mesa/src/intel/compiler/brw_fs.h

665 lines
20 KiB
C
Raw Normal View History

/*
* Copyright © 2010 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
* Authors:
* Eric Anholt <eric@anholt.net>
*
*/
#ifndef BRW_FS_H
#define BRW_FS_H
#include "brw_cfg.h"
#include "brw_compiler.h"
#include "brw_ir_allocator.h"
#include "brw_ir_fs.h"
#include "brw_fs_live_variables.h"
intel/ir: Import shader performance analysis pass. This introduces an analysis pass intended to estimate several performance statistics of the shader, including cycle count latency and throughput values, based on static modeling. It has instruction performance information more comprehensive than the current scheduling pass for all platforms between Gen4-11, and works on both the FS and VEC4 back-end. The most immediate purpose of this pass is to implement a heuristic meant to determine whether using SIMD32 dispatch for a fragment shader can be expected to help more than it hurts. In addition this will allow the effect of passes run after scheduling (e.g. the TGL software scoreboard pass and the VEC4 dependency control pass) to be visible in shader-db statistics. But that isn't the end of the story, other potential applications of this pass (not part of this MR) I've been playing around with are: - Implement a similar SIMD16 heuristic allowing the identification of inefficient SIMD16 fragment shaders. - Implement similar SIMD16 and SIMD32 heuristics for the compute shader stage -- Currently compute shader builds always use the SIMD16 shader if available and never use the SIMD32 shader unless strictly necessary, which is suboptimal under certain conditions. - Hook up to the instruction scheduler in order to improve the accuracy of its timing information. - Use as heuristic in order to drive the selection of scheduling modes (Matt was experimenting with that). - Plug to the TGL software scoreboard pass in order to implement a more effective SBID token allocation algorithm, since in general the optimal token allocation depends on the timings of all instructions in the program. - Use its bottleneck detection functionality in order to implement a heuristic computing a more optimal bound for the number of fragment shader threads executed in parallel (by adjusting the MaximumNumberofThreadsPerPSD control of 3DSTATE_PS). As a follow-up I'm planning to submit updated timing information for Gen12 platforms -- Everything else required to support Gen12 like SWSB handling is already included in this patch, but there were some IP concerns regarding the TGL timing parameters since they cannot currently be obtained with the documentation and hardware which is publicly available. The timing parameters for any previous Gen7-11 platforms can be obtained by anyone by sampling the timestamp register using e.g. shader_time, though I have some more convenient instrumentation coming up. Reviewed-by: Kenneth Graunke <kenneth@whitecape.org>
2020-03-26 14:59:02 -07:00
#include "brw_ir_performance.h"
#include "compiler/nir/nir.h"
struct bblock_t;
namespace {
struct acp_entry;
}
struct fs_visitor;
namespace brw {
/**
* Register pressure analysis of a shader. Estimates how many registers
* are live at any point of the program in GRF units.
*/
struct register_pressure {
register_pressure(const fs_visitor *v);
~register_pressure();
analysis_dependency_class
dependency_class() const
{
return (DEPENDENCY_INSTRUCTION_IDENTITY |
DEPENDENCY_INSTRUCTION_DATA_FLOW |
DEPENDENCY_VARIABLES);
}
bool
validate(const fs_visitor *) const
{
/* FINISHME */
return true;
}
unsigned *regs_live_at_ip;
};
class def_analysis {
public:
def_analysis(const fs_visitor *v);
~def_analysis();
fs_inst *
get(const brw_reg &reg) const
{
return reg.file == VGRF && reg.nr < def_count ?
def_insts[reg.nr] : NULL;
}
bblock_t *
get_block(const brw_reg &reg) const
{
return reg.file == VGRF && reg.nr < def_count ?
def_blocks[reg.nr] : NULL;
}
uint32_t
get_use_count(const brw_reg &reg) const
{
return reg.file == VGRF && reg.nr < def_count ?
def_use_counts[reg.nr] : 0;
}
unsigned count() const { return def_count; }
void print_stats(const fs_visitor *) const;
analysis_dependency_class
dependency_class() const
{
return DEPENDENCY_INSTRUCTION_IDENTITY |
DEPENDENCY_INSTRUCTION_DATA_FLOW |
DEPENDENCY_VARIABLES |
DEPENDENCY_BLOCKS;
}
bool validate(const fs_visitor *) const;
private:
void mark_invalid(int);
bool fully_defines(const fs_visitor *v, fs_inst *);
void update_for_reads(const idom_tree &idom, bblock_t *block, fs_inst *);
void update_for_write(const fs_visitor *v, bblock_t *block, fs_inst *);
fs_inst **def_insts;
bblock_t **def_blocks;
uint32_t *def_use_counts;
unsigned def_count;
};
}
#define UBO_START ((1 << 16) - 4)
/**
* Scratch data used when compiling a GLSL geometry shader.
*/
struct brw_gs_compile
{
struct brw_gs_prog_key key;
struct intel_vue_map input_vue_map;
unsigned control_data_bits_per_vertex;
unsigned control_data_header_size_bits;
};
namespace brw {
class fs_builder;
}
struct shader_stats {
const char *scheduler_mode;
unsigned promoted_constants;
unsigned spill_count;
unsigned fill_count;
unsigned max_register_pressure;
};
/** Register numbers for thread payload fields. */
struct thread_payload {
/** The number of thread payload registers the hardware will supply. */
uint8_t num_regs;
virtual ~thread_payload() = default;
protected:
thread_payload() : num_regs() {}
};
struct vs_thread_payload : public thread_payload {
vs_thread_payload(const fs_visitor &v);
brw_reg urb_handles;
};
struct tcs_thread_payload : public thread_payload {
tcs_thread_payload(const fs_visitor &v);
brw_reg patch_urb_output;
brw_reg primitive_id;
brw_reg icp_handle_start;
};
struct tes_thread_payload : public thread_payload {
tes_thread_payload(const fs_visitor &v);
brw_reg patch_urb_input;
brw_reg primitive_id;
brw_reg coords[3];
brw_reg urb_output;
};
struct gs_thread_payload : public thread_payload {
gs_thread_payload(fs_visitor &v);
brw_reg urb_handles;
brw_reg primitive_id;
brw_reg instance_id;
brw_reg icp_handle_start;
};
struct fs_thread_payload : public thread_payload {
fs_thread_payload(const fs_visitor &v,
bool &source_depth_to_render_target);
uint8_t subspan_coord_reg[2];
uint8_t source_depth_reg[2];
uint8_t source_w_reg[2];
uint8_t aa_dest_stencil_reg[2];
uint8_t dest_depth_reg[2];
uint8_t sample_pos_reg[2];
uint8_t sample_mask_in_reg[2];
uint8_t barycentric_coord_reg[BRW_BARYCENTRIC_MODE_COUNT][2];
uint8_t depth_w_coef_reg;
uint8_t pc_bary_coef_reg;
uint8_t npc_bary_coef_reg;
uint8_t sample_offsets_reg;
};
struct cs_thread_payload : public thread_payload {
cs_thread_payload(const fs_visitor &v);
void load_subgroup_id(const brw::fs_builder &bld, brw_reg &dest) const;
brw_reg local_invocation_id[3];
protected:
brw_reg subgroup_id_;
};
struct task_mesh_thread_payload : public cs_thread_payload {
task_mesh_thread_payload(fs_visitor &v);
brw_reg extended_parameter_0;
brw_reg local_index;
brw_reg inline_parameter;
brw_reg urb_output;
/* URB to read Task memory inputs. Only valid for MESH stage. */
brw_reg task_urb_input;
};
struct bs_thread_payload : public thread_payload {
bs_thread_payload(const fs_visitor &v);
brw_reg global_arg_ptr;
brw_reg local_arg_ptr;
void load_shader_type(const brw::fs_builder &bld, brw_reg &dest) const;
};
enum instruction_scheduler_mode {
SCHEDULE_PRE,
SCHEDULE_PRE_NON_LIFO,
SCHEDULE_PRE_LIFO,
SCHEDULE_POST,
SCHEDULE_NONE,
};
class instruction_scheduler;
/**
* The fragment shader front-end.
*
* Translates either GLSL IR or Mesa IR (for ARB_fragment_program) into FS IR.
*/
struct fs_visitor
{
public:
fs_visitor(const struct brw_compiler *compiler,
const struct brw_compile_params *params,
const brw_base_prog_key *key,
struct brw_stage_prog_data *prog_data,
const nir_shader *shader,
unsigned dispatch_width,
bool needs_register_pressure,
bool debug_enabled);
fs_visitor(const struct brw_compiler *compiler,
const struct brw_compile_params *params,
const brw_wm_prog_key *key,
struct brw_wm_prog_data *prog_data,
const nir_shader *shader,
unsigned dispatch_width,
unsigned num_polygons,
bool needs_register_pressure,
bool debug_enabled);
fs_visitor(const struct brw_compiler *compiler,
const struct brw_compile_params *params,
struct brw_gs_compile *gs_compile,
struct brw_gs_prog_data *prog_data,
const nir_shader *shader,
bool needs_register_pressure,
bool debug_enabled);
void init();
~fs_visitor();
void import_uniforms(fs_visitor *v);
void assign_curb_setup();
void convert_attr_sources_to_hw_regs(fs_inst *inst);
void calculate_payload_ranges(unsigned payload_node_count,
int *payload_last_use_ip) const;
void assign_constant_locations();
bool get_pull_locs(const brw_reg &src, unsigned *out_surf_index,
unsigned *out_pull_index);
void invalidate_analysis(brw::analysis_dependency_class c);
void vfail(const char *msg, va_list args);
void fail(const char *msg, ...);
void limit_dispatch_width(unsigned n, const char *msg);
void emit_urb_writes(const brw_reg &gs_vertex_count = brw_reg());
void emit_gs_control_data_bits(const brw_reg &vertex_count);
brw_reg gs_urb_channel_mask(const brw_reg &dword_index);
brw_reg gs_urb_per_slot_dword_index(const brw_reg &vertex_count);
bool mark_last_urb_write_with_eot();
void emit_cs_terminate();
const struct brw_compiler *compiler;
void *log_data; /* Passed to compiler->*_log functions */
const struct intel_device_info * const devinfo;
const nir_shader *nir;
/** ralloc context for temporary data used during compile */
void *mem_ctx;
/** List of fs_inst. */
exec_list instructions;
cfg_t *cfg;
gl_shader_stage stage;
bool debug_enabled;
brw::simple_allocator alloc;
const brw_base_prog_key *const key;
struct brw_gs_compile *gs_compile;
struct brw_stage_prog_data *prog_data;
brw_analysis<brw::fs_live_variables, fs_visitor> live_analysis;
brw_analysis<brw::register_pressure, fs_visitor> regpressure_analysis;
brw_analysis<brw::performance, fs_visitor> performance_analysis;
brw_analysis<brw::idom_tree, fs_visitor> idom_analysis;
brw_analysis<brw::def_analysis, fs_visitor> def_analysis;
/** Number of uniform variable components visited. */
unsigned uniforms;
/** Byte-offset for the next available spot in the scratch space buffer. */
unsigned last_scratch;
/**
* Array mapping UNIFORM register numbers to the push parameter index,
* or -1 if this uniform register isn't being uploaded as a push constant.
*/
int *push_constant_loc;
brw_reg frag_depth;
brw_reg frag_stencil;
brw_reg sample_mask;
brw_reg outputs[VARYING_SLOT_MAX];
brw_reg dual_src_output;
int first_non_payload_grf;
bool failed;
char *fail_msg;
thread_payload *payload_;
thread_payload &payload() {
return *this->payload_;
}
vs_thread_payload &vs_payload() {
assert(stage == MESA_SHADER_VERTEX);
return *static_cast<vs_thread_payload *>(this->payload_);
}
tcs_thread_payload &tcs_payload() {
assert(stage == MESA_SHADER_TESS_CTRL);
return *static_cast<tcs_thread_payload *>(this->payload_);
}
tes_thread_payload &tes_payload() {
assert(stage == MESA_SHADER_TESS_EVAL);
return *static_cast<tes_thread_payload *>(this->payload_);
}
gs_thread_payload &gs_payload() {
assert(stage == MESA_SHADER_GEOMETRY);
return *static_cast<gs_thread_payload *>(this->payload_);
}
fs_thread_payload &fs_payload() {
assert(stage == MESA_SHADER_FRAGMENT);
return *static_cast<fs_thread_payload *>(this->payload_);
};
const fs_thread_payload &fs_payload() const {
assert(stage == MESA_SHADER_FRAGMENT);
return *static_cast<const fs_thread_payload *>(this->payload_);
};
cs_thread_payload &cs_payload() {
assert(gl_shader_stage_uses_workgroup(stage));
return *static_cast<cs_thread_payload *>(this->payload_);
}
task_mesh_thread_payload &task_mesh_payload() {
assert(stage == MESA_SHADER_TASK || stage == MESA_SHADER_MESH);
return *static_cast<task_mesh_thread_payload *>(this->payload_);
}
bs_thread_payload &bs_payload() {
assert(stage >= MESA_SHADER_RAYGEN && stage <= MESA_SHADER_CALLABLE);
return *static_cast<bs_thread_payload *>(this->payload_);
}
bool source_depth_to_render_target;
brw_reg pixel_x;
brw_reg pixel_y;
brw_reg pixel_z;
brw_reg wpos_w;
brw_reg pixel_w;
brw_reg delta_xy[BRW_BARYCENTRIC_MODE_COUNT];
brw_reg final_gs_vertex_count;
brw_reg control_data_bits;
brw_reg invocation_id;
unsigned grf_used;
bool spilled_any_registers;
bool needs_register_pressure;
const unsigned dispatch_width; /**< 8, 16 or 32 */
const unsigned max_polygons;
unsigned max_dispatch_width;
/* The API selected subgroup size */
unsigned api_subgroup_size; /**< 0, 8, 16, 32 */
struct shader_stats shader_stats;
void debug_optimizer(const nir_shader *nir,
const char *pass_name,
int iteration, int pass_num) const;
};
void brw_print_instruction_to_file(const fs_visitor &s, const fs_inst *inst, FILE *file, const brw::def_analysis *defs);
void brw_print_instructions_to_file(const fs_visitor &s, FILE *file);
/* Convenience functions based on the above. */
inline void brw_print_instruction(const fs_visitor &s, const fs_inst *inst, FILE *file = stderr, const brw::def_analysis *defs = nullptr) {
brw_print_instruction_to_file(s, inst, file, defs);
}
void brw_print_instructions(const fs_visitor &s, const char *name = nullptr);
void brw_print_swsb(FILE *f, const struct intel_device_info *devinfo, const tgl_swsb swsb);
/**
* Return the flag register used in fragment shaders to keep track of live
* samples. On Gfx7+ we use f1.0-f1.1 to allow discard jumps in SIMD32
* dispatch mode.
*/
static inline unsigned
sample_mask_flag_subreg(const fs_visitor &s)
{
assert(s.stage == MESA_SHADER_FRAGMENT);
return 2;
}
/**
* The fragment shader code generator.
*
* Translates FS IR to actual i965 assembly code.
*/
class fs_generator
{
public:
fs_generator(const struct brw_compiler *compiler,
const struct brw_compile_params *params,
struct brw_stage_prog_data *prog_data,
gl_shader_stage stage);
~fs_generator();
void enable_debug(const char *shader_name);
int generate_code(const cfg_t *cfg, int dispatch_width,
struct shader_stats shader_stats,
const brw::performance &perf,
struct brw_compile_stats *stats,
unsigned max_polygons = 0);
void add_const_data(void *data, unsigned size);
void add_resume_sbt(unsigned num_resume_shaders, uint64_t *sbt);
const unsigned *get_assembly();
private:
void generate_send(fs_inst *inst,
struct brw_reg dst,
struct brw_reg desc,
struct brw_reg ex_desc,
struct brw_reg payload,
struct brw_reg payload2);
void generate_barrier(fs_inst *inst, struct brw_reg src);
void generate_ddx(const fs_inst *inst,
struct brw_reg dst, struct brw_reg src);
void generate_ddy(const fs_inst *inst,
struct brw_reg dst, struct brw_reg src);
void generate_scratch_header(fs_inst *inst,
struct brw_reg dst, struct brw_reg src);
void generate_halt(fs_inst *inst);
void generate_mov_indirect(fs_inst *inst,
struct brw_reg dst,
struct brw_reg reg,
struct brw_reg indirect_byte_offset);
void generate_shuffle(fs_inst *inst,
struct brw_reg dst,
struct brw_reg src,
struct brw_reg idx);
void generate_quad_swizzle(const fs_inst *inst,
struct brw_reg dst, struct brw_reg src,
unsigned swiz);
bool patch_halt_jumps();
const struct brw_compiler *compiler;
const struct brw_compile_params *params;
const struct intel_device_info *devinfo;
struct brw_codegen *p;
struct brw_stage_prog_data * const prog_data;
unsigned dispatch_width; /**< 8, 16 or 32 */
exec_list discard_halt_patches;
bool debug_flag;
const char *shader_name;
gl_shader_stage stage;
void *mem_ctx;
};
namespace brw {
brw_reg
fetch_payload_reg(const brw::fs_builder &bld, uint8_t regs[2],
brw_reg_type type = BRW_TYPE_F,
unsigned n = 1);
brw_reg
fetch_barycentric_reg(const brw::fs_builder &bld, uint8_t regs[2]);
inline brw_reg
dynamic_msaa_flags(const struct brw_wm_prog_data *wm_prog_data)
{
return brw_uniform_reg(wm_prog_data->msaa_flags_param, BRW_TYPE_UD);
}
void
check_dynamic_msaa_flag(const fs_builder &bld,
const struct brw_wm_prog_data *wm_prog_data,
enum intel_msaa_flags flag);
bool
lower_src_modifiers(fs_visitor *v, bblock_t *block, fs_inst *inst, unsigned i);
}
void shuffle_from_32bit_read(const brw::fs_builder &bld,
const brw_reg &dst,
const brw_reg &src,
uint32_t first_component,
uint32_t components);
enum brw_barycentric_mode brw_barycentric_mode(const struct brw_wm_prog_key *key,
nir_intrinsic_instr *intr);
uint32_t brw_fb_write_msg_control(const fs_inst *inst,
const struct brw_wm_prog_data *prog_data);
void brw_compute_urb_setup_index(struct brw_wm_prog_data *wm_prog_data);
bool brw_nir_lower_simd(nir_shader *nir, unsigned dispatch_width);
brw_reg brw_sample_mask_reg(const brw::fs_builder &bld);
void brw_emit_predicate_on_sample_mask(const brw::fs_builder &bld, fs_inst *inst);
int brw_get_subgroup_id_param_index(const intel_device_info *devinfo,
const brw_stage_prog_data *prog_data);
void nir_to_brw(fs_visitor *s);
#ifndef NDEBUG
void brw_fs_validate(const fs_visitor &s);
#else
static inline void brw_fs_validate(const fs_visitor &s) {}
#endif
void brw_calculate_cfg(fs_visitor &s);
void brw_fs_optimize(fs_visitor &s);
instruction_scheduler *brw_prepare_scheduler(fs_visitor &s, void *mem_ctx);
void brw_schedule_instructions_pre_ra(fs_visitor &s, instruction_scheduler *sched,
instruction_scheduler_mode mode);
void brw_schedule_instructions_post_ra(fs_visitor &s);
void brw_allocate_registers(fs_visitor &s, bool allow_spilling);
bool brw_assign_regs(fs_visitor &s, bool allow_spilling, bool spill_all);
void brw_assign_regs_trivial(fs_visitor &s);
bool brw_fs_lower_3src_null_dest(fs_visitor &s);
bool brw_fs_lower_alu_restrictions(fs_visitor &s);
bool brw_fs_lower_barycentrics(fs_visitor &s);
bool brw_fs_lower_constant_loads(fs_visitor &s);
bool brw_fs_lower_derivatives(fs_visitor &s);
bool brw_fs_lower_dpas(fs_visitor &s);
bool brw_fs_lower_find_live_channel(fs_visitor &s);
bool brw_fs_lower_integer_multiplication(fs_visitor &s);
bool brw_fs_lower_load_subgroup_invocation(fs_visitor &s);
bool brw_fs_lower_indirect_mov(fs_visitor &s);
bool brw_fs_lower_logical_sends(fs_visitor &s);
bool brw_fs_lower_pack(fs_visitor &s);
bool brw_fs_lower_load_payload(fs_visitor &s);
bool brw_fs_lower_regioning(fs_visitor &s);
bool brw_fs_lower_scoreboard(fs_visitor &s);
bool brw_fs_lower_sends_overlapping_payload(fs_visitor &s);
bool brw_fs_lower_simd_width(fs_visitor &s);
bool brw_fs_lower_csel(fs_visitor &s);
bool brw_fs_lower_sub_sat(fs_visitor &s);
bool brw_fs_lower_uniform_pull_constant_loads(fs_visitor &s);
void brw_fs_lower_vgrfs_to_fixed_grfs(fs_visitor &s);
bool brw_fs_opt_algebraic(fs_visitor &s);
bool brw_fs_opt_bank_conflicts(fs_visitor &s);
bool brw_fs_opt_cmod_propagation(fs_visitor &s);
bool brw_fs_opt_combine_constants(fs_visitor &s);
bool brw_fs_opt_compact_virtual_grfs(fs_visitor &s);
bool brw_fs_opt_copy_propagation(fs_visitor &s);
bool brw_fs_opt_copy_propagation_defs(fs_visitor &s);
intel/brw: Write a new global CSE pass that works on defs This has a number of advantages compared to the pass I wrote years ago: - It can easily perform either Global CSE or block-local CSE, without needing to roll any dataflow analysis, thanks to SSA def analysis. This global CSE is able to detect and coalesce memory loads across blocks. Although it may increase spilling a little, the reduction in memory loads seems to more than compensate. - Because SSA guarantees that values are never written more than once, the new CSE pass can directly reuse an existing value. The old pass emitted copies at the point where it discovered a value because it had no idea whether it'd be mutated later. This led it to generate a ton of trash for copy propagation to clean up later, and also a nasty fragility where CSE, register coalescing, and copy propagation could all fight one another by generating and cleaning up copies, leading to infinite optimization loops unless we were really careful. Generating less trash improves our CPU efficiency. - It uses hash tables like nir_instr_set and nir_opt_cse, instead of linearly walking lists and comparing each element. This is much more CPU efficient. - It doesn't use liveness analysis, which is one of the most expensive analysis passes that we have. Def analysis is cheaper. In addition to CSE'ing SSA values, we continue to handle flag writes, as this is a huge source of CSE'able values. These remain block local. However, we can simply track the last flag write, rather than creating entire sets of instruction entries like the old pass. Much simpler. The only real downside to this pass is that, because the backend is currently only partially SSA, it has limited visibility and isn't able to see all values. However, the results appear to be good enough that the new pass can effectively replace the old pass in almost all cases. Reviewed-by: Caio Oliveira <caio.oliveira@intel.com> Part-of: <https://gitlab.freedesktop.org/mesa/mesa/-/merge_requests/28666>
2024-02-29 01:55:35 -08:00
bool brw_fs_opt_cse_defs(fs_visitor &s);
bool brw_fs_opt_dead_code_eliminate(fs_visitor &s);
bool brw_fs_opt_dead_control_flow_eliminate(fs_visitor &s);
bool brw_fs_opt_eliminate_find_live_channel(fs_visitor &s);
bool brw_fs_opt_peephole_sel(fs_visitor &s);
bool brw_fs_opt_predicated_break(fs_visitor &s);
bool brw_fs_opt_register_coalesce(fs_visitor &s);
bool brw_fs_opt_remove_extra_rounding_modes(fs_visitor &s);
bool brw_fs_opt_remove_redundant_halts(fs_visitor &s);
bool brw_fs_opt_saturate_propagation(fs_visitor &s);
bool brw_fs_opt_split_sends(fs_visitor &s);
bool brw_fs_opt_split_virtual_grfs(fs_visitor &s);
bool brw_fs_opt_zero_samples(fs_visitor &s);
bool brw_fs_workaround_emit_dummy_mov_instruction(fs_visitor &s);
bool brw_fs_workaround_memory_fence_before_eot(fs_visitor &s);
bool brw_fs_workaround_nomask_control_flow(fs_visitor &s);
/* Helpers. */
unsigned brw_fs_get_lowered_simd_width(const fs_visitor *shader,
const fs_inst *inst);
#endif /* BRW_FS_H */