *const var = d->variable_referenced();
|
2010-04-02 17:44:39 -07:00
|
|
|
|
|
|
|
|
assert(var != NULL);
|
|
|
|
|
|
2010-04-05 14:35:47 -07:00
|
|
|
if (var->max_array_access >= unsigned(rhs->type->array_size())) {
|
|
|
|
|
/* FINISHME: This should actually log the location of the RHS. */
|
|
|
|
|
_mesa_glsl_error(& lhs_loc, state, "array size must be > %u due to "
|
|
|
|
|
"previous access",
|
|
|
|
|
var->max_array_access);
|
|
|
|
|
}
|
|
|
|
|
|
2010-07-20 15:33:40 -07:00
|
|
|
var->type = glsl_type::get_array_instance(lhs->type->element_type(),
|
2010-04-02 17:44:39 -07:00
|
|
|
rhs->type->array_size());
|
2010-07-22 15:50:37 -07:00
|
|
|
d->type = var->type;
|
2010-04-02 17:44:39 -07:00
|
|
|
}
|
2011-09-07 11:53:20 -07:00
|
|
|
mark_whole_array_access(rhs);
|
2011-08-05 21:40:50 -07:00
|
|
|
mark_whole_array_access(lhs);
|
2010-03-26 11:53:37 -07:00
|
|
|
}
|
|
|
|
|
|
2010-06-23 14:51:14 -07:00
|
|
|
/* Most callers of do_assignment (assign, add_assign, pre_inc/dec,
|
|
|
|
|
* but not post_inc) need the converted assigned value as an rvalue
|
|
|
|
|
* to handle things like:
|
|
|
|
|
*
|
|
|
|
|
* i = j += 1;
|
|
|
|
|
*
|
|
|
|
|
* So we always just store the computed value being assigned to a
|
|
|
|
|
* temporary and return a deref of that temporary. If the rvalue
|
|
|
|
|
* ends up not being used, the temp will get copy-propagated out.
|
|
|
|
|
*/
|
2010-07-19 17:12:42 -07:00
|
|
|
ir_variable *var = new(ctx) ir_variable(rhs->type, "assignment_tmp",
|
|
|
|
|
ir_var_temporary);
|
2010-06-24 15:13:03 -07:00
|
|
|
ir_dereference_variable *deref_var = new(ctx) ir_dereference_variable(var);
|
2010-06-24 09:06:12 -07:00
|
|
|
instructions->push_tail(var);
|
2012-05-14 09:14:54 -07:00
|
|
|
instructions->push_tail(new(ctx) ir_assignment(deref_var, rhs));
|
2010-06-24 15:13:03 -07:00
|
|
|
deref_var = new(ctx) ir_dereference_variable(var);
|
2010-06-23 14:51:14 -07:00
|
|
|
|
2010-08-03 15:02:35 -07:00
|
|
|
if (!error_emitted)
|
2012-05-14 09:14:54 -07:00
|
|
|
instructions->push_tail(new(ctx) ir_assignment(lhs, deref_var));
|
2010-03-26 11:53:37 -07:00
|
|
|
|
2010-06-23 18:11:51 -07:00
|
|
|
return new(ctx) ir_dereference_variable(var);
|
2010-03-26 11:53:37 -07:00
|
|
|
}
|
2010-03-23 13:23:31 -07:00
|
|
|
|
2010-03-26 12:14:54 -07:00
|
|
|
static ir_rvalue *
|
2010-06-23 14:43:50 -07:00
|
|
|
get_lvalue_copy(exec_list *instructions, ir_rvalue *lvalue)
|
2010-03-26 12:14:54 -07:00
|
|
|
{
|
2011-01-21 14:32:31 -08:00
|
|
|
void *ctx = ralloc_parent(lvalue);
|
2010-03-26 12:14:54 -07:00
|
|
|
ir_variable *var;
|
|
|
|
|
|
2010-07-19 17:12:42 -07:00
|
|
|
var = new(ctx) ir_variable(lvalue->type, "_post_incdec_tmp",
|
|
|
|
|
ir_var_temporary);
|
2010-07-07 14:04:30 -07:00
|
|
|
instructions->push_tail(var);
|
2010-03-26 12:14:54 -07:00
|
|
|
var->mode = ir_var_auto;
|
|
|
|
|
|
2010-06-23 18:11:51 -07:00
|
|
|
instructions->push_tail(new(ctx) ir_assignment(new(ctx) ir_dereference_variable(var),
|
2012-05-14 09:14:54 -07:00
|
|
|
lvalue));
|
2010-03-26 12:14:54 -07:00
|
|
|
|
2010-06-23 18:11:51 -07:00
|
|
|
return new(ctx) ir_dereference_variable(var);
|
2010-03-26 12:14:54 -07:00
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
2010-03-26 00:25:36 -07:00
|
|
|
ir_rvalue *
|
2010-03-08 23:44:00 -08:00
|
|
|
ast_node::hir(exec_list *instructions,
|
2010-03-01 13:49:10 -08:00
|
|
|
struct _mesa_glsl_parse_state *state)
|
|
|
|
|
{
|
|
|
|
|
(void) instructions;
|
|
|
|
|
(void) state;
|
|
|
|
|
|
|
|
|
|
return NULL;
|
|
|
|
|
}
|
|
|
|
|
|
2010-11-30 11:23:28 -08:00
|
|
|
static ir_rvalue *
|
|
|
|
|
do_comparison(void *mem_ctx, int operation, ir_rvalue *op0, ir_rvalue *op1)
|
|
|
|
|
{
|
|
|
|
|
int join_op;
|
2010-12-02 12:17:36 -08:00
|
|
|
ir_rvalue *cmp = NULL;
|
2010-11-30 11:23:28 -08:00
|
|
|
|
|
|
|
|
if (operation == ir_binop_all_equal)
|
|
|
|
|
join_op = ir_binop_logic_and;
|
|
|
|
|
else
|
|
|
|
|
join_op = ir_binop_logic_or;
|
|
|
|
|
|
|
|
|
|
switch (op0->type->base_type) {
|
|
|
|
|
case GLSL_TYPE_FLOAT:
|
|
|
|
|
case GLSL_TYPE_UINT:
|
|
|
|
|
case GLSL_TYPE_INT:
|
|
|
|
|
case GLSL_TYPE_BOOL:
|
|
|
|
|
return new(mem_ctx) ir_expression(operation, op0, op1);
|
|
|
|
|
|
|
|
|
|
case GLSL_TYPE_ARRAY: {
|
|
|
|
|
for (unsigned int i = 0; i < op0->type->length; i++) {
|
|
|
|
|
ir_rvalue *e0, *e1, *result;
|
|
|
|
|
|
|
|
|
|
e0 = new(mem_ctx) ir_dereference_array(op0->clone(mem_ctx, NULL),
|
|
|
|
|
new(mem_ctx) ir_constant(i));
|
|
|
|
|
e1 = new(mem_ctx) ir_dereference_array(op1->clone(mem_ctx, NULL),
|
|
|
|
|
new(mem_ctx) ir_constant(i));
|
|
|
|
|
result = do_comparison(mem_ctx, operation, e0, e1);
|
|
|
|
|
|
2010-12-02 12:17:36 -08:00
|
|
|
if (cmp) {
|
|
|
|
|
cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
|
2010-11-30 11:23:28 -08:00
|
|
|
} else {
|
2010-12-02 12:17:36 -08:00
|
|
|
cmp = result;
|
2010-11-30 11:23:28 -08:00
|
|
|
}
|
|
|
|
|
}
|
2010-12-01 15:55:53 -08:00
|
|
|
|
|
|
|
|
mark_whole_array_access(op0);
|
|
|
|
|
mark_whole_array_access(op1);
|
2010-12-02 12:17:36 -08:00
|
|
|
break;
|
2010-11-30 11:23:28 -08:00
|
|
|
}
|
|
|
|
|
|
|
|
|
|
case GLSL_TYPE_STRUCT: {
|
|
|
|
|
for (unsigned int i = 0; i < op0->type->length; i++) {
|
|
|
|
|
ir_rvalue *e0, *e1, *result;
|
|
|
|
|
const char *field_name = op0->type->fields.structure[i].name;
|
|
|
|
|
|
|
|
|
|
e0 = new(mem_ctx) ir_dereference_record(op0->clone(mem_ctx, NULL),
|
|
|
|
|
field_name);
|
|
|
|
|
e1 = new(mem_ctx) ir_dereference_record(op1->clone(mem_ctx, NULL),
|
|
|
|
|
field_name);
|
|
|
|
|
result = do_comparison(mem_ctx, operation, e0, e1);
|
|
|
|
|
|
2010-12-02 12:17:36 -08:00
|
|
|
if (cmp) {
|
|
|
|
|
cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
|
2010-11-30 11:23:28 -08:00
|
|
|
} else {
|
2010-12-02 12:17:36 -08:00
|
|
|
cmp = result;
|
2010-11-30 11:23:28 -08:00
|
|
|
}
|
|
|
|
|
}
|
2010-12-02 12:17:36 -08:00
|
|
|
break;
|
2010-11-30 11:23:28 -08:00
|
|
|
}
|
|
|
|
|
|
|
|
|
|
case GLSL_TYPE_ERROR:
|
|
|
|
|
case GLSL_TYPE_VOID:
|
|
|
|
|
case GLSL_TYPE_SAMPLER:
|
|
|
|
|
/* I assume a comparison of a struct containing a sampler just
|
|
|
|
|
* ignores the sampler present in the type.
|
|
|
|
|
*/
|
2010-12-02 12:17:36 -08:00
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
default:
|
|
|
|
|
assert(!"Should not get here.");
|
|
|
|
|
break;
|
2010-11-30 11:23:28 -08:00
|
|
|
}
|
2010-11-30 13:28:47 -08:00
|
|
|
|
2010-12-02 12:17:36 -08:00
|
|
|
if (cmp == NULL)
|
|
|
|
|
cmp = new(mem_ctx) ir_constant(true);
|
|
|
|
|
|
|
|
|
|
return cmp;
|
2010-11-30 11:23:28 -08:00
|
|
|
}
|
2010-03-01 13:49:10 -08:00
|
|
|
|
2011-04-09 15:59:20 -10:00
|
|
|
/* For logical operations, we want to ensure that the operands are
|
|
|
|
|
* scalar booleans. If it isn't, emit an error and return a constant
|
|
|
|
|
* boolean to avoid triggering cascading error messages.
|
|
|
|
|
*/
|
|
|
|
|
ir_rvalue *
|
|
|
|
|
get_scalar_boolean_operand(exec_list *instructions,
|
|
|
|
|
struct _mesa_glsl_parse_state *state,
|
|
|
|
|
ast_expression *parent_expr,
|
|
|
|
|
int operand,
|
|
|
|
|
const char *operand_name,
|
|
|
|
|
bool *error_emitted)
|
|
|
|
|
{
|
|
|
|
|
ast_expression *expr = parent_expr->subexpressions[operand];
|
|
|
|
|
void *ctx = state;
|
|
|
|
|
ir_rvalue *val = expr->hir(instructions, state);
|
|
|
|
|
|
|
|
|
|
if (val->type->is_boolean() && val->type->is_scalar())
|
|
|
|
|
return val;
|
|
|
|
|
|
|
|
|
|
if (!*error_emitted) {
|
|
|
|
|
YYLTYPE loc = expr->get_location();
|
|
|
|
|
_mesa_glsl_error(&loc, state, "%s of `%s' must be scalar boolean",
|
|
|
|
|
operand_name,
|
|
|
|
|
parent_expr->operator_string(parent_expr->oper));
|
|
|
|
|
*error_emitted = true;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
return new(ctx) ir_constant(true);
|
|
|
|
|
}
|
|
|
|
|
|
2011-09-06 10:01:51 -07:00
|
|
|
/**
|
|
|
|
|
* If name refers to a builtin array whose maximum allowed size is less than
|
|
|
|
|
* size, report an error and return true. Otherwise return false.
|
|
|
|
|
*/
|
|
|
|
|
static bool
|
|
|
|
|
check_builtin_array_max_size(const char *name, unsigned size,
|
|
|
|
|
YYLTYPE loc, struct _mesa_glsl_parse_state *state)
|
|
|
|
|
{
|
|
|
|
|
if ((strcmp("gl_TexCoord", name) == 0)
|
|
|
|
|
&& (size > state->Const.MaxTextureCoords)) {
|
|
|
|
|
/* From page 54 (page 60 of the PDF) of the GLSL 1.20 spec:
|
|
|
|
|
*
|
|
|
|
|
* "The size [of gl_TexCoord] can be at most
|
|
|
|
|
* gl_MaxTextureCoords."
|
|
|
|
|
*/
|
|
|
|
|
_mesa_glsl_error(&loc, state, "`gl_TexCoord' array size cannot "
|
|
|
|
|
"be larger than gl_MaxTextureCoords (%u)\n",
|
|
|
|
|
state->Const.MaxTextureCoords);
|
|
|
|
|
return true;
|
2011-08-11 15:23:33 -07:00
|
|
|
} else if (strcmp("gl_ClipDistance", name) == 0
|
|
|
|
|
&& size > state->Const.MaxClipPlanes) {
|
|
|
|
|
/* From section 7.1 (Vertex Shader Special Variables) of the
|
|
|
|
|
* GLSL 1.30 spec:
|
|
|
|
|
*
|
|
|
|
|
* "The gl_ClipDistance array is predeclared as unsized and
|
|
|
|
|
* must be sized by the shader either redeclaring it with a
|
|
|
|
|
* size or indexing it only with integral constant
|
|
|
|
|
* expressions. ... The size can be at most
|
|
|
|
|
* gl_MaxClipDistances."
|
|
|
|
|
*/
|
|
|
|
|
_mesa_glsl_error(&loc, state, "`gl_ClipDistance' array size cannot "
|
|
|
|
|
"be larger than gl_MaxClipDistances (%u)\n",
|
|
|
|
|
state->Const.MaxClipPlanes);
|
|
|
|
|
return true;
|
2011-09-06 10:01:51 -07:00
|
|
|
}
|
|
|
|
|
return false;
|
|
|
|
|
}
|
|
|
|
|
|
2011-10-31 18:22:48 -07:00
|
|
|
/**
|
|
|
|
|
* Create the constant 1, of a which is appropriate for incrementing and
|
|
|
|
|
* decrementing values of the given GLSL type. For example, if type is vec4,
|
|
|
|
|
* this creates a constant value of 1.0 having type float.
|
|
|
|
|
*
|
|
|
|
|
* If the given type is invalid for increment and decrement operators, return
|
|
|
|
|
* a floating point 1--the error will be detected later.
|
|
|
|
|
*/
|
|
|
|
|
static ir_rvalue *
|
|
|
|
|
constant_one_for_inc_dec(void *ctx, const glsl_type *type)
|
|
|
|
|
{
|
|
|
|
|
switch (type->base_type) {
|
|
|
|
|
case GLSL_TYPE_UINT:
|
|
|
|
|
return new(ctx) ir_constant((unsigned) 1);
|
|
|
|
|
case GLSL_TYPE_INT:
|
|
|
|
|
return new(ctx) ir_constant(1);
|
|
|
|
|
default:
|
|
|
|
|
case GLSL_TYPE_FLOAT:
|
|
|
|
|
return new(ctx) ir_constant(1.0f);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
2010-03-26 00:25:36 -07:00
|
|
|
ir_rvalue *
|
2010-03-08 23:44:00 -08:00
|
|
|
ast_expression::hir(exec_list *instructions,
|
2010-03-01 13:49:10 -08:00
|
|
|
struct _mesa_glsl_parse_state *state)
|
2010-02-22 13:19:34 -08:00
|
|
|
{
|
2010-06-25 13:14:37 -07:00
|
|
|
void *ctx = state;
|
2010-02-22 13:19:34 -08:00
|
|
|
static const int operations[AST_NUM_OPERATORS] = {
|
|
|
|
|
-1, /* ast_assign doesn't convert to ir_expression. */
|
|
|
|
|
-1, /* ast_plus doesn't convert to ir_expression. */
|
|
|
|
|
ir_unop_neg,
|
|
|
|
|
ir_binop_add,
|
|
|
|
|
ir_binop_sub,
|
|
|
|
|
ir_binop_mul,
|
|
|
|
|
ir_binop_div,
|
|
|
|
|
ir_binop_mod,
|
|
|
|
|
ir_binop_lshift,
|
|
|
|
|
ir_binop_rshift,
|
|
|
|
|
ir_binop_less,
|
|
|
|
|
ir_binop_greater,
|
|
|
|
|
ir_binop_lequal,
|
|
|
|
|
ir_binop_gequal,
|
2010-09-08 01:31:39 +02:00
|
|
|
ir_binop_all_equal,
|
|
|
|
|
ir_binop_any_nequal,
|
2010-02-22 13:19:34 -08:00
|
|
|
ir_binop_bit_and,
|
|
|
|
|
ir_binop_bit_xor,
|
|
|
|
|
ir_binop_bit_or,
|
|
|
|
|
ir_unop_bit_not,
|
|
|
|
|
ir_binop_logic_and,
|
|
|
|
|
ir_binop_logic_xor,
|
|
|
|
|
ir_binop_logic_or,
|
|
|
|
|
ir_unop_logic_not,
|
|
|
|
|
|
|
|
|
|
/* Note: The following block of expression types actually convert
|
|
|
|
|
* to multiple IR instructions.
|
|
|
|
|
*/
|
|
|
|
|
ir_binop_mul, /* ast_mul_assign */
|
|
|
|
|
ir_binop_div, /* ast_div_assign */
|
|
|
|
|
ir_binop_mod, /* ast_mod_assign */
|
|
|
|
|
ir_binop_add, /* ast_add_assign */
|
|
|
|
|
ir_binop_sub, /* ast_sub_assign */
|
|
|
|
|
ir_binop_lshift, /* ast_ls_assign */
|
|
|
|
|
ir_binop_rshift, /* ast_rs_assign */
|
|
|
|
|
ir_binop_bit_and, /* ast_and_assign */
|
|
|
|
|
ir_binop_bit_xor, /* ast_xor_assign */
|
|
|
|
|
ir_binop_bit_or, /* ast_or_assign */
|
|
|
|
|
|
|
|
|
|
-1, /* ast_conditional doesn't convert to ir_expression. */
|
2010-03-26 12:14:54 -07:00
|
|
|
ir_binop_add, /* ast_pre_inc. */
|
|
|
|
|
ir_binop_sub, /* ast_pre_dec. */
|
|
|
|
|
ir_binop_add, /* ast_post_inc. */
|
|
|
|
|
ir_binop_sub, /* ast_post_dec. */
|
2010-02-22 13:19:34 -08:00
|
|
|
-1, /* ast_field_selection doesn't conv to ir_expression. */
|
|
|
|
|
-1, /* ast_array_index doesn't convert to ir_expression. */
|
|
|
|
|
-1, /* ast_function_call doesn't conv to ir_expression. */
|
|
|
|
|
-1, /* ast_identifier doesn't convert to ir_expression. */
|
|
|
|
|
-1, /* ast_int_constant doesn't convert to ir_expression. */
|
|
|
|
|
-1, /* ast_uint_constant doesn't conv to ir_expression. */
|
|
|
|
|
-1, /* ast_float_constant doesn't conv to ir_expression. */
|
|
|
|
|
-1, /* ast_bool_constant doesn't conv to ir_expression. */
|
|
|
|
|
-1, /* ast_sequence doesn't convert to ir_expression. */
|
|
|
|
|
};
|
2010-03-26 00:25:36 -07:00
|
|
|
ir_rvalue *result = NULL;
|
2010-07-29 15:35:22 +03:00
|
|
|
ir_rvalue *op[3];
|
2011-04-14 17:21:59 -07:00
|
|
|
const struct glsl_type *type; /* a temporary variable for switch cases */
|
2010-02-22 13:19:34 -08:00
|
|
|
bool error_emitted = false;
|
|
|
|
|
YYLTYPE loc;
|
|
|
|
|
|
2010-03-01 13:49:10 -08:00
|
|
|
loc = this->get_location();
|
2010-02-22 13:19:34 -08:00
|
|
|
|
2010-03-01 13:49:10 -08:00
|
|
|
switch (this->oper) {
|
2010-03-09 16:38:02 -08:00
|
|
|
case ast_assign: {
|
2010-03-01 13:49:10 -08:00
|
|
|
op[0] = this->subexpressions[0]->hir(instructions, state);
|
|
|
|
|
op[1] = this->subexpressions[1]->hir(instructions, state);
|
2010-02-22 13:19:34 -08:00
|
|
|
|
2011-12-23 09:56:29 -08:00
|
|
|
result = do_assignment(instructions, state,
|
|
|
|
|
this->subexpressions[0]->non_lvalue_description,
|
|
|
|
|
op[0], op[1], false,
|
2010-03-26 11:53:37 -07:00
|
|
|
this->subexpressions[0]->get_location());
|
|
|
|
|
error_emitted = result->type->is_error();
|
2010-02-22 13:19:34 -08:00
|
|
|
break;
|
2010-03-09 16:38:02 -08:00
|
|
|
}
|
2010-02-22 13:19:34 -08:00
|
|
|
|
|
|
|
|
case ast_plus:
|
2010-03-01 13:49:10 -08:00
|
|
|
op[0] = this->subexpressions[0]->hir(instructions, state);
|
2010-02-22 13:19:34 -08:00
|
|
|
|
2010-07-21 11:23:51 -07:00
|
|
|
type = unary_arithmetic_result_type(op[0]->type, state, & loc);
|
|
|
|
|
|
|
|
|
|
error_emitted = type->is_error();
|
2010-02-22 13:19:34 -08:00
|
|
|
|
|
|
|
|
result = op[0];
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
case ast_neg:
|
2010-03-01 13:49:10 -08:00
|
|
|
op[0] = this->subexpressions[0]->hir(instructions, state);
|
2010-02-22 13:19:34 -08:00
|
|
|
|
2010-03-31 16:45:20 -10:00
|
|
|
type = unary_arithmetic_result_type(op[0]->type, state, & loc);
|
2010-02-22 13:19:34 -08:00
|
|
|
|
2010-03-31 16:45:20 -10:00
|
|
|
error_emitted = type->is_error();
|
2010-02-22 13:19:34 -08:00
|
|
|
|
2010-06-23 18:11:51 -07:00
|
|
|
result = new(ctx) ir_expression(operations[this->oper], type,
|
|
|
|
|
op[0], NULL);
|
2010-02-22 13:19:34 -08:00
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
case ast_add:
|
|
|
|
|
case ast_sub:
|
|
|
|
|
case ast_mul:
|
|
|
|
|
case ast_div:
|
2010-03-01 13:49:10 -08:00
|
|
|
op[0] = this->subexpressions[0]->hir(instructions, state);
|
|
|
|
|
op[1] = this->subexpressions[1]->hir(instructions, state);
|
2010-02-22 13:19:34 -08:00
|
|
|
|
2010-03-29 16:32:55 -07:00
|
|
|
type = arithmetic_result_type(op[0], op[1],
|
2010-03-01 13:49:10 -08:00
|
|
|
(this->oper == ast_mul),
|
2010-03-31 16:38:11 -10:00
|
|
|
state, & loc);
|
|
|
|
|
error_emitted = type->is_error();
|
2010-02-22 13:19:34 -08:00
|
|
|
|
2010-06-23 18:11:51 -07:00
|
|
|
result = new(ctx) ir_expression(operations[this->oper], type,
|
|
|
|
|
op[0], op[1]);
|
2010-02-22 13:19:34 -08:00
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
case ast_mod:
|
2010-03-01 13:49:10 -08:00
|
|
|
op[0] = this->subexpressions[0]->hir(instructions, state);
|
|
|
|
|
op[1] = this->subexpressions[1]->hir(instructions, state);
|
2010-02-22 13:19:34 -08:00
|
|
|
|
2010-03-31 16:45:20 -10:00
|
|
|
type = modulus_result_type(op[0]->type, op[1]->type, state, & loc);
|
2010-02-22 13:19:34 -08:00
|
|
|
|
2010-03-01 13:49:10 -08:00
|
|
|
assert(operations[this->oper] == ir_binop_mod);
|
2010-02-22 13:19:34 -08:00
|
|
|
|
2010-06-23 18:11:51 -07:00
|
|
|
result = new(ctx) ir_expression(operations[this->oper], type,
|
|
|
|
|
op[0], op[1]);
|
2010-03-31 16:45:20 -10:00
|
|
|
error_emitted = type->is_error();
|
2010-02-22 13:19:34 -08:00
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
case ast_lshift:
|
|
|
|
|
case ast_rshift:
|
2012-08-05 09:57:01 -07:00
|
|
|
if (!state->check_bitwise_operations_allowed(&loc)) {
|
2010-10-08 16:22:28 -07:00
|
|
|
error_emitted = true;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
op[0] = this->subexpressions[0]->hir(instructions, state);
|
|
|
|
|
op[1] = this->subexpressions[1]->hir(instructions, state);
|
2010-10-15 09:49:46 -07:00
|
|
|
type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
|
|
|
|
|
&loc);
|
2010-10-08 16:22:28 -07:00
|
|
|
result = new(ctx) ir_expression(operations[this->oper], type,
|
|
|
|
|
op[0], op[1]);
|
|
|
|
|
error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
|
|
|
|
|
break;
|
2010-02-22 13:19:34 -08:00
|
|
|
|
|
|
|
|
case ast_less:
|
|
|
|
|
case ast_greater:
|
|
|
|
|
case ast_lequal:
|
|
|
|
|
case ast_gequal:
|
2010-03-01 13:49:10 -08:00
|
|
|
op[0] = this->subexpressions[0]->hir(instructions, state);
|
|
|
|
|
op[1] = this->subexpressions[1]->hir(instructions, state);
|
2010-02-22 13:19:34 -08:00
|
|
|
|
2010-03-31 16:45:20 -10:00
|
|
|
type = relational_result_type(op[0], op[1], state, & loc);
|
2010-02-22 13:19:34 -08:00
|
|
|
|
|
|
|
|
/* The relational operators must either generate an error or result
|
|
|
|
|
* in a scalar boolean. See page 57 of the GLSL 1.50 spec.
|
|
|
|
|
*/
|
2010-03-26 14:27:23 -07:00
|
|
|
assert(type->is_error()
|
2010-02-22 13:19:34 -08:00
|
|
|
|| ((type->base_type == GLSL_TYPE_BOOL)
|
2010-03-09 15:51:22 -08:00
|
|
|
&& type->is_scalar()));
|
2010-02-22 13:19:34 -08:00
|
|
|
|
2010-06-23 18:11:51 -07:00
|
|
|
result = new(ctx) ir_expression(operations[this->oper], type,
|
|
|
|
|
op[0], op[1]);
|
2010-03-31 16:45:20 -10:00
|
|
|
error_emitted = type->is_error();
|
2010-02-22 13:19:34 -08:00
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
case ast_nequal:
|
|
|
|
|
case ast_equal:
|
2010-03-29 15:11:05 -07:00
|
|
|
op[0] = this->subexpressions[0]->hir(instructions, state);
|
|
|
|
|
op[1] = this->subexpressions[1]->hir(instructions, state);
|
|
|
|
|
|
|
|
|
|
/* From page 58 (page 64 of the PDF) of the GLSL 1.50 spec:
|
|
|
|
|
*
|
|
|
|
|
* "The equality operators equal (==), and not equal (!=)
|
|
|
|
|
* operate on all types. They result in a scalar Boolean. If
|
|
|
|
|
* the operand types do not match, then there must be a
|
|
|
|
|
* conversion from Section 4.1.10 "Implicit Conversions"
|
|
|
|
|
* applied to one operand that can make them match, in which
|
|
|
|
|
* case this conversion is done."
|
|
|
|
|
*/
|
2010-03-29 16:32:55 -07:00
|
|
|
if ((!apply_implicit_conversion(op[0]->type, op[1], state)
|
|
|
|
|
&& !apply_implicit_conversion(op[1]->type, op[0], state))
|
2010-03-29 16:22:38 -07:00
|
|
|
|| (op[0]->type != op[1]->type)) {
|
2010-03-29 15:11:05 -07:00
|
|
|
_mesa_glsl_error(& loc, state, "operands of `%s' must have the same "
|
|
|
|
|
"type", (this->oper == ast_equal) ? "==" : "!=");
|
|
|
|
|
error_emitted = true;
|
2012-08-05 09:57:01 -07:00
|
|
|
} else if ((op[0]->type->is_array() || op[1]->type->is_array()) &&
|
2012-08-02 08:18:12 -07:00
|
|
|
!state->check_version(120, 300, &loc,
|
2012-08-05 09:57:01 -07:00
|
|
|
"array comparisons forbidden")) {
|
2010-03-30 17:04:48 -07:00
|
|
|
error_emitted = true;
|
2010-03-29 15:11:05 -07:00
|
|
|
}
|
|
|
|
|
|
2011-04-09 12:54:34 -10:00
|
|
|
if (error_emitted) {
|
|
|
|
|
result = new(ctx) ir_constant(false);
|
|
|
|
|
} else {
|
|
|
|
|
result = do_comparison(ctx, operations[this->oper], op[0], op[1]);
|
|
|
|
|
assert(result->type == glsl_type::bool_type);
|
|
|
|
|
}
|
2010-02-22 13:19:34 -08:00
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
case ast_bit_and:
|
|
|
|
|
case ast_bit_xor:
|
|
|
|
|
case ast_bit_or:
|
2010-08-31 10:56:24 -07:00
|
|
|
op[0] = this->subexpressions[0]->hir(instructions, state);
|
|
|
|
|
op[1] = this->subexpressions[1]->hir(instructions, state);
|
2010-10-15 11:28:05 -07:00
|
|
|
type = bit_logic_result_type(op[0]->type, op[1]->type, this->oper,
|
|
|
|
|
state, &loc);
|
2010-08-31 10:56:24 -07:00
|
|
|
result = new(ctx) ir_expression(operations[this->oper], type,
|
|
|
|
|
op[0], op[1]);
|
|
|
|
|
error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
|
|
|
|
|
break;
|
|
|
|
|
|
2010-02-22 13:19:34 -08:00
|
|
|
case ast_bit_not:
|
2010-08-31 10:56:24 -07:00
|
|
|
op[0] = this->subexpressions[0]->hir(instructions, state);
|
|
|
|
|
|
2012-08-05 09:57:01 -07:00
|
|
|
if (!state->check_bitwise_operations_allowed(&loc)) {
|
2010-08-31 10:56:24 -07:00
|
|
|
error_emitted = true;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (!op[0]->type->is_integer()) {
|
|
|
|
|
_mesa_glsl_error(&loc, state, "operand of `~' must be an integer");
|
|
|
|
|
error_emitted = true;
|
|
|
|
|
}
|
|
|
|
|
|
2011-12-23 17:16:43 -08:00
|
|
|
type = error_emitted ? glsl_type::error_type : op[0]->type;
|
2010-08-31 10:56:24 -07:00
|
|
|
result = new(ctx) ir_expression(ir_unop_bit_not, type, op[0], NULL);
|
2010-02-22 13:19:34 -08:00
|
|
|
break;
|
|
|
|
|
|
2010-04-16 01:10:32 -07:00
|
|
|
case ast_logic_and: {
|
2011-04-09 10:27:02 -10:00
|
|
|
exec_list rhs_instructions;
|
2011-04-09 15:59:20 -10:00
|
|
|
op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
|
|
|
|
|
"LHS", &error_emitted);
|
2011-04-09 10:27:02 -10:00
|
|
|
op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1,
|
|
|
|
|
"RHS", &error_emitted);
|
2010-03-31 09:11:39 -10:00
|
|
|
|
2012-02-07 22:59:24 -08:00
|
|
|
if (rhs_instructions.is_empty()) {
|
|
|
|
|
result = new(ctx) ir_expression(ir_binop_logic_and, op[0], op[1]);
|
|
|
|
|
type = result->type;
|
2010-04-16 13:49:04 -07:00
|
|
|
} else {
|
2010-07-12 15:18:55 -07:00
|
|
|
ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
|
2010-07-19 17:12:42 -07:00
|
|
|
"and_tmp",
|
|
|
|
|
ir_var_temporary);
|
2010-07-12 15:18:55 -07:00
|
|
|
instructions->push_tail(tmp);
|
|
|
|
|
|
2010-06-23 18:11:51 -07:00
|
|
|
ir_if *const stmt = new(ctx) ir_if(op[0]);
|
2010-04-16 13:49:04 -07:00
|
|
|
instructions->push_tail(stmt);
|
2010-04-16 01:10:32 -07:00
|
|
|
|
2011-04-09 10:27:02 -10:00
|
|
|
stmt->then_instructions.append_list(&rhs_instructions);
|
2010-06-23 18:11:51 -07:00
|
|
|
ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
|
2010-04-16 13:49:04 -07:00
|
|
|
ir_assignment *const then_assign =
|
2012-05-14 09:14:54 -07:00
|
|
|
new(ctx) ir_assignment(then_deref, op[1]);
|
2010-04-16 13:49:04 -07:00
|
|
|
stmt->then_instructions.push_tail(then_assign);
|
2010-04-16 01:10:32 -07:00
|
|
|
|
2010-06-23 18:11:51 -07:00
|
|
|
ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
|
2010-04-16 13:49:04 -07:00
|
|
|
ir_assignment *const else_assign =
|
2012-05-14 09:14:54 -07:00
|
|
|
new(ctx) ir_assignment(else_deref, new(ctx) ir_constant(false));
|
2010-04-16 13:49:04 -07:00
|
|
|
stmt->else_instructions.push_tail(else_assign);
|
2010-04-16 01:10:32 -07:00
|
|
|
|
2010-06-23 18:11:51 -07:00
|
|
|
result = new(ctx) ir_dereference_variable(tmp);
|
2010-04-16 13:49:04 -07:00
|
|
|
type = tmp->type;
|
|
|
|
|
}
|
2010-04-16 01:10:32 -07:00
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
case ast_logic_or: {
|
2011-04-09 10:27:02 -10:00
|
|
|
exec_list rhs_instructions;
|
2011-04-09 15:59:20 -10:00
|
|
|
op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
|
|
|
|
|
"LHS", &error_emitted);
|
2011-04-09 10:27:02 -10:00
|
|
|
op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1,
|
|
|
|
|
"RHS", &error_emitted);
|
2010-04-16 01:10:32 -07:00
|
|
|
|
2012-02-07 22:59:24 -08:00
|
|
|
if (rhs_instructions.is_empty()) {
|
|
|
|
|
result = new(ctx) ir_expression(ir_binop_logic_or, op[0], op[1]);
|
|
|
|
|
type = result->type;
|
2010-04-16 13:49:04 -07:00
|
|
|
} else {
|
2010-07-08 12:40:52 -07:00
|
|
|
ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
|
2010-07-19 17:12:42 -07:00
|
|
|
"or_tmp",
|
|
|
|
|
ir_var_temporary);
|
2010-07-12 14:22:05 -07:00
|
|
|
instructions->push_tail(tmp);
|
2010-04-16 01:10:32 -07:00
|
|
|
|
2010-07-12 15:18:55 -07:00
|
|
|
ir_if *const stmt = new(ctx) ir_if(op[0]);
|
|
|
|
|
instructions->push_tail(stmt);
|
|
|
|
|
|
2010-06-23 18:11:51 -07:00
|
|
|
ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
|
2010-04-16 13:49:04 -07:00
|
|
|
ir_assignment *const then_assign =
|
2012-05-14 09:14:54 -07:00
|
|
|
new(ctx) ir_assignment(then_deref, new(ctx) ir_constant(true));
|
2010-04-16 13:49:04 -07:00
|
|
|
stmt->then_instructions.push_tail(then_assign);
|
2010-04-16 01:10:32 -07:00
|
|
|
|
2011-04-09 10:27:02 -10:00
|
|
|
stmt->else_instructions.append_list(&rhs_instructions);
|
2010-06-23 18:11:51 -07:00
|
|
|
ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
|
2010-04-16 13:49:04 -07:00
|
|
|
ir_assignment *const else_assign =
|
2012-05-14 09:14:54 -07:00
|
|
|
new(ctx) ir_assignment(else_deref, op[1]);
|
2010-04-16 13:49:04 -07:00
|
|
|
stmt->else_instructions.push_tail(else_assign);
|
2010-04-16 01:10:32 -07:00
|
|
|
|
2010-06-23 18:11:51 -07:00
|
|
|
result = new(ctx) ir_dereference_variable(tmp);
|
2010-04-16 13:49:04 -07:00
|
|
|
type = tmp->type;
|
|
|
|
|
}
|
2010-04-16 01:10:32 -07:00
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
case ast_logic_xor:
|
2011-04-09 14:57:17 -10:00
|
|
|
/* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
|
|
|
|
|
*
|
|
|
|
|
* "The logical binary operators and (&&), or ( | | ), and
|
|
|
|
|
* exclusive or (^^). They operate only on two Boolean
|
|
|
|
|
* expressions and result in a Boolean expression."
|
|
|
|
|
*/
|
|
|
|
|
op[0] = get_scalar_boolean_operand(instructions, state, this, 0, "LHS",
|
|
|
|
|
&error_emitted);
|
|
|
|
|
op[1] = get_scalar_boolean_operand(instructions, state, this, 1, "RHS",
|
|
|
|
|
&error_emitted);
|
2010-04-16 01:10:32 -07:00
|
|
|
|
2010-06-23 18:11:51 -07:00
|
|
|
result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
|
|
|
|
|
op[0], op[1]);
|
2010-02-22 13:19:34 -08:00
|
|
|
break;
|
|
|
|
|
|
2010-03-31 16:50:55 -10:00
|
|
|
case ast_logic_not:
|
2011-04-09 15:59:20 -10:00
|
|
|
op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
|
|
|
|
|
"operand", &error_emitted);
|
2010-03-31 16:50:55 -10:00
|
|
|
|
2010-06-23 18:11:51 -07:00
|
|
|
result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
|
|
|
|
|
op[0], NULL);
|
2010-03-31 16:50:55 -10:00
|
|
|
break;
|
|
|
|
|
|
2010-02-22 13:19:34 -08:00
|
|
|
case ast_mul_assign:
|
|
|
|
|
case ast_div_assign:
|
|
|
|
|
case ast_add_assign:
|
|
|
|
|
case ast_sub_assign: {
|
2010-03-01 13:49:10 -08:00
|
|
|
op[0] = this->subexpressions[0]->hir(instructions, state);
|
|
|
|
|
op[1] = this->subexpressions[1]->hir(instructions, state);
|
2010-02-22 13:19:34 -08:00
|
|
|
|
2010-03-29 16:32:55 -07:00
|
|
|
type = arithmetic_result_type(op[0], op[1],
|
2010-03-01 13:49:10 -08:00
|
|
|
(this->oper == ast_mul_assign),
|
2010-03-31 16:38:11 -10:00
|
|
|
state, & loc);
|
2010-02-22 13:19:34 -08:00
|
|
|
|
2010-06-23 18:11:51 -07:00
|
|
|
ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
|
|
|
|
|
op[0], op[1]);
|
2010-02-22 13:19:34 -08:00
|
|
|
|
2010-06-23 12:40:17 -07:00
|
|
|
result = do_assignment(instructions, state,
|
2011-12-23 09:56:29 -08:00
|
|
|
this->subexpressions[0]->non_lvalue_description,
|
2011-03-15 16:33:27 -07:00
|
|
|
op[0]->clone(ctx, NULL), temp_rhs, false,
|
2010-03-26 11:53:37 -07:00
|
|
|
this->subexpressions[0]->get_location());
|
|
|
|
|
error_emitted = (op[0]->type->is_error());
|
2010-02-22 13:19:34 -08:00
|
|
|
|
|
|
|
|
/* GLSL 1.10 does not allow array assignment. However, we don't have to
|
|
|
|
|
* explicitly test for this because none of the binary expression
|
|
|
|
|
* operators allow array operands either.
|
|
|
|
|
*/
|
|
|
|
|
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
|
2010-03-26 11:57:46 -07:00
|
|
|
case ast_mod_assign: {
|
|
|
|
|
op[0] = this->subexpressions[0]->hir(instructions, state);
|
|
|
|
|
op[1] = this->subexpressions[1]->hir(instructions, state);
|
|
|
|
|
|
2010-03-31 16:45:20 -10:00
|
|
|
type = modulus_result_type(op[0]->type, op[1]->type, state, & loc);
|
2010-03-26 11:57:46 -07:00
|
|
|
|
|
|
|
|
assert(operations[this->oper] == ir_binop_mod);
|
|
|
|
|
|
2010-08-13 16:46:43 -07:00
|
|
|
ir_rvalue *temp_rhs;
|
2010-06-23 18:11:51 -07:00
|
|
|
temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
|
|
|
|
|
op[0], op[1]);
|
2010-03-26 11:57:46 -07:00
|
|
|
|
2010-06-23 12:40:17 -07:00
|
|
|
result = do_assignment(instructions, state,
|
2011-12-23 09:56:29 -08:00
|
|
|
this->subexpressions[0]->non_lvalue_description,
|
2011-03-15 16:33:27 -07:00
|
|
|
op[0]->clone(ctx, NULL), temp_rhs, false,
|
2010-03-26 11:57:46 -07:00
|
|
|
this->subexpressions[0]->get_location());
|
2010-03-31 16:45:20 -10:00
|
|
|
error_emitted = type->is_error();
|
2010-03-26 11:57:46 -07:00
|
|
|
break;
|
|
|
|
|
}
|
2010-02-22 13:19:34 -08:00
|
|
|
|
|
|
|
|
case ast_ls_assign:
|
2010-10-15 10:05:50 -07:00
|
|
|
case ast_rs_assign: {
|
|
|
|
|
op[0] = this->subexpressions[0]->hir(instructions, state);
|
|
|
|
|
op[1] = this->subexpressions[1]->hir(instructions, state);
|
|
|
|
|
type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
|
|
|
|
|
&loc);
|
|
|
|
|
ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
|
|
|
|
|
type, op[0], op[1]);
|
2011-12-23 09:56:29 -08:00
|
|
|
result = do_assignment(instructions, state,
|
|
|
|
|
this->subexpressions[0]->non_lvalue_description,
|
|
|
|
|
op[0]->clone(ctx, NULL), temp_rhs, false,
|
2010-10-15 10:05:50 -07:00
|
|
|
this->subexpressions[0]->get_location());
|
|
|
|
|
error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
|
2010-03-29 14:15:05 -07:00
|
|
|
break;
|
2010-10-15 10:05:50 -07:00
|
|
|
}
|
2010-02-22 13:19:34 -08:00
|
|
|
|
|
|
|
|
case ast_and_assign:
|
|
|
|
|
case ast_xor_assign:
|
2010-10-15 12:08:28 -07:00
|
|
|
case ast_or_assign: {
|
|
|
|
|
op[0] = this->subexpressions[0]->hir(instructions, state);
|
|
|
|
|
op[1] = this->subexpressions[1]->hir(instructions, state);
|
|
|
|
|
type = bit_logic_result_type(op[0]->type, op[1]->type, this->oper,
|
|
|
|
|
state, &loc);
|
|
|
|
|
ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
|
|
|
|
|
type, op[0], op[1]);
|
2011-12-23 09:56:29 -08:00
|
|
|
result = do_assignment(instructions, state,
|
|
|
|
|
this->subexpressions[0]->non_lvalue_description,
|
|
|
|
|
op[0]->clone(ctx, NULL), temp_rhs, false,
|
2010-10-15 12:08:28 -07:00
|
|
|
this->subexpressions[0]->get_location());
|
|
|
|
|
error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
|
2010-03-29 14:15:05 -07:00
|
|
|
break;
|
2010-10-15 12:08:28 -07:00
|
|
|
}
|
2010-02-22 13:19:34 -08:00
|
|
|
|
2010-03-29 15:33:54 -07:00
|
|
|
case ast_conditional: {
|
|
|
|
|
/* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
|
|
|
|
|
*
|
|
|
|
|
* "The ternary selection operator (?:). It operates on three
|
|
|
|
|
* expressions (exp1 ? exp2 : exp3). This operator evaluates the
|
|
|
|
|
* first expression, which must result in a scalar Boolean."
|
|
|
|
|
*/
|
2011-04-09 15:59:20 -10:00
|
|
|
op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
|
|
|
|
|
"condition", &error_emitted);
|
2010-03-29 15:33:54 -07:00
|
|
|
|
|
|
|
|
/* The :? operator is implemented by generating an anonymous temporary
|
|
|
|
|
* followed by an if-statement. The last instruction in each branch of
|
|
|
|
|
* the if-statement assigns a value to the anonymous temporary. This
|
|
|
|
|
* temporary is the r-value of the expression.
|
|
|
|
|
*/
|
2010-06-11 12:56:26 -07:00
|
|
|
exec_list then_instructions;
|
|
|
|
|
exec_list else_instructions;
|
2010-03-29 15:33:54 -07:00
|
|
|
|
2010-06-11 12:56:26 -07:00
|
|
|
op[1] = this->subexpressions[1]->hir(&then_instructions, state);
|
|
|
|
|
op[2] = this->subexpressions[2]->hir(&else_instructions, state);
|
2010-03-29 15:33:54 -07:00
|
|
|
|
|
|
|
|
/* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
|
|
|
|
|
*
|
|
|
|
|
* "The second and third expressions can be any type, as
|
|
|
|
|
* long their types match, or there is a conversion in
|
|
|
|
|
* Section 4.1.10 "Implicit Conversions" that can be applied
|
|
|
|
|
* to one of the expressions to make their types match. This
|
|
|
|
|
* resulting matching type is the type of the entire
|
|
|
|
|
* expression."
|
|
|
|
|
*/
|
2010-03-29 16:32:55 -07:00
|
|
|
if ((!apply_implicit_conversion(op[1]->type, op[2], state)
|
|
|
|
|
&& !apply_implicit_conversion(op[2]->type, op[1], state))
|
2010-03-29 16:25:56 -07:00
|
|
|
|| (op[1]->type != op[2]->type)) {
|
2010-03-29 15:33:54 -07:00
|
|
|
YYLTYPE loc = this->subexpressions[1]->get_location();
|
|
|
|
|
|
|
|
|
|
_mesa_glsl_error(& loc, state, "Second and third operands of ?: "
|
|
|
|
|
"operator must have matching types.");
|
|
|
|
|
error_emitted = true;
|
2010-06-11 12:56:26 -07:00
|
|
|
type = glsl_type::error_type;
|
2010-03-29 16:25:56 -07:00
|
|
|
} else {
|
2010-06-11 12:56:26 -07:00
|
|
|
type = op[1]->type;
|
2010-03-29 15:33:54 -07:00
|
|
|
}
|
|
|
|
|
|
2010-09-07 14:30:06 -07:00
|
|
|
/* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
|
|
|
|
|
*
|
|
|
|
|
* "The second and third expressions must be the same type, but can
|
|
|
|
|
* be of any type other than an array."
|
|
|
|
|
*/
|
2012-08-05 09:57:01 -07:00
|
|
|
if (type->is_array() &&
|
2012-08-02 08:18:12 -07:00
|
|
|
!state->check_version(120, 300, &loc,
|
2012-08-05 09:57:01 -07:00
|
|
|
"Second and third operands of ?: operator "
|
|
|
|
|
"cannot be arrays")) {
|
2010-09-07 14:30:06 -07:00
|
|
|
error_emitted = true;
|
|
|
|
|
}
|
|
|
|
|
|
2010-06-11 13:45:51 -07:00
|
|
|
ir_constant *cond_val = op[0]->constant_expression_value();
|
|
|
|
|
ir_constant *then_val = op[1]->constant_expression_value();
|
|
|
|
|
ir_constant *else_val = op[2]->constant_expression_value();
|
|
|
|
|
|
|
|
|
|
if (then_instructions.is_empty()
|
|
|
|
|
&& else_instructions.is_empty()
|
|
|
|
|
&& (cond_val != NULL) && (then_val != NULL) && (else_val != NULL)) {
|
|
|
|
|
result = (cond_val->value.b[0]) ? then_val : else_val;
|
|
|
|
|
} else {
|
2010-07-19 17:12:42 -07:00
|
|
|
ir_variable *const tmp =
|
|
|
|
|
new(ctx) ir_variable(type, "conditional_tmp", ir_var_temporary);
|
2010-07-12 14:22:05 -07:00
|
|
|
instructions->push_tail(tmp);
|
2010-06-11 12:56:26 -07:00
|
|
|
|
2010-06-23 18:11:51 -07:00
|
|
|
ir_if *const stmt = new(ctx) ir_if(op[0]);
|
2010-06-11 13:45:51 -07:00
|
|
|
instructions->push_tail(stmt);
|
2010-06-11 12:56:26 -07:00
|
|
|
|
2010-06-11 13:45:51 -07:00
|
|
|
then_instructions.move_nodes_to(& stmt->then_instructions);
|
2010-06-23 18:11:51 -07:00
|
|
|
ir_dereference *const then_deref =
|
|
|
|
|
new(ctx) ir_dereference_variable(tmp);
|
2010-06-11 13:45:51 -07:00
|
|
|
ir_assignment *const then_assign =
|
2012-05-14 09:14:54 -07:00
|
|
|
new(ctx) ir_assignment(then_deref, op[1]);
|
2010-06-11 13:45:51 -07:00
|
|
|
stmt->then_instructions.push_tail(then_assign);
|
2010-06-11 12:56:26 -07:00
|
|
|
|
2010-06-11 13:45:51 -07:00
|
|
|
else_instructions.move_nodes_to(& stmt->else_instructions);
|
2010-06-23 18:11:51 -07:00
|
|
|
ir_dereference *const else_deref =
|
|
|
|
|
new(ctx) ir_dereference_variable(tmp);
|
2010-06-11 13:45:51 -07:00
|
|
|
ir_assignment *const else_assign =
|
2012-05-14 09:14:54 -07:00
|
|
|
new(ctx) ir_assignment(else_deref, op[2]);
|
2010-06-11 13:45:51 -07:00
|
|
|
stmt->else_instructions.push_tail(else_assign);
|
2010-06-11 12:56:26 -07:00
|
|
|
|
2010-06-23 18:11:51 -07:00
|
|
|
result = new(ctx) ir_dereference_variable(tmp);
|
2010-06-11 13:45:51 -07:00
|
|
|
}
|
2010-03-29 14:15:05 -07:00
|
|
|
break;
|
2010-03-29 15:33:54 -07:00
|
|
|
}
|
2010-02-22 13:19:34 -08:00
|
|
|
|
|
|
|
|
case ast_pre_inc:
|
2010-03-26 12:16:54 -07:00
|
|
|
case ast_pre_dec: {
|
2011-12-23 09:56:03 -08:00
|
|
|
this->non_lvalue_description = (this->oper == ast_pre_inc)
|
|
|
|
|
? "pre-increment operation" : "pre-decrement operation";
|
|
|
|
|
|
2010-03-26 12:16:54 -07:00
|
|
|
op[0] = this->subexpressions[0]->hir(instructions, state);
|
2011-10-31 18:22:48 -07:00
|
|
|
op[1] = constant_one_for_inc_dec(ctx, op[0]->type);
|
2010-03-26 12:16:54 -07:00
|
|
|
|
2010-03-31 16:38:11 -10:00
|
|
|
type = arithmetic_result_type(op[0], op[1], false, state, & loc);
|
2010-03-26 12:16:54 -07:00
|
|
|
|
2010-08-13 16:46:43 -07:00
|
|
|
ir_rvalue *temp_rhs;
|
2010-06-23 18:11:51 -07:00
|
|
|
temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
|
|
|
|
|
op[0], op[1]);
|
2010-03-26 12:16:54 -07:00
|
|
|
|
2010-06-23 12:40:17 -07:00
|
|
|
result = do_assignment(instructions, state,
|
2011-12-23 09:56:29 -08:00
|
|
|
this->subexpressions[0]->non_lvalue_description,
|
2011-03-15 16:33:27 -07:00
|
|
|
op[0]->clone(ctx, NULL), temp_rhs, false,
|
2010-03-26 12:16:54 -07:00
|
|
|
this->subexpressions[0]->get_location());
|
|
|
|
|
error_emitted = op[0]->type->is_error();
|
|
|
|
|
break;
|
|
|
|
|
}
|
2010-02-22 13:19:34 -08:00
|
|
|
|
|
|
|
|
case ast_post_inc:
|
2010-03-26 12:14:54 -07:00
|
|
|
case ast_post_dec: {
|
2011-12-23 09:56:03 -08:00
|
|
|
this->non_lvalue_description = (this->oper == ast_post_inc)
|
|
|
|
|
? "post-increment operation" : "post-decrement operation";
|
2010-03-26 12:14:54 -07:00
|
|
|
op[0] = this->subexpressions[0]->hir(instructions, state);
|
2011-10-31 18:22:48 -07:00
|
|
|
op[1] = constant_one_for_inc_dec(ctx, op[0]->type);
|
2010-03-26 12:14:54 -07:00
|
|
|
|
|
|
|
|
error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
|
|
|
|
|
|
2010-03-31 16:38:11 -10:00
|
|
|
type = arithmetic_result_type(op[0], op[1], false, state, & loc);
|
2010-03-26 12:14:54 -07:00
|
|
|
|
2010-08-13 16:46:43 -07:00
|
|
|
ir_rvalue *temp_rhs;
|
2010-06-23 18:11:51 -07:00
|
|
|
temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
|
|
|
|
|
op[0], op[1]);
|
2010-03-26 12:14:54 -07:00
|
|
|
|
|
|
|
|
/* Get a temporary of a copy of the lvalue before it's modified.
|
|
|
|
|
* This may get thrown away later.
|
|
|
|
|
*/
|
2010-08-04 12:34:56 -07:00
|
|
|
result = get_lvalue_copy(instructions, op[0]->clone(ctx, NULL));
|
2010-03-26 12:14:54 -07:00
|
|
|
|
2010-06-23 12:40:17 -07:00
|
|
|
(void)do_assignment(instructions, state,
|
2011-12-23 09:56:29 -08:00
|
|
|
this->subexpressions[0]->non_lvalue_description,
|
2011-03-15 16:33:27 -07:00
|
|
|
op[0]->clone(ctx, NULL), temp_rhs, false,
|
2010-03-26 12:14:54 -07:00
|
|
|
this->subexpressions[0]->get_location());
|
|
|
|
|
|
|
|
|
|
error_emitted = op[0]->type->is_error();
|
2010-02-22 13:19:34 -08:00
|
|
|
break;
|
2010-03-26 12:14:54 -07:00
|
|
|
}
|
2010-02-22 13:19:34 -08:00
|
|
|
|
|
|
|
|
case ast_field_selection:
|
2010-03-01 13:49:10 -08:00
|
|
|
result = _mesa_ast_field_selection_to_hir(this, instructions, state);
|
2010-02-22 13:19:34 -08:00
|
|
|
break;
|
|
|
|
|
|
2010-04-01 18:03:59 -07:00
|
|
|
case ast_array_index: {
|
|
|
|
|
YYLTYPE index_loc = subexpressions[1]->get_location();
|
|
|
|
|
|
|
|
|
|
op[0] = subexpressions[0]->hir(instructions, state);
|
|
|
|
|
op[1] = subexpressions[1]->hir(instructions, state);
|
|
|
|
|
|
|
|
|
|
error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
|
|
|
|
|
|
2010-05-26 15:08:11 -07:00
|
|
|
ir_rvalue *const array = op[0];
|
2010-04-01 18:31:11 -07:00
|
|
|
|
2010-06-23 18:11:51 -07:00
|
|
|
result = new(ctx) ir_dereference_array(op[0], op[1]);
|
2010-04-01 18:31:11 -07:00
|
|
|
|
|
|
|
|
/* Do not use op[0] after this point. Use array.
|
|
|
|
|
*/
|
|
|
|
|
op[0] = NULL;
|
|
|
|
|
|
2010-04-01 18:03:59 -07:00
|
|
|
|
|
|
|
|
if (error_emitted)
|
|
|
|
|
break;
|
|
|
|
|
|
2010-04-05 13:16:00 -07:00
|
|
|
if (!array->type->is_array()
|
|
|
|
|
&& !array->type->is_matrix()
|
|
|
|
|
&& !array->type->is_vector()) {
|
2010-04-01 18:03:59 -07:00
|
|
|
_mesa_glsl_error(& index_loc, state,
|
2010-04-05 13:16:00 -07:00
|
|
|
"cannot dereference non-array / non-matrix / "
|
|
|
|
|
"non-vector");
|
2010-04-01 18:03:59 -07:00
|
|
|
error_emitted = true;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (!op[1]->type->is_integer()) {
|
|
|
|
|
_mesa_glsl_error(& index_loc, state,
|
|
|
|
|
"array index must be integer type");
|
|
|
|
|
error_emitted = true;
|
|
|
|
|
} else if (!op[1]->type->is_scalar()) {
|
|
|
|
|
_mesa_glsl_error(& index_loc, state,
|
|
|
|
|
"array index must be scalar");
|
|
|
|
|
error_emitted = true;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* If the array index is a constant expression and the array has a
|
|
|
|
|
* declared size, ensure that the access is in-bounds. If the array
|
|
|
|
|
* index is not a constant expression, ensure that the array has a
|
|
|
|
|
* declared size.
|
|
|
|
|
*/
|
|
|
|
|
ir_constant *const const_index = op[1]->constant_expression_value();
|
|
|
|
|
if (const_index != NULL) {
|
|
|
|
|
const int idx = const_index->value.i[0];
|
2010-04-05 13:16:00 -07:00
|
|
|
const char *type_name;
|
|
|
|
|
unsigned bound = 0;
|
|
|
|
|
|
|
|
|
|
if (array->type->is_matrix()) {
|
|
|
|
|
type_name = "matrix";
|
|
|
|
|
} else if (array->type->is_vector()) {
|
|
|
|
|
type_name = "vector";
|
|
|
|
|
} else {
|
|
|
|
|
type_name = "array";
|
|
|
|
|
}
|
2010-04-01 18:03:59 -07:00
|
|
|
|
|
|
|
|
/* From page 24 (page 30 of the PDF) of the GLSL 1.50 spec:
|
|
|
|
|
*
|
|
|
|
|
* "It is illegal to declare an array with a size, and then
|
|
|
|
|
* later (in the same shader) index the same array with an
|
|
|
|
|
* integral constant expression greater than or equal to the
|
|
|
|
|
* declared size. It is also illegal to index an array with a
|
|
|
|
|
* negative constant expression."
|
|
|
|
|
*/
|
2010-04-05 13:16:00 -07:00
|
|
|
if (array->type->is_matrix()) {
|
|
|
|
|
if (array->type->row_type()->vector_elements <= idx) {
|
|
|
|
|
bound = array->type->row_type()->vector_elements;
|
|
|
|
|
}
|
|
|
|
|
} else if (array->type->is_vector()) {
|
|
|
|
|
if (array->type->vector_elements <= idx) {
|
|
|
|
|
bound = array->type->vector_elements;
|
|
|
|
|
}
|
|
|
|
|
} else {
|
|
|
|
|
if ((array->type->array_size() > 0)
|
|
|
|
|
&& (array->type->array_size() <= idx)) {
|
|
|
|
|
bound = array->type->array_size();
|
|
|
|
|
}
|
2010-04-01 18:03:59 -07:00
|
|
|
}
|
|
|
|
|
|
2010-04-05 13:16:00 -07:00
|
|
|
if (bound > 0) {
|
|
|
|
|
_mesa_glsl_error(& loc, state, "%s index must be < %u",
|
|
|
|
|
type_name, bound);
|
|
|
|
|
error_emitted = true;
|
|
|
|
|
} else if (idx < 0) {
|
|
|
|
|
_mesa_glsl_error(& loc, state, "%s index must be >= 0",
|
|
|
|
|
type_name);
|
2010-04-01 18:03:59 -07:00
|
|
|
error_emitted = true;
|
|
|
|
|
}
|
2010-04-01 18:31:11 -07:00
|
|
|
|
2010-04-05 13:16:00 -07:00
|
|
|
if (array->type->is_array()) {
|
2010-05-26 15:08:11 -07:00
|
|
|
/* If the array is a variable dereference, it dereferences the
|
|
|
|
|
* whole array, by definition. Use this to get the variable.
|
|
|
|
|
*
|
|
|
|
|
* FINISHME: Should some methods for getting / setting / testing
|
|
|
|
|
* FINISHME: array access limits be added to ir_dereference?
|
|
|
|
|
*/
|
|
|
|
|
ir_variable *const v = array->whole_variable_referenced();
|
2011-09-06 10:01:51 -07:00
|
|
|
if ((v != NULL) && (unsigned(idx) > v->max_array_access)) {
|
2010-04-05 13:16:00 -07:00
|
|
|
v->max_array_access = idx;
|
2011-09-06 10:01:51 -07:00
|
|
|
|
|
|
|
|
/* Check whether this access will, as a side effect, implicitly
|
|
|
|
|
* cause the size of a built-in array to be too large.
|
|
|
|
|
*/
|
|
|
|
|
if (check_builtin_array_max_size(v->name, idx+1, loc, state))
|
|
|
|
|
error_emitted = true;
|
|
|
|
|
}
|
2010-04-05 13:16:00 -07:00
|
|
|
}
|
2010-07-16 18:28:44 -07:00
|
|
|
} else if (array->type->array_size() == 0) {
|
|
|
|
|
_mesa_glsl_error(&loc, state, "unsized array index must be constant");
|
2010-08-23 10:32:01 -07:00
|
|
|
} else {
|
|
|
|
|
if (array->type->is_array()) {
|
2010-08-25 22:42:13 +03:00
|
|
|
/* whole_variable_referenced can return NULL if the array is a
|
|
|
|
|
* member of a structure. In this case it is safe to not update
|
|
|
|
|
* the max_array_access field because it is never used for fields
|
|
|
|
|
* of structures.
|
|
|
|
|
*/
|
2010-08-23 10:32:01 -07:00
|
|
|
ir_variable *v = array->whole_variable_referenced();
|
2010-08-25 22:42:13 +03:00
|
|
|
if (v != NULL)
|
2011-03-24 16:50:23 -07:00
|
|
|
v->max_array_access = array->type->array_size() - 1;
|
2010-08-23 10:32:01 -07:00
|
|
|
}
|
2010-04-01 18:03:59 -07:00
|
|
|
}
|
|
|
|
|
|
2011-01-04 16:09:00 -08:00
|
|
|
/* From page 23 (29 of the PDF) of the GLSL 1.30 spec:
|
|
|
|
|
*
|
2010-12-07 10:35:36 -08:00
|
|
|
* "Samplers aggregated into arrays within a shader (using square
|
|
|
|
|
* brackets [ ]) can only be indexed with integral constant
|
|
|
|
|
* expressions [...]."
|
2011-01-04 16:09:00 -08:00
|
|
|
*
|
|
|
|
|
* This restriction was added in GLSL 1.30. Shaders using earlier version
|
|
|
|
|
* of the language should not be rejected by the compiler front-end for
|
|
|
|
|
* using this construct. This allows useful things such as using a loop
|
|
|
|
|
* counter as the index to an array of samplers. If the loop in unrolled,
|
|
|
|
|
* the code should compile correctly. Instead, emit a warning.
|
2010-12-07 10:35:36 -08:00
|
|
|
*/
|
|
|
|
|
if (array->type->is_array() &&
|
|
|
|
|
array->type->element_type()->is_sampler() &&
|
|
|
|
|
const_index == NULL) {
|
|
|
|
|
|
2012-08-01 14:50:05 -07:00
|
|
|
if (!state->is_version(130, 100)) {
|
|
|
|
|
if (state->es_shader) {
|
|
|
|
|
_mesa_glsl_warning(&loc, state,
|
|
|
|
|
"sampler arrays indexed with non-constant "
|
|
|
|
|
"expressions is optional in %s",
|
|
|
|
|
state->get_version_string());
|
|
|
|
|
} else {
|
|
|
|
|
_mesa_glsl_warning(&loc, state,
|
|
|
|
|
"sampler arrays indexed with non-constant "
|
|
|
|
|
"expressions will be forbidden in GLSL 1.30 and "
|
|
|
|
|
"later");
|
|
|
|
|
}
|
2011-01-04 16:09:00 -08:00
|
|
|
} else {
|
|
|
|
|
_mesa_glsl_error(&loc, state,
|
|
|
|
|
"sampler arrays indexed with non-constant "
|
|
|
|
|
"expressions is forbidden in GLSL 1.30 and "
|
|
|
|
|
"later");
|
|
|
|
|
error_emitted = true;
|
|
|
|
|
}
|
2010-12-07 10:35:36 -08:00
|
|
|
}
|
|
|
|
|
|
2010-04-01 18:03:59 -07:00
|
|
|
if (error_emitted)
|
|
|
|
|
result->type = glsl_type::error_type;
|
|
|
|
|
|
2010-02-22 13:19:34 -08:00
|
|
|
break;
|
2010-04-01 18:03:59 -07:00
|
|
|
}
|
2010-02-22 13:19:34 -08:00
|
|
|
|
|
|
|
|
case ast_function_call:
|
2010-03-10 13:26:52 -08:00
|
|
|
/* Should *NEVER* get here. ast_function_call should always be handled
|
|
|
|
|
* by ast_function_expression::hir.
|
2010-02-22 13:19:34 -08:00
|
|
|
*/
|
2010-03-10 13:26:52 -08:00
|
|
|
assert(0);
|
2010-02-22 13:19:34 -08:00
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
case ast_identifier: {
|
|
|
|
|
/* ast_identifier can appear several places in a full abstract syntax
|
|
|
|
|
* tree. This particular use must be at location specified in the grammar
|
|
|
|
|
* as 'variable_identifier'.
|
|
|
|
|
*/
|
2010-03-19 11:57:24 -07:00
|
|
|
ir_variable *var =
|
|
|
|
|
state->symbols->get_variable(this->primary_expression.identifier);
|
2010-02-22 13:19:34 -08:00
|
|
|
|
|
|
|
|
if (var != NULL) {
|
2011-01-07 18:34:58 -08:00
|
|
|
var->used = true;
|
2012-03-13 14:59:42 -07:00
|
|
|
result = new(ctx) ir_dereference_variable(var);
|
2010-02-22 13:19:34 -08:00
|
|
|
} else {
|
2010-03-23 13:21:19 -07:00
|
|
|
_mesa_glsl_error(& loc, state, "`%s' undeclared",
|
2010-03-01 13:49:10 -08:00
|
|
|
this->primary_expression.identifier);
|
2010-02-22 13:19:34 -08:00
|
|
|
|
2011-09-22 15:04:56 -07:00
|
|
|
result = ir_rvalue::error_value(ctx);
|
2010-02-22 13:19:34 -08:00
|
|
|
error_emitted = true;
|
|
|
|
|
}
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
case ast_int_constant:
|
2010-06-23 18:11:51 -07:00
|
|
|
result = new(ctx) ir_constant(this->primary_expression.int_constant);
|
2010-02-22 13:19:34 -08:00
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
case ast_uint_constant:
|
2010-06-23 18:11:51 -07:00
|
|
|
result = new(ctx) ir_constant(this->primary_expression.uint_constant);
|
2010-02-22 13:19:34 -08:00
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
case ast_float_constant:
|
2010-06-23 18:11:51 -07:00
|
|
|
result = new(ctx) ir_constant(this->primary_expression.float_constant);
|
2010-02-22 13:19:34 -08:00
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
case ast_bool_constant:
|
2010-06-23 18:11:51 -07:00
|
|
|
result = new(ctx) ir_constant(bool(this->primary_expression.bool_constant));
|
2010-02-22 13:19:34 -08:00
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
case ast_sequence: {
|
|
|
|
|
/* It should not be possible to generate a sequence in the AST without
|
|
|
|
|
* any expressions in it.
|
|
|
|
|
*/
|
2010-05-10 11:17:53 -07:00
|
|
|
assert(!this->expressions.is_empty());
|
2010-02-22 13:19:34 -08:00
|
|
|
|
|
|
|
|
/* The r-value of a sequence is the last expression in the sequence. If
|
|
|
|
|
* the other expressions in the sequence do not have side-effects (and
|
|
|
|
|
* therefore add instructions to the instruction list), they get dropped
|
|
|
|
|
* on the floor.
|
|
|
|
|
*/
|
2011-04-11 10:10:30 -07:00
|
|
|
exec_node *previous_tail_pred = NULL;
|
|
|
|
|
YYLTYPE previous_operand_loc = loc;
|
|
|
|
|
|
|
|
|
|
foreach_list_typed (ast_node, ast, link, &this->expressions) {
|
|
|
|
|
/* If one of the operands of comma operator does not generate any
|
|
|
|
|
* code, we want to emit a warning. At each pass through the loop
|
|
|
|
|
* previous_tail_pred will point to the last instruction in the
|
|
|
|
|
* stream *before* processing the previous operand. Naturally,
|
|
|
|
|
* instructions->tail_pred will point to the last instruction in the
|
|
|
|
|
* stream *after* processing the previous operand. If the two
|
|
|
|
|
* pointers match, then the previous operand had no effect.
|
|
|
|
|
*
|
|
|
|
|
* The warning behavior here differs slightly from GCC. GCC will
|
|
|
|
|
* only emit a warning if none of the left-hand operands have an
|
|
|
|
|
* effect. However, it will emit a warning for each. I believe that
|
|
|
|
|
* there are some cases in C (especially with GCC extensions) where
|
|
|
|
|
* it is useful to have an intermediate step in a sequence have no
|
|
|
|
|
* effect, but I don't think these cases exist in GLSL. Either way,
|
|
|
|
|
* it would be a giant hassle to replicate that behavior.
|
|
|
|
|
*/
|
|
|
|
|
if (previous_tail_pred == instructions->tail_pred) {
|
|
|
|
|
_mesa_glsl_warning(&previous_operand_loc, state,
|
|
|
|
|
"left-hand operand of comma expression has "
|
|
|
|
|
"no effect");
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* tail_pred is directly accessed instead of using the get_tail()
|
|
|
|
|
* method for performance reasons. get_tail() has extra code to
|
|
|
|
|
* return NULL when the list is empty. We don't care about that
|
|
|
|
|
* here, so using tail_pred directly is fine.
|
|
|
|
|
*/
|
|
|
|
|
previous_tail_pred = instructions->tail_pred;
|
|
|
|
|
previous_operand_loc = ast->get_location();
|
|
|
|
|
|
2010-05-10 11:17:53 -07:00
|
|
|
result = ast->hir(instructions, state);
|
2011-04-11 10:10:30 -07:00
|
|
|
}
|
2010-02-22 13:19:34 -08:00
|
|
|
|
|
|
|
|
/* Any errors should have already been emitted in the loop above.
|
|
|
|
|
*/
|
|
|
|
|
error_emitted = true;
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
}
|
2011-04-14 17:21:59 -07:00
|
|
|
type = NULL; /* use result->type, not type. */
|
|
|
|
|
assert(result != NULL);
|
2010-02-22 13:19:34 -08:00
|
|
|
|
2011-04-14 17:21:59 -07:00
|
|
|
if (result->type->is_error() && !error_emitted)
|
2010-03-23 13:21:19 -07:00
|
|
|
_mesa_glsl_error(& loc, state, "type mismatch");
|
2010-02-22 13:19:34 -08:00
|
|
|
|
|
|
|
|
return result;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
2010-03-26 00:25:36 -07:00
|
|
|
ir_rvalue *
|
2010-03-08 23:44:00 -08:00
|
|
|
ast_expression_statement::hir(exec_list *instructions,
|
2010-03-01 13:49:10 -08:00
|
|
|
struct _mesa_glsl_parse_state *state)
|
2010-02-22 13:19:34 -08:00
|
|
|
{
|
|
|
|
|
/* It is possible to have expression statements that don't have an
|
|
|
|
|
* expression. This is the solitary semicolon:
|
|
|
|
|
*
|
|
|
|
|
* for (i = 0; i < 5; i++)
|
|
|
|
|
* ;
|
|
|
|
|
*
|
|
|
|
|
* In this case the expression will be NULL. Test for NULL and don't do
|
|
|
|
|
* anything in that case.
|
|
|
|
|
*/
|
2010-03-01 13:49:10 -08:00
|
|
|
if (expression != NULL)
|
|
|
|
|
expression->hir(instructions, state);
|
2010-02-22 13:19:34 -08:00
|
|
|
|
|
|
|
|
/* Statements do not have r-values.
|
|
|
|
|
*/
|
|
|
|
|
return NULL;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
2010-03-26 00:25:36 -07:00
|
|
|
ir_rvalue *
|
2010-03-08 23:44:00 -08:00
|
|
|
ast_compound_statement::hir(exec_list *instructions,
|
2010-03-01 13:49:10 -08:00
|
|
|
struct _mesa_glsl_parse_state *state)
|
2010-02-22 13:19:34 -08:00
|
|
|
{
|
2010-03-01 13:49:10 -08:00
|
|
|
if (new_scope)
|
2010-03-19 11:57:24 -07:00
|
|
|
state->symbols->push_scope();
|
2010-02-22 13:19:34 -08:00
|
|
|
|
2010-05-10 17:42:05 -07:00
|
|
|
foreach_list_typed (ast_node, ast, link, &this->statements)
|
2010-05-10 11:17:53 -07:00
|
|
|
ast->hir(instructions, state);
|
2010-02-22 13:19:34 -08:00
|
|
|
|
2010-03-01 13:49:10 -08:00
|
|
|
if (new_scope)
|
2010-03-19 11:57:24 -07:00
|
|
|
state->symbols->pop_scope();
|
2010-02-22 13:19:34 -08:00
|
|
|
|
|
|
|
|
/* Compound statements do not have r-values.
|
|
|
|
|
*/
|
|
|
|
|
return NULL;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
2010-03-30 16:59:27 -07:00
|
|
|
static const glsl_type *
|
2010-08-07 02:56:01 -07:00
|
|
|
process_array_type(YYLTYPE *loc, const glsl_type *base, ast_node *array_size,
|
2010-03-30 16:59:27 -07:00
|
|
|
struct _mesa_glsl_parse_state *state)
|
|
|
|
|
{
|
|
|
|
|
unsigned length = 0;
|
|
|
|
|
|
2011-10-24 11:45:50 -07:00
|
|
|
/* From page 19 (page 25) of the GLSL 1.20 spec:
|
|
|
|
|
*
|
|
|
|
|
* "Only one-dimensional arrays may be declared."
|
|
|
|
|
*/
|
|
|
|
|
if (base->is_array()) {
|
|
|
|
|
_mesa_glsl_error(loc, state,
|
|
|
|
|
"invalid array of `%s' (only one-dimensional arrays "
|
|
|
|
|
"may be declared)",
|
|
|
|
|
base->name);
|
|
|
|
|
return glsl_type::error_type;
|
|
|
|
|
}
|
2010-03-30 16:59:27 -07:00
|
|
|
|
|
|
|
|
if (array_size != NULL) {
|
|
|
|
|
exec_list dummy_instructions;
|
|
|
|
|
ir_rvalue *const ir = array_size->hir(& dummy_instructions, state);
|
|
|
|
|
YYLTYPE loc = array_size->get_location();
|
|
|
|
|
|
|
|
|
|
if (ir != NULL) {
|
|
|
|
|
if (!ir->type->is_integer()) {
|
|
|
|
|
_mesa_glsl_error(& loc, state, "array size must be integer type");
|
|
|
|
|
} else if (!ir->type->is_scalar()) {
|
|
|
|
|
_mesa_glsl_error(& loc, state, "array size must be scalar type");
|
|
|
|
|
} else {
|
|
|
|
|
ir_constant *const size = ir->constant_expression_value();
|
|
|
|
|
|
|
|
|
|
if (size == NULL) {
|
|
|
|
|
_mesa_glsl_error(& loc, state, "array size must be a "
|
|
|
|
|
"constant valued expression");
|
|
|
|
|
} else if (size->value.i[0] <= 0) {
|
|
|
|
|
_mesa_glsl_error(& loc, state, "array size must be > 0");
|
|
|
|
|
} else {
|
|
|
|
|
assert(size->type == ir->type);
|
|
|
|
|
length = size->value.u[0];
|
2011-08-01 15:23:07 -07:00
|
|
|
|
|
|
|
|
/* If the array size is const (and we've verified that
|
|
|
|
|
* it is) then no instructions should have been emitted
|
|
|
|
|
* when we converted it to HIR. If they were emitted,
|
|
|
|
|
* then either the array size isn't const after all, or
|
|
|
|
|
* we are emitting unnecessary instructions.
|
|
|
|
|
*/
|
|
|
|
|
assert(dummy_instructions.is_empty());
|
2010-03-30 16:59:27 -07:00
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
2010-08-07 02:56:01 -07:00
|
|
|
} else if (state->es_shader) {
|
|
|
|
|
/* Section 10.17 of the GLSL ES 1.00 specification states that unsized
|
|
|
|
|
* array declarations have been removed from the language.
|
|
|
|
|
*/
|
|
|
|
|
_mesa_glsl_error(loc, state, "unsized array declarations are not "
|
|
|
|
|
"allowed in GLSL ES 1.00.");
|
2010-03-30 16:59:27 -07:00
|
|
|
}
|
|
|
|
|
|
2010-07-20 15:33:40 -07:00
|
|
|
return glsl_type::get_array_instance(base, length);
|
2010-03-30 16:59:27 -07:00
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
2010-03-31 16:22:06 -07:00
|
|
|
const glsl_type *
|
|
|
|
|
ast_type_specifier::glsl_type(const char **name,
|
|
|
|
|
struct _mesa_glsl_parse_state *state) const
|
2010-02-22 13:19:34 -08:00
|
|
|
{
|
2010-03-31 16:22:06 -07:00
|
|
|
const struct glsl_type *type;
|
2010-02-22 13:19:34 -08:00
|
|
|
|
2010-09-18 11:11:09 +02:00
|
|
|
type = state->symbols->get_type(this->type_name);
|
|
|
|
|
*name = this->type_name;
|
2010-02-22 13:19:34 -08:00
|
|
|
|
2010-09-18 11:11:09 +02:00
|
|
|
if (this->is_array) {
|
|
|
|
|
YYLTYPE loc = this->get_location();
|
|
|
|
|
type = process_array_type(&loc, type, this->array_size, state);
|
2010-02-22 13:19:34 -08:00
|
|
|
}
|
|
|
|
|
|
|
|
|
|
return type;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
glsl: Prohibit structs and bools from being used as "varyings".
The GLSL 1.30 spec only allows vertex shader outputs and fragment
shader inputs ("varyings" in pre-GLSL-1.30 parlance) to be of type
int, uint, float, or vectors, matrices, or arrays thereof. Bools,
bvec's, and structs are prohibited. (Integral varyings were
prohibited prior to GLSL 1.30).
Previously, Mesa only performed this check on variables declared with
the "varying" keyword, and it always performed the check according to
the pre-GLSL-1.30 rules. As a result, bools and structs were allowed
to slip through, provided they were declared using the new in/out
syntax.
This patch modifies the error check so that it occurs after "varying"
is converted to "in/out", and corrects it to properly account for GLSL
version.
Fixes piglit tests:
in-bool-prohibited.frag
in-bvec2-prohibited.frag
in-bvec3-prohibited.frag
in-bvec4-prohibited.frag
in-struct-prohibited.frag
out-bool-prohibited.vert
out-bvec2-prohibited.vert
out-bvec3-prohibited.vert
out-bvec4-prohibited.vert
out-struct-prohibited.vert
Reviewed-by: Kenneth Graunke <kenneth@whitecape.org>
2012-12-18 15:24:39 -08:00
|
|
|
/**
|
|
|
|
|
* Determine whether a toplevel variable declaration declares a varying. This
|
|
|
|
|
* function operates by examining the variable's mode and the shader target,
|
|
|
|
|
* so it correctly identifies linkage variables regardless of whether they are
|
|
|
|
|
* declared using the deprecated "varying" syntax or the new "in/out" syntax.
|
|
|
|
|
*
|
|
|
|
|
* Passing a non-toplevel variable declaration (e.g. a function parameter) to
|
|
|
|
|
* this function will produce undefined results.
|
|
|
|
|
*/
|
|
|
|
|
static bool
|
|
|
|
|
is_varying_var(ir_variable *var, _mesa_glsl_parser_targets target)
|
|
|
|
|
{
|
|
|
|
|
switch (target) {
|
|
|
|
|
case vertex_shader:
|
2013-01-11 14:39:32 -08:00
|
|
|
return var->mode == ir_var_shader_out;
|
glsl: Prohibit structs and bools from being used as "varyings".
The GLSL 1.30 spec only allows vertex shader outputs and fragment
shader inputs ("varyings" in pre-GLSL-1.30 parlance) to be of type
int, uint, float, or vectors, matrices, or arrays thereof. Bools,
bvec's, and structs are prohibited. (Integral varyings were
prohibited prior to GLSL 1.30).
Previously, Mesa only performed this check on variables declared with
the "varying" keyword, and it always performed the check according to
the pre-GLSL-1.30 rules. As a result, bools and structs were allowed
to slip through, provided they were declared using the new in/out
syntax.
This patch modifies the error check so that it occurs after "varying"
is converted to "in/out", and corrects it to properly account for GLSL
version.
Fixes piglit tests:
in-bool-prohibited.frag
in-bvec2-prohibited.frag
in-bvec3-prohibited.frag
in-bvec4-prohibited.frag
in-struct-prohibited.frag
out-bool-prohibited.vert
out-bvec2-prohibited.vert
out-bvec3-prohibited.vert
out-bvec4-prohibited.vert
out-struct-prohibited.vert
Reviewed-by: Kenneth Graunke <kenneth@whitecape.org>
2012-12-18 15:24:39 -08:00
|
|
|
case fragment_shader:
|
2013-01-11 14:39:32 -08:00
|
|
|
return var->mode == ir_var_shader_in;
|
glsl: Prohibit structs and bools from being used as "varyings".
The GLSL 1.30 spec only allows vertex shader outputs and fragment
shader inputs ("varyings" in pre-GLSL-1.30 parlance) to be of type
int, uint, float, or vectors, matrices, or arrays thereof. Bools,
bvec's, and structs are prohibited. (Integral varyings were
prohibited prior to GLSL 1.30).
Previously, Mesa only performed this check on variables declared with
the "varying" keyword, and it always performed the check according to
the pre-GLSL-1.30 rules. As a result, bools and structs were allowed
to slip through, provided they were declared using the new in/out
syntax.
This patch modifies the error check so that it occurs after "varying"
is converted to "in/out", and corrects it to properly account for GLSL
version.
Fixes piglit tests:
in-bool-prohibited.frag
in-bvec2-prohibited.frag
in-bvec3-prohibited.frag
in-bvec4-prohibited.frag
in-struct-prohibited.frag
out-bool-prohibited.vert
out-bvec2-prohibited.vert
out-bvec3-prohibited.vert
out-bvec4-prohibited.vert
out-struct-prohibited.vert
Reviewed-by: Kenneth Graunke <kenneth@whitecape.org>
2012-12-18 15:24:39 -08:00
|
|
|
default:
|
2013-01-11 14:39:32 -08:00
|
|
|
return var->mode == ir_var_shader_out || var->mode == ir_var_shader_in;
|
glsl: Prohibit structs and bools from being used as "varyings".
The GLSL 1.30 spec only allows vertex shader outputs and fragment
shader inputs ("varyings" in pre-GLSL-1.30 parlance) to be of type
int, uint, float, or vectors, matrices, or arrays thereof. Bools,
bvec's, and structs are prohibited. (Integral varyings were
prohibited prior to GLSL 1.30).
Previously, Mesa only performed this check on variables declared with
the "varying" keyword, and it always performed the check according to
the pre-GLSL-1.30 rules. As a result, bools and structs were allowed
to slip through, provided they were declared using the new in/out
syntax.
This patch modifies the error check so that it occurs after "varying"
is converted to "in/out", and corrects it to properly account for GLSL
version.
Fixes piglit tests:
in-bool-prohibited.frag
in-bvec2-prohibited.frag
in-bvec3-prohibited.frag
in-bvec4-prohibited.frag
in-struct-prohibited.frag
out-bool-prohibited.vert
out-bvec2-prohibited.vert
out-bvec3-prohibited.vert
out-bvec4-prohibited.vert
out-struct-prohibited.vert
Reviewed-by: Kenneth Graunke <kenneth@whitecape.org>
2012-12-18 15:24:39 -08:00
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
2013-01-16 12:01:50 -08:00
|
|
|
/**
|
|
|
|
|
* Matrix layout qualifiers are only allowed on certain types
|
|
|
|
|
*/
|
|
|
|
|
static void
|
|
|
|
|
validate_matrix_layout_for_type(struct _mesa_glsl_parse_state *state,
|
|
|
|
|
YYLTYPE *loc,
|
|
|
|
|
const glsl_type *type)
|
|
|
|
|
{
|
|
|
|
|
if (!type->is_matrix() && !type->is_record()) {
|
|
|
|
|
_mesa_glsl_error(loc, state,
|
|
|
|
|
"uniform block layout qualifiers row_major and "
|
|
|
|
|
"column_major can only be applied to matrix and "
|
|
|
|
|
"structure types");
|
|
|
|
|
} else if (type->is_record()) {
|
|
|
|
|
/* We allow 'layout(row_major)' on structure types because it's the only
|
|
|
|
|
* way to get row-major layouts on matrices contained in structures.
|
|
|
|
|
*/
|
|
|
|
|
_mesa_glsl_warning(loc, state,
|
|
|
|
|
"uniform block layout qualifiers row_major and "
|
|
|
|
|
"column_major applied to structure types is not "
|
|
|
|
|
"strictly conformant and my be rejected by other "
|
|
|
|
|
"compilers");
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
2010-02-22 13:19:34 -08:00
|
|
|
static void
|
|
|
|
|
apply_type_qualifier_to_variable(const struct ast_type_qualifier *qual,
|
2010-08-13 16:46:43 -07:00
|
|
|
ir_variable *var,
|
2010-03-28 00:56:22 -07:00
|
|
|
struct _mesa_glsl_parse_state *state,
|
2012-04-26 18:19:39 -07:00
|
|
|
YYLTYPE *loc,
|
2012-12-18 14:49:34 -08:00
|
|
|
bool ubo_qualifiers_valid,
|
|
|
|
|
bool is_parameter)
|
2010-02-22 13:19:34 -08:00
|
|
|
{
|
2011-01-07 18:34:58 -08:00
|
|
|
if (qual->flags.q.invariant) {
|
|
|
|
|
if (var->used) {
|
|
|
|
|
_mesa_glsl_error(loc, state,
|
|
|
|
|
"variable `%s' may not be redeclared "
|
|
|
|
|
"`invariant' after being used",
|
|
|
|
|
var->name);
|
|
|
|
|
} else {
|
|
|
|
|
var->invariant = 1;
|
|
|
|
|
}
|
|
|
|
|
}
|
2010-02-22 13:19:34 -08:00
|
|
|
|
2010-10-05 16:38:47 -07:00
|
|
|
if (qual->flags.q.constant || qual->flags.q.attribute
|
|
|
|
|
|| qual->flags.q.uniform
|
|
|
|
|
|| (qual->flags.q.varying && (state->target == fragment_shader)))
|
2010-02-22 13:19:34 -08:00
|
|
|
var->read_only = 1;
|
|
|
|
|
|
2010-10-05 16:38:47 -07:00
|
|
|
if (qual->flags.q.centroid)
|
2010-02-22 13:19:34 -08:00
|
|
|
var->centroid = 1;
|
|
|
|
|
|
2010-10-05 16:38:47 -07:00
|
|
|
if (qual->flags.q.attribute && state->target != vertex_shader) {
|
2010-03-28 00:56:22 -07:00
|
|
|
var->type = glsl_type::error_type;
|
|
|
|
|
_mesa_glsl_error(loc, state,
|
|
|
|
|
"`attribute' variables may not be declared in the "
|
2010-04-07 16:41:40 -07:00
|
|
|
"%s shader",
|
|
|
|
|
_mesa_glsl_shader_target_name(state->target));
|
2010-03-28 00:56:22 -07:00
|
|
|
}
|
|
|
|
|
|
2010-07-19 17:12:42 -07:00
|
|
|
/* If there is no qualifier that changes the mode of the variable, leave
|
|
|
|
|
* the setting alone.
|
|
|
|
|
*/
|
2010-10-05 16:38:47 -07:00
|
|
|
if (qual->flags.q.in && qual->flags.q.out)
|
2013-01-11 14:39:32 -08:00
|
|
|
var->mode = ir_var_function_inout;
|
|
|
|
|
else if (qual->flags.q.in)
|
|
|
|
|
var->mode = is_parameter ? ir_var_function_in : ir_var_shader_in;
|
|
|
|
|
else if (qual->flags.q.attribute
|
2010-10-05 16:38:47 -07:00
|
|
|
|| (qual->flags.q.varying && (state->target == fragment_shader)))
|
2013-01-11 14:39:32 -08:00
|
|
|
var->mode = ir_var_shader_in;
|
|
|
|
|
else if (qual->flags.q.out)
|
|
|
|
|
var->mode = is_parameter ? ir_var_function_out : ir_var_shader_out;
|
|
|
|
|
else if (qual->flags.q.varying && (state->target == vertex_shader))
|
|
|
|
|
var->mode = ir_var_shader_out;
|
2010-10-05 16:38:47 -07:00
|
|
|
else if (qual->flags.q.uniform)
|
2010-02-22 13:19:34 -08:00
|
|
|
var->mode = ir_var_uniform;
|
|
|
|
|
|
glsl: Prohibit structs and bools from being used as "varyings".
The GLSL 1.30 spec only allows vertex shader outputs and fragment
shader inputs ("varyings" in pre-GLSL-1.30 parlance) to be of type
int, uint, float, or vectors, matrices, or arrays thereof. Bools,
bvec's, and structs are prohibited. (Integral varyings were
prohibited prior to GLSL 1.30).
Previously, Mesa only performed this check on variables declared with
the "varying" keyword, and it always performed the check according to
the pre-GLSL-1.30 rules. As a result, bools and structs were allowed
to slip through, provided they were declared using the new in/out
syntax.
This patch modifies the error check so that it occurs after "varying"
is converted to "in/out", and corrects it to properly account for GLSL
version.
Fixes piglit tests:
in-bool-prohibited.frag
in-bvec2-prohibited.frag
in-bvec3-prohibited.frag
in-bvec4-prohibited.frag
in-struct-prohibited.frag
out-bool-prohibited.vert
out-bvec2-prohibited.vert
out-bvec3-prohibited.vert
out-bvec4-prohibited.vert
out-struct-prohibited.vert
Reviewed-by: Kenneth Graunke <kenneth@whitecape.org>
2012-12-18 15:24:39 -08:00
|
|
|
if (!is_parameter && is_varying_var(var, state->target)) {
|
|
|
|
|
/* This variable is being used to link data between shader stages (in
|
|
|
|
|
* pre-glsl-1.30 parlance, it's a "varying"). Check that it has a type
|
|
|
|
|
* that is allowed for such purposes.
|
|
|
|
|
*
|
|
|
|
|
* From page 25 (page 31 of the PDF) of the GLSL 1.10 spec:
|
|
|
|
|
*
|
|
|
|
|
* "The varying qualifier can be used only with the data types
|
|
|
|
|
* float, vec2, vec3, vec4, mat2, mat3, and mat4, or arrays of
|
|
|
|
|
* these."
|
|
|
|
|
*
|
|
|
|
|
* This was relaxed in GLSL version 1.30 and GLSL ES version 3.00. From
|
|
|
|
|
* page 31 (page 37 of the PDF) of the GLSL 1.30 spec:
|
|
|
|
|
*
|
|
|
|
|
* "Fragment inputs can only be signed and unsigned integers and
|
|
|
|
|
* integer vectors, float, floating-point vectors, matrices, or
|
|
|
|
|
* arrays of these. Structures cannot be input.
|
|
|
|
|
*
|
|
|
|
|
* Similar text exists in the section on vertex shader outputs.
|
|
|
|
|
*
|
|
|
|
|
* Similar text exists in the GLSL ES 3.00 spec, except that the GLSL ES
|
|
|
|
|
* 3.00 spec claims to allow structs as well. However, this is likely
|
|
|
|
|
* an error, since section 11 of the spec ("Counting of Inputs and
|
|
|
|
|
* Outputs") enumerates all possible types of interstage linkage
|
|
|
|
|
* variables, and it does not mention structs.
|
|
|
|
|
*/
|
|
|
|
|
switch (var->type->get_scalar_type()->base_type) {
|
|
|
|
|
case GLSL_TYPE_FLOAT:
|
|
|
|
|
/* Ok in all GLSL versions */
|
|
|
|
|
break;
|
|
|
|
|
case GLSL_TYPE_UINT:
|
|
|
|
|
case GLSL_TYPE_INT:
|
|
|
|
|
if (state->is_version(130, 300))
|
|
|
|
|
break;
|
|
|
|
|
_mesa_glsl_error(loc, state,
|
|
|
|
|
"varying variables must be of base type float in %s",
|
|
|
|
|
state->get_version_string());
|
|
|
|
|
break;
|
|
|
|
|
case GLSL_TYPE_STRUCT:
|
|
|
|
|
_mesa_glsl_error(loc, state,
|
|
|
|
|
"varying variables may not be of type struct");
|
|
|
|
|
break;
|
|
|
|
|
default:
|
|
|
|
|
_mesa_glsl_error(loc, state, "illegal type for a varying variable");
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
2011-01-06 10:49:56 -08:00
|
|
|
if (state->all_invariant && (state->current_function == NULL)) {
|
|
|
|
|
switch (state->target) {
|
|
|
|
|
case vertex_shader:
|
2013-01-11 14:39:32 -08:00
|
|
|
if (var->mode == ir_var_shader_out)
|
2011-01-06 10:49:56 -08:00
|
|
|
var->invariant = true;
|
|
|
|
|
break;
|
|
|
|
|
case geometry_shader:
|
2013-01-11 14:39:32 -08:00
|
|
|
if ((var->mode == ir_var_shader_in)
|
|
|
|
|
|| (var->mode == ir_var_shader_out))
|
2011-01-06 10:49:56 -08:00
|
|
|
var->invariant = true;
|
|
|
|
|
break;
|
|
|
|
|
case fragment_shader:
|
2013-01-11 14:39:32 -08:00
|
|
|
if (var->mode == ir_var_shader_in)
|
2011-01-06 10:49:56 -08:00
|
|
|
var->invariant = true;
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
2010-10-05 16:38:47 -07:00
|
|
|
if (qual->flags.q.flat)
|
2011-10-25 18:06:37 -07:00
|
|
|
var->interpolation = INTERP_QUALIFIER_FLAT;
|
2010-10-05 16:38:47 -07:00
|
|
|
else if (qual->flags.q.noperspective)
|
2011-10-25 18:06:37 -07:00
|
|
|
var->interpolation = INTERP_QUALIFIER_NOPERSPECTIVE;
|
glsl: Distinguish between no interpolation qualifier and 'smooth'
Previously, we treated the 'smooth' qualifier as equivalent to no
qualifier at all. However, this is incorrect for the built-in color
variables (gl_FrontColor, gl_BackColor, gl_FrontSecondaryColor, and
gl_BackSecondaryColor). For those variables, if there is no qualifier
at all, interpolation should be flat if the shade model is GL_FLAT,
and smooth if the shade model is GL_SMOOTH.
To make this possible, I added a new value to the
glsl_interp_qualifier enum, INTERP_QUALIFIER_NONE.
Reviewed-by: Kenneth Graunke <kenneth@whitecape.org>
Reviewed-by: Eric Anholt <eric@anholt.net>
2011-10-21 07:40:37 -07:00
|
|
|
else if (qual->flags.q.smooth)
|
2011-10-25 18:06:37 -07:00
|
|
|
var->interpolation = INTERP_QUALIFIER_SMOOTH;
|
glsl: Distinguish between no interpolation qualifier and 'smooth'
Previously, we treated the 'smooth' qualifier as equivalent to no
qualifier at all. However, this is incorrect for the built-in color
variables (gl_FrontColor, gl_BackColor, gl_FrontSecondaryColor, and
gl_BackSecondaryColor). For those variables, if there is no qualifier
at all, interpolation should be flat if the shade model is GL_FLAT,
and smooth if the shade model is GL_SMOOTH.
To make this possible, I added a new value to the
glsl_interp_qualifier enum, INTERP_QUALIFIER_NONE.
Reviewed-by: Kenneth Graunke <kenneth@whitecape.org>
Reviewed-by: Eric Anholt <eric@anholt.net>
2011-10-21 07:40:37 -07:00
|
|
|
else
|
|
|
|
|
var->interpolation = INTERP_QUALIFIER_NONE;
|
2010-04-02 17:17:47 -07:00
|
|
|
|
2012-01-09 16:40:20 -08:00
|
|
|
if (var->interpolation != INTERP_QUALIFIER_NONE &&
|
2013-01-11 14:39:32 -08:00
|
|
|
!(state->target == vertex_shader && var->mode == ir_var_shader_out) &&
|
|
|
|
|
!(state->target == fragment_shader && var->mode == ir_var_shader_in)) {
|
2012-01-09 16:40:20 -08:00
|
|
|
_mesa_glsl_error(loc, state,
|
|
|
|
|
"interpolation qualifier `%s' can only be applied to "
|
|
|
|
|
"vertex shader outputs and fragment shader inputs.",
|
2012-06-06 01:52:47 -07:00
|
|
|
var->interpolation_string());
|
2012-01-09 16:40:20 -08:00
|
|
|
}
|
|
|
|
|
|
2010-10-05 16:38:47 -07:00
|
|
|
var->pixel_center_integer = qual->flags.q.pixel_center_integer;
|
|
|
|
|
var->origin_upper_left = qual->flags.q.origin_upper_left;
|
|
|
|
|
if ((qual->flags.q.origin_upper_left || qual->flags.q.pixel_center_integer)
|
2010-06-30 17:48:09 -07:00
|
|
|
&& (strcmp(var->name, "gl_FragCoord") != 0)) {
|
2010-10-05 16:38:47 -07:00
|
|
|
const char *const qual_string = (qual->flags.q.origin_upper_left)
|
2010-06-30 17:48:09 -07:00
|
|
|
? "origin_upper_left" : "pixel_center_integer";
|
|
|
|
|
|
|
|
|
|
_mesa_glsl_error(loc, state,
|
|
|
|
|
"layout qualifier `%s' can only be applied to "
|
|
|
|
|
"fragment shader input `gl_FragCoord'",
|
|
|
|
|
qual_string);
|
|
|
|
|
}
|
|
|
|
|
|
2010-10-07 15:13:38 -07:00
|
|
|
if (qual->flags.q.explicit_location) {
|
|
|
|
|
const bool global_scope = (state->current_function == NULL);
|
|
|
|
|
bool fail = false;
|
|
|
|
|
const char *string = "";
|
|
|
|
|
|
|
|
|
|
/* In the vertex shader only shader inputs can be given explicit
|
|
|
|
|
* locations.
|
|
|
|
|
*
|
|
|
|
|
* In the fragment shader only shader outputs can be given explicit
|
|
|
|
|
* locations.
|
|
|
|
|
*/
|
|
|
|
|
switch (state->target) {
|
|
|
|
|
case vertex_shader:
|
2013-01-11 14:39:32 -08:00
|
|
|
if (!global_scope || (var->mode != ir_var_shader_in)) {
|
2010-10-07 15:13:38 -07:00
|
|
|
fail = true;
|
|
|
|
|
string = "input";
|
|
|
|
|
}
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
case geometry_shader:
|
|
|
|
|
_mesa_glsl_error(loc, state,
|
|
|
|
|
"geometry shader variables cannot be given "
|
|
|
|
|
"explicit locations\n");
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
case fragment_shader:
|
2013-01-11 14:39:32 -08:00
|
|
|
if (!global_scope || (var->mode != ir_var_shader_out)) {
|
2010-10-07 15:13:38 -07:00
|
|
|
fail = true;
|
|
|
|
|
string = "output";
|
|
|
|
|
}
|
|
|
|
|
break;
|
2010-10-20 14:59:40 -07:00
|
|
|
};
|
2010-10-07 15:13:38 -07:00
|
|
|
|
|
|
|
|
if (fail) {
|
|
|
|
|
_mesa_glsl_error(loc, state,
|
|
|
|
|
"only %s shader %s variables can be given an "
|
|
|
|
|
"explicit location\n",
|
|
|
|
|
_mesa_glsl_shader_target_name(state->target),
|
|
|
|
|
string);
|
|
|
|
|
} else {
|
|
|
|
|
var->explicit_location = true;
|
2010-10-07 17:21:22 -07:00
|
|
|
|
|
|
|
|
/* This bit of silliness is needed because invalid explicit locations
|
|
|
|
|
* are supposed to be flagged during linking. Small negative values
|
|
|
|
|
* biased by VERT_ATTRIB_GENERIC0 or FRAG_RESULT_DATA0 could alias
|
|
|
|
|
* built-in values (e.g., -16+VERT_ATTRIB_GENERIC0 = VERT_ATTRIB_POS).
|
|
|
|
|
* The linker needs to be able to differentiate these cases. This
|
|
|
|
|
* ensures that negative values stay negative.
|
|
|
|
|
*/
|
|
|
|
|
if (qual->location >= 0) {
|
|
|
|
|
var->location = (state->target == vertex_shader)
|
|
|
|
|
? (qual->location + VERT_ATTRIB_GENERIC0)
|
|
|
|
|
: (qual->location + FRAG_RESULT_DATA0);
|
|
|
|
|
} else {
|
|
|
|
|
var->location = qual->location;
|
|
|
|
|
}
|
2012-08-31 16:04:19 -07:00
|
|
|
|
glsl: add support for ARB_blend_func_extended (v3)
This adds index support to the GLSL compiler.
I'm not 100% sure of my approach here, esp without how output ordering
happens wrt location, index pairs, in the "mark" function.
Since current hw doesn't ever have a location > 0 with an index > 0,
we don't have to work out if the output ordering the hw requires is
location, index, location, index or location, location, index, index.
But we have no hw to know, so punt on it for now.
v2: index requires layout - catch and error
setup explicit index properly.
v3: drop idx_offset stuff, assume index follow location
Signed-off-by: Dave Airlie <airlied@redhat.com>
2012-03-24 13:33:41 +00:00
|
|
|
if (qual->flags.q.explicit_index) {
|
2012-08-31 16:04:19 -07:00
|
|
|
/* From the GLSL 4.30 specification, section 4.4.2 (Output
|
|
|
|
|
* Layout Qualifiers):
|
|
|
|
|
*
|
|
|
|
|
* "It is also a compile-time error if a fragment shader
|
|
|
|
|
* sets a layout index to less than 0 or greater than 1."
|
|
|
|
|
*
|
|
|
|
|
* Older specifications don't mandate a behavior; we take
|
|
|
|
|
* this as a clarification and always generate the error.
|
|
|
|
|
*/
|
|
|
|
|
if (qual->index < 0 || qual->index > 1) {
|
|
|
|
|
_mesa_glsl_error(loc, state,
|
|
|
|
|
"explicit index may only be 0 or 1\n");
|
|
|
|
|
} else {
|
|
|
|
|
var->explicit_index = true;
|
|
|
|
|
var->index = qual->index;
|
|
|
|
|
}
|
glsl: add support for ARB_blend_func_extended (v3)
This adds index support to the GLSL compiler.
I'm not 100% sure of my approach here, esp without how output ordering
happens wrt location, index pairs, in the "mark" function.
Since current hw doesn't ever have a location > 0 with an index > 0,
we don't have to work out if the output ordering the hw requires is
location, index, location, index or location, location, index, index.
But we have no hw to know, so punt on it for now.
v2: index requires layout - catch and error
setup explicit index properly.
v3: drop idx_offset stuff, assume index follow location
Signed-off-by: Dave Airlie <airlied@redhat.com>
2012-03-24 13:33:41 +00:00
|
|
|
}
|
2010-10-07 15:13:38 -07:00
|
|
|
}
|
glsl: add support for ARB_blend_func_extended (v3)
This adds index support to the GLSL compiler.
I'm not 100% sure of my approach here, esp without how output ordering
happens wrt location, index pairs, in the "mark" function.
Since current hw doesn't ever have a location > 0 with an index > 0,
we don't have to work out if the output ordering the hw requires is
location, index, location, index or location, location, index, index.
But we have no hw to know, so punt on it for now.
v2: index requires layout - catch and error
setup explicit index properly.
v3: drop idx_offset stuff, assume index follow location
Signed-off-by: Dave Airlie <airlied@redhat.com>
2012-03-24 13:33:41 +00:00
|
|
|
} else if (qual->flags.q.explicit_index) {
|
|
|
|
|
_mesa_glsl_error(loc, state,
|
|
|
|
|
"explicit index requires explicit location\n");
|
2010-10-07 15:13:38 -07:00
|
|
|
}
|
|
|
|
|
|
2011-01-07 16:53:59 -08:00
|
|
|
/* Does the declaration use the 'layout' keyword?
|
|
|
|
|
*/
|
|
|
|
|
const bool uses_layout = qual->flags.q.pixel_center_integer
|
|
|
|
|
|| qual->flags.q.origin_upper_left
|
glsl: add support for ARB_blend_func_extended (v3)
This adds index support to the GLSL compiler.
I'm not 100% sure of my approach here, esp without how output ordering
happens wrt location, index pairs, in the "mark" function.
Since current hw doesn't ever have a location > 0 with an index > 0,
we don't have to work out if the output ordering the hw requires is
location, index, location, index or location, location, index, index.
But we have no hw to know, so punt on it for now.
v2: index requires layout - catch and error
setup explicit index properly.
v3: drop idx_offset stuff, assume index follow location
Signed-off-by: Dave Airlie <airlied@redhat.com>
2012-03-24 13:33:41 +00:00
|
|
|
|| qual->flags.q.explicit_location; /* no need for index since it relies on location */
|
2011-01-07 16:53:59 -08:00
|
|
|
|
|
|
|
|
/* Does the declaration use the deprecated 'attribute' or 'varying'
|
|
|
|
|
* keywords?
|
|
|
|
|
*/
|
|
|
|
|
const bool uses_deprecated_qualifier = qual->flags.q.attribute
|
|
|
|
|
|| qual->flags.q.varying;
|
|
|
|
|
|
|
|
|
|
/* Is the 'layout' keyword used with parameters that allow relaxed checking.
|
|
|
|
|
* Many implementations of GL_ARB_fragment_coord_conventions_enable and some
|
|
|
|
|
* implementations (only Mesa?) GL_ARB_explicit_attrib_location_enable
|
|
|
|
|
* allowed the layout qualifier to be used with 'varying' and 'attribute'.
|
|
|
|
|
* These extensions and all following extensions that add the 'layout'
|
|
|
|
|
* keyword have been modified to require the use of 'in' or 'out'.
|
|
|
|
|
*
|
|
|
|
|
* The following extension do not allow the deprecated keywords:
|
|
|
|
|
*
|
|
|
|
|
* GL_AMD_conservative_depth
|
2011-11-19 16:41:08 +01:00
|
|
|
* GL_ARB_conservative_depth
|
2011-01-07 16:53:59 -08:00
|
|
|
* GL_ARB_gpu_shader5
|
|
|
|
|
* GL_ARB_separate_shader_objects
|
|
|
|
|
* GL_ARB_tesselation_shader
|
|
|
|
|
* GL_ARB_transform_feedback3
|
|
|
|
|
* GL_ARB_uniform_buffer_object
|
|
|
|
|
*
|
|
|
|
|
* It is unknown whether GL_EXT_shader_image_load_store or GL_NV_gpu_shader5
|
|
|
|
|
* allow layout with the deprecated keywords.
|
|
|
|
|
*/
|
|
|
|
|
const bool relaxed_layout_qualifier_checking =
|
|
|
|
|
state->ARB_fragment_coord_conventions_enable;
|
|
|
|
|
|
|
|
|
|
if (uses_layout && uses_deprecated_qualifier) {
|
|
|
|
|
if (relaxed_layout_qualifier_checking) {
|
|
|
|
|
_mesa_glsl_warning(loc, state,
|
|
|
|
|
"`layout' qualifier may not be used with "
|
|
|
|
|
"`attribute' or `varying'");
|
|
|
|
|
} else {
|
|
|
|
|
_mesa_glsl_error(loc, state,
|
|
|
|
|
"`layout' qualifier may not be used with "
|
|
|
|
|
"`attribute' or `varying'");
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
2011-01-27 01:40:26 -08:00
|
|
|
/* Layout qualifiers for gl_FragDepth, which are enabled by extension
|
|
|
|
|
* AMD_conservative_depth.
|
|
|
|
|
*/
|
|
|
|
|
int depth_layout_count = qual->flags.q.depth_any
|
|
|
|
|
+ qual->flags.q.depth_greater
|
|
|
|
|
+ qual->flags.q.depth_less
|
|
|
|
|
+ qual->flags.q.depth_unchanged;
|
|
|
|
|
if (depth_layout_count > 0
|
2011-11-19 16:41:08 +01:00
|
|
|
&& !state->AMD_conservative_depth_enable
|
|
|
|
|
&& !state->ARB_conservative_depth_enable) {
|
2011-01-27 01:40:26 -08:00
|
|
|
_mesa_glsl_error(loc, state,
|
2011-11-19 16:41:08 +01:00
|
|
|
"extension GL_AMD_conservative_depth or "
|
|
|
|
|
"GL_ARB_conservative_depth must be enabled "
|
2011-01-27 01:40:26 -08:00
|
|
|
"to use depth layout qualifiers");
|
|
|
|
|
} else if (depth_layout_count > 0
|
|
|
|
|
&& strcmp(var->name, "gl_FragDepth") != 0) {
|
|
|
|
|
_mesa_glsl_error(loc, state,
|
|
|
|
|
"depth layout qualifiers can be applied only to "
|
|
|
|
|
"gl_FragDepth");
|
|
|
|
|
} else if (depth_layout_count > 1
|
|
|
|
|
&& strcmp(var->name, "gl_FragDepth") == 0) {
|
|
|
|
|
_mesa_glsl_error(loc, state,
|
|
|
|
|
"at most one depth layout qualifier can be applied to "
|
|
|
|
|
"gl_FragDepth");
|
|
|
|
|
}
|
|
|
|
|
if (qual->flags.q.depth_any)
|
|
|
|
|
var->depth_layout = ir_depth_layout_any;
|
|
|
|
|
else if (qual->flags.q.depth_greater)
|
|
|
|
|
var->depth_layout = ir_depth_layout_greater;
|
|
|
|
|
else if (qual->flags.q.depth_less)
|
|
|
|
|
var->depth_layout = ir_depth_layout_less;
|
|
|
|
|
else if (qual->flags.q.depth_unchanged)
|
|
|
|
|
var->depth_layout = ir_depth_layout_unchanged;
|
|
|
|
|
else
|
|
|
|
|
var->depth_layout = ir_depth_layout_none;
|
2012-04-26 18:19:39 -07:00
|
|
|
|
|
|
|
|
if (qual->flags.q.std140 ||
|
|
|
|
|
qual->flags.q.packed ||
|
|
|
|
|
qual->flags.q.shared) {
|
|
|
|
|
_mesa_glsl_error(loc, state,
|
|
|
|
|
"uniform block layout qualifiers std140, packed, and "
|
|
|
|
|
"shared can only be applied to uniform blocks, not "
|
|
|
|
|
"members");
|
|
|
|
|
}
|
|
|
|
|
|
2013-01-16 12:01:50 -08:00
|
|
|
if (qual->flags.q.row_major || qual->flags.q.column_major) {
|
|
|
|
|
if (!ubo_qualifiers_valid) {
|
|
|
|
|
_mesa_glsl_error(loc, state,
|
|
|
|
|
"uniform block layout qualifiers row_major and "
|
|
|
|
|
"column_major can only be applied to uniform block "
|
|
|
|
|
"members");
|
|
|
|
|
} else
|
|
|
|
|
validate_matrix_layout_for_type(state, loc, var->type);
|
2012-04-26 18:19:39 -07:00
|
|
|
}
|
2010-02-22 13:19:34 -08:00
|
|
|
}
|
|
|
|
|
|
2011-03-04 15:28:40 -08:00
|
|
|
/**
|
|
|
|
|
* Get the variable that is being redeclared by this declaration
|
|
|
|
|
*
|
|
|
|
|
* Semantic checks to verify the validity of the redeclaration are also
|
|
|
|
|
* performed. If semantic checks fail, compilation error will be emitted via
|
|
|
|
|
* \c _mesa_glsl_error, but a non-\c NULL pointer will still be returned.
|
|
|
|
|
*
|
|
|
|
|
* \returns
|
|
|
|
|
* A pointer to an existing variable in the current scope if the declaration
|
|
|
|
|
* is a redeclaration, \c NULL otherwise.
|
|
|
|
|
*/
|
|
|
|
|
ir_variable *
|
|
|
|
|
get_variable_being_redeclared(ir_variable *var, ast_declaration *decl,
|
|
|
|
|
struct _mesa_glsl_parse_state *state)
|
|
|
|
|
{
|
|
|
|
|
/* Check if this declaration is actually a re-declaration, either to
|
|
|
|
|
* resize an array or add qualifiers to an existing variable.
|
|
|
|
|
*
|
|
|
|
|
* This is allowed for variables in the current scope, or when at
|
|
|
|
|
* global scope (for built-ins in the implicit outer scope).
|
|
|
|
|
*/
|
|
|
|
|
ir_variable *earlier = state->symbols->get_variable(decl->identifier);
|
|
|
|
|
if (earlier == NULL ||
|
|
|
|
|
(state->current_function != NULL &&
|
|
|
|
|
!state->symbols->name_declared_this_scope(decl->identifier))) {
|
|
|
|
|
return NULL;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
YYLTYPE loc = decl->get_location();
|
|
|
|
|
|
|
|
|
|
/* From page 24 (page 30 of the PDF) of the GLSL 1.50 spec,
|
|
|
|
|
*
|
|
|
|
|
* "It is legal to declare an array without a size and then
|
|
|
|
|
* later re-declare the same name as an array of the same
|
|
|
|
|
* type and specify a size."
|
|
|
|
|
*/
|
|
|
|
|
if ((earlier->type->array_size() == 0)
|
|
|
|
|
&& var->type->is_array()
|
|
|
|
|
&& (var->type->element_type() == earlier->type->element_type())) {
|
|
|
|
|
/* FINISHME: This doesn't match the qualifiers on the two
|
|
|
|
|
* FINISHME: declarations. It's not 100% clear whether this is
|
|
|
|
|
* FINISHME: required or not.
|
|
|
|
|
*/
|
|
|
|
|
|
|
|
|
|
const unsigned size = unsigned(var->type->array_size());
|
2011-09-06 10:01:51 -07:00
|
|
|
check_builtin_array_max_size(var->name, size, loc, state);
|
|
|
|
|
if ((size > 0) && (size <= earlier->max_array_access)) {
|
2011-03-04 15:28:40 -08:00
|
|
|
_mesa_glsl_error(& loc, state, "array size must be > %u due to "
|
|
|
|
|
"previous access",
|
|
|
|
|
earlier->max_array_access);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
earlier->type = var->type;
|
|
|
|
|
delete var;
|
|
|
|
|
var = NULL;
|
|
|
|
|
} else if (state->ARB_fragment_coord_conventions_enable
|
|
|
|
|
&& strcmp(var->name, "gl_FragCoord") == 0
|
|
|
|
|
&& earlier->type == var->type
|
|
|
|
|
&& earlier->mode == var->mode) {
|
|
|
|
|
/* Allow redeclaration of gl_FragCoord for ARB_fcc layout
|
|
|
|
|
* qualifiers.
|
|
|
|
|
*/
|
|
|
|
|
earlier->origin_upper_left = var->origin_upper_left;
|
|
|
|
|
earlier->pixel_center_integer = var->pixel_center_integer;
|
|
|
|
|
|
|
|
|
|
/* According to section 4.3.7 of the GLSL 1.30 spec,
|
|
|
|
|
* the following built-in varaibles can be redeclared with an
|
|
|
|
|
* interpolation qualifier:
|
|
|
|
|
* * gl_FrontColor
|
|
|
|
|
* * gl_BackColor
|
|
|
|
|
* * gl_FrontSecondaryColor
|
|
|
|
|
* * gl_BackSecondaryColor
|
|
|
|
|
* * gl_Color
|
|
|
|
|
* * gl_SecondaryColor
|
|
|
|
|
*/
|
2012-08-01 14:50:05 -07:00
|
|
|
} else if (state->is_version(130, 0)
|
2011-03-04 15:28:40 -08:00
|
|
|
&& (strcmp(var->name, "gl_FrontColor") == 0
|
|
|
|
|
|| strcmp(var->name, "gl_BackColor") == 0
|
|
|
|
|
|| strcmp(var->name, "gl_FrontSecondaryColor") == 0
|
|
|
|
|
|| strcmp(var->name, "gl_BackSecondaryColor") == 0
|
|
|
|
|
|| strcmp(var->name, "gl_Color") == 0
|
|
|
|
|
|| strcmp(var->name, "gl_SecondaryColor") == 0)
|
|
|
|
|
&& earlier->type == var->type
|
|
|
|
|
&& earlier->mode == var->mode) {
|
|
|
|
|
earlier->interpolation = var->interpolation;
|
|
|
|
|
|
|
|
|
|
/* Layout qualifiers for gl_FragDepth. */
|
2011-11-19 16:41:08 +01:00
|
|
|
} else if ((state->AMD_conservative_depth_enable ||
|
|
|
|
|
state->ARB_conservative_depth_enable)
|
2011-03-04 15:28:40 -08:00
|
|
|
&& strcmp(var->name, "gl_FragDepth") == 0
|
|
|
|
|
&& earlier->type == var->type
|
|
|
|
|
&& earlier->mode == var->mode) {
|
|
|
|
|
|
|
|
|
|
/** From the AMD_conservative_depth spec:
|
|
|
|
|
* Within any shader, the first redeclarations of gl_FragDepth
|
|
|
|
|
* must appear before any use of gl_FragDepth.
|
|
|
|
|
*/
|
|
|
|
|
if (earlier->used) {
|
|
|
|
|
_mesa_glsl_error(&loc, state,
|
|
|
|
|
"the first redeclaration of gl_FragDepth "
|
|
|
|
|
"must appear before any use of gl_FragDepth");
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Prevent inconsistent redeclaration of depth layout qualifier. */
|
|
|
|
|
if (earlier->depth_layout != ir_depth_layout_none
|
|
|
|
|
&& earlier->depth_layout != var->depth_layout) {
|
|
|
|
|
_mesa_glsl_error(&loc, state,
|
|
|
|
|
"gl_FragDepth: depth layout is declared here "
|
|
|
|
|
"as '%s, but it was previously declared as "
|
|
|
|
|
"'%s'",
|
|
|
|
|
depth_layout_string(var->depth_layout),
|
|
|
|
|
depth_layout_string(earlier->depth_layout));
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
earlier->depth_layout = var->depth_layout;
|
|
|
|
|
|
|
|
|
|
} else {
|
|
|
|
|
_mesa_glsl_error(&loc, state, "`%s' redeclared", decl->identifier);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
return earlier;
|
|
|
|
|
}
|
2010-02-22 13:19:34 -08:00
|
|
|
|
2011-03-04 15:29:33 -08:00
|
|
|
/**
|
|
|
|
|
* Generate the IR for an initializer in a variable declaration
|
|
|
|
|
*/
|
|
|
|
|
ir_rvalue *
|
|
|
|
|
process_initializer(ir_variable *var, ast_declaration *decl,
|
|
|
|
|
ast_fully_specified_type *type,
|
|
|
|
|
exec_list *initializer_instructions,
|
|
|
|
|
struct _mesa_glsl_parse_state *state)
|
|
|
|
|
{
|
|
|
|
|
ir_rvalue *result = NULL;
|
|
|
|
|
|
|
|
|
|
YYLTYPE initializer_loc = decl->initializer->get_location();
|
|
|
|
|
|
|
|
|
|
/* From page 24 (page 30 of the PDF) of the GLSL 1.10 spec:
|
|
|
|
|
*
|
|
|
|
|
* "All uniform variables are read-only and are initialized either
|
|
|
|
|
* directly by an application via API commands, or indirectly by
|
|
|
|
|
* OpenGL."
|
|
|
|
|
*/
|
2012-08-05 09:57:01 -07:00
|
|
|
if (var->mode == ir_var_uniform) {
|
|
|
|
|
state->check_version(120, 0, &initializer_loc,
|
|
|
|
|
"cannot initialize uniforms");
|
2011-03-04 15:29:33 -08:00
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (var->type->is_sampler()) {
|
|
|
|
|
_mesa_glsl_error(& initializer_loc, state,
|
|
|
|
|
"cannot initialize samplers");
|
|
|
|
|
}
|
|
|
|
|
|
2013-01-11 14:39:32 -08:00
|
|
|
if ((var->mode == ir_var_shader_in) && (state->current_function == NULL)) {
|
2011-03-04 15:29:33 -08:00
|
|
|
_mesa_glsl_error(& initializer_loc, state,
|
|
|
|
|
"cannot initialize %s shader input / %s",
|
|
|
|
|
_mesa_glsl_shader_target_name(state->target),
|
|
|
|
|
(state->target == vertex_shader)
|
|
|
|
|
? "attribute" : "varying");
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
ir_dereference *const lhs = new(state) ir_dereference_variable(var);
|
|
|
|
|
ir_rvalue *rhs = decl->initializer->hir(initializer_instructions,
|
|
|
|
|
state);
|
|
|
|
|
|
|
|
|
|
/* Calculate the constant value if this is a const or uniform
|
|
|
|
|
* declaration.
|
|
|
|
|
*/
|
|
|
|
|
if (type->qualifier.flags.q.constant
|
|
|
|
|
|| type->qualifier.flags.q.uniform) {
|
2011-03-15 16:33:27 -07:00
|
|
|
ir_rvalue *new_rhs = validate_assignment(state, var->type, rhs, true);
|
2011-03-04 15:29:33 -08:00
|
|
|
if (new_rhs != NULL) {
|
|
|
|
|
rhs = new_rhs;
|
|
|
|
|
|
|
|
|
|
ir_constant *constant_value = rhs->constant_expression_value();
|
|
|
|
|
if (!constant_value) {
|
|
|
|
|
_mesa_glsl_error(& initializer_loc, state,
|
|
|
|
|
"initializer of %s variable `%s' must be a "
|
|
|
|
|
"constant expression",
|
|
|
|
|
(type->qualifier.flags.q.constant)
|
|
|
|
|
? "const" : "uniform",
|
|
|
|
|
decl->identifier);
|
|
|
|
|
if (var->type->is_numeric()) {
|
|
|
|
|
/* Reduce cascading errors. */
|
|
|
|
|
var->constant_value = ir_constant::zero(state, var->type);
|
|
|
|
|
}
|
|
|
|
|
} else {
|
|
|
|
|
rhs = constant_value;
|
|
|
|
|
var->constant_value = constant_value;
|
|
|
|
|
}
|
|
|
|
|
} else {
|
|
|
|
|
_mesa_glsl_error(&initializer_loc, state,
|
|
|
|
|
"initializer of type %s cannot be assigned to "
|
|
|
|
|
"variable of type %s",
|
|
|
|
|
rhs->type->name, var->type->name);
|
|
|
|
|
if (var->type->is_numeric()) {
|
|
|
|
|
/* Reduce cascading errors. */
|
|
|
|
|
var->constant_value = ir_constant::zero(state, var->type);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (rhs && !rhs->type->is_error()) {
|
|
|
|
|
bool temp = var->read_only;
|
|
|
|
|
if (type->qualifier.flags.q.constant)
|
|
|
|
|
var->read_only = false;
|
|
|
|
|
|
|
|
|
|
/* Never emit code to initialize a uniform.
|
|
|
|
|
*/
|
|
|
|
|
const glsl_type *initializer_type;
|
|
|
|
|
if (!type->qualifier.flags.q.uniform) {
|
|
|
|
|
result = do_assignment(initializer_instructions, state,
|
2011-12-23 09:56:29 -08:00
|
|
|
NULL,
|
2011-03-15 16:33:27 -07:00
|
|
|
lhs, rhs, true,
|
2011-03-04 15:29:33 -08:00
|
|
|
type->get_location());
|
|
|
|
|
initializer_type = result->type;
|
|
|
|
|
} else
|
|
|
|
|
initializer_type = rhs->type;
|
|
|
|
|
|
2011-10-31 14:31:07 -07:00
|
|
|
var->constant_initializer = rhs->constant_expression_value();
|
|
|
|
|
var->has_initializer = true;
|
|
|
|
|
|
2011-03-04 15:29:33 -08:00
|
|
|
/* If the declared variable is an unsized array, it must inherrit
|
|
|
|
|
* its full type from the initializer. A declaration such as
|
|
|
|
|
*
|
|
|
|
|
* uniform float a[] = float[](1.0, 2.0, 3.0, 3.0);
|
|
|
|
|
*
|
|
|
|
|
* becomes
|
|
|
|
|
*
|
|
|
|
|
* uniform float a[4] = float[](1.0, 2.0, 3.0, 3.0);
|
|
|
|
|
*
|
|
|
|
|
* The assignment generated in the if-statement (below) will also
|
|
|
|
|
* automatically handle this case for non-uniforms.
|
|
|
|
|
*
|
|
|
|
|
* If the declared variable is not an array, the types must
|
|
|
|
|
* already match exactly. As a result, the type assignment
|
|
|
|
|
* here can be done unconditionally. For non-uniforms the call
|
|
|
|
|
* to do_assignment can change the type of the initializer (via
|
|
|
|
|
* the implicit conversion rules). For uniforms the initializer
|
|
|
|
|
* must be a constant expression, and the type of that expression
|
|
|
|
|
* was validated above.
|
|
|
|
|
*/
|
|
|
|
|
var->type = initializer_type;
|
|
|
|
|
|
|
|
|
|
var->read_only = temp;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
return result;
|
|
|
|
|
}
|
|
|
|
|
|
2010-03-26 00:25:36 -07:00
|
|
|
ir_rvalue *
|
2010-03-08 23:44:00 -08:00
|
|
|
ast_declarator_list::hir(exec_list *instructions,
|
2010-03-01 13:49:10 -08:00
|
|
|
struct _mesa_glsl_parse_state *state)
|
2010-02-22 13:19:34 -08:00
|
|
|
{
|
2010-06-25 13:14:37 -07:00
|
|
|
void *ctx = state;
|
2010-02-22 13:19:34 -08:00
|
|
|
const struct glsl_type *decl_type;
|
|
|
|
|
const char *type_name = NULL;
|
2010-04-14 15:38:52 -07:00
|
|
|
ir_rvalue *result = NULL;
|
2010-04-23 15:55:19 -07:00
|
|
|
YYLTYPE loc = this->get_location();
|
2010-02-22 13:19:34 -08:00
|
|
|
|
2010-07-01 20:39:08 -07:00
|
|
|
/* From page 46 (page 52 of the PDF) of the GLSL 1.50 spec:
|
|
|
|
|
*
|
|
|
|
|
* "To ensure that a particular output variable is invariant, it is
|
|
|
|
|
* necessary to use the invariant qualifier. It can either be used to
|
|
|
|
|
* qualify a previously declared variable as being invariant
|
|
|
|
|
*
|
|
|
|
|
* invariant gl_Position; // make existing gl_Position be invariant"
|
|
|
|
|
*
|
|
|
|
|
* In these cases the parser will set the 'invariant' flag in the declarator
|
|
|
|
|
* list, and the type will be NULL.
|
|
|
|
|
*/
|
|
|
|
|
if (this->invariant) {
|
|
|
|
|
assert(this->type == NULL);
|
|
|
|
|
|
|
|
|
|
if (state->current_function != NULL) {
|
|
|
|
|
_mesa_glsl_error(& loc, state,
|
|
|
|
|
"All uses of `invariant' keyword must be at global "
|
|
|
|
|
"scope\n");
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
|
|
|
|
|
assert(!decl->is_array);
|
|
|
|
|
assert(decl->array_size == NULL);
|
|
|
|
|
assert(decl->initializer == NULL);
|
|
|
|
|
|
|
|
|
|
ir_variable *const earlier =
|
|
|
|
|
state->symbols->get_variable(decl->identifier);
|
|
|
|
|
if (earlier == NULL) {
|
|
|
|
|
_mesa_glsl_error(& loc, state,
|
|
|
|
|
"Undeclared variable `%s' cannot be marked "
|
|
|
|
|
"invariant\n", decl->identifier);
|
|
|
|
|
} else if ((state->target == vertex_shader)
|
2013-01-11 14:39:32 -08:00
|
|
|
&& (earlier->mode != ir_var_shader_out)) {
|
2010-07-01 20:39:08 -07:00
|
|
|
_mesa_glsl_error(& loc, state,
|
|
|
|
|
"`%s' cannot be marked invariant, vertex shader "
|
|
|
|
|
"outputs only\n", decl->identifier);
|
|
|
|
|
} else if ((state->target == fragment_shader)
|
2013-01-11 14:39:32 -08:00
|
|
|
&& (earlier->mode != ir_var_shader_in)) {
|
2010-07-01 20:39:08 -07:00
|
|
|
_mesa_glsl_error(& loc, state,
|
|
|
|
|
"`%s' cannot be marked invariant, fragment shader "
|
|
|
|
|
"inputs only\n", decl->identifier);
|
2011-01-07 18:34:58 -08:00
|
|
|
} else if (earlier->used) {
|
|
|
|
|
_mesa_glsl_error(& loc, state,
|
|
|
|
|
"variable `%s' may not be redeclared "
|
|
|
|
|
"`invariant' after being used",
|
|
|
|
|
earlier->name);
|
2010-07-01 20:39:08 -07:00
|
|
|
} else {
|
|
|
|
|
earlier->invariant = true;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Invariant redeclarations do not have r-values.
|
|
|
|
|
*/
|
|
|
|
|
return NULL;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
assert(this->type != NULL);
|
|
|
|
|
assert(!this->invariant);
|
|
|
|
|
|
2010-04-19 15:13:15 -07:00
|
|
|
/* The type specifier may contain a structure definition. Process that
|
|
|
|
|
* before any of the variable declarations.
|
|
|
|
|
*/
|
|
|
|
|
(void) this->type->specifier->hir(instructions, state);
|
|
|
|
|
|
2010-03-31 16:22:06 -07:00
|
|
|
decl_type = this->type->specifier->glsl_type(& type_name, state);
|
2010-05-10 11:17:53 -07:00
|
|
|
if (this->declarations.is_empty()) {
|
2011-10-25 17:49:07 -07:00
|
|
|
/* If there is no structure involved in the program text, there are two
|
|
|
|
|
* possible scenarios:
|
|
|
|
|
*
|
|
|
|
|
* - The program text contained something like 'vec4;'. This is an
|
|
|
|
|
* empty declaration. It is valid but weird. Emit a warning.
|
|
|
|
|
*
|
|
|
|
|
* - The program text contained something like 'S;' and 'S' is not the
|
|
|
|
|
* name of a known structure type. This is both invalid and weird.
|
|
|
|
|
* Emit an error.
|
|
|
|
|
*
|
|
|
|
|
* Note that if decl_type is NULL and there is a structure involved,
|
|
|
|
|
* there must have been some sort of error with the structure. In this
|
|
|
|
|
* case we assume that an error was already generated on this line of
|
|
|
|
|
* code for the structure. There is no need to generate an additional,
|
|
|
|
|
* confusing error.
|
|
|
|
|
*/
|
|
|
|
|
assert(this->type->specifier->structure == NULL || decl_type != NULL
|
|
|
|
|
|| state->error);
|
|
|
|
|
if (this->type->specifier->structure == NULL) {
|
|
|
|
|
if (decl_type != NULL) {
|
2011-08-04 00:39:07 +09:00
|
|
|
_mesa_glsl_warning(&loc, state, "empty declaration");
|
2011-10-25 17:49:07 -07:00
|
|
|
} else {
|
|
|
|
|
_mesa_glsl_error(&loc, state,
|
|
|
|
|
"invalid type `%s' in empty declaration",
|
|
|
|
|
type_name);
|
2011-08-04 00:39:07 +09:00
|
|
|
}
|
2010-04-23 15:55:19 -07:00
|
|
|
}
|
|
|
|
|
}
|
2010-02-22 13:19:34 -08:00
|
|
|
|
2010-05-10 17:42:05 -07:00
|
|
|
foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
|
2010-02-22 13:19:34 -08:00
|
|
|
const struct glsl_type *var_type;
|
2010-08-13 16:46:43 -07:00
|
|
|
ir_variable *var;
|
2010-02-22 13:19:34 -08:00
|
|
|
|
|
|
|
|
/* FINISHME: Emit a warning if a variable declaration shadows a
|
|
|
|
|
* FINISHME: declaration at a higher scope.
|
|
|
|
|
*/
|
|
|
|
|
|
2010-03-23 12:28:44 -07:00
|
|
|
if ((decl_type == NULL) || decl_type->is_void()) {
|
2010-02-22 13:19:34 -08:00
|
|
|
if (type_name != NULL) {
|
|
|
|
|
_mesa_glsl_error(& loc, state,
|
|
|
|
|
"invalid type `%s' in declaration of `%s'",
|
|
|
|
|
type_name, decl->identifier);
|
|
|
|
|
} else {
|
|
|
|
|
_mesa_glsl_error(& loc, state,
|
|
|
|
|
"invalid type in declaration of `%s'",
|
|
|
|
|
decl->identifier);
|
|
|
|
|
}
|
|
|
|
|
continue;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (decl->is_array) {
|
2010-08-07 02:56:01 -07:00
|
|
|
var_type = process_array_type(&loc, decl_type, decl->array_size,
|
|
|
|
|
state);
|
2011-10-24 11:45:50 -07:00
|
|
|
if (var_type->is_error())
|
|
|
|
|
continue;
|
2010-02-22 13:19:34 -08:00
|
|
|
} else {
|
|
|
|
|
var_type = decl_type;
|
|
|
|
|
}
|
|
|
|
|
|
2010-07-19 17:12:42 -07:00
|
|
|
var = new(ctx) ir_variable(var_type, decl->identifier, ir_var_auto);
|
2010-02-22 13:19:34 -08:00
|
|
|
|
2010-04-02 01:53:57 -10:00
|
|
|
/* From page 22 (page 28 of the PDF) of the GLSL 1.10 specification;
|
|
|
|
|
*
|
|
|
|
|
* "Global variables can only use the qualifiers const,
|
|
|
|
|
* attribute, uni form, or varying. Only one may be
|
|
|
|
|
* specified.
|
|
|
|
|
*
|
|
|
|
|
* Local variables can only use the qualifier const."
|
|
|
|
|
*
|
2012-08-02 08:18:12 -07:00
|
|
|
* This is relaxed in GLSL 1.30 and GLSL ES 3.00. It is also relaxed by
|
|
|
|
|
* any extension that adds the 'layout' keyword.
|
2010-04-02 01:53:57 -10:00
|
|
|
*/
|
2012-08-02 08:18:12 -07:00
|
|
|
if (!state->is_version(130, 300)
|
2011-01-07 16:53:07 -08:00
|
|
|
&& !state->ARB_explicit_attrib_location_enable
|
|
|
|
|
&& !state->ARB_fragment_coord_conventions_enable) {
|
2010-10-05 16:38:47 -07:00
|
|
|
if (this->type->qualifier.flags.q.out) {
|
2010-04-02 01:53:57 -10:00
|
|
|
_mesa_glsl_error(& loc, state,
|
|
|
|
|
"`out' qualifier in declaration of `%s' "
|
2011-01-07 16:05:59 -08:00
|
|
|
"only valid for function parameters in %s.",
|
2012-08-02 06:45:30 -07:00
|
|
|
decl->identifier, state->get_version_string());
|
2010-04-02 01:53:57 -10:00
|
|
|
}
|
2010-10-05 16:38:47 -07:00
|
|
|
if (this->type->qualifier.flags.q.in) {
|
2010-04-02 01:53:57 -10:00
|
|
|
_mesa_glsl_error(& loc, state,
|
|
|
|
|
"`in' qualifier in declaration of `%s' "
|
2011-01-07 16:05:59 -08:00
|
|
|
"only valid for function parameters in %s.",
|
2012-08-02 06:45:30 -07:00
|
|
|
decl->identifier, state->get_version_string());
|
2010-04-02 01:53:57 -10:00
|
|
|
}
|
|
|
|
|
/* FINISHME: Test for other invalid qualifiers. */
|
|
|
|
|
}
|
|
|
|
|
|
2010-03-28 00:56:22 -07:00
|
|
|
apply_type_qualifier_to_variable(& this->type->qualifier, var, state,
|
2012-12-18 14:49:34 -08:00
|
|
|
& loc, this->ubo_qualifiers_valid, false);
|
2010-02-22 13:19:34 -08:00
|
|
|
|
2010-10-05 16:38:47 -07:00
|
|
|
if (this->type->qualifier.flags.q.invariant) {
|
2013-01-11 14:39:32 -08:00
|
|
|
if ((state->target == vertex_shader) &&
|
|
|
|
|
var->mode != ir_var_shader_out) {
|
2010-07-01 20:39:08 -07:00
|
|
|
_mesa_glsl_error(& loc, state,
|
|
|
|
|
"`%s' cannot be marked invariant, vertex shader "
|
|
|
|
|
"outputs only\n", var->name);
|
2010-08-04 20:33:57 -07:00
|
|
|
} else if ((state->target == fragment_shader) &&
|
2013-01-11 14:39:32 -08:00
|
|
|
var->mode != ir_var_shader_in) {
|
2010-08-04 20:33:57 -07:00
|
|
|
/* FINISHME: Note that this doesn't work for invariant on
|
|
|
|
|
* a function signature inval
|
|
|
|
|
*/
|
2010-07-01 20:39:08 -07:00
|
|
|
_mesa_glsl_error(& loc, state,
|
|
|
|
|
"`%s' cannot be marked invariant, fragment shader "
|
|
|
|
|
"inputs only\n", var->name);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
2010-03-31 12:26:03 -07:00
|
|
|
if (state->current_function != NULL) {
|
2010-03-31 12:31:18 -07:00
|
|
|
const char *mode = NULL;
|
2010-03-31 13:15:23 -07:00
|
|
|
const char *extra = "";
|
2010-03-31 12:31:18 -07:00
|
|
|
|
2010-03-31 13:15:23 -07:00
|
|
|
/* There is no need to check for 'inout' here because the parser will
|
|
|
|
|
* only allow that in function parameter lists.
|
2010-03-31 12:26:03 -07:00
|
|
|
*/
|
2010-10-05 16:38:47 -07:00
|
|
|
if (this->type->qualifier.flags.q.attribute) {
|
2010-03-31 12:31:18 -07:00
|
|
|
mode = "attribute";
|
2010-10-05 16:38:47 -07:00
|
|
|
} else if (this->type->qualifier.flags.q.uniform) {
|
2010-03-31 12:31:18 -07:00
|
|
|
mode = "uniform";
|
2010-10-05 16:38:47 -07:00
|
|
|
} else if (this->type->qualifier.flags.q.varying) {
|
2010-03-31 12:31:18 -07:00
|
|
|
mode = "varying";
|
2010-10-05 16:38:47 -07:00
|
|
|
} else if (this->type->qualifier.flags.q.in) {
|
2010-03-31 13:15:23 -07:00
|
|
|
mode = "in";
|
|
|
|
|
extra = " or in function parameter list";
|
2010-10-05 16:38:47 -07:00
|
|
|
} else if (this->type->qualifier.flags.q.out) {
|
2010-03-31 13:15:23 -07:00
|
|
|
mode = "out";
|
|
|
|
|
extra = " or in function parameter list";
|
2010-03-31 12:31:18 -07:00
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (mode) {
|
2010-03-31 12:26:03 -07:00
|
|
|
_mesa_glsl_error(& loc, state,
|
2010-03-31 12:31:18 -07:00
|
|
|
"%s variable `%s' must be declared at "
|
2010-03-31 13:15:23 -07:00
|
|
|
"global scope%s",
|
|
|
|
|
mode, var->name, extra);
|
2010-03-31 12:26:03 -07:00
|
|
|
}
|
2013-01-11 14:39:32 -08:00
|
|
|
} else if (var->mode == ir_var_shader_in) {
|
2011-01-20 14:12:16 -08:00
|
|
|
var->read_only = true;
|
|
|
|
|
|
2010-03-29 17:16:35 -07:00
|
|
|
if (state->target == vertex_shader) {
|
|
|
|
|
bool error_emitted = false;
|
|
|
|
|
|
|
|
|
|
/* From page 31 (page 37 of the PDF) of the GLSL 1.50 spec:
|
|
|
|
|
*
|
|
|
|
|
* "Vertex shader inputs can only be float, floating-point
|
|
|
|
|
* vectors, matrices, signed and unsigned integers and integer
|
|
|
|
|
* vectors. Vertex shader inputs can also form arrays of these
|
|
|
|
|
* types, but not structures."
|
|
|
|
|
*
|
2010-03-29 17:40:11 -07:00
|
|
|
* From page 31 (page 27 of the PDF) of the GLSL 1.30 spec:
|
|
|
|
|
*
|
|
|
|
|
* "Vertex shader inputs can only be float, floating-point
|
|
|
|
|
* vectors, matrices, signed and unsigned integers and integer
|
|
|
|
|
* vectors. They cannot be arrays or structures."
|
|
|
|
|
*
|
2010-03-29 17:16:35 -07:00
|
|
|
* From page 23 (page 29 of the PDF) of the GLSL 1.20 spec:
|
|
|
|
|
*
|
|
|
|
|
* "The attribute qualifier can be used only with float,
|
|
|
|
|
* floating-point vectors, and matrices. Attribute variables
|
|
|
|
|
* cannot be declared as arrays or structures."
|
2012-08-02 08:18:12 -07:00
|
|
|
*
|
|
|
|
|
* From page 33 (page 39 of the PDF) of the GLSL ES 3.00 spec:
|
|
|
|
|
*
|
|
|
|
|
* "Vertex shader inputs can only be float, floating-point
|
|
|
|
|
* vectors, matrices, signed and unsigned integers and integer
|
|
|
|
|
* vectors. Vertex shader inputs cannot be arrays or
|
|
|
|
|
* structures."
|
2010-03-29 17:16:35 -07:00
|
|
|
*/
|
|
|
|
|
const glsl_type *check_type = var->type->is_array()
|
|
|
|
|
? var->type->fields.array : var->type;
|
|
|
|
|
|
|
|
|
|
switch (check_type->base_type) {
|
|
|
|
|
case GLSL_TYPE_FLOAT:
|
|
|
|
|
break;
|
|
|
|
|
case GLSL_TYPE_UINT:
|
|
|
|
|
case GLSL_TYPE_INT:
|
2012-08-02 08:18:12 -07:00
|
|
|
if (state->is_version(120, 300))
|
2010-03-29 17:16:35 -07:00
|
|
|
break;
|
|
|
|
|
/* FALLTHROUGH */
|
|
|
|
|
default:
|
|
|
|
|
_mesa_glsl_error(& loc, state,
|
|
|
|
|
"vertex shader input / attribute cannot have "
|
|
|
|
|
"type %s`%s'",
|
|
|
|
|
var->type->is_array() ? "array of " : "",
|
|
|
|
|
check_type->name);
|
|
|
|
|
error_emitted = true;
|
|
|
|
|
}
|
|
|
|
|
|
2012-08-05 09:57:01 -07:00
|
|
|
if (!error_emitted && var->type->is_array() &&
|
|
|
|
|
!state->check_version(140, 0, &loc,
|
|
|
|
|
"vertex shader input / attribute "
|
|
|
|
|
"cannot have array type")) {
|
2010-03-29 17:16:35 -07:00
|
|
|
error_emitted = true;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
2010-12-16 11:06:19 -08:00
|
|
|
/* Integer vertex outputs must be qualified with 'flat'.
|
|
|
|
|
*
|
|
|
|
|
* From section 4.3.6 of the GLSL 1.30 spec:
|
|
|
|
|
* "If a vertex output is a signed or unsigned integer or integer
|
|
|
|
|
* vector, then it must be qualified with the interpolation qualifier
|
|
|
|
|
* flat."
|
2012-08-02 08:18:12 -07:00
|
|
|
*
|
|
|
|
|
* From section 4.3.4 of the GLSL 3.00 ES spec:
|
|
|
|
|
* "Fragment shader inputs that are signed or unsigned integers or
|
|
|
|
|
* integer vectors must be qualified with the interpolation qualifier
|
|
|
|
|
* flat."
|
|
|
|
|
*
|
|
|
|
|
* Since vertex outputs and fragment inputs must have matching
|
|
|
|
|
* qualifiers, these two requirements are equivalent.
|
2010-12-16 11:06:19 -08:00
|
|
|
*/
|
2012-08-02 08:18:12 -07:00
|
|
|
if (state->is_version(130, 300)
|
2010-12-16 11:06:19 -08:00
|
|
|
&& state->target == vertex_shader
|
|
|
|
|
&& state->current_function == NULL
|
|
|
|
|
&& var->type->is_integer()
|
2013-01-11 14:39:32 -08:00
|
|
|
&& var->mode == ir_var_shader_out
|
2011-10-25 18:06:37 -07:00
|
|
|
&& var->interpolation != INTERP_QUALIFIER_FLAT) {
|
2010-12-16 11:06:19 -08:00
|
|
|
|
|
|
|
|
_mesa_glsl_error(&loc, state, "If a vertex output is an integer, "
|
|
|
|
|
"then it must be qualified with 'flat'");
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
2011-01-11 17:21:18 -08:00
|
|
|
/* Interpolation qualifiers cannot be applied to 'centroid' and
|
|
|
|
|
* 'centroid varying'.
|
|
|
|
|
*
|
|
|
|
|
* From page 29 (page 35 of the PDF) of the GLSL 1.30 spec:
|
|
|
|
|
* "interpolation qualifiers may only precede the qualifiers in,
|
|
|
|
|
* centroid in, out, or centroid out in a declaration. They do not apply
|
|
|
|
|
* to the deprecated storage qualifiers varying or centroid varying."
|
2012-08-02 08:18:12 -07:00
|
|
|
*
|
|
|
|
|
* These deprecated storage qualifiers do not exist in GLSL ES 3.00.
|
2011-01-11 17:21:18 -08:00
|
|
|
*/
|
2012-08-01 14:50:05 -07:00
|
|
|
if (state->is_version(130, 0)
|
2011-01-11 17:21:18 -08:00
|
|
|
&& this->type->qualifier.has_interpolation()
|
|
|
|
|
&& this->type->qualifier.flags.q.varying) {
|
|
|
|
|
|
|
|
|
|
const char *i = this->type->qualifier.interpolation_string();
|
|
|
|
|
assert(i != NULL);
|
|
|
|
|
const char *s;
|
|
|
|
|
if (this->type->qualifier.flags.q.centroid)
|
|
|
|
|
s = "centroid varying";
|
|
|
|
|
else
|
|
|
|
|
s = "varying";
|
|
|
|
|
|
|
|
|
|
_mesa_glsl_error(&loc, state,
|
|
|
|
|
"qualifier '%s' cannot be applied to the "
|
|
|
|
|
"deprecated storage qualifier '%s'", i, s);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
2011-01-11 18:13:26 -08:00
|
|
|
/* Interpolation qualifiers can only apply to vertex shader outputs and
|
|
|
|
|
* fragment shader inputs.
|
|
|
|
|
*
|
|
|
|
|
* From page 29 (page 35 of the PDF) of the GLSL 1.30 spec:
|
|
|
|
|
* "Outputs from a vertex shader (out) and inputs to a fragment
|
|
|
|
|
* shader (in) can be further qualified with one or more of these
|
|
|
|
|
* interpolation qualifiers"
|
2012-08-02 08:18:12 -07:00
|
|
|
*
|
|
|
|
|
* From page 31 (page 37 of the PDF) of the GLSL ES 3.00 spec:
|
|
|
|
|
* "These interpolation qualifiers may only precede the qualifiers
|
|
|
|
|
* in, centroid in, out, or centroid out in a declaration. They do
|
|
|
|
|
* not apply to inputs into a vertex shader or outputs from a
|
|
|
|
|
* fragment shader."
|
2011-01-11 18:13:26 -08:00
|
|
|
*/
|
2012-08-02 08:18:12 -07:00
|
|
|
if (state->is_version(130, 300)
|
2011-01-11 18:13:26 -08:00
|
|
|
&& this->type->qualifier.has_interpolation()) {
|
|
|
|
|
|
|
|
|
|
const char *i = this->type->qualifier.interpolation_string();
|
|
|
|
|
assert(i != NULL);
|
|
|
|
|
|
|
|
|
|
switch (state->target) {
|
|
|
|
|
case vertex_shader:
|
|
|
|
|
if (this->type->qualifier.flags.q.in) {
|
|
|
|
|
_mesa_glsl_error(&loc, state,
|
|
|
|
|
"qualifier '%s' cannot be applied to vertex "
|
|
|
|
|
"shader inputs", i);
|
|
|
|
|
}
|
|
|
|
|
break;
|
|
|
|
|
case fragment_shader:
|
|
|
|
|
if (this->type->qualifier.flags.q.out) {
|
|
|
|
|
_mesa_glsl_error(&loc, state,
|
|
|
|
|
"qualifier '%s' cannot be applied to fragment "
|
|
|
|
|
"shader outputs", i);
|
|
|
|
|
}
|
|
|
|
|
break;
|
|
|
|
|
default:
|
|
|
|
|
assert(0);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
2011-01-11 18:24:17 -08:00
|
|
|
/* From section 4.3.4 of the GLSL 1.30 spec:
|
|
|
|
|
* "It is an error to use centroid in in a vertex shader."
|
2012-08-02 08:18:12 -07:00
|
|
|
*
|
|
|
|
|
* From section 4.3.4 of the GLSL ES 3.00 spec:
|
|
|
|
|
* "It is an error to use centroid in or interpolation qualifiers in
|
|
|
|
|
* a vertex shader input."
|
2011-01-11 18:24:17 -08:00
|
|
|
*/
|
2012-08-02 08:18:12 -07:00
|
|
|
if (state->is_version(130, 300)
|
2011-01-11 18:24:17 -08:00
|
|
|
&& this->type->qualifier.flags.q.centroid
|
|
|
|
|
&& this->type->qualifier.flags.q.in
|
|
|
|
|
&& state->target == vertex_shader) {
|
|
|
|
|
|
|
|
|
|
_mesa_glsl_error(&loc, state,
|
|
|
|
|
"'centroid in' cannot be used in a vertex shader");
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
2011-01-16 22:38:45 -08:00
|
|
|
/* Precision qualifiers exists only in GLSL versions 1.00 and >= 1.30.
|
|
|
|
|
*/
|
2012-08-05 09:57:01 -07:00
|
|
|
if (this->type->specifier->precision != ast_precision_none) {
|
|
|
|
|
state->check_precision_qualifiers_allowed(&loc);
|
2011-01-16 22:38:45 -08:00
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
2011-01-17 15:28:39 -08:00
|
|
|
/* Precision qualifiers only apply to floating point and integer types.
|
2011-01-16 22:38:45 -08:00
|
|
|
*
|
|
|
|
|
* From section 4.5.2 of the GLSL 1.30 spec:
|
|
|
|
|
* "Any floating point or any integer declaration can have the type
|
|
|
|
|
* preceded by one of these precision qualifiers [...] Literal
|
|
|
|
|
* constants do not have precision qualifiers. Neither do Boolean
|
|
|
|
|
* variables.
|
2011-03-26 23:37:09 -07:00
|
|
|
*
|
|
|
|
|
* In GLSL ES, sampler types are also allowed.
|
|
|
|
|
*
|
|
|
|
|
* From page 87 of the GLSL ES spec:
|
|
|
|
|
* "RESOLUTION: Allow sampler types to take a precision qualifier."
|
2011-01-16 22:38:45 -08:00
|
|
|
*/
|
|
|
|
|
if (this->type->specifier->precision != ast_precision_none
|
2011-01-17 15:28:39 -08:00
|
|
|
&& !var->type->is_float()
|
|
|
|
|
&& !var->type->is_integer()
|
2011-03-26 23:37:09 -07:00
|
|
|
&& !(var->type->is_sampler() && state->es_shader)
|
2011-01-17 15:28:39 -08:00
|
|
|
&& !(var->type->is_array()
|
|
|
|
|
&& (var->type->fields.array->is_float()
|
|
|
|
|
|| var->type->fields.array->is_integer()))) {
|
2011-01-16 22:38:45 -08:00
|
|
|
|
|
|
|
|
_mesa_glsl_error(&loc, state,
|
2011-03-26 23:37:09 -07:00
|
|
|
"precision qualifiers apply only to floating point"
|
|
|
|
|
"%s types", state->es_shader ? ", integer, and sampler"
|
|
|
|
|
: "and integer");
|
2011-01-16 22:38:45 -08:00
|
|
|
}
|
|
|
|
|
|
2011-07-12 12:03:02 -07:00
|
|
|
/* From page 17 (page 23 of the PDF) of the GLSL 1.20 spec:
|
|
|
|
|
*
|
|
|
|
|
* "[Sampler types] can only be declared as function
|
|
|
|
|
* parameters or uniform variables (see Section 4.3.5
|
|
|
|
|
* "Uniform")".
|
|
|
|
|
*/
|
|
|
|
|
if (var_type->contains_sampler() &&
|
|
|
|
|
!this->type->qualifier.flags.q.uniform) {
|
|
|
|
|
_mesa_glsl_error(&loc, state, "samplers must be declared uniform");
|
|
|
|
|
}
|
|
|
|
|
|
2010-07-07 12:13:34 -07:00
|
|
|
/* Process the initializer and add its instructions to a temporary
|
|
|
|
|
* list. This list will be added to the instruction stream (below) after
|
|
|
|
|
* the declaration is added. This is done because in some cases (such as
|
|
|
|
|
* redeclarations) the declaration may not actually be added to the
|
|
|
|
|
* instruction stream.
|
|
|
|
|
*/
|
2010-07-29 13:50:17 -07:00
|
|
|
exec_list initializer_instructions;
|
2011-03-04 16:15:20 -08:00
|
|
|
ir_variable *earlier = get_variable_being_redeclared(var, decl, state);
|
|
|
|
|
|
2010-03-27 18:56:53 -07:00
|
|
|
if (decl->initializer != NULL) {
|
2011-03-04 16:15:20 -08:00
|
|
|
result = process_initializer((earlier == NULL) ? var : earlier,
|
|
|
|
|
decl, this->type,
|
2011-03-04 15:29:33 -08:00
|
|
|
&initializer_instructions, state);
|
2010-03-27 18:56:53 -07:00
|
|
|
}
|
2010-03-29 12:59:02 -07:00
|
|
|
|
2010-03-31 09:29:33 -10:00
|
|
|
/* From page 23 (page 29 of the PDF) of the GLSL 1.10 spec:
|
|
|
|
|
*
|
|
|
|
|
* "It is an error to write to a const variable outside of
|
|
|
|
|
* its declaration, so they must be initialized when
|
|
|
|
|
* declared."
|
|
|
|
|
*/
|
2010-10-05 16:38:47 -07:00
|
|
|
if (this->type->qualifier.flags.q.constant && decl->initializer == NULL) {
|
2010-03-31 09:29:33 -10:00
|
|
|
_mesa_glsl_error(& loc, state,
|
2011-01-18 15:15:19 -08:00
|
|
|
"const declaration of `%s' must be initialized",
|
|
|
|
|
decl->identifier);
|
2010-03-31 09:29:33 -10:00
|
|
|
}
|
|
|
|
|
|
2011-03-04 16:15:20 -08:00
|
|
|
/* If the declaration is not a redeclaration, there are a few additional
|
|
|
|
|
* semantic checks that must be applied. In addition, variable that was
|
|
|
|
|
* created for the declaration should be added to the IR stream.
|
2010-07-01 12:46:55 -07:00
|
|
|
*/
|
2011-03-04 16:15:20 -08:00
|
|
|
if (earlier == NULL) {
|
|
|
|
|
/* From page 15 (page 21 of the PDF) of the GLSL 1.10 spec,
|
|
|
|
|
*
|
|
|
|
|
* "Identifiers starting with "gl_" are reserved for use by
|
|
|
|
|
* OpenGL, and may not be declared in a shader as either a
|
|
|
|
|
* variable or a function."
|
|
|
|
|
*/
|
|
|
|
|
if (strncmp(decl->identifier, "gl_", 3) == 0)
|
|
|
|
|
_mesa_glsl_error(& loc, state,
|
|
|
|
|
"identifier `%s' uses reserved `gl_' prefix",
|
|
|
|
|
decl->identifier);
|
2011-10-06 22:37:48 -07:00
|
|
|
else if (strstr(decl->identifier, "__")) {
|
2011-10-03 16:27:59 -07:00
|
|
|
/* From page 14 (page 20 of the PDF) of the GLSL 1.10
|
|
|
|
|
* spec:
|
|
|
|
|
*
|
|
|
|
|
* "In addition, all identifiers containing two
|
|
|
|
|
* consecutive underscores (__) are reserved as
|
|
|
|
|
* possible future keywords."
|
|
|
|
|
*/
|
|
|
|
|
_mesa_glsl_error(& loc, state,
|
|
|
|
|
"identifier `%s' uses reserved `__' string",
|
|
|
|
|
decl->identifier);
|
|
|
|
|
}
|
2010-07-01 12:46:55 -07:00
|
|
|
|
2011-03-04 16:15:20 -08:00
|
|
|
/* Add the variable to the symbol table. Note that the initializer's
|
|
|
|
|
* IR was already processed earlier (though it hasn't been emitted
|
|
|
|
|
* yet), without the variable in scope.
|
|
|
|
|
*
|
|
|
|
|
* This differs from most C-like languages, but it follows the GLSL
|
|
|
|
|
* specification. From page 28 (page 34 of the PDF) of the GLSL 1.50
|
|
|
|
|
* spec:
|
|
|
|
|
*
|
|
|
|
|
* "Within a declaration, the scope of a name starts immediately
|
|
|
|
|
* after the initializer if present or immediately after the name
|
|
|
|
|
* being declared if not."
|
|
|
|
|
*/
|
|
|
|
|
if (!state->symbols->add_variable(var)) {
|
|
|
|
|
YYLTYPE loc = this->get_location();
|
|
|
|
|
_mesa_glsl_error(&loc, state, "name `%s' already taken in the "
|
|
|
|
|
"current scope", decl->identifier);
|
|
|
|
|
continue;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Push the variable declaration to the top. It means that all the
|
|
|
|
|
* variable declarations will appear in a funny last-to-first order,
|
|
|
|
|
* but otherwise we run into trouble if a function is prototyped, a
|
|
|
|
|
* global var is decled, then the function is defined with usage of
|
|
|
|
|
* the global var. See glslparsertest's CorrectModule.frag.
|
|
|
|
|
*/
|
|
|
|
|
instructions->push_head(var);
|
2010-08-24 01:45:49 -07:00
|
|
|
}
|
|
|
|
|
|
2010-07-29 13:50:17 -07:00
|
|
|
instructions->append_list(&initializer_instructions);
|
2010-02-22 13:19:34 -08:00
|
|
|
}
|
|
|
|
|
|
2010-04-14 15:38:52 -07:00
|
|
|
|
|
|
|
|
/* Generally, variable declarations do not have r-values. However,
|
|
|
|
|
* one is used for the declaration in
|
|
|
|
|
*
|
|
|
|
|
* while (bool b = some_condition()) {
|
|
|
|
|
* ...
|
|
|
|
|
* }
|
|
|
|
|
*
|
|
|
|
|
* so we return the rvalue from the last seen declaration here.
|
2010-02-22 13:19:34 -08:00
|
|
|
*/
|
2010-04-14 15:38:52 -07:00
|
|
|
return result;
|
2010-02-22 13:19:34 -08:00
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
2010-03-26 00:25:36 -07:00
|
|
|
ir_rvalue *
|
2010-03-08 23:44:00 -08:00
|
|
|
ast_parameter_declarator::hir(exec_list *instructions,
|
2010-03-01 13:49:10 -08:00
|
|
|
struct _mesa_glsl_parse_state *state)
|
2010-02-22 13:19:34 -08:00
|
|
|
{
|
2010-06-25 13:14:37 -07:00
|
|
|
void *ctx = state;
|
2010-02-22 13:19:34 -08:00
|
|
|
const struct glsl_type *type;
|
|
|
|
|
const char *name = NULL;
|
2010-03-28 00:56:22 -07:00
|
|
|
YYLTYPE loc = this->get_location();
|
2010-02-22 13:19:34 -08:00
|
|
|
|
2010-03-31 16:22:06 -07:00
|
|
|
type = this->type->specifier->glsl_type(& name, state);
|
2010-02-22 13:19:34 -08:00
|
|
|
|
|
|
|
|
if (type == NULL) {
|
|
|
|
|
if (name != NULL) {
|
|
|
|
|
_mesa_glsl_error(& loc, state,
|
|
|
|
|
"invalid type `%s' in declaration of `%s'",
|
2010-03-01 13:49:10 -08:00
|
|
|
name, this->identifier);
|
2010-02-22 13:19:34 -08:00
|
|
|
} else {
|
|
|
|
|
_mesa_glsl_error(& loc, state,
|
|
|
|
|
"invalid type in declaration of `%s'",
|
2010-03-01 13:49:10 -08:00
|
|
|
this->identifier);
|
2010-02-22 13:19:34 -08:00
|
|
|
}
|
|
|
|
|
|
2010-03-26 14:33:41 -07:00
|
|
|
type = glsl_type::error_type;
|
2010-02-22 13:19:34 -08:00
|
|
|
}
|
|
|
|
|
|
2010-03-31 09:56:36 -10:00
|
|
|
/* From page 62 (page 68 of the PDF) of the GLSL 1.50 spec:
|
|
|
|
|
*
|
|
|
|
|
* "Functions that accept no input arguments need not use void in the
|
|
|
|
|
* argument list because prototypes (or definitions) are required and
|
|
|
|
|
* therefore there is no ambiguity when an empty argument list "( )" is
|
|
|
|
|
* declared. The idiom "(void)" as a parameter list is provided for
|
|
|
|
|
* convenience."
|
|
|
|
|
*
|
|
|
|
|
* Placing this check here prevents a void parameter being set up
|
|
|
|
|
* for a function, which avoids tripping up checks for main taking
|
|
|
|
|
* parameters and lookups of an unnamed symbol.
|
|
|
|
|
*/
|
2010-04-02 15:30:45 -07:00
|
|
|
if (type->is_void()) {
|
|
|
|
|
if (this->identifier != NULL)
|
|
|
|
|
_mesa_glsl_error(& loc, state,
|
|
|
|
|
"named parameter cannot have type `void'");
|
|
|
|
|
|
|
|
|
|
is_void = true;
|
2010-03-31 09:56:36 -10:00
|
|
|
return NULL;
|
2010-04-02 15:30:45 -07:00
|
|
|
}
|
2010-03-31 09:56:36 -10:00
|
|
|
|
2010-04-02 15:09:33 -07:00
|
|
|
if (formal_parameter && (this->identifier == NULL)) {
|
|
|
|
|
_mesa_glsl_error(& loc, state, "formal parameter lacks a name");
|
|
|
|
|
return NULL;
|
|
|
|
|
}
|
|
|
|
|
|
2010-08-21 15:30:34 -07:00
|
|
|
/* This only handles "vec4 foo[..]". The earlier specifier->glsl_type(...)
|
|
|
|
|
* call already handled the "vec4[..] foo" case.
|
|
|
|
|
*/
|
|
|
|
|
if (this->is_array) {
|
2010-08-07 02:56:01 -07:00
|
|
|
type = process_array_type(&loc, type, this->array_size, state);
|
2010-08-21 15:30:34 -07:00
|
|
|
}
|
|
|
|
|
|
2011-10-24 11:45:50 -07:00
|
|
|
if (!type->is_error() && type->array_size() == 0) {
|
2010-08-21 15:30:34 -07:00
|
|
|
_mesa_glsl_error(&loc, state, "arrays passed as parameters must have "
|
|
|
|
|
"a declared size.");
|
|
|
|
|
type = glsl_type::error_type;
|
|
|
|
|
}
|
|
|
|
|
|
2010-04-02 15:30:45 -07:00
|
|
|
is_void = false;
|
2013-01-11 14:39:32 -08:00
|
|
|
ir_variable *var = new(ctx)
|
|
|
|
|
ir_variable(type, this->identifier, ir_var_function_in);
|
2010-02-22 13:19:34 -08:00
|
|
|
|
2010-03-11 14:48:51 -08:00
|
|
|
/* Apply any specified qualifiers to the parameter declaration. Note that
|
|
|
|
|
* for function parameters the default mode is 'in'.
|
|
|
|
|
*/
|
2012-04-26 18:19:39 -07:00
|
|
|
apply_type_qualifier_to_variable(& this->type->qualifier, var, state, & loc,
|
2012-12-18 14:49:34 -08:00
|
|
|
false, true);
|
2010-02-22 13:19:34 -08:00
|
|
|
|
2011-07-12 12:03:02 -07:00
|
|
|
/* From page 17 (page 23 of the PDF) of the GLSL 1.20 spec:
|
|
|
|
|
*
|
|
|
|
|
* "Samplers cannot be treated as l-values; hence cannot be used
|
|
|
|
|
* as out or inout function parameters, nor can they be assigned
|
|
|
|
|
* into."
|
|
|
|
|
*/
|
2013-01-11 14:39:32 -08:00
|
|
|
if ((var->mode == ir_var_function_inout || var->mode == ir_var_function_out)
|
2011-07-12 12:03:02 -07:00
|
|
|
&& type->contains_sampler()) {
|
|
|
|
|
_mesa_glsl_error(&loc, state, "out and inout parameters cannot contain samplers");
|
|
|
|
|
type = glsl_type::error_type;
|
|
|
|
|
}
|
|
|
|
|
|
2011-09-10 07:48:46 -07:00
|
|
|
/* From page 39 (page 45 of the PDF) of the GLSL 1.10 spec:
|
|
|
|
|
*
|
|
|
|
|
* "When calling a function, expressions that do not evaluate to
|
|
|
|
|
* l-values cannot be passed to parameters declared as out or inout."
|
|
|
|
|
*
|
|
|
|
|
* From page 32 (page 38 of the PDF) of the GLSL 1.10 spec:
|
|
|
|
|
*
|
|
|
|
|
* "Other binary or unary expressions, non-dereferenced arrays,
|
|
|
|
|
* function names, swizzles with repeated fields, and constants
|
|
|
|
|
* cannot be l-values."
|
|
|
|
|
*
|
|
|
|
|
* So for GLSL 1.10, passing an array as an out or inout parameter is not
|
|
|
|
|
* allowed. This restriction is removed in GLSL 1.20, and in GLSL ES.
|
|
|
|
|
*/
|
2013-01-11 14:39:32 -08:00
|
|
|
if ((var->mode == ir_var_function_inout || var->mode == ir_var_function_out)
|
2012-08-05 09:57:01 -07:00
|
|
|
&& type->is_array()
|
|
|
|
|
&& !state->check_version(120, 100, &loc,
|
|
|
|
|
"Arrays cannot be out or inout parameters")) {
|
2011-09-10 07:48:46 -07:00
|
|
|
type = glsl_type::error_type;
|
|
|
|
|
}
|
|
|
|
|
|
2010-03-08 23:44:00 -08:00
|
|
|
instructions->push_tail(var);
|
2010-02-22 13:19:34 -08:00
|
|
|
|
|
|
|
|
/* Parameter declarations do not have r-values.
|
|
|
|
|
*/
|
|
|
|
|
return NULL;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
2010-04-02 15:09:33 -07:00
|
|
|
void
|
2010-05-10 11:17:53 -07:00
|
|
|
ast_parameter_declarator::parameters_to_hir(exec_list *ast_parameters,
|
2010-04-02 15:09:33 -07:00
|
|
|
bool formal,
|
|
|
|
|
exec_list *ir_parameters,
|
|
|
|
|
_mesa_glsl_parse_state *state)
|
2010-02-22 13:19:34 -08:00
|
|
|
{
|
2010-04-02 15:30:45 -07:00
|
|
|
ast_parameter_declarator *void_param = NULL;
|
|
|
|
|
unsigned count = 0;
|
2010-02-22 13:19:34 -08:00
|
|
|
|
2010-05-10 17:42:05 -07:00
|
|
|
foreach_list_typed (ast_parameter_declarator, param, link, ast_parameters) {
|
2010-04-02 15:09:33 -07:00
|
|
|
param->formal_parameter = formal;
|
2010-03-31 09:56:36 -10:00
|
|
|
param->hir(ir_parameters, state);
|
2010-04-02 15:30:45 -07:00
|
|
|
|
|
|
|
|
if (param->is_void)
|
|
|
|
|
void_param = param;
|
|
|
|
|
|
|
|
|
|
count++;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if ((void_param != NULL) && (count > 1)) {
|
|
|
|
|
YYLTYPE loc = void_param->get_location();
|
|
|
|
|
|
|
|
|
|
_mesa_glsl_error(& loc, state,
|
|
|
|
|
"`void' parameter must be only parameter");
|
2010-02-22 13:19:34 -08:00
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
2010-12-06 10:54:05 -08:00
|
|
|
void
|
2011-07-29 15:28:52 -07:00
|
|
|
emit_function(_mesa_glsl_parse_state *state, ir_function *f)
|
2010-12-06 10:54:05 -08:00
|
|
|
{
|
2011-07-29 15:28:52 -07:00
|
|
|
/* IR invariants disallow function declarations or definitions
|
|
|
|
|
* nested within other function definitions. But there is no
|
|
|
|
|
* requirement about the relative order of function declarations
|
|
|
|
|
* and definitions with respect to one another. So simply insert
|
|
|
|
|
* the new ir_function block at the end of the toplevel instruction
|
|
|
|
|
* list.
|
|
|
|
|
*/
|
|
|
|
|
state->toplevel_ir->push_tail(f);
|
2010-12-06 10:54:05 -08:00
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
2010-03-26 00:25:36 -07:00
|
|
|
ir_rvalue *
|
2010-03-31 18:23:21 -07:00
|
|
|
ast_function::hir(exec_list *instructions,
|
|
|
|
|
struct _mesa_glsl_parse_state *state)
|
2010-02-22 13:19:34 -08:00
|
|
|
{
|
2010-06-25 13:14:37 -07:00
|
|
|
void *ctx = state;
|
2010-03-01 13:49:10 -08:00
|
|
|
ir_function *f = NULL;
|
2010-03-31 18:23:21 -07:00
|
|
|
ir_function_signature *sig = NULL;
|
|
|
|
|
exec_list hir_parameters;
|
2010-02-22 13:19:34 -08:00
|
|
|
|
2010-06-29 00:48:10 -07:00
|
|
|
const char *const name = identifier;
|
2010-02-22 13:19:34 -08:00
|
|
|
|
2011-08-29 14:56:29 -07:00
|
|
|
/* New functions are always added to the top-level IR instruction stream,
|
|
|
|
|
* so this instruction list pointer is ignored. See also emit_function
|
|
|
|
|
* (called below).
|
|
|
|
|
*/
|
|
|
|
|
(void) instructions;
|
|
|
|
|
|
2010-09-01 06:34:58 -07:00
|
|
|
/* From page 21 (page 27 of the PDF) of the GLSL 1.20 spec,
|
|
|
|
|
*
|
|
|
|
|
* "Function declarations (prototypes) cannot occur inside of functions;
|
|
|
|
|
* they must be at global scope, or for the built-in functions, outside
|
|
|
|
|
* the global scope."
|
|
|
|
|
*
|
|
|
|
|
* From page 27 (page 33 of the PDF) of the GLSL ES 1.00.16 spec,
|
|
|
|
|
*
|
|
|
|
|
* "User defined functions may only be defined within the global scope."
|
|
|
|
|
*
|
|
|
|
|
* Note that this language does not appear in GLSL 1.10.
|
|
|
|
|
*/
|
2012-08-01 14:50:05 -07:00
|
|
|
if ((state->current_function != NULL) &&
|
|
|
|
|
state->is_version(120, 100)) {
|
2010-09-01 06:34:58 -07:00
|
|
|
YYLTYPE loc = this->get_location();
|
|
|
|
|
_mesa_glsl_error(&loc, state,
|
|
|
|
|
"declaration of function `%s' not allowed within "
|
|
|
|
|
"function body", name);
|
|
|
|
|
}
|
|
|
|
|
|
2010-08-20 02:14:35 -07:00
|
|
|
/* From page 15 (page 21 of the PDF) of the GLSL 1.10 spec,
|
|
|
|
|
*
|
|
|
|
|
* "Identifiers starting with "gl_" are reserved for use by
|
|
|
|
|
* OpenGL, and may not be declared in a shader as either a
|
|
|
|
|
* variable or a function."
|
|
|
|
|
*/
|
|
|
|
|
if (strncmp(name, "gl_", 3) == 0) {
|
|
|
|
|
YYLTYPE loc = this->get_location();
|
|
|
|
|
_mesa_glsl_error(&loc, state,
|
|
|
|
|
"identifier `%s' uses reserved `gl_' prefix", name);
|
|
|
|
|
}
|
|
|
|
|
|
2010-02-22 13:19:34 -08:00
|
|
|
/* Convert the list of function parameters to HIR now so that they can be
|
|
|
|
|
* used below to compare this function's signature with previously seen
|
|
|
|
|
* signatures for functions with the same name.
|
|
|
|
|
*/
|
2010-04-02 15:09:33 -07:00
|
|
|
ast_parameter_declarator::parameters_to_hir(& this->parameters,
|
|
|
|
|
is_definition,
|
|
|
|
|
& hir_parameters, state);
|
2010-02-22 13:19:34 -08:00
|
|
|
|
2010-03-23 12:19:13 -07:00
|
|
|
const char *return_type_name;
|
|
|
|
|
const glsl_type *return_type =
|
2010-03-31 18:23:21 -07:00
|
|
|
this->return_type->specifier->glsl_type(& return_type_name, state);
|
2010-03-23 12:19:13 -07:00
|
|
|
|
2010-08-23 13:26:52 -07:00
|
|
|
if (!return_type) {
|
|
|
|
|
YYLTYPE loc = this->get_location();
|
|
|
|
|
_mesa_glsl_error(&loc, state,
|
|
|
|
|
"function `%s' has undeclared return type `%s'",
|
|
|
|
|
name, return_type_name);
|
|
|
|
|
return_type = glsl_type::error_type;
|
|
|
|
|
}
|
2010-03-23 12:19:13 -07:00
|
|
|
|
2010-06-29 00:48:10 -07:00
|
|
|
/* From page 56 (page 62 of the PDF) of the GLSL 1.30 spec:
|
|
|
|
|
* "No qualifier is allowed on the return type of a function."
|
|
|
|
|
*/
|
|
|
|
|
if (this->return_type->has_qualifiers()) {
|
|
|
|
|
YYLTYPE loc = this->get_location();
|
|
|
|
|
_mesa_glsl_error(& loc, state,
|
|
|
|
|
"function `%s' return type has qualifiers", name);
|
|
|
|
|
}
|
|
|
|
|
|
2011-07-12 12:03:02 -07:00
|
|
|
/* From page 17 (page 23 of the PDF) of the GLSL 1.20 spec:
|
|
|
|
|
*
|
|
|
|
|
* "[Sampler types] can only be declared as function parameters
|
|
|
|
|
* or uniform variables (see Section 4.3.5 "Uniform")".
|
|
|
|
|
*/
|
|
|
|
|
if (return_type->contains_sampler()) {
|
|
|
|
|
YYLTYPE loc = this->get_location();
|
|
|
|
|
_mesa_glsl_error(&loc, state,
|
|
|
|
|
"function `%s' return type can't contain a sampler",
|
|
|
|
|
name);
|
|
|
|
|
}
|
|
|
|
|
|
2010-02-22 13:19:34 -08:00
|
|
|
/* Verify that this function's signature either doesn't match a previously
|
|
|
|
|
* seen signature for a function with the same name, or, if a match is found,
|
|
|
|
|
* that the previously seen signature does not have an associated definition.
|
|
|
|
|
*/
|
2010-09-01 14:16:53 -07:00
|
|
|
f = state->symbols->get_function(name);
|
2010-09-16 02:52:25 -07:00
|
|
|
if (f != NULL && (state->es_shader || f->has_user_signature())) {
|
2010-08-11 16:58:25 -07:00
|
|
|
sig = f->exact_matching_signature(&hir_parameters);
|
2010-04-28 12:04:23 -07:00
|
|
|
if (sig != NULL) {
|
|
|
|
|
const char *badvar = sig->qualifiers_match(&hir_parameters);
|
|
|
|
|
if (badvar != NULL) {
|
|
|
|
|
YYLTYPE loc = this->get_location();
|
2010-04-28 11:49:12 -07:00
|
|
|
|
2010-04-28 12:04:23 -07:00
|
|
|
_mesa_glsl_error(&loc, state, "function `%s' parameter `%s' "
|
|
|
|
|
"qualifiers don't match prototype", name, badvar);
|
|
|
|
|
}
|
2010-04-14 16:16:20 -07:00
|
|
|
|
2010-04-28 12:04:23 -07:00
|
|
|
if (sig->return_type != return_type) {
|
|
|
|
|
YYLTYPE loc = this->get_location();
|
2010-04-14 16:19:19 -07:00
|
|
|
|
2010-04-28 12:04:23 -07:00
|
|
|
_mesa_glsl_error(&loc, state, "function `%s' return type doesn't "
|
|
|
|
|
"match prototype", name);
|
|
|
|
|
}
|
2010-02-22 13:19:34 -08:00
|
|
|
|
2010-04-28 12:04:23 -07:00
|
|
|
if (is_definition && sig->is_defined) {
|
|
|
|
|
YYLTYPE loc = this->get_location();
|
2010-02-22 13:19:34 -08:00
|
|
|
|
2010-04-28 12:04:23 -07:00
|
|
|
_mesa_glsl_error(& loc, state, "function `%s' redefined", name);
|
2010-02-22 13:19:34 -08:00
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
} else {
|
2010-06-23 18:11:51 -07:00
|
|
|
f = new(ctx) ir_function(name);
|
2010-11-05 06:08:45 -07:00
|
|
|
if (!state->symbols->add_function(f)) {
|
2010-08-25 16:37:46 -07:00
|
|
|
/* This function name shadows a non-function use of the same name. */
|
|
|
|
|
YYLTYPE loc = this->get_location();
|
|
|
|
|
|
|
|
|
|
_mesa_glsl_error(&loc, state, "function name `%s' conflicts with "
|
|
|
|
|
"non-function", name);
|
|
|
|
|
return NULL;
|
|
|
|
|
}
|
2010-04-21 12:30:22 -07:00
|
|
|
|
2011-07-29 15:28:52 -07:00
|
|
|
emit_function(state, f);
|
2010-02-22 13:19:34 -08:00
|
|
|
}
|
|
|
|
|
|
2010-03-28 01:24:55 -07:00
|
|
|
/* Verify the return type of main() */
|
|
|
|
|
if (strcmp(name, "main") == 0) {
|
2010-03-31 17:39:10 -07:00
|
|
|
if (! return_type->is_void()) {
|
2010-03-28 01:24:55 -07:00
|
|
|
YYLTYPE loc = this->get_location();
|
|
|
|
|
|
|
|
|
|
_mesa_glsl_error(& loc, state, "main() must return void");
|
|
|
|
|
}
|
2010-03-30 23:37:51 -10:00
|
|
|
|
2010-03-31 18:23:21 -07:00
|
|
|
if (!hir_parameters.is_empty()) {
|
2010-03-30 23:37:51 -10:00
|
|
|
YYLTYPE loc = this->get_location();
|
|
|
|
|
|
|
|
|
|
_mesa_glsl_error(& loc, state, "main() must not take any parameters");
|
|
|
|
|
}
|
2010-03-28 01:24:55 -07:00
|
|
|
}
|
2010-02-22 13:19:34 -08:00
|
|
|
|
|
|
|
|
/* Finish storing the information about this new function in its signature.
|
|
|
|
|
*/
|
2010-03-31 18:23:21 -07:00
|
|
|
if (sig == NULL) {
|
2010-06-23 18:11:51 -07:00
|
|
|
sig = new(ctx) ir_function_signature(return_type);
|
2010-03-31 18:23:21 -07:00
|
|
|
f->add_signature(sig);
|
2010-02-22 13:19:34 -08:00
|
|
|
}
|
|
|
|
|
|
2010-04-28 12:44:24 -07:00
|
|
|
sig->replace_parameters(&hir_parameters);
|
2010-03-31 18:23:21 -07:00
|
|
|
signature = sig;
|
|
|
|
|
|
|
|
|
|
/* Function declarations (prototypes) do not have r-values.
|
|
|
|
|
*/
|
|
|
|
|
return NULL;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ir_rvalue *
|
|
|
|
|
ast_function_definition::hir(exec_list *instructions,
|
|
|
|
|
struct _mesa_glsl_parse_state *state)
|
|
|
|
|
{
|
|
|
|
|
prototype->is_definition = true;
|
|
|
|
|
prototype->hir(instructions, state);
|
2010-03-31 17:54:26 -07:00
|
|
|
|
2010-03-31 18:23:21 -07:00
|
|
|
ir_function_signature *signature = prototype->signature;
|
2010-08-20 02:04:52 -07:00
|
|
|
if (signature == NULL)
|
|
|
|
|
return NULL;
|
2010-02-22 13:19:34 -08:00
|
|
|
|
2010-03-19 17:08:05 -07:00
|
|
|
assert(state->current_function == NULL);
|
|
|
|
|
state->current_function = signature;
|
2010-06-29 09:59:40 -07:00
|
|
|
state->found_return = false;
|
2010-03-19 17:08:05 -07:00
|
|
|
|
2010-03-31 17:54:26 -07:00
|
|
|
/* Duplicate parameters declared in the prototype as concrete variables.
|
|
|
|
|
* Add these to the symbol table.
|
2010-02-22 13:19:34 -08:00
|
|
|
*/
|
2010-03-19 11:57:24 -07:00
|
|
|
state->symbols->push_scope();
|
2010-03-31 17:54:26 -07:00
|
|
|
foreach_iter(exec_list_iterator, iter, signature->parameters) {
|
2010-04-07 14:32:53 -07:00
|
|
|
ir_variable *const var = ((ir_instruction *) iter.get())->as_variable();
|
2010-03-31 17:54:26 -07:00
|
|
|
|
2010-04-07 14:32:53 -07:00
|
|
|
assert(var != NULL);
|
2010-02-22 13:19:34 -08:00
|
|
|
|
2010-03-19 15:38:52 -07:00
|
|
|
/* The only way a parameter would "exist" is if two parameters have
|
|
|
|
|
* the same name.
|
|
|
|
|
*/
|
|
|
|
|
if (state->symbols->name_declared_this_scope(var->name)) {
|
|
|
|
|
YYLTYPE loc = this->get_location();
|
|
|
|
|
|
|
|
|
|
_mesa_glsl_error(& loc, state, "parameter `%s' redeclared", var->name);
|
|
|
|
|
} else {
|
2010-11-05 06:11:24 -07:00
|
|
|
state->symbols->add_variable(var);
|
2010-03-19 15:38:52 -07:00
|
|
|
}
|
2010-02-22 13:19:34 -08:00
|
|
|
}
|
|
|
|
|
|
2010-04-21 12:30:22 -07:00
|
|
|
/* Convert the body of the function to HIR. */
|
2010-04-07 13:19:11 -07:00
|
|
|
this->body->hir(&signature->body, state);
|
2010-04-21 12:30:22 -07:00
|
|
|
signature->is_defined = true;
|
2010-02-22 13:19:34 -08:00
|
|
|
|
2010-03-19 11:57:24 -07:00
|
|
|
state->symbols->pop_scope();
|
2010-02-22 13:19:34 -08:00
|
|
|
|
2010-03-19 17:08:05 -07:00
|
|
|
assert(state->current_function == signature);
|
|
|
|
|
state->current_function = NULL;
|
2010-02-22 13:19:34 -08:00
|
|
|
|
2010-06-29 09:59:40 -07:00
|
|
|
if (!signature->return_type->is_void() && !state->found_return) {
|
|
|
|
|
YYLTYPE loc = this->get_location();
|
|
|
|
|
_mesa_glsl_error(& loc, state, "function `%s' has non-void return type "
|
|
|
|
|
"%s, but no return statement",
|
|
|
|
|
signature->function_name(),
|
|
|
|
|
signature->return_type->name);
|
|
|
|
|
}
|
|
|
|
|
|
2010-02-22 13:19:34 -08:00
|
|
|
/* Function definitions do not have r-values.
|
|
|
|
|
*/
|
|
|
|
|
return NULL;
|
|
|
|
|
}
|
2010-03-19 16:45:19 -07:00
|
|
|
|
|
|
|
|
|
2010-03-26 00:25:36 -07:00
|
|
|
ir_rvalue *
|
2010-03-19 16:45:19 -07:00
|
|
|
ast_jump_statement::hir(exec_list *instructions,
|
|
|
|
|
struct _mesa_glsl_parse_state *state)
|
|
|
|
|
{
|
2010-06-25 13:14:37 -07:00
|
|
|
void *ctx = state;
|
2010-03-19 16:45:19 -07:00
|
|
|
|
2010-04-05 16:53:19 -07:00
|
|
|
switch (mode) {
|
|
|
|
|
case ast_return: {
|
2010-03-19 16:45:19 -07:00
|
|
|
ir_return *inst;
|
2010-03-30 23:28:20 -10:00
|
|
|
assert(state->current_function);
|
2010-03-19 16:45:19 -07:00
|
|
|
|
|
|
|
|
if (opt_return_value) {
|
2010-11-17 10:28:01 -08:00
|
|
|
ir_rvalue *const ret = opt_return_value->hir(instructions, state);
|
2011-01-22 17:47:05 -08:00
|
|
|
|
|
|
|
|
/* The value of the return type can be NULL if the shader says
|
|
|
|
|
* 'return foo();' and foo() is a function that returns void.
|
|
|
|
|
*
|
|
|
|
|
* NOTE: The GLSL spec doesn't say that this is an error. The type
|
|
|
|
|
* of the return value is void. If the return type of the function is
|
|
|
|
|
* also void, then this should compile without error. Seriously.
|
|
|
|
|
*/
|
|
|
|
|
const glsl_type *const ret_type =
|
|
|
|
|
(ret == NULL) ? glsl_type::void_type : ret->type;
|
2010-03-19 16:45:19 -07:00
|
|
|
|
2010-06-28 23:38:04 -07:00
|
|
|
/* Implicit conversions are not allowed for return values. */
|
2011-01-22 17:47:05 -08:00
|
|
|
if (state->current_function->return_type != ret_type) {
|
2010-06-28 23:38:04 -07:00
|
|
|
YYLTYPE loc = this->get_location();
|
|
|
|
|
|
|
|
|
|
_mesa_glsl_error(& loc, state,
|
|
|
|
|
"`return' with wrong type %s, in function `%s' "
|
|
|
|
|
"returning %s",
|
2011-01-22 17:47:05 -08:00
|
|
|
ret_type->name,
|
2010-06-28 23:38:04 -07:00
|
|
|
state->current_function->function_name(),
|
|
|
|
|
state->current_function->return_type->name);
|
|
|
|
|
}
|
2010-03-19 16:45:19 -07:00
|
|
|
|
2010-06-23 18:11:51 -07:00
|
|
|
inst = new(ctx) ir_return(ret);
|
2010-03-19 16:45:19 -07:00
|
|
|
} else {
|
2010-03-30 23:28:20 -10:00
|
|
|
if (state->current_function->return_type->base_type !=
|
|
|
|
|
GLSL_TYPE_VOID) {
|
|
|
|
|
YYLTYPE loc = this->get_location();
|
|
|
|
|
|
|
|
|
|
_mesa_glsl_error(& loc, state,
|
|
|
|
|
"`return' with no value, in function %s returning "
|
|
|
|
|
"non-void",
|
2010-04-21 15:17:26 -07:00
|
|
|
state->current_function->function_name());
|
2010-03-30 23:28:20 -10:00
|
|
|
}
|
2010-06-23 18:11:51 -07:00
|
|
|
inst = new(ctx) ir_return;
|
2010-03-19 16:45:19 -07:00
|
|
|
}
|
|
|
|
|
|
2010-06-29 09:59:40 -07:00
|
|
|
state->found_return = true;
|
2010-03-19 16:45:19 -07:00
|
|
|
instructions->push_tail(inst);
|
2010-04-05 16:53:19 -07:00
|
|
|
break;
|
2010-03-19 16:45:19 -07:00
|
|
|
}
|
|
|
|
|
|
2010-04-05 16:53:19 -07:00
|
|
|
case ast_discard:
|
2010-03-30 23:40:14 -10:00
|
|
|
if (state->target != fragment_shader) {
|
|
|
|
|
YYLTYPE loc = this->get_location();
|
|
|
|
|
|
|
|
|
|
_mesa_glsl_error(& loc, state,
|
|
|
|
|
"`discard' may only appear in a fragment shader");
|
|
|
|
|
}
|
2010-06-30 14:11:00 -07:00
|
|
|
instructions->push_tail(new(ctx) ir_discard);
|
2010-04-05 16:53:19 -07:00
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
case ast_break:
|
|
|
|
|
case ast_continue:
|
glsl: Generate IR for switch statements
Up until now modifying the GLSL compiler has been pretty straightforward.
This is where things get interesting. But still pretty straightforward.
Switch statements can be thought of a series of if/then/else statements.
Case labels are compared with the value of a test expression and the case
statements are executed if the comparison is true.
There are a couple of aspects of switch statements that complicate this simple
view of the world. The primary one is that cases can fall through sequentially
to subsequent case, unless a break statement is encountered, in which case,
the switch statement exits completely.
But break handling is further complicated by the fact that a break statement
can impact the exit of a loop. Thus, we need to coordinate break processing
between switch statements and loop statements.
The code generated by a switch statement maintains three temporary state
variables:
int test_value;
bool is_fallthru;
bool is_break;
test_value is initialized to the value of the test expression at the head of
the switch statement. This is the value that case labels are compared against.
is_fallthru is used to sequentially fall through to subsequent cases and is
initialized to false. When a case label matches the test expression, this
state variable is set to true. It will also be forced to false if a break
statement has been encountered. This forcing to false on break MUST be
after every case test. In practice, we defer that forcing to immediately after
the last case comparison prior to executing a case statement, but that is
an optimization.
is_break is used to indicate that a break statement has been executed and is
initialized to false. When a break statement is encountered, it is set to true.
This state variable is then used to conditionally force is_fallthru to to false
to prevent subsequent case statements from executing.
Code generation for break statements depends on whether the break statement is
inside a switch statement or inside a loop statement. If it inside a loop
statement is inside a break statement, the same code as before gets generated.
But if a switch statement is inside a loop statement, code is emitted to set
the is_break state to true.
Just as ASTs for loop statements are managed in a stack-like
manner to handle nesting, we also add a bool to capture the innermost switch
or loop condition. Note that we still need to maintain a loop AST stack to
properly handle for-loop code generation on a continue statement. Technically,
we don't (yet) need a switch AST stack, but I am using one for orthogonality
with loop statements, in anticipation of future use. Note that a simple
boolean stack would have sufficed.
We will illustrate a switch statement with its analogous conditional code that
a switch statement corresponds to by examining an example.
Consider the following switch statement:
switch (42) {
case 0:
case 1:
gl_FragColor = vec4(1.0, 2.0, 3.0, 4.0);
case 2:
case 3:
gl_FragColor = vec4(4.0, 3.0, 2.0, 1.0);
break;
case 4:
default:
gl_FragColor = vec4(0.0, 0.0, 0.0, 0.0);
}
Note that case 0 and case 1 fall through to cases 2 and 3 if they occur.
Note that case 4 and the default case must be reached explicitly, since cases
2 and 3 break at the end of their case.
Finally, note that case 4 and the default case don't break but simply fall
through to the end of the switch.
For this code, the equivalent code can be expressed as:
int test_val = 42; // capture value of test expression
bool is_fallthru = false; // prevent initial fall through
bool is_break = false; // capture the execution of a break stmt
is_fallthru |= (test_val == 0); // enable fallthru on case 0
is_fallthru |= (test_val == 1); // enable fallthru on case 1
is_fallthru &= !is_break; // inhibit fallthru on previous break
if (is_fallthru) {
gl_FragColor = vec4(1.0, 2.0, 3.0, 4.0);
}
is_fallthru |= (test_val == 2); // enable fallthru on case 2
is_fallthru |= (test_val == 3); // enable fallthru on case 3
is_fallthru &= !is_break; // inhibit fallthru on previous break
if (is_fallthru) {
gl_FragColor = vec4(4.0, 3.0, 2.0, 1.0);
is_break = true; // inhibit all subsequent fallthru for break
}
is_fallthru |= (test_val == 4); // enable fallthru on case 4
is_fallthru = true; // enable fallthru for default case
is_fallthru &= !is_break; // inhibit fallthru on previous break
if (is_fallthru) {
gl_FragColor = vec4(0.0, 0.0, 0.0, 0.0);
}
The code generate for |= and &= uses the conditional assignment capabilities
of the IR.
Reviewed-by: Kenneth Graunke <kenneth@whitecape.org>
2011-11-07 16:17:58 -08:00
|
|
|
if (mode == ast_continue &&
|
|
|
|
|
state->loop_nesting_ast == NULL) {
|
2010-04-05 17:13:47 -07:00
|
|
|
YYLTYPE loc = this->get_location();
|
|
|
|
|
|
|
|
|
|
_mesa_glsl_error(& loc, state,
|
glsl: Generate IR for switch statements
Up until now modifying the GLSL compiler has been pretty straightforward.
This is where things get interesting. But still pretty straightforward.
Switch statements can be thought of a series of if/then/else statements.
Case labels are compared with the value of a test expression and the case
statements are executed if the comparison is true.
There are a couple of aspects of switch statements that complicate this simple
view of the world. The primary one is that cases can fall through sequentially
to subsequent case, unless a break statement is encountered, in which case,
the switch statement exits completely.
But break handling is further complicated by the fact that a break statement
can impact the exit of a loop. Thus, we need to coordinate break processing
between switch statements and loop statements.
The code generated by a switch statement maintains three temporary state
variables:
int test_value;
bool is_fallthru;
bool is_break;
test_value is initialized to the value of the test expression at the head of
the switch statement. This is the value that case labels are compared against.
is_fallthru is used to sequentially fall through to subsequent cases and is
initialized to false. When a case label matches the test expression, this
state variable is set to true. It will also be forced to false if a break
statement has been encountered. This forcing to false on break MUST be
after every case test. In practice, we defer that forcing to immediately after
the last case comparison prior to executing a case statement, but that is
an optimization.
is_break is used to indicate that a break statement has been executed and is
initialized to false. When a break statement is encountered, it is set to true.
This state variable is then used to conditionally force is_fallthru to to false
to prevent subsequent case statements from executing.
Code generation for break statements depends on whether the break statement is
inside a switch statement or inside a loop statement. If it inside a loop
statement is inside a break statement, the same code as before gets generated.
But if a switch statement is inside a loop statement, code is emitted to set
the is_break state to true.
Just as ASTs for loop statements are managed in a stack-like
manner to handle nesting, we also add a bool to capture the innermost switch
or loop condition. Note that we still need to maintain a loop AST stack to
properly handle for-loop code generation on a continue statement. Technically,
we don't (yet) need a switch AST stack, but I am using one for orthogonality
with loop statements, in anticipation of future use. Note that a simple
boolean stack would have sufficed.
We will illustrate a switch statement with its analogous conditional code that
a switch statement corresponds to by examining an example.
Consider the following switch statement:
switch (42) {
case 0:
case 1:
gl_FragColor = vec4(1.0, 2.0, 3.0, 4.0);
case 2:
case 3:
gl_FragColor = vec4(4.0, 3.0, 2.0, 1.0);
break;
case 4:
default:
gl_FragColor = vec4(0.0, 0.0, 0.0, 0.0);
}
Note that case 0 and case 1 fall through to cases 2 and 3 if they occur.
Note that case 4 and the default case must be reached explicitly, since cases
2 and 3 break at the end of their case.
Finally, note that case 4 and the default case don't break but simply fall
through to the end of the switch.
For this code, the equivalent code can be expressed as:
int test_val = 42; // capture value of test expression
bool is_fallthru = false; // prevent initial fall through
bool is_break = false; // capture the execution of a break stmt
is_fallthru |= (test_val == 0); // enable fallthru on case 0
is_fallthru |= (test_val == 1); // enable fallthru on case 1
is_fallthru &= !is_break; // inhibit fallthru on previous break
if (is_fallthru) {
gl_FragColor = vec4(1.0, 2.0, 3.0, 4.0);
}
is_fallthru |= (test_val == 2); // enable fallthru on case 2
is_fallthru |= (test_val == 3); // enable fallthru on case 3
is_fallthru &= !is_break; // inhibit fallthru on previous break
if (is_fallthru) {
gl_FragColor = vec4(4.0, 3.0, 2.0, 1.0);
is_break = true; // inhibit all subsequent fallthru for break
}
is_fallthru |= (test_val == 4); // enable fallthru on case 4
is_fallthru = true; // enable fallthru for default case
is_fallthru &= !is_break; // inhibit fallthru on previous break
if (is_fallthru) {
gl_FragColor = vec4(0.0, 0.0, 0.0, 0.0);
}
The code generate for |= and &= uses the conditional assignment capabilities
of the IR.
Reviewed-by: Kenneth Graunke <kenneth@whitecape.org>
2011-11-07 16:17:58 -08:00
|
|
|
"continue may only appear in a loop");
|
|
|
|
|
} else if (mode == ast_break &&
|
|
|
|
|
state->loop_nesting_ast == NULL &&
|
2012-01-28 11:26:02 -08:00
|
|
|
state->switch_state.switch_nesting_ast == NULL) {
|
glsl: Generate IR for switch statements
Up until now modifying the GLSL compiler has been pretty straightforward.
This is where things get interesting. But still pretty straightforward.
Switch statements can be thought of a series of if/then/else statements.
Case labels are compared with the value of a test expression and the case
statements are executed if the comparison is true.
There are a couple of aspects of switch statements that complicate this simple
view of the world. The primary one is that cases can fall through sequentially
to subsequent case, unless a break statement is encountered, in which case,
the switch statement exits completely.
But break handling is further complicated by the fact that a break statement
can impact the exit of a loop. Thus, we need to coordinate break processing
between switch statements and loop statements.
The code generated by a switch statement maintains three temporary state
variables:
int test_value;
bool is_fallthru;
bool is_break;
test_value is initialized to the value of the test expression at the head of
the switch statement. This is the value that case labels are compared against.
is_fallthru is used to sequentially fall through to subsequent cases and is
initialized to false. When a case label matches the test expression, this
state variable is set to true. It will also be forced to false if a break
statement has been encountered. This forcing to false on break MUST be
after every case test. In practice, we defer that forcing to immediately after
the last case comparison prior to executing a case statement, but that is
an optimization.
is_break is used to indicate that a break statement has been executed and is
initialized to false. When a break statement is encountered, it is set to true.
This state variable is then used to conditionally force is_fallthru to to false
to prevent subsequent case statements from executing.
Code generation for break statements depends on whether the break statement is
inside a switch statement or inside a loop statement. If it inside a loop
statement is inside a break statement, the same code as before gets generated.
But if a switch statement is inside a loop statement, code is emitted to set
the is_break state to true.
Just as ASTs for loop statements are managed in a stack-like
manner to handle nesting, we also add a bool to capture the innermost switch
or loop condition. Note that we still need to maintain a loop AST stack to
properly handle for-loop code generation on a continue statement. Technically,
we don't (yet) need a switch AST stack, but I am using one for orthogonality
with loop statements, in anticipation of future use. Note that a simple
boolean stack would have sufficed.
We will illustrate a switch statement with its analogous conditional code that
a switch statement corresponds to by examining an example.
Consider the following switch statement:
switch (42) {
case 0:
case 1:
gl_FragColor = vec4(1.0, 2.0, 3.0, 4.0);
case 2:
case 3:
gl_FragColor = vec4(4.0, 3.0, 2.0, 1.0);
break;
case 4:
default:
gl_FragColor = vec4(0.0, 0.0, 0.0, 0.0);
}
Note that case 0 and case 1 fall through to cases 2 and 3 if they occur.
Note that case 4 and the default case must be reached explicitly, since cases
2 and 3 break at the end of their case.
Finally, note that case 4 and the default case don't break but simply fall
through to the end of the switch.
For this code, the equivalent code can be expressed as:
int test_val = 42; // capture value of test expression
bool is_fallthru = false; // prevent initial fall through
bool is_break = false; // capture the execution of a break stmt
is_fallthru |= (test_val == 0); // enable fallthru on case 0
is_fallthru |= (test_val == 1); // enable fallthru on case 1
is_fallthru &= !is_break; // inhibit fallthru on previous break
if (is_fallthru) {
gl_FragColor = vec4(1.0, 2.0, 3.0, 4.0);
}
is_fallthru |= (test_val == 2); // enable fallthru on case 2
is_fallthru |= (test_val == 3); // enable fallthru on case 3
is_fallthru &= !is_break; // inhibit fallthru on previous break
if (is_fallthru) {
gl_FragColor = vec4(4.0, 3.0, 2.0, 1.0);
is_break = true; // inhibit all subsequent fallthru for break
}
is_fallthru |= (test_val == 4); // enable fallthru on case 4
is_fallthru = true; // enable fallthru for default case
is_fallthru &= !is_break; // inhibit fallthru on previous break
if (is_fallthru) {
gl_FragColor = vec4(0.0, 0.0, 0.0, 0.0);
}
The code generate for |= and &= uses the conditional assignment capabilities
of the IR.
Reviewed-by: Kenneth Graunke <kenneth@whitecape.org>
2011-11-07 16:17:58 -08:00
|
|
|
YYLTYPE loc = this->get_location();
|
2010-04-05 17:13:47 -07:00
|
|
|
|
glsl: Generate IR for switch statements
Up until now modifying the GLSL compiler has been pretty straightforward.
This is where things get interesting. But still pretty straightforward.
Switch statements can be thought of a series of if/then/else statements.
Case labels are compared with the value of a test expression and the case
statements are executed if the comparison is true.
There are a couple of aspects of switch statements that complicate this simple
view of the world. The primary one is that cases can fall through sequentially
to subsequent case, unless a break statement is encountered, in which case,
the switch statement exits completely.
But break handling is further complicated by the fact that a break statement
can impact the exit of a loop. Thus, we need to coordinate break processing
between switch statements and loop statements.
The code generated by a switch statement maintains three temporary state
variables:
int test_value;
bool is_fallthru;
bool is_break;
test_value is initialized to the value of the test expression at the head of
the switch statement. This is the value that case labels are compared against.
is_fallthru is used to sequentially fall through to subsequent cases and is
initialized to false. When a case label matches the test expression, this
state variable is set to true. It will also be forced to false if a break
statement has been encountered. This forcing to false on break MUST be
after every case test. In practice, we defer that forcing to immediately after
the last case comparison prior to executing a case statement, but that is
an optimization.
is_break is used to indicate that a break statement has been executed and is
initialized to false. When a break statement is encountered, it is set to true.
This state variable is then used to conditionally force is_fallthru to to false
to prevent subsequent case statements from executing.
Code generation for break statements depends on whether the break statement is
inside a switch statement or inside a loop statement. If it inside a loop
statement is inside a break statement, the same code as before gets generated.
But if a switch statement is inside a loop statement, code is emitted to set
the is_break state to true.
Just as ASTs for loop statements are managed in a stack-like
manner to handle nesting, we also add a bool to capture the innermost switch
or loop condition. Note that we still need to maintain a loop AST stack to
properly handle for-loop code generation on a continue statement. Technically,
we don't (yet) need a switch AST stack, but I am using one for orthogonality
with loop statements, in anticipation of future use. Note that a simple
boolean stack would have sufficed.
We will illustrate a switch statement with its analogous conditional code that
a switch statement corresponds to by examining an example.
Consider the following switch statement:
switch (42) {
case 0:
case 1:
gl_FragColor = vec4(1.0, 2.0, 3.0, 4.0);
case 2:
case 3:
gl_FragColor = vec4(4.0, 3.0, 2.0, 1.0);
break;
case 4:
default:
gl_FragColor = vec4(0.0, 0.0, 0.0, 0.0);
}
Note that case 0 and case 1 fall through to cases 2 and 3 if they occur.
Note that case 4 and the default case must be reached explicitly, since cases
2 and 3 break at the end of their case.
Finally, note that case 4 and the default case don't break but simply fall
through to the end of the switch.
For this code, the equivalent code can be expressed as:
int test_val = 42; // capture value of test expression
bool is_fallthru = false; // prevent initial fall through
bool is_break = false; // capture the execution of a break stmt
is_fallthru |= (test_val == 0); // enable fallthru on case 0
is_fallthru |= (test_val == 1); // enable fallthru on case 1
is_fallthru &= !is_break; // inhibit fallthru on previous break
if (is_fallthru) {
gl_FragColor = vec4(1.0, 2.0, 3.0, 4.0);
}
is_fallthru |= (test_val == 2); // enable fallthru on case 2
is_fallthru |= (test_val == 3); // enable fallthru on case 3
is_fallthru &= !is_break; // inhibit fallthru on previous break
if (is_fallthru) {
gl_FragColor = vec4(4.0, 3.0, 2.0, 1.0);
is_break = true; // inhibit all subsequent fallthru for break
}
is_fallthru |= (test_val == 4); // enable fallthru on case 4
is_fallthru = true; // enable fallthru for default case
is_fallthru &= !is_break; // inhibit fallthru on previous break
if (is_fallthru) {
gl_FragColor = vec4(0.0, 0.0, 0.0, 0.0);
}
The code generate for |= and &= uses the conditional assignment capabilities
of the IR.
Reviewed-by: Kenneth Graunke <kenneth@whitecape.org>
2011-11-07 16:17:58 -08:00
|
|
|
_mesa_glsl_error(& loc, state,
|
|
|
|
|
"break may only appear in a loop or a switch");
|
|
|
|
|
} else {
|
|
|
|
|
/* For a loop, inline the for loop expression again,
|
|
|
|
|
* since we don't know where near the end of
|
|
|
|
|
* the loop body the normal copy of it
|
2010-07-22 12:55:16 -07:00
|
|
|
* is going to be placed.
|
|
|
|
|
*/
|
glsl: Generate IR for switch statements
Up until now modifying the GLSL compiler has been pretty straightforward.
This is where things get interesting. But still pretty straightforward.
Switch statements can be thought of a series of if/then/else statements.
Case labels are compared with the value of a test expression and the case
statements are executed if the comparison is true.
There are a couple of aspects of switch statements that complicate this simple
view of the world. The primary one is that cases can fall through sequentially
to subsequent case, unless a break statement is encountered, in which case,
the switch statement exits completely.
But break handling is further complicated by the fact that a break statement
can impact the exit of a loop. Thus, we need to coordinate break processing
between switch statements and loop statements.
The code generated by a switch statement maintains three temporary state
variables:
int test_value;
bool is_fallthru;
bool is_break;
test_value is initialized to the value of the test expression at the head of
the switch statement. This is the value that case labels are compared against.
is_fallthru is used to sequentially fall through to subsequent cases and is
initialized to false. When a case label matches the test expression, this
state variable is set to true. It will also be forced to false if a break
statement has been encountered. This forcing to false on break MUST be
after every case test. In practice, we defer that forcing to immediately after
the last case comparison prior to executing a case statement, but that is
an optimization.
is_break is used to indicate that a break statement has been executed and is
initialized to false. When a break statement is encountered, it is set to true.
This state variable is then used to conditionally force is_fallthru to to false
to prevent subsequent case statements from executing.
Code generation for break statements depends on whether the break statement is
inside a switch statement or inside a loop statement. If it inside a loop
statement is inside a break statement, the same code as before gets generated.
But if a switch statement is inside a loop statement, code is emitted to set
the is_break state to true.
Just as ASTs for loop statements are managed in a stack-like
manner to handle nesting, we also add a bool to capture the innermost switch
or loop condition. Note that we still need to maintain a loop AST stack to
properly handle for-loop code generation on a continue statement. Technically,
we don't (yet) need a switch AST stack, but I am using one for orthogonality
with loop statements, in anticipation of future use. Note that a simple
boolean stack would have sufficed.
We will illustrate a switch statement with its analogous conditional code that
a switch statement corresponds to by examining an example.
Consider the following switch statement:
switch (42) {
case 0:
case 1:
gl_FragColor = vec4(1.0, 2.0, 3.0, 4.0);
case 2:
case 3:
gl_FragColor = vec4(4.0, 3.0, 2.0, 1.0);
break;
case 4:
default:
gl_FragColor = vec4(0.0, 0.0, 0.0, 0.0);
}
Note that case 0 and case 1 fall through to cases 2 and 3 if they occur.
Note that case 4 and the default case must be reached explicitly, since cases
2 and 3 break at the end of their case.
Finally, note that case 4 and the default case don't break but simply fall
through to the end of the switch.
For this code, the equivalent code can be expressed as:
int test_val = 42; // capture value of test expression
bool is_fallthru = false; // prevent initial fall through
bool is_break = false; // capture the execution of a break stmt
is_fallthru |= (test_val == 0); // enable fallthru on case 0
is_fallthru |= (test_val == 1); // enable fallthru on case 1
is_fallthru &= !is_break; // inhibit fallthru on previous break
if (is_fallthru) {
gl_FragColor = vec4(1.0, 2.0, 3.0, 4.0);
}
is_fallthru |= (test_val == 2); // enable fallthru on case 2
is_fallthru |= (test_val == 3); // enable fallthru on case 3
is_fallthru &= !is_break; // inhibit fallthru on previous break
if (is_fallthru) {
gl_FragColor = vec4(4.0, 3.0, 2.0, 1.0);
is_break = true; // inhibit all subsequent fallthru for break
}
is_fallthru |= (test_val == 4); // enable fallthru on case 4
is_fallthru = true; // enable fallthru for default case
is_fallthru &= !is_break; // inhibit fallthru on previous break
if (is_fallthru) {
gl_FragColor = vec4(0.0, 0.0, 0.0, 0.0);
}
The code generate for |= and &= uses the conditional assignment capabilities
of the IR.
Reviewed-by: Kenneth Graunke <kenneth@whitecape.org>
2011-11-07 16:17:58 -08:00
|
|
|
if (state->loop_nesting_ast != NULL &&
|
|
|
|
|
mode == ast_continue &&
|
|
|
|
|
state->loop_nesting_ast->rest_expression) {
|
|
|
|
|
state->loop_nesting_ast->rest_expression->hir(instructions,
|
|
|
|
|
state);
|
2010-07-22 12:55:16 -07:00
|
|
|
}
|
|
|
|
|
|
2012-01-28 11:26:02 -08:00
|
|
|
if (state->switch_state.is_switch_innermost &&
|
glsl: Generate IR for switch statements
Up until now modifying the GLSL compiler has been pretty straightforward.
This is where things get interesting. But still pretty straightforward.
Switch statements can be thought of a series of if/then/else statements.
Case labels are compared with the value of a test expression and the case
statements are executed if the comparison is true.
There are a couple of aspects of switch statements that complicate this simple
view of the world. The primary one is that cases can fall through sequentially
to subsequent case, unless a break statement is encountered, in which case,
the switch statement exits completely.
But break handling is further complicated by the fact that a break statement
can impact the exit of a loop. Thus, we need to coordinate break processing
between switch statements and loop statements.
The code generated by a switch statement maintains three temporary state
variables:
int test_value;
bool is_fallthru;
bool is_break;
test_value is initialized to the value of the test expression at the head of
the switch statement. This is the value that case labels are compared against.
is_fallthru is used to sequentially fall through to subsequent cases and is
initialized to false. When a case label matches the test expression, this
state variable is set to true. It will also be forced to false if a break
statement has been encountered. This forcing to false on break MUST be
after every case test. In practice, we defer that forcing to immediately after
the last case comparison prior to executing a case statement, but that is
an optimization.
is_break is used to indicate that a break statement has been executed and is
initialized to false. When a break statement is encountered, it is set to true.
This state variable is then used to conditionally force is_fallthru to to false
to prevent subsequent case statements from executing.
Code generation for break statements depends on whether the break statement is
inside a switch statement or inside a loop statement. If it inside a loop
statement is inside a break statement, the same code as before gets generated.
But if a switch statement is inside a loop statement, code is emitted to set
the is_break state to true.
Just as ASTs for loop statements are managed in a stack-like
manner to handle nesting, we also add a bool to capture the innermost switch
or loop condition. Note that we still need to maintain a loop AST stack to
properly handle for-loop code generation on a continue statement. Technically,
we don't (yet) need a switch AST stack, but I am using one for orthogonality
with loop statements, in anticipation of future use. Note that a simple
boolean stack would have sufficed.
We will illustrate a switch statement with its analogous conditional code that
a switch statement corresponds to by examining an example.
Consider the following switch statement:
switch (42) {
case 0:
case 1:
gl_FragColor = vec4(1.0, 2.0, 3.0, 4.0);
case 2:
case 3:
gl_FragColor = vec4(4.0, 3.0, 2.0, 1.0);
break;
case 4:
default:
gl_FragColor = vec4(0.0, 0.0, 0.0, 0.0);
}
Note that case 0 and case 1 fall through to cases 2 and 3 if they occur.
Note that case 4 and the default case must be reached explicitly, since cases
2 and 3 break at the end of their case.
Finally, note that case 4 and the default case don't break but simply fall
through to the end of the switch.
For this code, the equivalent code can be expressed as:
int test_val = 42; // capture value of test expression
bool is_fallthru = false; // prevent initial fall through
bool is_break = false; // capture the execution of a break stmt
is_fallthru |= (test_val == 0); // enable fallthru on case 0
is_fallthru |= (test_val == 1); // enable fallthru on case 1
is_fallthru &= !is_break; // inhibit fallthru on previous break
if (is_fallthru) {
gl_FragColor = vec4(1.0, 2.0, 3.0, 4.0);
}
is_fallthru |= (test_val == 2); // enable fallthru on case 2
is_fallthru |= (test_val == 3); // enable fallthru on case 3
is_fallthru &= !is_break; // inhibit fallthru on previous break
if (is_fallthru) {
gl_FragColor = vec4(4.0, 3.0, 2.0, 1.0);
is_break = true; // inhibit all subsequent fallthru for break
}
is_fallthru |= (test_val == 4); // enable fallthru on case 4
is_fallthru = true; // enable fallthru for default case
is_fallthru &= !is_break; // inhibit fallthru on previous break
if (is_fallthru) {
gl_FragColor = vec4(0.0, 0.0, 0.0, 0.0);
}
The code generate for |= and &= uses the conditional assignment capabilities
of the IR.
Reviewed-by: Kenneth Graunke <kenneth@whitecape.org>
2011-11-07 16:17:58 -08:00
|
|
|
mode == ast_break) {
|
|
|
|
|
/* Force break out of switch by setting is_break switch state.
|
|
|
|
|
*/
|
2012-01-28 11:26:02 -08:00
|
|
|
ir_variable *const is_break_var = state->switch_state.is_break_var;
|
glsl: Generate IR for switch statements
Up until now modifying the GLSL compiler has been pretty straightforward.
This is where things get interesting. But still pretty straightforward.
Switch statements can be thought of a series of if/then/else statements.
Case labels are compared with the value of a test expression and the case
statements are executed if the comparison is true.
There are a couple of aspects of switch statements that complicate this simple
view of the world. The primary one is that cases can fall through sequentially
to subsequent case, unless a break statement is encountered, in which case,
the switch statement exits completely.
But break handling is further complicated by the fact that a break statement
can impact the exit of a loop. Thus, we need to coordinate break processing
between switch statements and loop statements.
The code generated by a switch statement maintains three temporary state
variables:
int test_value;
bool is_fallthru;
bool is_break;
test_value is initialized to the value of the test expression at the head of
the switch statement. This is the value that case labels are compared against.
is_fallthru is used to sequentially fall through to subsequent cases and is
initialized to false. When a case label matches the test expression, this
state variable is set to true. It will also be forced to false if a break
statement has been encountered. This forcing to false on break MUST be
after every case test. In practice, we defer that forcing to immediately after
the last case comparison prior to executing a case statement, but that is
an optimization.
is_break is used to indicate that a break statement has been executed and is
initialized to false. When a break statement is encountered, it is set to true.
This state variable is then used to conditionally force is_fallthru to to false
to prevent subsequent case statements from executing.
Code generation for break statements depends on whether the break statement is
inside a switch statement or inside a loop statement. If it inside a loop
statement is inside a break statement, the same code as before gets generated.
But if a switch statement is inside a loop statement, code is emitted to set
the is_break state to true.
Just as ASTs for loop statements are managed in a stack-like
manner to handle nesting, we also add a bool to capture the innermost switch
or loop condition. Note that we still need to maintain a loop AST stack to
properly handle for-loop code generation on a continue statement. Technically,
we don't (yet) need a switch AST stack, but I am using one for orthogonality
with loop statements, in anticipation of future use. Note that a simple
boolean stack would have sufficed.
We will illustrate a switch statement with its analogous conditional code that
a switch statement corresponds to by examining an example.
Consider the following switch statement:
switch (42) {
case 0:
case 1:
gl_FragColor = vec4(1.0, 2.0, 3.0, 4.0);
case 2:
case 3:
gl_FragColor = vec4(4.0, 3.0, 2.0, 1.0);
break;
case 4:
default:
gl_FragColor = vec4(0.0, 0.0, 0.0, 0.0);
}
Note that case 0 and case 1 fall through to cases 2 and 3 if they occur.
Note that case 4 and the default case must be reached explicitly, since cases
2 and 3 break at the end of their case.
Finally, note that case 4 and the default case don't break but simply fall
through to the end of the switch.
For this code, the equivalent code can be expressed as:
int test_val = 42; // capture value of test expression
bool is_fallthru = false; // prevent initial fall through
bool is_break = false; // capture the execution of a break stmt
is_fallthru |= (test_val == 0); // enable fallthru on case 0
is_fallthru |= (test_val == 1); // enable fallthru on case 1
is_fallthru &= !is_break; // inhibit fallthru on previous break
if (is_fallthru) {
gl_FragColor = vec4(1.0, 2.0, 3.0, 4.0);
}
is_fallthru |= (test_val == 2); // enable fallthru on case 2
is_fallthru |= (test_val == 3); // enable fallthru on case 3
is_fallthru &= !is_break; // inhibit fallthru on previous break
if (is_fallthru) {
gl_FragColor = vec4(4.0, 3.0, 2.0, 1.0);
is_break = true; // inhibit all subsequent fallthru for break
}
is_fallthru |= (test_val == 4); // enable fallthru on case 4
is_fallthru = true; // enable fallthru for default case
is_fallthru &= !is_break; // inhibit fallthru on previous break
if (is_fallthru) {
gl_FragColor = vec4(0.0, 0.0, 0.0, 0.0);
}
The code generate for |= and &= uses the conditional assignment capabilities
of the IR.
Reviewed-by: Kenneth Graunke <kenneth@whitecape.org>
2011-11-07 16:17:58 -08:00
|
|
|
ir_dereference_variable *const deref_is_break_var =
|
|
|
|
|
new(ctx) ir_dereference_variable(is_break_var);
|
|
|
|
|
ir_constant *const true_val = new(ctx) ir_constant(true);
|
|
|
|
|
ir_assignment *const set_break_var =
|
2012-05-14 09:14:54 -07:00
|
|
|
new(ctx) ir_assignment(deref_is_break_var, true_val);
|
glsl: Generate IR for switch statements
Up until now modifying the GLSL compiler has been pretty straightforward.
This is where things get interesting. But still pretty straightforward.
Switch statements can be thought of a series of if/then/else statements.
Case labels are compared with the value of a test expression and the case
statements are executed if the comparison is true.
There are a couple of aspects of switch statements that complicate this simple
view of the world. The primary one is that cases can fall through sequentially
to subsequent case, unless a break statement is encountered, in which case,
the switch statement exits completely.
But break handling is further complicated by the fact that a break statement
can impact the exit of a loop. Thus, we need to coordinate break processing
between switch statements and loop statements.
The code generated by a switch statement maintains three temporary state
variables:
int test_value;
bool is_fallthru;
bool is_break;
test_value is initialized to the value of the test expression at the head of
the switch statement. This is the value that case labels are compared against.
is_fallthru is used to sequentially fall through to subsequent cases and is
initialized to false. When a case label matches the test expression, this
state variable is set to true. It will also be forced to false if a break
statement has been encountered. This forcing to false on break MUST be
after every case test. In practice, we defer that forcing to immediately after
the last case comparison prior to executing a case statement, but that is
an optimization.
is_break is used to indicate that a break statement has been executed and is
initialized to false. When a break statement is encountered, it is set to true.
This state variable is then used to conditionally force is_fallthru to to false
to prevent subsequent case statements from executing.
Code generation for break statements depends on whether the break statement is
inside a switch statement or inside a loop statement. If it inside a loop
statement is inside a break statement, the same code as before gets generated.
But if a switch statement is inside a loop statement, code is emitted to set
the is_break state to true.
Just as ASTs for loop statements are managed in a stack-like
manner to handle nesting, we also add a bool to capture the innermost switch
or loop condition. Note that we still need to maintain a loop AST stack to
properly handle for-loop code generation on a continue statement. Technically,
we don't (yet) need a switch AST stack, but I am using one for orthogonality
with loop statements, in anticipation of future use. Note that a simple
boolean stack would have sufficed.
We will illustrate a switch statement with its analogous conditional code that
a switch statement corresponds to by examining an example.
Consider the following switch statement:
switch (42) {
case 0:
case 1:
gl_FragColor = vec4(1.0, 2.0, 3.0, 4.0);
case 2:
case 3:
gl_FragColor = vec4(4.0, 3.0, 2.0, 1.0);
break;
case 4:
default:
gl_FragColor = vec4(0.0, 0.0, 0.0, 0.0);
}
Note that case 0 and case 1 fall through to cases 2 and 3 if they occur.
Note that case 4 and the default case must be reached explicitly, since cases
2 and 3 break at the end of their case.
Finally, note that case 4 and the default case don't break but simply fall
through to the end of the switch.
For this code, the equivalent code can be expressed as:
int test_val = 42; // capture value of test expression
bool is_fallthru = false; // prevent initial fall through
bool is_break = false; // capture the execution of a break stmt
is_fallthru |= (test_val == 0); // enable fallthru on case 0
is_fallthru |= (test_val == 1); // enable fallthru on case 1
is_fallthru &= !is_break; // inhibit fallthru on previous break
if (is_fallthru) {
gl_FragColor = vec4(1.0, 2.0, 3.0, 4.0);
}
is_fallthru |= (test_val == 2); // enable fallthru on case 2
is_fallthru |= (test_val == 3); // enable fallthru on case 3
is_fallthru &= !is_break; // inhibit fallthru on previous break
if (is_fallthru) {
gl_FragColor = vec4(4.0, 3.0, 2.0, 1.0);
is_break = true; // inhibit all subsequent fallthru for break
}
is_fallthru |= (test_val == 4); // enable fallthru on case 4
is_fallthru = true; // enable fallthru for default case
is_fallthru &= !is_break; // inhibit fallthru on previous break
if (is_fallthru) {
gl_FragColor = vec4(0.0, 0.0, 0.0, 0.0);
}
The code generate for |= and &= uses the conditional assignment capabilities
of the IR.
Reviewed-by: Kenneth Graunke <kenneth@whitecape.org>
2011-11-07 16:17:58 -08:00
|
|
|
|
|
|
|
|
instructions->push_tail(set_break_var);
|
|
|
|
|
}
|
|
|
|
|
else {
|
|
|
|
|
ir_loop_jump *const jump =
|
2010-06-23 18:11:51 -07:00
|
|
|
new(ctx) ir_loop_jump((mode == ast_break)
|
|
|
|
|
? ir_loop_jump::jump_break
|
|
|
|
|
: ir_loop_jump::jump_continue);
|
2010-04-05 17:13:47 -07:00
|
|
|
instructions->push_tail(jump);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
2010-04-05 16:53:19 -07:00
|
|
|
break;
|
2010-03-30 23:40:14 -10:00
|
|
|
}
|
|
|
|
|
|
2010-03-19 16:45:19 -07:00
|
|
|
/* Jump instructions do not have r-values.
|
|
|
|
|
*/
|
|
|
|
|
return NULL;
|
|
|
|
|
}
|
2010-03-29 14:11:25 -07:00
|
|
|
|
|
|
|
|
|
|
|
|
|
ir_rvalue *
|
|
|
|
|
ast_selection_statement::hir(exec_list *instructions,
|
|
|
|
|
struct _mesa_glsl_parse_state *state)
|
|
|
|
|
{
|
2010-06-25 13:14:37 -07:00
|
|
|
void *ctx = state;
|
2010-06-23 18:11:51 -07:00
|
|
|
|
2010-03-29 14:11:25 -07:00
|
|
|
ir_rvalue *const condition = this->condition->hir(instructions, state);
|
|
|
|
|
|
|
|
|
|
/* From page 66 (page 72 of the PDF) of the GLSL 1.50 spec:
|
|
|
|
|
*
|
|
|
|
|
* "Any expression whose type evaluates to a Boolean can be used as the
|
|
|
|
|
* conditional expression bool-expression. Vector types are not accepted
|
|
|
|
|
* as the expression to if."
|
|
|
|
|
*
|
|
|
|
|
* The checks are separated so that higher quality diagnostics can be
|
|
|
|
|
* generated for cases where both rules are violated.
|
|
|
|
|
*/
|
|
|
|
|
if (!condition->type->is_boolean() || !condition->type->is_scalar()) {
|
|
|
|
|
YYLTYPE loc = this->condition->get_location();
|
|
|
|
|
|
|
|
|
|
_mesa_glsl_error(& loc, state, "if-statement condition must be scalar "
|
|
|
|
|
"boolean");
|
|
|
|
|
}
|
|
|
|
|
|
2010-06-23 18:11:51 -07:00
|
|
|
ir_if *const stmt = new(ctx) ir_if(condition);
|
2010-03-29 14:11:25 -07:00
|
|
|
|
2010-08-18 13:54:50 -07:00
|
|
|
if (then_statement != NULL) {
|
|
|
|
|
state->symbols->push_scope();
|
2010-05-10 11:10:26 -07:00
|
|
|
then_statement->hir(& stmt->then_instructions, state);
|
2010-08-18 13:54:50 -07:00
|
|
|
state->symbols->pop_scope();
|
|
|
|
|
}
|
2010-03-29 14:11:25 -07:00
|
|
|
|
2010-08-18 13:54:50 -07:00
|
|
|
if (else_statement != NULL) {
|
|
|
|
|
state->symbols->push_scope();
|
2010-05-10 11:10:26 -07:00
|
|
|
else_statement->hir(& stmt->else_instructions, state);
|
2010-08-18 13:54:50 -07:00
|
|
|
state->symbols->pop_scope();
|
|
|
|
|
}
|
2010-03-29 14:11:25 -07:00
|
|
|
|
|
|
|
|
instructions->push_tail(stmt);
|
|
|
|
|
|
|
|
|
|
/* if-statements do not have r-values.
|
|
|
|
|
*/
|
|
|
|
|
return NULL;
|
|
|
|
|
}
|
2010-04-05 16:37:49 -07:00
|
|
|
|
|
|
|
|
|
2011-11-07 15:11:04 -08:00
|
|
|
ir_rvalue *
|
|
|
|
|
ast_switch_statement::hir(exec_list *instructions,
|
|
|
|
|
struct _mesa_glsl_parse_state *state)
|
|
|
|
|
{
|
glsl: Generate IR for switch statements
Up until now modifying the GLSL compiler has been pretty straightforward.
This is where things get interesting. But still pretty straightforward.
Switch statements can be thought of a series of if/then/else statements.
Case labels are compared with the value of a test expression and the case
statements are executed if the comparison is true.
There are a couple of aspects of switch statements that complicate this simple
view of the world. The primary one is that cases can fall through sequentially
to subsequent case, unless a break statement is encountered, in which case,
the switch statement exits completely.
But break handling is further complicated by the fact that a break statement
can impact the exit of a loop. Thus, we need to coordinate break processing
between switch statements and loop statements.
The code generated by a switch statement maintains three temporary state
variables:
int test_value;
bool is_fallthru;
bool is_break;
test_value is initialized to the value of the test expression at the head of
the switch statement. This is the value that case labels are compared against.
is_fallthru is used to sequentially fall through to subsequent cases and is
initialized to false. When a case label matches the test expression, this
state variable is set to true. It will also be forced to false if a break
statement has been encountered. This forcing to false on break MUST be
after every case test. In practice, we defer that forcing to immediately after
the last case comparison prior to executing a case statement, but that is
an optimization.
is_break is used to indicate that a break statement has been executed and is
initialized to false. When a break statement is encountered, it is set to true.
This state variable is then used to conditionally force is_fallthru to to false
to prevent subsequent case statements from executing.
Code generation for break statements depends on whether the break statement is
inside a switch statement or inside a loop statement. If it inside a loop
statement is inside a break statement, the same code as before gets generated.
But if a switch statement is inside a loop statement, code is emitted to set
the is_break state to true.
Just as ASTs for loop statements are managed in a stack-like
manner to handle nesting, we also add a bool to capture the innermost switch
or loop condition. Note that we still need to maintain a loop AST stack to
properly handle for-loop code generation on a continue statement. Technically,
we don't (yet) need a switch AST stack, but I am using one for orthogonality
with loop statements, in anticipation of future use. Note that a simple
boolean stack would have sufficed.
We will illustrate a switch statement with its analogous conditional code that
a switch statement corresponds to by examining an example.
Consider the following switch statement:
switch (42) {
case 0:
case 1:
gl_FragColor = vec4(1.0, 2.0, 3.0, 4.0);
case 2:
case 3:
gl_FragColor = vec4(4.0, 3.0, 2.0, 1.0);
break;
case 4:
default:
gl_FragColor = vec4(0.0, 0.0, 0.0, 0.0);
}
Note that case 0 and case 1 fall through to cases 2 and 3 if they occur.
Note that case 4 and the default case must be reached explicitly, since cases
2 and 3 break at the end of their case.
Finally, note that case 4 and the default case don't break but simply fall
through to the end of the switch.
For this code, the equivalent code can be expressed as:
int test_val = 42; // capture value of test expression
bool is_fallthru = false; // prevent initial fall through
bool is_break = false; // capture the execution of a break stmt
is_fallthru |= (test_val == 0); // enable fallthru on case 0
is_fallthru |= (test_val == 1); // enable fallthru on case 1
is_fallthru &= !is_break; // inhibit fallthru on previous break
if (is_fallthru) {
gl_FragColor = vec4(1.0, 2.0, 3.0, 4.0);
}
is_fallthru |= (test_val == 2); // enable fallthru on case 2
is_fallthru |= (test_val == 3); // enable fallthru on case 3
is_fallthru &= !is_break; // inhibit fallthru on previous break
if (is_fallthru) {
gl_FragColor = vec4(4.0, 3.0, 2.0, 1.0);
is_break = true; // inhibit all subsequent fallthru for break
}
is_fallthru |= (test_val == 4); // enable fallthru on case 4
is_fallthru = true; // enable fallthru for default case
is_fallthru &= !is_break; // inhibit fallthru on previous break
if (is_fallthru) {
gl_FragColor = vec4(0.0, 0.0, 0.0, 0.0);
}
The code generate for |= and &= uses the conditional assignment capabilities
of the IR.
Reviewed-by: Kenneth Graunke <kenneth@whitecape.org>
2011-11-07 16:17:58 -08:00
|
|
|
void *ctx = state;
|
|
|
|
|
|
|
|
|
|
ir_rvalue *const test_expression =
|
|
|
|
|
this->test_expression->hir(instructions, state);
|
|
|
|
|
|
|
|
|
|
/* From page 66 (page 55 of the PDF) of the GLSL 1.50 spec:
|
|
|
|
|
*
|
|
|
|
|
* "The type of init-expression in a switch statement must be a
|
|
|
|
|
* scalar integer."
|
|
|
|
|
*/
|
2012-05-14 08:45:59 -07:00
|
|
|
if (!test_expression->type->is_scalar() ||
|
|
|
|
|
!test_expression->type->is_integer()) {
|
glsl: Generate IR for switch statements
Up until now modifying the GLSL compiler has been pretty straightforward.
This is where things get interesting. But still pretty straightforward.
Switch statements can be thought of a series of if/then/else statements.
Case labels are compared with the value of a test expression and the case
statements are executed if the comparison is true.
There are a couple of aspects of switch statements that complicate this simple
view of the world. The primary one is that cases can fall through sequentially
to subsequent case, unless a break statement is encountered, in which case,
the switch statement exits completely.
But break handling is further complicated by the fact that a break statement
can impact the exit of a loop. Thus, we need to coordinate break processing
between switch statements and loop statements.
The code generated by a switch statement maintains three temporary state
variables:
int test_value;
bool is_fallthru;
bool is_break;
test_value is initialized to the value of the test expression at the head of
the switch statement. This is the value that case labels are compared against.
is_fallthru is used to sequentially fall through to subsequent cases and is
initialized to false. When a case label matches the test expression, this
state variable is set to true. It will also be forced to false if a break
statement has been encountered. This forcing to false on break MUST be
after every case test. In practice, we defer that forcing to immediately after
the last case comparison prior to executing a case statement, but that is
an optimization.
is_break is used to indicate that a break statement has been executed and is
initialized to false. When a break statement is encountered, it is set to true.
This state variable is then used to conditionally force is_fallthru to to false
to prevent subsequent case statements from executing.
Code generation for break statements depends on whether the break statement is
inside a switch statement or inside a loop statement. If it inside a loop
statement is inside a break statement, the same code as before gets generated.
But if a switch statement is inside a loop statement, code is emitted to set
the is_break state to true.
Just as ASTs for loop statements are managed in a stack-like
manner to handle nesting, we also add a bool to capture the innermost switch
or loop condition. Note that we still need to maintain a loop AST stack to
properly handle for-loop code generation on a continue statement. Technically,
we don't (yet) need a switch AST stack, but I am using one for orthogonality
with loop statements, in anticipation of future use. Note that a simple
boolean stack would have sufficed.
We will illustrate a switch statement with its analogous conditional code that
a switch statement corresponds to by examining an example.
Consider the following switch statement:
switch (42) {
case 0:
case 1:
gl_FragColor = vec4(1.0, 2.0, 3.0, 4.0);
case 2:
case 3:
gl_FragColor = vec4(4.0, 3.0, 2.0, 1.0);
break;
case 4:
default:
gl_FragColor = vec4(0.0, 0.0, 0.0, 0.0);
}
Note that case 0 and case 1 fall through to cases 2 and 3 if they occur.
Note that case 4 and the default case must be reached explicitly, since cases
2 and 3 break at the end of their case.
Finally, note that case 4 and the default case don't break but simply fall
through to the end of the switch.
For this code, the equivalent code can be expressed as:
int test_val = 42; // capture value of test expression
bool is_fallthru = false; // prevent initial fall through
bool is_break = false; // capture the execution of a break stmt
is_fallthru |= (test_val == 0); // enable fallthru on case 0
is_fallthru |= (test_val == 1); // enable fallthru on case 1
is_fallthru &= !is_break; // inhibit fallthru on previous break
if (is_fallthru) {
gl_FragColor = vec4(1.0, 2.0, 3.0, 4.0);
}
is_fallthru |= (test_val == 2); // enable fallthru on case 2
is_fallthru |= (test_val == 3); // enable fallthru on case 3
is_fallthru &= !is_break; // inhibit fallthru on previous break
if (is_fallthru) {
gl_FragColor = vec4(4.0, 3.0, 2.0, 1.0);
is_break = true; // inhibit all subsequent fallthru for break
}
is_fallthru |= (test_val == 4); // enable fallthru on case 4
is_fallthru = true; // enable fallthru for default case
is_fallthru &= !is_break; // inhibit fallthru on previous break
if (is_fallthru) {
gl_FragColor = vec4(0.0, 0.0, 0.0, 0.0);
}
The code generate for |= and &= uses the conditional assignment capabilities
of the IR.
Reviewed-by: Kenneth Graunke <kenneth@whitecape.org>
2011-11-07 16:17:58 -08:00
|
|
|
YYLTYPE loc = this->test_expression->get_location();
|
|
|
|
|
|
|
|
|
|
_mesa_glsl_error(& loc,
|
|
|
|
|
state,
|
|
|
|
|
"switch-statement expression must be scalar "
|
|
|
|
|
"integer");
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Track the switch-statement nesting in a stack-like manner.
|
|
|
|
|
*/
|
2012-01-28 11:26:02 -08:00
|
|
|
struct glsl_switch_state saved = state->switch_state;
|
glsl: Generate IR for switch statements
Up until now modifying the GLSL compiler has been pretty straightforward.
This is where things get interesting. But still pretty straightforward.
Switch statements can be thought of a series of if/then/else statements.
Case labels are compared with the value of a test expression and the case
statements are executed if the comparison is true.
There are a couple of aspects of switch statements that complicate this simple
view of the world. The primary one is that cases can fall through sequentially
to subsequent case, unless a break statement is encountered, in which case,
the switch statement exits completely.
But break handling is further complicated by the fact that a break statement
can impact the exit of a loop. Thus, we need to coordinate break processing
between switch statements and loop statements.
The code generated by a switch statement maintains three temporary state
variables:
int test_value;
bool is_fallthru;
bool is_break;
test_value is initialized to the value of the test expression at the head of
the switch statement. This is the value that case labels are compared against.
is_fallthru is used to sequentially fall through to subsequent cases and is
initialized to false. When a case label matches the test expression, this
state variable is set to true. It will also be forced to false if a break
statement has been encountered. This forcing to false on break MUST be
after every case test. In practice, we defer that forcing to immediately after
the last case comparison prior to executing a case statement, but that is
an optimization.
is_break is used to indicate that a break statement has been executed and is
initialized to false. When a break statement is encountered, it is set to true.
This state variable is then used to conditionally force is_fallthru to to false
to prevent subsequent case statements from executing.
Code generation for break statements depends on whether the break statement is
inside a switch statement or inside a loop statement. If it inside a loop
statement is inside a break statement, the same code as before gets generated.
But if a switch statement is inside a loop statement, code is emitted to set
the is_break state to true.
Just as ASTs for loop statements are managed in a stack-like
manner to handle nesting, we also add a bool to capture the innermost switch
or loop condition. Note that we still need to maintain a loop AST stack to
properly handle for-loop code generation on a continue statement. Technically,
we don't (yet) need a switch AST stack, but I am using one for orthogonality
with loop statements, in anticipation of future use. Note that a simple
boolean stack would have sufficed.
We will illustrate a switch statement with its analogous conditional code that
a switch statement corresponds to by examining an example.
Consider the following switch statement:
switch (42) {
case 0:
case 1:
gl_FragColor = vec4(1.0, 2.0, 3.0, 4.0);
case 2:
case 3:
gl_FragColor = vec4(4.0, 3.0, 2.0, 1.0);
break;
case 4:
default:
gl_FragColor = vec4(0.0, 0.0, 0.0, 0.0);
}
Note that case 0 and case 1 fall through to cases 2 and 3 if they occur.
Note that case 4 and the default case must be reached explicitly, since cases
2 and 3 break at the end of their case.
Finally, note that case 4 and the default case don't break but simply fall
through to the end of the switch.
For this code, the equivalent code can be expressed as:
int test_val = 42; // capture value of test expression
bool is_fallthru = false; // prevent initial fall through
bool is_break = false; // capture the execution of a break stmt
is_fallthru |= (test_val == 0); // enable fallthru on case 0
is_fallthru |= (test_val == 1); // enable fallthru on case 1
is_fallthru &= !is_break; // inhibit fallthru on previous break
if (is_fallthru) {
gl_FragColor = vec4(1.0, 2.0, 3.0, 4.0);
}
is_fallthru |= (test_val == 2); // enable fallthru on case 2
is_fallthru |= (test_val == 3); // enable fallthru on case 3
is_fallthru &= !is_break; // inhibit fallthru on previous break
if (is_fallthru) {
gl_FragColor = vec4(4.0, 3.0, 2.0, 1.0);
is_break = true; // inhibit all subsequent fallthru for break
}
is_fallthru |= (test_val == 4); // enable fallthru on case 4
is_fallthru = true; // enable fallthru for default case
is_fallthru &= !is_break; // inhibit fallthru on previous break
if (is_fallthru) {
gl_FragColor = vec4(0.0, 0.0, 0.0, 0.0);
}
The code generate for |= and &= uses the conditional assignment capabilities
of the IR.
Reviewed-by: Kenneth Graunke <kenneth@whitecape.org>
2011-11-07 16:17:58 -08:00
|
|
|
|
2012-01-28 11:26:02 -08:00
|
|
|
state->switch_state.is_switch_innermost = true;
|
|
|
|
|
state->switch_state.switch_nesting_ast = this;
|
2012-01-30 08:50:14 -08:00
|
|
|
state->switch_state.labels_ht = hash_table_ctor(0, hash_table_pointer_hash,
|
|
|
|
|
hash_table_pointer_compare);
|
2012-01-30 09:50:35 -08:00
|
|
|
state->switch_state.previous_default = NULL;
|
glsl: Generate IR for switch statements
Up until now modifying the GLSL compiler has been pretty straightforward.
This is where things get interesting. But still pretty straightforward.
Switch statements can be thought of a series of if/then/else statements.
Case labels are compared with the value of a test expression and the case
statements are executed if the comparison is true.
There are a couple of aspects of switch statements that complicate this simple
view of the world. The primary one is that cases can fall through sequentially
to subsequent case, unless a break statement is encountered, in which case,
the switch statement exits completely.
But break handling is further complicated by the fact that a break statement
can impact the exit of a loop. Thus, we need to coordinate break processing
between switch statements and loop statements.
The code generated by a switch statement maintains three temporary state
variables:
int test_value;
bool is_fallthru;
bool is_break;
test_value is initialized to the value of the test expression at the head of
the switch statement. This is the value that case labels are compared against.
is_fallthru is used to sequentially fall through to subsequent cases and is
initialized to false. When a case label matches the test expression, this
state variable is set to true. It will also be forced to false if a break
statement has been encountered. This forcing to false on break MUST be
after every case test. In practice, we defer that forcing to immediately after
the last case comparison prior to executing a case statement, but that is
an optimization.
is_break is used to indicate that a break statement has been executed and is
initialized to false. When a break statement is encountered, it is set to true.
This state variable is then used to conditionally force is_fallthru to to false
to prevent subsequent case statements from executing.
Code generation for break statements depends on whether the break statement is
inside a switch statement or inside a loop statement. If it inside a loop
statement is inside a break statement, the same code as before gets generated.
But if a switch statement is inside a loop statement, code is emitted to set
the is_break state to true.
Just as ASTs for loop statements are managed in a stack-like
manner to handle nesting, we also add a bool to capture the innermost switch
or loop condition. Note that we still need to maintain a loop AST stack to
properly handle for-loop code generation on a continue statement. Technically,
we don't (yet) need a switch AST stack, but I am using one for orthogonality
with loop statements, in anticipation of future use. Note that a simple
boolean stack would have sufficed.
We will illustrate a switch statement with its analogous conditional code that
a switch statement corresponds to by examining an example.
Consider the following switch statement:
switch (42) {
case 0:
case 1:
gl_FragColor = vec4(1.0, 2.0, 3.0, 4.0);
case 2:
case 3:
gl_FragColor = vec4(4.0, 3.0, 2.0, 1.0);
break;
case 4:
default:
gl_FragColor = vec4(0.0, 0.0, 0.0, 0.0);
}
Note that case 0 and case 1 fall through to cases 2 and 3 if they occur.
Note that case 4 and the default case must be reached explicitly, since cases
2 and 3 break at the end of their case.
Finally, note that case 4 and the default case don't break but simply fall
through to the end of the switch.
For this code, the equivalent code can be expressed as:
int test_val = 42; // capture value of test expression
bool is_fallthru = false; // prevent initial fall through
bool is_break = false; // capture the execution of a break stmt
is_fallthru |= (test_val == 0); // enable fallthru on case 0
is_fallthru |= (test_val == 1); // enable fallthru on case 1
is_fallthru &= !is_break; // inhibit fallthru on previous break
if (is_fallthru) {
gl_FragColor = vec4(1.0, 2.0, 3.0, 4.0);
}
is_fallthru |= (test_val == 2); // enable fallthru on case 2
is_fallthru |= (test_val == 3); // enable fallthru on case 3
is_fallthru &= !is_break; // inhibit fallthru on previous break
if (is_fallthru) {
gl_FragColor = vec4(4.0, 3.0, 2.0, 1.0);
is_break = true; // inhibit all subsequent fallthru for break
}
is_fallthru |= (test_val == 4); // enable fallthru on case 4
is_fallthru = true; // enable fallthru for default case
is_fallthru &= !is_break; // inhibit fallthru on previous break
if (is_fallthru) {
gl_FragColor = vec4(0.0, 0.0, 0.0, 0.0);
}
The code generate for |= and &= uses the conditional assignment capabilities
of the IR.
Reviewed-by: Kenneth Graunke <kenneth@whitecape.org>
2011-11-07 16:17:58 -08:00
|
|
|
|
|
|
|
|
/* Initalize is_fallthru state to false.
|
|
|
|
|
*/
|
|
|
|
|
ir_rvalue *const is_fallthru_val = new (ctx) ir_constant(false);
|
2012-01-28 11:26:02 -08:00
|
|
|
state->switch_state.is_fallthru_var =
|
|
|
|
|
new(ctx) ir_variable(glsl_type::bool_type,
|
|
|
|
|
"switch_is_fallthru_tmp",
|
|
|
|
|
ir_var_temporary);
|
|
|
|
|
instructions->push_tail(state->switch_state.is_fallthru_var);
|
glsl: Generate IR for switch statements
Up until now modifying the GLSL compiler has been pretty straightforward.
This is where things get interesting. But still pretty straightforward.
Switch statements can be thought of a series of if/then/else statements.
Case labels are compared with the value of a test expression and the case
statements are executed if the comparison is true.
There are a couple of aspects of switch statements that complicate this simple
view of the world. The primary one is that cases can fall through sequentially
to subsequent case, unless a break statement is encountered, in which case,
the switch statement exits completely.
But break handling is further complicated by the fact that a break statement
can impact the exit of a loop. Thus, we need to coordinate break processing
between switch statements and loop statements.
The code generated by a switch statement maintains three temporary state
variables:
int test_value;
bool is_fallthru;
bool is_break;
test_value is initialized to the value of the test expression at the head of
the switch statement. This is the value that case labels are compared against.
is_fallthru is used to sequentially fall through to subsequent cases and is
initialized to false. When a case label matches the test expression, this
state variable is set to true. It will also be forced to false if a break
statement has been encountered. This forcing to false on break MUST be
after every case test. In practice, we defer that forcing to immediately after
the last case comparison prior to executing a case statement, but that is
an optimization.
is_break is used to indicate that a break statement has been executed and is
initialized to false. When a break statement is encountered, it is set to true.
This state variable is then used to conditionally force is_fallthru to to false
to prevent subsequent case statements from executing.
Code generation for break statements depends on whether the break statement is
inside a switch statement or inside a loop statement. If it inside a loop
statement is inside a break statement, the same code as before gets generated.
But if a switch statement is inside a loop statement, code is emitted to set
the is_break state to true.
Just as ASTs for loop statements are managed in a stack-like
manner to handle nesting, we also add a bool to capture the innermost switch
or loop condition. Note that we still need to maintain a loop AST stack to
properly handle for-loop code generation on a continue statement. Technically,
we don't (yet) need a switch AST stack, but I am using one for orthogonality
with loop statements, in anticipation of future use. Note that a simple
boolean stack would have sufficed.
We will illustrate a switch statement with its analogous conditional code that
a switch statement corresponds to by examining an example.
Consider the following switch statement:
switch (42) {
case 0:
case 1:
gl_FragColor = vec4(1.0, 2.0, 3.0, 4.0);
case 2:
case 3:
gl_FragColor = vec4(4.0, 3.0, 2.0, 1.0);
break;
case 4:
default:
gl_FragColor = vec4(0.0, 0.0, 0.0, 0.0);
}
Note that case 0 and case 1 fall through to cases 2 and 3 if they occur.
Note that case 4 and the default case must be reached explicitly, since cases
2 and 3 break at the end of their case.
Finally, note that case 4 and the default case don't break but simply fall
through to the end of the switch.
For this code, the equivalent code can be expressed as:
int test_val = 42; // capture value of test expression
bool is_fallthru = false; // prevent initial fall through
bool is_break = false; // capture the execution of a break stmt
is_fallthru |= (test_val == 0); // enable fallthru on case 0
is_fallthru |= (test_val == 1); // enable fallthru on case 1
is_fallthru &= !is_break; // inhibit fallthru on previous break
if (is_fallthru) {
gl_FragColor = vec4(1.0, 2.0, 3.0, 4.0);
}
is_fallthru |= (test_val == 2); // enable fallthru on case 2
is_fallthru |= (test_val == 3); // enable fallthru on case 3
is_fallthru &= !is_break; // inhibit fallthru on previous break
if (is_fallthru) {
gl_FragColor = vec4(4.0, 3.0, 2.0, 1.0);
is_break = true; // inhibit all subsequent fallthru for break
}
is_fallthru |= (test_val == 4); // enable fallthru on case 4
is_fallthru = true; // enable fallthru for default case
is_fallthru &= !is_break; // inhibit fallthru on previous break
if (is_fallthru) {
gl_FragColor = vec4(0.0, 0.0, 0.0, 0.0);
}
The code generate for |= and &= uses the conditional assignment capabilities
of the IR.
Reviewed-by: Kenneth Graunke <kenneth@whitecape.org>
2011-11-07 16:17:58 -08:00
|
|
|
|
|
|
|
|
ir_dereference_variable *deref_is_fallthru_var =
|
2012-01-28 11:26:02 -08:00
|
|
|
new(ctx) ir_dereference_variable(state->switch_state.is_fallthru_var);
|
glsl: Generate IR for switch statements
Up until now modifying the GLSL compiler has been pretty straightforward.
This is where things get interesting. But still pretty straightforward.
Switch statements can be thought of a series of if/then/else statements.
Case labels are compared with the value of a test expression and the case
statements are executed if the comparison is true.
There are a couple of aspects of switch statements that complicate this simple
view of the world. The primary one is that cases can fall through sequentially
to subsequent case, unless a break statement is encountered, in which case,
the switch statement exits completely.
But break handling is further complicated by the fact that a break statement
can impact the exit of a loop. Thus, we need to coordinate break processing
between switch statements and loop statements.
The code generated by a switch statement maintains three temporary state
variables:
int test_value;
bool is_fallthru;
bool is_break;
test_value is initialized to the value of the test expression at the head of
the switch statement. This is the value that case labels are compared against.
is_fallthru is used to sequentially fall through to subsequent cases and is
initialized to false. When a case label matches the test expression, this
state variable is set to true. It will also be forced to false if a break
statement has been encountered. This forcing to false on break MUST be
after every case test. In practice, we defer that forcing to immediately after
the last case comparison prior to executing a case statement, but that is
an optimization.
is_break is used to indicate that a break statement has been executed and is
initialized to false. When a break statement is encountered, it is set to true.
This state variable is then used to conditionally force is_fallthru to to false
to prevent subsequent case statements from executing.
Code generation for break statements depends on whether the break statement is
inside a switch statement or inside a loop statement. If it inside a loop
statement is inside a break statement, the same code as before gets generated.
But if a switch statement is inside a loop statement, code is emitted to set
the is_break state to true.
Just as ASTs for loop statements are managed in a stack-like
manner to handle nesting, we also add a bool to capture the innermost switch
or loop condition. Note that we still need to maintain a loop AST stack to
properly handle for-loop code generation on a continue statement. Technically,
we don't (yet) need a switch AST stack, but I am using one for orthogonality
with loop statements, in anticipation of future use. Note that a simple
boolean stack would have sufficed.
We will illustrate a switch statement with its analogous conditional code that
a switch statement corresponds to by examining an example.
Consider the following switch statement:
switch (42) {
case 0:
case 1:
gl_FragColor = vec4(1.0, 2.0, 3.0, 4.0);
case 2:
case 3:
gl_FragColor = vec4(4.0, 3.0, 2.0, 1.0);
break;
case 4:
default:
gl_FragColor = vec4(0.0, 0.0, 0.0, 0.0);
}
Note that case 0 and case 1 fall through to cases 2 and 3 if they occur.
Note that case 4 and the default case must be reached explicitly, since cases
2 and 3 break at the end of their case.
Finally, note that case 4 and the default case don't break but simply fall
through to the end of the switch.
For this code, the equivalent code can be expressed as:
int test_val = 42; // capture value of test expression
bool is_fallthru = false; // prevent initial fall through
bool is_break = false; // capture the execution of a break stmt
is_fallthru |= (test_val == 0); // enable fallthru on case 0
is_fallthru |= (test_val == 1); // enable fallthru on case 1
is_fallthru &= !is_break; // inhibit fallthru on previous break
if (is_fallthru) {
gl_FragColor = vec4(1.0, 2.0, 3.0, 4.0);
}
is_fallthru |= (test_val == 2); // enable fallthru on case 2
is_fallthru |= (test_val == 3); // enable fallthru on case 3
is_fallthru &= !is_break; // inhibit fallthru on previous break
if (is_fallthru) {
gl_FragColor = vec4(4.0, 3.0, 2.0, 1.0);
is_break = true; // inhibit all subsequent fallthru for break
}
is_fallthru |= (test_val == 4); // enable fallthru on case 4
is_fallthru = true; // enable fallthru for default case
is_fallthru &= !is_break; // inhibit fallthru on previous break
if (is_fallthru) {
gl_FragColor = vec4(0.0, 0.0, 0.0, 0.0);
}
The code generate for |= and &= uses the conditional assignment capabilities
of the IR.
Reviewed-by: Kenneth Graunke <kenneth@whitecape.org>
2011-11-07 16:17:58 -08:00
|
|
|
instructions->push_tail(new(ctx) ir_assignment(deref_is_fallthru_var,
|
2012-05-14 09:14:54 -07:00
|
|
|
is_fallthru_val));
|
glsl: Generate IR for switch statements
Up until now modifying the GLSL compiler has been pretty straightforward.
This is where things get interesting. But still pretty straightforward.
Switch statements can be thought of a series of if/then/else statements.
Case labels are compared with the value of a test expression and the case
statements are executed if the comparison is true.
There are a couple of aspects of switch statements that complicate this simple
view of the world. The primary one is that cases can fall through sequentially
to subsequent case, unless a break statement is encountered, in which case,
the switch statement exits completely.
But break handling is further complicated by the fact that a break statement
can impact the exit of a loop. Thus, we need to coordinate break processing
between switch statements and loop statements.
The code generated by a switch statement maintains three temporary state
variables:
int test_value;
bool is_fallthru;
bool is_break;
test_value is initialized to the value of the test expression at the head of
the switch statement. This is the value that case labels are compared against.
is_fallthru is used to sequentially fall through to subsequent cases and is
initialized to false. When a case label matches the test expression, this
state variable is set to true. It will also be forced to false if a break
statement has been encountered. This forcing to false on break MUST be
after every case test. In practice, we defer that forcing to immediately after
the last case comparison prior to executing a case statement, but that is
an optimization.
is_break is used to indicate that a break statement has been executed and is
initialized to false. When a break statement is encountered, it is set to true.
This state variable is then used to conditionally force is_fallthru to to false
to prevent subsequent case statements from executing.
Code generation for break statements depends on whether the break statement is
inside a switch statement or inside a loop statement. If it inside a loop
statement is inside a break statement, the same code as before gets generated.
But if a switch statement is inside a loop statement, code is emitted to set
the is_break state to true.
Just as ASTs for loop statements are managed in a stack-like
manner to handle nesting, we also add a bool to capture the innermost switch
or loop condition. Note that we still need to maintain a loop AST stack to
properly handle for-loop code generation on a continue statement. Technically,
we don't (yet) need a switch AST stack, but I am using one for orthogonality
with loop statements, in anticipation of future use. Note that a simple
boolean stack would have sufficed.
We will illustrate a switch statement with its analogous conditional code that
a switch statement corresponds to by examining an example.
Consider the following switch statement:
switch (42) {
case 0:
case 1:
gl_FragColor = vec4(1.0, 2.0, 3.0, 4.0);
case 2:
case 3:
gl_FragColor = vec4(4.0, 3.0, 2.0, 1.0);
break;
case 4:
default:
gl_FragColor = vec4(0.0, 0.0, 0.0, 0.0);
}
Note that case 0 and case 1 fall through to cases 2 and 3 if they occur.
Note that case 4 and the default case must be reached explicitly, since cases
2 and 3 break at the end of their case.
Finally, note that case 4 and the default case don't break but simply fall
through to the end of the switch.
For this code, the equivalent code can be expressed as:
int test_val = 42; // capture value of test expression
bool is_fallthru = false; // prevent initial fall through
bool is_break = false; // capture the execution of a break stmt
is_fallthru |= (test_val == 0); // enable fallthru on case 0
is_fallthru |= (test_val == 1); // enable fallthru on case 1
is_fallthru &= !is_break; // inhibit fallthru on previous break
if (is_fallthru) {
gl_FragColor = vec4(1.0, 2.0, 3.0, 4.0);
}
is_fallthru |= (test_val == 2); // enable fallthru on case 2
is_fallthru |= (test_val == 3); // enable fallthru on case 3
is_fallthru &= !is_break; // inhibit fallthru on previous break
if (is_fallthru) {
gl_FragColor = vec4(4.0, 3.0, 2.0, 1.0);
is_break = true; // inhibit all subsequent fallthru for break
}
is_fallthru |= (test_val == 4); // enable fallthru on case 4
is_fallthru = true; // enable fallthru for default case
is_fallthru &= !is_break; // inhibit fallthru on previous break
if (is_fallthru) {
gl_FragColor = vec4(0.0, 0.0, 0.0, 0.0);
}
The code generate for |= and &= uses the conditional assignment capabilities
of the IR.
Reviewed-by: Kenneth Graunke <kenneth@whitecape.org>
2011-11-07 16:17:58 -08:00
|
|
|
|
|
|
|
|
/* Initalize is_break state to false.
|
|
|
|
|
*/
|
|
|
|
|
ir_rvalue *const is_break_val = new (ctx) ir_constant(false);
|
2012-01-28 11:26:02 -08:00
|
|
|
state->switch_state.is_break_var = new(ctx) ir_variable(glsl_type::bool_type,
|
|
|
|
|
"switch_is_break_tmp",
|
|
|
|
|
ir_var_temporary);
|
|
|
|
|
instructions->push_tail(state->switch_state.is_break_var);
|
glsl: Generate IR for switch statements
Up until now modifying the GLSL compiler has been pretty straightforward.
This is where things get interesting. But still pretty straightforward.
Switch statements can be thought of a series of if/then/else statements.
Case labels are compared with the value of a test expression and the case
statements are executed if the comparison is true.
There are a couple of aspects of switch statements that complicate this simple
view of the world. The primary one is that cases can fall through sequentially
to subsequent case, unless a break statement is encountered, in which case,
the switch statement exits completely.
But break handling is further complicated by the fact that a break statement
can impact the exit of a loop. Thus, we need to coordinate break processing
between switch statements and loop statements.
The code generated by a switch statement maintains three temporary state
variables:
int test_value;
bool is_fallthru;
bool is_break;
test_value is initialized to the value of the test expression at the head of
the switch statement. This is the value that case labels are compared against.
is_fallthru is used to sequentially fall through to subsequent cases and is
initialized to false. When a case label matches the test expression, this
state variable is set to true. It will also be forced to false if a break
statement has been encountered. This forcing to false on break MUST be
after every case test. In practice, we defer that forcing to immediately after
the last case comparison prior to executing a case statement, but that is
an optimization.
is_break is used to indicate that a break statement has been executed and is
initialized to false. When a break statement is encountered, it is set to true.
This state variable is then used to conditionally force is_fallthru to to false
to prevent subsequent case statements from executing.
Code generation for break statements depends on whether the break statement is
inside a switch statement or inside a loop statement. If it inside a loop
statement is inside a break statement, the same code as before gets generated.
But if a switch statement is inside a loop statement, code is emitted to set
the is_break state to true.
Just as ASTs for loop statements are managed in a stack-like
manner to handle nesting, we also add a bool to capture the innermost switch
or loop condition. Note that we still need to maintain a loop AST stack to
properly handle for-loop code generation on a continue statement. Technically,
we don't (yet) need a switch AST stack, but I am using one for orthogonality
with loop statements, in anticipation of future use. Note that a simple
boolean stack would have sufficed.
We will illustrate a switch statement with its analogous conditional code that
a switch statement corresponds to by examining an example.
Consider the following switch statement:
switch (42) {
case 0:
case 1:
gl_FragColor = vec4(1.0, 2.0, 3.0, 4.0);
case 2:
case 3:
gl_FragColor = vec4(4.0, 3.0, 2.0, 1.0);
break;
case 4:
default:
gl_FragColor = vec4(0.0, 0.0, 0.0, 0.0);
}
Note that case 0 and case 1 fall through to cases 2 and 3 if they occur.
Note that case 4 and the default case must be reached explicitly, since cases
2 and 3 break at the end of their case.
Finally, note that case 4 and the default case don't break but simply fall
through to the end of the switch.
For this code, the equivalent code can be expressed as:
int test_val = 42; // capture value of test expression
bool is_fallthru = false; // prevent initial fall through
bool is_break = false; // capture the execution of a break stmt
is_fallthru |= (test_val == 0); // enable fallthru on case 0
is_fallthru |= (test_val == 1); // enable fallthru on case 1
is_fallthru &= !is_break; // inhibit fallthru on previous break
if (is_fallthru) {
gl_FragColor = vec4(1.0, 2.0, 3.0, 4.0);
}
is_fallthru |= (test_val == 2); // enable fallthru on case 2
is_fallthru |= (test_val == 3); // enable fallthru on case 3
is_fallthru &= !is_break; // inhibit fallthru on previous break
if (is_fallthru) {
gl_FragColor = vec4(4.0, 3.0, 2.0, 1.0);
is_break = true; // inhibit all subsequent fallthru for break
}
is_fallthru |= (test_val == 4); // enable fallthru on case 4
is_fallthru = true; // enable fallthru for default case
is_fallthru &= !is_break; // inhibit fallthru on previous break
if (is_fallthru) {
gl_FragColor = vec4(0.0, 0.0, 0.0, 0.0);
}
The code generate for |= and &= uses the conditional assignment capabilities
of the IR.
Reviewed-by: Kenneth Graunke <kenneth@whitecape.org>
2011-11-07 16:17:58 -08:00
|
|
|
|
|
|
|
|
ir_dereference_variable *deref_is_break_var =
|
2012-01-28 11:26:02 -08:00
|
|
|
new(ctx) ir_dereference_variable(state->switch_state.is_break_var);
|
glsl: Generate IR for switch statements
Up until now modifying the GLSL compiler has been pretty straightforward.
This is where things get interesting. But still pretty straightforward.
Switch statements can be thought of a series of if/then/else statements.
Case labels are compared with the value of a test expression and the case
statements are executed if the comparison is true.
There are a couple of aspects of switch statements that complicate this simple
view of the world. The primary one is that cases can fall through sequentially
to subsequent case, unless a break statement is encountered, in which case,
the switch statement exits completely.
But break handling is further complicated by the fact that a break statement
can impact the exit of a loop. Thus, we need to coordinate break processing
between switch statements and loop statements.
The code generated by a switch statement maintains three temporary state
variables:
int test_value;
bool is_fallthru;
bool is_break;
test_value is initialized to the value of the test expression at the head of
the switch statement. This is the value that case labels are compared against.
is_fallthru is used to sequentially fall through to subsequent cases and is
initialized to false. When a case label matches the test expression, this
state variable is set to true. It will also be forced to false if a break
statement has been encountered. This forcing to false on break MUST be
after every case test. In practice, we defer that forcing to immediately after
the last case comparison prior to executing a case statement, but that is
an optimization.
is_break is used to indicate that a break statement has been executed and is
initialized to false. When a break statement is encountered, it is set to true.
This state variable is then used to conditionally force is_fallthru to to false
to prevent subsequent case statements from executing.
Code generation for break statements depends on whether the break statement is
inside a switch statement or inside a loop statement. If it inside a loop
statement is inside a break statement, the same code as before gets generated.
But if a switch statement is inside a loop statement, code is emitted to set
the is_break state to true.
Just as ASTs for loop statements are managed in a stack-like
manner to handle nesting, we also add a bool to capture the innermost switch
or loop condition. Note that we still need to maintain a loop AST stack to
properly handle for-loop code generation on a continue statement. Technically,
we don't (yet) need a switch AST stack, but I am using one for orthogonality
with loop statements, in anticipation of future use. Note that a simple
boolean stack would have sufficed.
We will illustrate a switch statement with its analogous conditional code that
a switch statement corresponds to by examining an example.
Consider the following switch statement:
switch (42) {
case 0:
case 1:
gl_FragColor = vec4(1.0, 2.0, 3.0, 4.0);
case 2:
case 3:
gl_FragColor = vec4(4.0, 3.0, 2.0, 1.0);
break;
case 4:
default:
gl_FragColor = vec4(0.0, 0.0, 0.0, 0.0);
}
Note that case 0 and case 1 fall through to cases 2 and 3 if they occur.
Note that case 4 and the default case must be reached explicitly, since cases
2 and 3 break at the end of their case.
Finally, note that case 4 and the default case don't break but simply fall
through to the end of the switch.
For this code, the equivalent code can be expressed as:
int test_val = 42; // capture value of test expression
bool is_fallthru = false; // prevent initial fall through
bool is_break = false; // capture the execution of a break stmt
is_fallthru |= (test_val == 0); // enable fallthru on case 0
is_fallthru |= (test_val == 1); // enable fallthru on case 1
is_fallthru &= !is_break; // inhibit fallthru on previous break
if (is_fallthru) {
gl_FragColor = vec4(1.0, 2.0, 3.0, 4.0);
}
is_fallthru |= (test_val == 2); // enable fallthru on case 2
is_fallthru |= (test_val == 3); // enable fallthru on case 3
is_fallthru &= !is_break; // inhibit fallthru on previous break
if (is_fallthru) {
gl_FragColor = vec4(4.0, 3.0, 2.0, 1.0);
is_break = true; // inhibit all subsequent fallthru for break
}
is_fallthru |= (test_val == 4); // enable fallthru on case 4
is_fallthru = true; // enable fallthru for default case
is_fallthru &= !is_break; // inhibit fallthru on previous break
if (is_fallthru) {
gl_FragColor = vec4(0.0, 0.0, 0.0, 0.0);
}
The code generate for |= and &= uses the conditional assignment capabilities
of the IR.
Reviewed-by: Kenneth Graunke <kenneth@whitecape.org>
2011-11-07 16:17:58 -08:00
|
|
|
instructions->push_tail(new(ctx) ir_assignment(deref_is_break_var,
|
2012-05-14 09:14:54 -07:00
|
|
|
is_break_val));
|
glsl: Generate IR for switch statements
Up until now modifying the GLSL compiler has been pretty straightforward.
This is where things get interesting. But still pretty straightforward.
Switch statements can be thought of a series of if/then/else statements.
Case labels are compared with the value of a test expression and the case
statements are executed if the comparison is true.
There are a couple of aspects of switch statements that complicate this simple
view of the world. The primary one is that cases can fall through sequentially
to subsequent case, unless a break statement is encountered, in which case,
the switch statement exits completely.
But break handling is further complicated by the fact that a break statement
can impact the exit of a loop. Thus, we need to coordinate break processing
between switch statements and loop statements.
The code generated by a switch statement maintains three temporary state
variables:
int test_value;
bool is_fallthru;
bool is_break;
test_value is initialized to the value of the test expression at the head of
the switch statement. This is the value that case labels are compared against.
is_fallthru is used to sequentially fall through to subsequent cases and is
initialized to false. When a case label matches the test expression, this
state variable is set to true. It will also be forced to false if a break
statement has been encountered. This forcing to false on break MUST be
after every case test. In practice, we defer that forcing to immediately after
the last case comparison prior to executing a case statement, but that is
an optimization.
is_break is used to indicate that a break statement has been executed and is
initialized to false. When a break statement is encountered, it is set to true.
This state variable is then used to conditionally force is_fallthru to to false
to prevent subsequent case statements from executing.
Code generation for break statements depends on whether the break statement is
inside a switch statement or inside a loop statement. If it inside a loop
statement is inside a break statement, the same code as before gets generated.
But if a switch statement is inside a loop statement, code is emitted to set
the is_break state to true.
Just as ASTs for loop statements are managed in a stack-like
manner to handle nesting, we also add a bool to capture the innermost switch
or loop condition. Note that we still need to maintain a loop AST stack to
properly handle for-loop code generation on a continue statement. Technically,
we don't (yet) need a switch AST stack, but I am using one for orthogonality
with loop statements, in anticipation of future use. Note that a simple
boolean stack would have sufficed.
We will illustrate a switch statement with its analogous conditional code that
a switch statement corresponds to by examining an example.
Consider the following switch statement:
switch (42) {
case 0:
case 1:
gl_FragColor = vec4(1.0, 2.0, 3.0, 4.0);
case 2:
case 3:
gl_FragColor = vec4(4.0, 3.0, 2.0, 1.0);
break;
case 4:
default:
gl_FragColor = vec4(0.0, 0.0, 0.0, 0.0);
}
Note that case 0 and case 1 fall through to cases 2 and 3 if they occur.
Note that case 4 and the default case must be reached explicitly, since cases
2 and 3 break at the end of their case.
Finally, note that case 4 and the default case don't break but simply fall
through to the end of the switch.
For this code, the equivalent code can be expressed as:
int test_val = 42; // capture value of test expression
bool is_fallthru = false; // prevent initial fall through
bool is_break = false; // capture the execution of a break stmt
is_fallthru |= (test_val == 0); // enable fallthru on case 0
is_fallthru |= (test_val == 1); // enable fallthru on case 1
is_fallthru &= !is_break; // inhibit fallthru on previous break
if (is_fallthru) {
gl_FragColor = vec4(1.0, 2.0, 3.0, 4.0);
}
is_fallthru |= (test_val == 2); // enable fallthru on case 2
is_fallthru |= (test_val == 3); // enable fallthru on case 3
is_fallthru &= !is_break; // inhibit fallthru on previous break
if (is_fallthru) {
gl_FragColor = vec4(4.0, 3.0, 2.0, 1.0);
is_break = true; // inhibit all subsequent fallthru for break
}
is_fallthru |= (test_val == 4); // enable fallthru on case 4
is_fallthru = true; // enable fallthru for default case
is_fallthru &= !is_break; // inhibit fallthru on previous break
if (is_fallthru) {
gl_FragColor = vec4(0.0, 0.0, 0.0, 0.0);
}
The code generate for |= and &= uses the conditional assignment capabilities
of the IR.
Reviewed-by: Kenneth Graunke <kenneth@whitecape.org>
2011-11-07 16:17:58 -08:00
|
|
|
|
|
|
|
|
/* Cache test expression.
|
|
|
|
|
*/
|
|
|
|
|
test_to_hir(instructions, state);
|
2012-05-14 08:37:50 -07:00
|
|
|
|
glsl: Generate IR for switch statements
Up until now modifying the GLSL compiler has been pretty straightforward.
This is where things get interesting. But still pretty straightforward.
Switch statements can be thought of a series of if/then/else statements.
Case labels are compared with the value of a test expression and the case
statements are executed if the comparison is true.
There are a couple of aspects of switch statements that complicate this simple
view of the world. The primary one is that cases can fall through sequentially
to subsequent case, unless a break statement is encountered, in which case,
the switch statement exits completely.
But break handling is further complicated by the fact that a break statement
can impact the exit of a loop. Thus, we need to coordinate break processing
between switch statements and loop statements.
The code generated by a switch statement maintains three temporary state
variables:
int test_value;
bool is_fallthru;
bool is_break;
test_value is initialized to the value of the test expression at the head of
the switch statement. This is the value that case labels are compared against.
is_fallthru is used to sequentially fall through to subsequent cases and is
initialized to false. When a case label matches the test expression, this
state variable is set to true. It will also be forced to false if a break
statement has been encountered. This forcing to false on break MUST be
after every case test. In practice, we defer that forcing to immediately after
the last case comparison prior to executing a case statement, but that is
an optimization.
is_break is used to indicate that a break statement has been executed and is
initialized to false. When a break statement is encountered, it is set to true.
This state variable is then used to conditionally force is_fallthru to to false
to prevent subsequent case statements from executing.
Code generation for break statements depends on whether the break statement is
inside a switch statement or inside a loop statement. If it inside a loop
statement is inside a break statement, the same code as before gets generated.
But if a switch statement is inside a loop statement, code is emitted to set
the is_break state to true.
Just as ASTs for loop statements are managed in a stack-like
manner to handle nesting, we also add a bool to capture the innermost switch
or loop condition. Note that we still need to maintain a loop AST stack to
properly handle for-loop code generation on a continue statement. Technically,
we don't (yet) need a switch AST stack, but I am using one for orthogonality
with loop statements, in anticipation of future use. Note that a simple
boolean stack would have sufficed.
We will illustrate a switch statement with its analogous conditional code that
a switch statement corresponds to by examining an example.
Consider the following switch statement:
switch (42) {
case 0:
case 1:
gl_FragColor = vec4(1.0, 2.0, 3.0, 4.0);
case 2:
case 3:
gl_FragColor = vec4(4.0, 3.0, 2.0, 1.0);
break;
case 4:
default:
gl_FragColor = vec4(0.0, 0.0, 0.0, 0.0);
}
Note that case 0 and case 1 fall through to cases 2 and 3 if they occur.
Note that case 4 and the default case must be reached explicitly, since cases
2 and 3 break at the end of their case.
Finally, note that case 4 and the default case don't break but simply fall
through to the end of the switch.
For this code, the equivalent code can be expressed as:
int test_val = 42; // capture value of test expression
bool is_fallthru = false; // prevent initial fall through
bool is_break = false; // capture the execution of a break stmt
is_fallthru |= (test_val == 0); // enable fallthru on case 0
is_fallthru |= (test_val == 1); // enable fallthru on case 1
is_fallthru &= !is_break; // inhibit fallthru on previous break
if (is_fallthru) {
gl_FragColor = vec4(1.0, 2.0, 3.0, 4.0);
}
is_fallthru |= (test_val == 2); // enable fallthru on case 2
is_fallthru |= (test_val == 3); // enable fallthru on case 3
is_fallthru &= !is_break; // inhibit fallthru on previous break
if (is_fallthru) {
gl_FragColor = vec4(4.0, 3.0, 2.0, 1.0);
is_break = true; // inhibit all subsequent fallthru for break
}
is_fallthru |= (test_val == 4); // enable fallthru on case 4
is_fallthru = true; // enable fallthru for default case
is_fallthru &= !is_break; // inhibit fallthru on previous break
if (is_fallthru) {
gl_FragColor = vec4(0.0, 0.0, 0.0, 0.0);
}
The code generate for |= and &= uses the conditional assignment capabilities
of the IR.
Reviewed-by: Kenneth Graunke <kenneth@whitecape.org>
2011-11-07 16:17:58 -08:00
|
|
|
/* Emit code for body of switch stmt.
|
|
|
|
|
*/
|
|
|
|
|
body->hir(instructions, state);
|
|
|
|
|
|
2012-01-30 08:50:14 -08:00
|
|
|
hash_table_dtor(state->switch_state.labels_ht);
|
|
|
|
|
|
2012-01-28 11:26:02 -08:00
|
|
|
state->switch_state = saved;
|
2011-11-07 15:11:04 -08:00
|
|
|
|
2012-05-14 08:37:50 -07:00
|
|
|
/* Switch statements do not have r-values. */
|
|
|
|
|
return NULL;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
void
|
|
|
|
|
ast_switch_statement::test_to_hir(exec_list *instructions,
|
|
|
|
|
struct _mesa_glsl_parse_state *state)
|
|
|
|
|
{
|
|
|
|
|
void *ctx = state;
|
|
|
|
|
|
|
|
|
|
/* Cache value of test expression. */
|
|
|
|
|
ir_rvalue *const test_val =
|
|
|
|
|
test_expression->hir(instructions,
|
|
|
|
|
state);
|
|
|
|
|
|
2012-05-14 08:51:03 -07:00
|
|
|
state->switch_state.test_var = new(ctx) ir_variable(test_val->type,
|
2012-05-14 08:37:50 -07:00
|
|
|
"switch_test_tmp",
|
|
|
|
|
ir_var_temporary);
|
|
|
|
|
ir_dereference_variable *deref_test_var =
|
|
|
|
|
new(ctx) ir_dereference_variable(state->switch_state.test_var);
|
|
|
|
|
|
|
|
|
|
instructions->push_tail(state->switch_state.test_var);
|
2012-05-14 09:14:54 -07:00
|
|
|
instructions->push_tail(new(ctx) ir_assignment(deref_test_var, test_val));
|
2012-05-14 08:37:50 -07:00
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ir_rvalue *
|
|
|
|
|
ast_switch_body::hir(exec_list *instructions,
|
|
|
|
|
struct _mesa_glsl_parse_state *state)
|
|
|
|
|
{
|
|
|
|
|
if (stmts != NULL)
|
|
|
|
|
stmts->hir(instructions, state);
|
|
|
|
|
|
|
|
|
|
/* Switch bodies do not have r-values. */
|
|
|
|
|
return NULL;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
ir_rvalue *
|
|
|
|
|
ast_case_statement_list::hir(exec_list *instructions,
|
|
|
|
|
struct _mesa_glsl_parse_state *state)
|
|
|
|
|
{
|
|
|
|
|
foreach_list_typed (ast_case_statement, case_stmt, link, & this->cases)
|
|
|
|
|
case_stmt->hir(instructions, state);
|
|
|
|
|
|
|
|
|
|
/* Case statements do not have r-values. */
|
|
|
|
|
return NULL;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
ir_rvalue *
|
|
|
|
|
ast_case_statement::hir(exec_list *instructions,
|
|
|
|
|
struct _mesa_glsl_parse_state *state)
|
|
|
|
|
{
|
|
|
|
|
labels->hir(instructions, state);
|
|
|
|
|
|
|
|
|
|
/* Conditionally set fallthru state based on break state. */
|
|
|
|
|
ir_constant *const false_val = new(state) ir_constant(false);
|
|
|
|
|
ir_dereference_variable *const deref_is_fallthru_var =
|
|
|
|
|
new(state) ir_dereference_variable(state->switch_state.is_fallthru_var);
|
|
|
|
|
ir_dereference_variable *const deref_is_break_var =
|
|
|
|
|
new(state) ir_dereference_variable(state->switch_state.is_break_var);
|
|
|
|
|
ir_assignment *const reset_fallthru_on_break =
|
|
|
|
|
new(state) ir_assignment(deref_is_fallthru_var,
|
|
|
|
|
false_val,
|
|
|
|
|
deref_is_break_var);
|
|
|
|
|
instructions->push_tail(reset_fallthru_on_break);
|
|
|
|
|
|
|
|
|
|
/* Guard case statements depending on fallthru state. */
|
|
|
|
|
ir_dereference_variable *const deref_fallthru_guard =
|
|
|
|
|
new(state) ir_dereference_variable(state->switch_state.is_fallthru_var);
|
|
|
|
|
ir_if *const test_fallthru = new(state) ir_if(deref_fallthru_guard);
|
|
|
|
|
|
|
|
|
|
foreach_list_typed (ast_node, stmt, link, & this->stmts)
|
|
|
|
|
stmt->hir(& test_fallthru->then_instructions, state);
|
|
|
|
|
|
|
|
|
|
instructions->push_tail(test_fallthru);
|
|
|
|
|
|
|
|
|
|
/* Case statements do not have r-values. */
|
|
|
|
|
return NULL;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ir_rvalue *
|
|
|
|
|
ast_case_label_list::hir(exec_list *instructions,
|
|
|
|
|
struct _mesa_glsl_parse_state *state)
|
|
|
|
|
{
|
|
|
|
|
foreach_list_typed (ast_case_label, label, link, & this->labels)
|
|
|
|
|
label->hir(instructions, state);
|
|
|
|
|
|
|
|
|
|
/* Case labels do not have r-values. */
|
|
|
|
|
return NULL;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
ir_rvalue *
|
|
|
|
|
ast_case_label::hir(exec_list *instructions,
|
|
|
|
|
struct _mesa_glsl_parse_state *state)
|
|
|
|
|
{
|
|
|
|
|
void *ctx = state;
|
|
|
|
|
|
|
|
|
|
ir_dereference_variable *deref_fallthru_var =
|
|
|
|
|
new(ctx) ir_dereference_variable(state->switch_state.is_fallthru_var);
|
|
|
|
|
|
|
|
|
|
ir_rvalue *const true_val = new(ctx) ir_constant(true);
|
|
|
|
|
|
|
|
|
|
/* If not default case, ... */
|
|
|
|
|
if (this->test_value != NULL) {
|
|
|
|
|
/* Conditionally set fallthru state based on
|
|
|
|
|
* comparison of cached test expression value to case label.
|
|
|
|
|
*/
|
|
|
|
|
ir_rvalue *const label_rval = this->test_value->hir(instructions, state);
|
|
|
|
|
ir_constant *label_const = label_rval->constant_expression_value();
|
|
|
|
|
|
|
|
|
|
if (!label_const) {
|
|
|
|
|
YYLTYPE loc = this->test_value->get_location();
|
|
|
|
|
|
|
|
|
|
_mesa_glsl_error(& loc, state,
|
|
|
|
|
"switch statement case label must be a "
|
|
|
|
|
"constant expression");
|
|
|
|
|
|
|
|
|
|
/* Stuff a dummy value in to allow processing to continue. */
|
|
|
|
|
label_const = new(ctx) ir_constant(0);
|
|
|
|
|
} else {
|
|
|
|
|
ast_expression *previous_label = (ast_expression *)
|
|
|
|
|
hash_table_find(state->switch_state.labels_ht,
|
|
|
|
|
(void *)(uintptr_t)label_const->value.u[0]);
|
|
|
|
|
|
|
|
|
|
if (previous_label) {
|
|
|
|
|
YYLTYPE loc = this->test_value->get_location();
|
|
|
|
|
_mesa_glsl_error(& loc, state,
|
|
|
|
|
"duplicate case value");
|
|
|
|
|
|
|
|
|
|
loc = previous_label->get_location();
|
|
|
|
|
_mesa_glsl_error(& loc, state,
|
|
|
|
|
"this is the previous case label");
|
|
|
|
|
} else {
|
|
|
|
|
hash_table_insert(state->switch_state.labels_ht,
|
|
|
|
|
this->test_value,
|
2012-01-30 08:50:14 -08:00
|
|
|
(void *)(uintptr_t)label_const->value.u[0]);
|
2012-05-14 08:37:50 -07:00
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
ir_dereference_variable *deref_test_var =
|
|
|
|
|
new(ctx) ir_dereference_variable(state->switch_state.test_var);
|
|
|
|
|
|
|
|
|
|
ir_rvalue *const test_cond = new(ctx) ir_expression(ir_binop_all_equal,
|
|
|
|
|
label_const,
|
|
|
|
|
deref_test_var);
|
|
|
|
|
|
|
|
|
|
ir_assignment *set_fallthru_on_test =
|
|
|
|
|
new(ctx) ir_assignment(deref_fallthru_var,
|
|
|
|
|
true_val,
|
|
|
|
|
test_cond);
|
|
|
|
|
|
|
|
|
|
instructions->push_tail(set_fallthru_on_test);
|
|
|
|
|
} else { /* default case */
|
|
|
|
|
if (state->switch_state.previous_default) {
|
|
|
|
|
YYLTYPE loc = this->get_location();
|
|
|
|
|
_mesa_glsl_error(& loc, state,
|
|
|
|
|
"multiple default labels in one switch");
|
|
|
|
|
|
|
|
|
|
loc = state->switch_state.previous_default->get_location();
|
|
|
|
|
_mesa_glsl_error(& loc, state,
|
|
|
|
|
"this is the first default label");
|
|
|
|
|
}
|
|
|
|
|
state->switch_state.previous_default = this;
|
|
|
|
|
|
|
|
|
|
/* Set falltrhu state. */
|
|
|
|
|
ir_assignment *set_fallthru =
|
2012-05-14 09:14:54 -07:00
|
|
|
new(ctx) ir_assignment(deref_fallthru_var, true_val);
|
2012-05-14 08:37:50 -07:00
|
|
|
|
|
|
|
|
instructions->push_tail(set_fallthru);
|
|
|
|
|
}
|
2012-01-30 08:50:14 -08:00
|
|
|
|
2012-05-14 08:37:50 -07:00
|
|
|
/* Case statements do not have r-values. */
|
|
|
|
|
return NULL;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void
|
|
|
|
|
ast_iteration_statement::condition_to_hir(ir_loop *stmt,
|
|
|
|
|
struct _mesa_glsl_parse_state *state)
|
|
|
|
|
{
|
|
|
|
|
void *ctx = state;
|
|
|
|
|
|
|
|
|
|
if (condition != NULL) {
|
|
|
|
|
ir_rvalue *const cond =
|
|
|
|
|
condition->hir(& stmt->body_instructions, state);
|
|
|
|
|
|
|
|
|
|
if ((cond == NULL)
|
|
|
|
|
|| !cond->type->is_boolean() || !cond->type->is_scalar()) {
|
|
|
|
|
YYLTYPE loc = condition->get_location();
|
|
|
|
|
|
|
|
|
|
_mesa_glsl_error(& loc, state,
|
|
|
|
|
"loop condition must be scalar boolean");
|
|
|
|
|
} else {
|
|
|
|
|
/* As the first code in the loop body, generate a block that looks
|
|
|
|
|
* like 'if (!condition) break;' as the loop termination condition.
|
|
|
|
|
*/
|
|
|
|
|
ir_rvalue *const not_cond =
|
2012-05-14 08:39:54 -07:00
|
|
|
new(ctx) ir_expression(ir_unop_logic_not, cond);
|
2012-05-14 08:37:50 -07:00
|
|
|
|
|
|
|
|
ir_if *const if_stmt = new(ctx) ir_if(not_cond);
|
|
|
|
|
|
|
|
|
|
ir_jump *const break_stmt =
|
|
|
|
|
new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
|
|
|
|
|
|
|
|
|
|
if_stmt->then_instructions.push_tail(break_stmt);
|
|
|
|
|
stmt->body_instructions.push_tail(if_stmt);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ir_rvalue *
|
|
|
|
|
ast_iteration_statement::hir(exec_list *instructions,
|
|
|
|
|
struct _mesa_glsl_parse_state *state)
|
|
|
|
|
{
|
|
|
|
|
void *ctx = state;
|
|
|
|
|
|
|
|
|
|
/* For-loops and while-loops start a new scope, but do-while loops do not.
|
|
|
|
|
*/
|
|
|
|
|
if (mode != ast_do_while)
|
|
|
|
|
state->symbols->push_scope();
|
|
|
|
|
|
|
|
|
|
if (init_statement != NULL)
|
|
|
|
|
init_statement->hir(instructions, state);
|
|
|
|
|
|
|
|
|
|
ir_loop *const stmt = new(ctx) ir_loop();
|
|
|
|
|
instructions->push_tail(stmt);
|
|
|
|
|
|
|
|
|
|
/* Track the current loop nesting. */
|
|
|
|
|
ast_iteration_statement *nesting_ast = state->loop_nesting_ast;
|
|
|
|
|
|
|
|
|
|
state->loop_nesting_ast = this;
|
|
|
|
|
|
|
|
|
|
/* Likewise, indicate that following code is closest to a loop,
|
|
|
|
|
* NOT closest to a switch.
|
|
|
|
|
*/
|
|
|
|
|
bool saved_is_switch_innermost = state->switch_state.is_switch_innermost;
|
|
|
|
|
state->switch_state.is_switch_innermost = false;
|
|
|
|
|
|
|
|
|
|
if (mode != ast_do_while)
|
|
|
|
|
condition_to_hir(stmt, state);
|
|
|
|
|
|
|
|
|
|
if (body != NULL)
|
|
|
|
|
body->hir(& stmt->body_instructions, state);
|
|
|
|
|
|
|
|
|
|
if (rest_expression != NULL)
|
|
|
|
|
rest_expression->hir(& stmt->body_instructions, state);
|
|
|
|
|
|
|
|
|
|
if (mode == ast_do_while)
|
|
|
|
|
condition_to_hir(stmt, state);
|
|
|
|
|
|
|
|
|
|
if (mode != ast_do_while)
|
|
|
|
|
state->symbols->pop_scope();
|
2012-01-28 11:26:02 -08:00
|
|
|
|
2012-05-14 08:37:50 -07:00
|
|
|
/* Restore previous nesting before returning. */
|
|
|
|
|
state->loop_nesting_ast = nesting_ast;
|
|
|
|
|
state->switch_state.is_switch_innermost = saved_is_switch_innermost;
|
2010-04-05 17:01:53 -07:00
|
|
|
|
2010-04-05 16:37:49 -07:00
|
|
|
/* Loops do not have r-values.
|
|
|
|
|
*/
|
|
|
|
|
return NULL;
|
|
|
|
|
}
|
2010-04-19 15:13:15 -07:00
|
|
|
|
|
|
|
|
|
|
|
|
|
ir_rvalue *
|
|
|
|
|
ast_type_specifier::hir(exec_list *instructions,
|
|
|
|
|
struct _mesa_glsl_parse_state *state)
|
|
|
|
|
{
|
2011-01-16 21:44:57 -08:00
|
|
|
if (!this->is_precision_statement && this->structure == NULL)
|
|
|
|
|
return NULL;
|
|
|
|
|
|
|
|
|
|
YYLTYPE loc = this->get_location();
|
|
|
|
|
|
|
|
|
|
if (this->precision != ast_precision_none
|
2012-08-05 09:57:01 -07:00
|
|
|
&& !state->check_precision_qualifiers_allowed(&loc)) {
|
2011-01-16 21:44:57 -08:00
|
|
|
return NULL;
|
|
|
|
|
}
|
|
|
|
|
if (this->precision != ast_precision_none
|
|
|
|
|
&& this->structure != NULL) {
|
|
|
|
|
_mesa_glsl_error(&loc, state,
|
|
|
|
|
"precision qualifiers do not apply to structures");
|
|
|
|
|
return NULL;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* If this is a precision statement, check that the type to which it is
|
|
|
|
|
* applied is either float or int.
|
|
|
|
|
*
|
|
|
|
|
* From section 4.5.3 of the GLSL 1.30 spec:
|
|
|
|
|
* "The precision statement
|
|
|
|
|
* precision precision-qualifier type;
|
|
|
|
|
* can be used to establish a default precision qualifier. The type
|
|
|
|
|
* field can be either int or float [...]. Any other types or
|
|
|
|
|
* qualifiers will result in an error.
|
|
|
|
|
*/
|
|
|
|
|
if (this->is_precision_statement) {
|
|
|
|
|
assert(this->precision != ast_precision_none);
|
|
|
|
|
assert(this->structure == NULL); /* The check for structures was
|
|
|
|
|
* performed above. */
|
|
|
|
|
if (this->is_array) {
|
|
|
|
|
_mesa_glsl_error(&loc, state,
|
|
|
|
|
"default precision statements do not apply to "
|
|
|
|
|
"arrays");
|
|
|
|
|
return NULL;
|
|
|
|
|
}
|
2012-03-29 23:17:32 -07:00
|
|
|
if (strcmp(this->type_name, "float") != 0 &&
|
|
|
|
|
strcmp(this->type_name, "int") != 0) {
|
2011-01-16 21:44:57 -08:00
|
|
|
_mesa_glsl_error(&loc, state,
|
|
|
|
|
"default precision statements apply only to types "
|
|
|
|
|
"float and int");
|
|
|
|
|
return NULL;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* FINISHME: Translate precision statements into IR. */
|
|
|
|
|
return NULL;
|
|
|
|
|
}
|
|
|
|
|
|
2010-04-19 15:13:15 -07:00
|
|
|
if (this->structure != NULL)
|
|
|
|
|
return this->structure->hir(instructions, state);
|
2010-04-21 14:33:34 -07:00
|
|
|
|
|
|
|
|
return NULL;
|
2010-04-19 15:13:15 -07:00
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ir_rvalue *
|
|
|
|
|
ast_struct_specifier::hir(exec_list *instructions,
|
|
|
|
|
struct _mesa_glsl_parse_state *state)
|
|
|
|
|
{
|
|
|
|
|
unsigned decl_count = 0;
|
|
|
|
|
|
|
|
|
|
/* Make an initial pass over the list of structure fields to determine how
|
|
|
|
|
* many there are. Each element in this list is an ast_declarator_list.
|
|
|
|
|
* This means that we actually need to count the number of elements in the
|
|
|
|
|
* 'declarations' list in each of the elements.
|
|
|
|
|
*/
|
2010-05-10 17:42:05 -07:00
|
|
|
foreach_list_typed (ast_declarator_list, decl_list, link,
|
|
|
|
|
&this->declarations) {
|
2010-05-10 11:17:53 -07:00
|
|
|
foreach_list_const (decl_ptr, & decl_list->declarations) {
|
2010-04-19 15:13:15 -07:00
|
|
|
decl_count++;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Allocate storage for the structure fields and process the field
|
|
|
|
|
* declarations. As the declarations are processed, try to also convert
|
|
|
|
|
* the types to HIR. This ensures that structure definitions embedded in
|
|
|
|
|
* other structure definitions are processed.
|
|
|
|
|
*/
|
2011-01-21 14:32:31 -08:00
|
|
|
glsl_struct_field *const fields = ralloc_array(state, glsl_struct_field,
|
2010-07-20 16:47:25 -07:00
|
|
|
decl_count);
|
2010-04-19 15:13:15 -07:00
|
|
|
|
|
|
|
|
unsigned i = 0;
|
2010-05-10 17:42:05 -07:00
|
|
|
foreach_list_typed (ast_declarator_list, decl_list, link,
|
|
|
|
|
&this->declarations) {
|
2010-04-19 15:13:15 -07:00
|
|
|
const char *type_name;
|
|
|
|
|
|
|
|
|
|
decl_list->type->specifier->hir(instructions, state);
|
|
|
|
|
|
2010-08-16 14:02:25 -07:00
|
|
|
/* Section 10.9 of the GLSL ES 1.00 specification states that
|
|
|
|
|
* embedded structure definitions have been removed from the language.
|
|
|
|
|
*/
|
|
|
|
|
if (state->es_shader && decl_list->type->specifier->structure != NULL) {
|
|
|
|
|
YYLTYPE loc = this->get_location();
|
|
|
|
|
_mesa_glsl_error(&loc, state, "Embedded structure definitions are "
|
|
|
|
|
"not allowed in GLSL ES 1.00.");
|
|
|
|
|
}
|
|
|
|
|
|
2010-04-19 15:13:15 -07:00
|
|
|
const glsl_type *decl_type =
|
|
|
|
|
decl_list->type->specifier->glsl_type(& type_name, state);
|
|
|
|
|
|
2010-05-10 17:42:05 -07:00
|
|
|
foreach_list_typed (ast_declaration, decl, link,
|
|
|
|
|
&decl_list->declarations) {
|
2010-08-07 02:56:01 -07:00
|
|
|
const struct glsl_type *field_type = decl_type;
|
|
|
|
|
if (decl->is_array) {
|
|
|
|
|
YYLTYPE loc = decl->get_location();
|
|
|
|
|
field_type = process_array_type(&loc, decl_type, decl->array_size,
|
|
|
|
|
state);
|
|
|
|
|
}
|
2010-04-20 16:49:03 -07:00
|
|
|
fields[i].type = (field_type != NULL)
|
|
|
|
|
? field_type : glsl_type::error_type;
|
2010-04-19 15:13:15 -07:00
|
|
|
fields[i].name = decl->identifier;
|
|
|
|
|
i++;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
assert(i == decl_count);
|
|
|
|
|
|
2010-06-28 11:54:57 -07:00
|
|
|
const glsl_type *t =
|
2010-09-18 11:11:09 +02:00
|
|
|
glsl_type::get_record_instance(fields, decl_count, this->name);
|
2010-04-20 16:48:24 -07:00
|
|
|
|
2010-04-23 13:24:08 -07:00
|
|
|
YYLTYPE loc = this->get_location();
|
2010-09-01 14:08:08 -07:00
|
|
|
if (!state->symbols->add_type(name, t)) {
|
2010-04-23 13:24:08 -07:00
|
|
|
_mesa_glsl_error(& loc, state, "struct `%s' previously defined", name);
|
|
|
|
|
} else {
|
2011-02-27 01:17:29 -08:00
|
|
|
const glsl_type **s = reralloc(state, state->user_structures,
|
|
|
|
|
const glsl_type *,
|
|
|
|
|
state->num_user_structures + 1);
|
2010-04-28 13:14:53 -07:00
|
|
|
if (s != NULL) {
|
|
|
|
|
s[state->num_user_structures] = t;
|
|
|
|
|
state->user_structures = s;
|
|
|
|
|
state->num_user_structures++;
|
|
|
|
|
}
|
2010-04-23 13:24:08 -07:00
|
|
|
}
|
2010-04-19 15:13:15 -07:00
|
|
|
|
|
|
|
|
/* Structure type definitions do not have r-values.
|
|
|
|
|
*/
|
|
|
|
|
return NULL;
|
|
|
|
|
}
|
2012-03-29 17:29:20 -07:00
|
|
|
|
2012-04-26 18:21:43 -07:00
|
|
|
static struct gl_uniform_block *
|
|
|
|
|
get_next_uniform_block(struct _mesa_glsl_parse_state *state)
|
|
|
|
|
{
|
|
|
|
|
if (state->num_uniform_blocks >= state->uniform_block_array_size) {
|
|
|
|
|
state->uniform_block_array_size *= 2;
|
|
|
|
|
if (state->uniform_block_array_size <= 4)
|
|
|
|
|
state->uniform_block_array_size = 4;
|
|
|
|
|
|
|
|
|
|
state->uniform_blocks = reralloc(state,
|
|
|
|
|
state->uniform_blocks,
|
|
|
|
|
struct gl_uniform_block,
|
|
|
|
|
state->uniform_block_array_size);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
memset(&state->uniform_blocks[state->num_uniform_blocks],
|
|
|
|
|
0, sizeof(*state->uniform_blocks));
|
|
|
|
|
return &state->uniform_blocks[state->num_uniform_blocks++];
|
|
|
|
|
}
|
|
|
|
|
|
2012-04-18 13:35:56 -07:00
|
|
|
ir_rvalue *
|
|
|
|
|
ast_uniform_block::hir(exec_list *instructions,
|
|
|
|
|
struct _mesa_glsl_parse_state *state)
|
|
|
|
|
{
|
|
|
|
|
/* The ast_uniform_block has a list of ast_declarator_lists. We
|
|
|
|
|
* need to turn those into ir_variables with an association
|
|
|
|
|
* with this uniform block.
|
|
|
|
|
*/
|
2012-04-26 18:21:43 -07:00
|
|
|
struct gl_uniform_block *ubo = get_next_uniform_block(state);
|
|
|
|
|
ubo->Name = ralloc_strdup(state->uniform_blocks, this->block_name);
|
|
|
|
|
|
2012-11-28 00:18:02 -08:00
|
|
|
if (!state->symbols->add_uniform_block(ubo)) {
|
|
|
|
|
YYLTYPE loc = this->get_location();
|
|
|
|
|
_mesa_glsl_error(&loc, state, "Uniform block name `%s' already taken in "
|
|
|
|
|
"the current scope.\n", ubo->Name);
|
|
|
|
|
}
|
|
|
|
|
|
2012-04-26 18:21:43 -07:00
|
|
|
unsigned int num_variables = 0;
|
|
|
|
|
foreach_list_typed(ast_declarator_list, decl_list, link, &declarations) {
|
|
|
|
|
foreach_list_const(node, &decl_list->declarations) {
|
|
|
|
|
num_variables++;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
bool block_row_major = this->layout.flags.q.row_major;
|
|
|
|
|
|
|
|
|
|
ubo->Uniforms = rzalloc_array(state->uniform_blocks,
|
|
|
|
|
struct gl_uniform_buffer_variable,
|
|
|
|
|
num_variables);
|
|
|
|
|
|
2012-04-26 18:19:39 -07:00
|
|
|
foreach_list_typed(ast_declarator_list, decl_list, link, &declarations) {
|
|
|
|
|
exec_list declared_variables;
|
|
|
|
|
|
|
|
|
|
decl_list->hir(&declared_variables, state);
|
|
|
|
|
|
2012-04-26 18:21:43 -07:00
|
|
|
foreach_list_const(node, &declared_variables) {
|
2012-11-04 16:43:44 -07:00
|
|
|
ir_variable *var = (ir_variable *)node;
|
2012-04-26 18:21:43 -07:00
|
|
|
|
|
|
|
|
struct gl_uniform_buffer_variable *ubo_var =
|
|
|
|
|
&ubo->Uniforms[ubo->NumUniforms++];
|
|
|
|
|
|
|
|
|
|
var->uniform_block = ubo - state->uniform_blocks;
|
|
|
|
|
|
|
|
|
|
ubo_var->Name = ralloc_strdup(state->uniform_blocks, var->name);
|
|
|
|
|
ubo_var->Type = var->type;
|
|
|
|
|
ubo_var->Offset = 0; /* Assigned at link time. */
|
2012-07-23 14:31:42 -07:00
|
|
|
|
|
|
|
|
if (var->type->is_matrix() ||
|
|
|
|
|
(var->type->is_array() && var->type->fields.array->is_matrix())) {
|
|
|
|
|
ubo_var->RowMajor = block_row_major;
|
|
|
|
|
if (decl_list->type->qualifier.flags.q.row_major)
|
|
|
|
|
ubo_var->RowMajor = true;
|
|
|
|
|
else if (decl_list->type->qualifier.flags.q.column_major)
|
|
|
|
|
ubo_var->RowMajor = false;
|
|
|
|
|
}
|
2012-04-26 18:21:43 -07:00
|
|
|
|
|
|
|
|
/* From the GL_ARB_uniform_buffer_object spec:
|
|
|
|
|
*
|
|
|
|
|
* "Sampler types are not allowed inside of uniform
|
|
|
|
|
* blocks. All other types, arrays, and structures
|
|
|
|
|
* allowed for uniforms are allowed within a uniform
|
|
|
|
|
* block."
|
|
|
|
|
*/
|
|
|
|
|
if (var->type->contains_sampler()) {
|
|
|
|
|
YYLTYPE loc = decl_list->get_location();
|
|
|
|
|
_mesa_glsl_error(&loc, state,
|
|
|
|
|
"Uniform in non-default uniform block contains sampler\n");
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
2012-04-26 18:19:39 -07:00
|
|
|
instructions->append_list(&declared_variables);
|
|
|
|
|
}
|
|
|
|
|
|
2012-04-18 13:35:56 -07:00
|
|
|
return NULL;
|
|
|
|
|
}
|
|
|
|
|
|
2012-03-29 17:29:20 -07:00
|
|
|
static void
|
|
|
|
|
detect_conflicting_assignments(struct _mesa_glsl_parse_state *state,
|
|
|
|
|
exec_list *instructions)
|
|
|
|
|
{
|
|
|
|
|
bool gl_FragColor_assigned = false;
|
|
|
|
|
bool gl_FragData_assigned = false;
|
|
|
|
|
bool user_defined_fs_output_assigned = false;
|
|
|
|
|
ir_variable *user_defined_fs_output = NULL;
|
|
|
|
|
|
|
|
|
|
/* It would be nice to have proper location information. */
|
|
|
|
|
YYLTYPE loc;
|
|
|
|
|
memset(&loc, 0, sizeof(loc));
|
|
|
|
|
|
|
|
|
|
foreach_list(node, instructions) {
|
|
|
|
|
ir_variable *var = ((ir_instruction *)node)->as_variable();
|
|
|
|
|
|
2012-04-23 16:10:12 -07:00
|
|
|
if (!var || !var->assigned)
|
2012-03-29 17:29:20 -07:00
|
|
|
continue;
|
|
|
|
|
|
|
|
|
|
if (strcmp(var->name, "gl_FragColor") == 0)
|
2012-04-23 16:10:12 -07:00
|
|
|
gl_FragColor_assigned = true;
|
2012-03-29 17:29:20 -07:00
|
|
|
else if (strcmp(var->name, "gl_FragData") == 0)
|
2012-04-23 16:10:12 -07:00
|
|
|
gl_FragData_assigned = true;
|
2012-03-29 17:29:20 -07:00
|
|
|
else if (strncmp(var->name, "gl_", 3) != 0) {
|
|
|
|
|
if (state->target == fragment_shader &&
|
2013-01-11 14:39:32 -08:00
|
|
|
var->mode == ir_var_shader_out) {
|
2012-03-29 17:29:20 -07:00
|
|
|
user_defined_fs_output_assigned = true;
|
|
|
|
|
user_defined_fs_output = var;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* From the GLSL 1.30 spec:
|
|
|
|
|
*
|
|
|
|
|
* "If a shader statically assigns a value to gl_FragColor, it
|
|
|
|
|
* may not assign a value to any element of gl_FragData. If a
|
|
|
|
|
* shader statically writes a value to any element of
|
|
|
|
|
* gl_FragData, it may not assign a value to
|
|
|
|
|
* gl_FragColor. That is, a shader may assign values to either
|
|
|
|
|
* gl_FragColor or gl_FragData, but not both. Multiple shaders
|
|
|
|
|
* linked together must also consistently write just one of
|
|
|
|
|
* these variables. Similarly, if user declared output
|
|
|
|
|
* variables are in use (statically assigned to), then the
|
|
|
|
|
* built-in variables gl_FragColor and gl_FragData may not be
|
|
|
|
|
* assigned to. These incorrect usages all generate compile
|
|
|
|
|
* time errors."
|
|
|
|
|
*/
|
|
|
|
|
if (gl_FragColor_assigned && gl_FragData_assigned) {
|
|
|
|
|
_mesa_glsl_error(&loc, state, "fragment shader writes to both "
|
|
|
|
|
"`gl_FragColor' and `gl_FragData'\n");
|
|
|
|
|
} else if (gl_FragColor_assigned && user_defined_fs_output_assigned) {
|
|
|
|
|
_mesa_glsl_error(&loc, state, "fragment shader writes to both "
|
|
|
|
|
"`gl_FragColor' and `%s'\n",
|
|
|
|
|
user_defined_fs_output->name);
|
|
|
|
|
} else if (gl_FragData_assigned && user_defined_fs_output_assigned) {
|
|
|
|
|
_mesa_glsl_error(&loc, state, "fragment shader writes to both "
|
|
|
|
|
"`gl_FragData' and `%s'\n",
|
|
|
|
|
user_defined_fs_output->name);
|
|
|
|
|
}
|
|
|
|
|
}
|