mesa/src/intel/vulkan/anv_pipeline.c

2217 lines
80 KiB
C
Raw Normal View History

2015-05-08 22:32:37 -07:00
/*
* Copyright © 2015 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include <assert.h>
#include <stdbool.h>
#include <string.h>
#include <unistd.h>
#include <fcntl.h>
#include "util/mesa-sha1.h"
#include "util/os_time.h"
#include "common/gen_l3_config.h"
#include "common/gen_disasm.h"
#include "anv_private.h"
#include "compiler/brw_nir.h"
#include "anv_nir.h"
#include "nir/nir_xfb_info.h"
#include "spirv/nir_spirv.h"
#include "vk_util.h"
/* Needed for SWIZZLE macros */
#include "program/prog_instruction.h"
2015-05-08 22:32:37 -07:00
// Shader functions
VkResult anv_CreateShaderModule(
VkDevice _device,
const VkShaderModuleCreateInfo* pCreateInfo,
const VkAllocationCallbacks* pAllocator,
VkShaderModule* pShaderModule)
{
ANV_FROM_HANDLE(anv_device, device, _device);
struct anv_shader_module *module;
assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO);
assert(pCreateInfo->flags == 0);
module = vk_alloc2(&device->alloc, pAllocator,
sizeof(*module) + pCreateInfo->codeSize, 8,
VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
if (module == NULL)
return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
module->size = pCreateInfo->codeSize;
memcpy(module->data, pCreateInfo->pCode, module->size);
_mesa_sha1_compute(module->data, module->size, module->sha1);
*pShaderModule = anv_shader_module_to_handle(module);
return VK_SUCCESS;
}
void anv_DestroyShaderModule(
2015-07-14 10:12:10 -07:00
VkDevice _device,
VkShaderModule _module,
const VkAllocationCallbacks* pAllocator)
2015-07-14 10:12:10 -07:00
{
ANV_FROM_HANDLE(anv_device, device, _device);
ANV_FROM_HANDLE(anv_shader_module, module, _module);
if (!module)
return;
vk_free2(&device->alloc, pAllocator, module);
2015-07-14 10:12:10 -07:00
}
#define SPIR_V_MAGIC_NUMBER 0x07230203
static const uint64_t stage_to_debug[] = {
[MESA_SHADER_VERTEX] = DEBUG_VS,
[MESA_SHADER_TESS_CTRL] = DEBUG_TCS,
[MESA_SHADER_TESS_EVAL] = DEBUG_TES,
[MESA_SHADER_GEOMETRY] = DEBUG_GS,
[MESA_SHADER_FRAGMENT] = DEBUG_WM,
[MESA_SHADER_COMPUTE] = DEBUG_CS,
};
struct anv_spirv_debug_data {
struct anv_device *device;
const struct anv_shader_module *module;
};
static void anv_spirv_nir_debug(void *private_data,
enum nir_spirv_debug_level level,
size_t spirv_offset,
const char *message)
{
struct anv_spirv_debug_data *debug_data = private_data;
static const VkDebugReportFlagsEXT vk_flags[] = {
[NIR_SPIRV_DEBUG_LEVEL_INFO] = VK_DEBUG_REPORT_INFORMATION_BIT_EXT,
[NIR_SPIRV_DEBUG_LEVEL_WARNING] = VK_DEBUG_REPORT_WARNING_BIT_EXT,
[NIR_SPIRV_DEBUG_LEVEL_ERROR] = VK_DEBUG_REPORT_ERROR_BIT_EXT,
};
char buffer[256];
snprintf(buffer, sizeof(buffer), "SPIR-V offset %lu: %s", (unsigned long) spirv_offset, message);
vk_debug_report(&debug_data->device->instance->debug_report_callbacks,
vk_flags[level],
VK_DEBUG_REPORT_OBJECT_TYPE_SHADER_MODULE_EXT,
(uint64_t) (uintptr_t) debug_data->module,
0, 0, "anv", buffer);
}
/* Eventually, this will become part of anv_CreateShader. Unfortunately,
* we can't do that yet because we don't have the ability to copy nir.
*/
static nir_shader *
anv_shader_compile_to_nir(struct anv_device *device,
void *mem_ctx,
const struct anv_shader_module *module,
const char *entrypoint_name,
gl_shader_stage stage,
const VkSpecializationInfo *spec_info)
{
const struct anv_physical_device *pdevice =
&device->instance->physicalDevice;
const struct brw_compiler *compiler = pdevice->compiler;
const nir_shader_compiler_options *nir_options =
compiler->glsl_compiler_options[stage].NirOptions;
uint32_t *spirv = (uint32_t *) module->data;
assert(spirv[0] == SPIR_V_MAGIC_NUMBER);
assert(module->size % 4 == 0);
uint32_t num_spec_entries = 0;
struct nir_spirv_specialization *spec_entries = NULL;
if (spec_info && spec_info->mapEntryCount > 0) {
num_spec_entries = spec_info->mapEntryCount;
spec_entries = malloc(num_spec_entries * sizeof(*spec_entries));
for (uint32_t i = 0; i < num_spec_entries; i++) {
VkSpecializationMapEntry entry = spec_info->pMapEntries[i];
const void *data = spec_info->pData + entry.offset;
assert(data + entry.size <= spec_info->pData + spec_info->dataSize);
spec_entries[i].id = spec_info->pMapEntries[i].constantID;
if (spec_info->dataSize == 8)
spec_entries[i].data64 = *(const uint64_t *)data;
else
spec_entries[i].data32 = *(const uint32_t *)data;
}
}
struct anv_spirv_debug_data spirv_debug_data = {
.device = device,
.module = module,
};
struct spirv_to_nir_options spirv_options = {
.frag_coord_is_sysval = true,
.use_scoped_memory_barrier = true,
.caps = {
.demote_to_helper_invocation = true,
.derivative_group = true,
.descriptor_array_dynamic_indexing = true,
.descriptor_array_non_uniform_indexing = true,
.descriptor_indexing = true,
.device_group = true,
.draw_parameters = true,
.float16 = pdevice->info.gen >= 8,
.float64 = pdevice->info.gen >= 8,
.fragment_shader_sample_interlock = pdevice->info.gen >= 9,
.fragment_shader_pixel_interlock = pdevice->info.gen >= 9,
.geometry_streams = true,
.image_write_without_format = true,
.int8 = pdevice->info.gen >= 8,
.int16 = pdevice->info.gen >= 8,
.int64 = pdevice->info.gen >= 8,
.int64_atomics = pdevice->info.gen >= 9 && pdevice->use_softpin,
.min_lod = true,
.multiview = true,
.physical_storage_buffer_address = pdevice->has_a64_buffer_access,
.post_depth_coverage = pdevice->info.gen >= 9,
.runtime_descriptor_array = true,
.float_controls = pdevice->info.gen >= 8,
.shader_clock = true,
.shader_viewport_index_layer = true,
.stencil_export = pdevice->info.gen >= 9,
.storage_8bit = pdevice->info.gen >= 8,
.storage_16bit = pdevice->info.gen >= 8,
.subgroup_arithmetic = true,
.subgroup_basic = true,
.subgroup_ballot = true,
.subgroup_quad = true,
.subgroup_shuffle = true,
.subgroup_vote = true,
.tessellation = true,
.transform_feedback = pdevice->info.gen >= 8,
.variable_pointers = true,
.vk_memory_model = true,
.vk_memory_model_device_scope = true,
},
.ubo_addr_format = nir_address_format_32bit_index_offset,
.ssbo_addr_format =
anv_nir_ssbo_addr_format(pdevice, device->robust_buffer_access),
.phys_ssbo_addr_format = nir_address_format_64bit_global,
.push_const_addr_format = nir_address_format_logical,
/* TODO: Consider changing this to an address format that has the NULL
* pointer equals to 0. That might be a better format to play nice
* with certain code / code generators.
*/
.shared_addr_format = nir_address_format_32bit_offset,
.debug = {
.func = anv_spirv_nir_debug,
.private_data = &spirv_debug_data,
},
};
nir_shader *nir =
spirv_to_nir(spirv, module->size / 4,
spec_entries, num_spec_entries,
stage, entrypoint_name, &spirv_options, nir_options);
assert(nir->info.stage == stage);
nir_validate_shader(nir, "after spirv_to_nir");
ralloc_steal(mem_ctx, nir);
free(spec_entries);
if (unlikely(INTEL_DEBUG & stage_to_debug[stage])) {
fprintf(stderr, "NIR (from SPIR-V) for %s shader:\n",
gl_shader_stage_name(stage));
nir_print_shader(nir, stderr);
}
/* We have to lower away local constant initializers right before we
* inline functions. That way they get properly initialized at the top
* of the function and not at the top of its caller.
*/
NIR_PASS_V(nir, nir_lower_constant_initializers, nir_var_function_temp);
NIR_PASS_V(nir, nir_lower_returns);
NIR_PASS_V(nir, nir_inline_functions);
NIR_PASS_V(nir, nir_opt_deref);
/* Pick off the single entrypoint that we want */
foreach_list_typed_safe(nir_function, func, node, &nir->functions) {
if (!func->is_entrypoint)
exec_node_remove(&func->node);
}
assert(exec_list_length(&nir->functions) == 1);
/* Now that we've deleted all but the main function, we can go ahead and
* lower the rest of the constant initializers. We do this here so that
* nir_remove_dead_variables and split_per_member_structs below see the
* corresponding stores.
*/
NIR_PASS_V(nir, nir_lower_constant_initializers, ~0);
/* Split member structs. We do this before lower_io_to_temporaries so that
* it doesn't lower system values to temporaries by accident.
*/
NIR_PASS_V(nir, nir_split_var_copies);
NIR_PASS_V(nir, nir_split_per_member_structs);
NIR_PASS_V(nir, nir_remove_dead_variables,
nir_var_shader_in | nir_var_shader_out | nir_var_system_value);
NIR_PASS_V(nir, nir_propagate_invariant);
NIR_PASS_V(nir, nir_lower_io_to_temporaries,
nir_shader_get_entrypoint(nir), true, false);
NIR_PASS_V(nir, nir_lower_frexp);
2015-10-23 10:53:00 -07:00
/* Vulkan uses the separate-shader linking model */
nir->info.separate_shader = true;
2015-10-23 10:53:00 -07:00
brw_preprocess_nir(compiler, nir, NULL);
return nir;
}
2015-07-14 10:16:22 -07:00
void anv_DestroyPipeline(
2015-07-14 10:26:17 -07:00
VkDevice _device,
VkPipeline _pipeline,
const VkAllocationCallbacks* pAllocator)
2015-07-14 10:26:17 -07:00
{
ANV_FROM_HANDLE(anv_device, device, _device);
ANV_FROM_HANDLE(anv_pipeline, pipeline, _pipeline);
if (!pipeline)
return;
anv_reloc_list_finish(&pipeline->batch_relocs,
pAllocator ? pAllocator : &device->alloc);
ralloc_free(pipeline->mem_ctx);
if (pipeline->blend_state.map)
anv_state_pool_free(&device->dynamic_state_pool, pipeline->blend_state);
for (unsigned s = 0; s < MESA_SHADER_STAGES; s++) {
if (pipeline->shaders[s])
anv_shader_bin_unref(device, pipeline->shaders[s]);
}
vk_free2(&device->alloc, pAllocator, pipeline);
2015-07-14 10:26:17 -07:00
}
static const uint32_t vk_to_gen_primitive_type[] = {
[VK_PRIMITIVE_TOPOLOGY_POINT_LIST] = _3DPRIM_POINTLIST,
[VK_PRIMITIVE_TOPOLOGY_LINE_LIST] = _3DPRIM_LINELIST,
[VK_PRIMITIVE_TOPOLOGY_LINE_STRIP] = _3DPRIM_LINESTRIP,
[VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST] = _3DPRIM_TRILIST,
[VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP] = _3DPRIM_TRISTRIP,
[VK_PRIMITIVE_TOPOLOGY_TRIANGLE_FAN] = _3DPRIM_TRIFAN,
[VK_PRIMITIVE_TOPOLOGY_LINE_LIST_WITH_ADJACENCY] = _3DPRIM_LINELIST_ADJ,
[VK_PRIMITIVE_TOPOLOGY_LINE_STRIP_WITH_ADJACENCY] = _3DPRIM_LINESTRIP_ADJ,
[VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST_WITH_ADJACENCY] = _3DPRIM_TRILIST_ADJ,
[VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP_WITH_ADJACENCY] = _3DPRIM_TRISTRIP_ADJ,
};
static void
populate_sampler_prog_key(const struct gen_device_info *devinfo,
struct brw_sampler_prog_key_data *key)
{
/* Almost all multisampled textures are compressed. The only time when we
* don't compress a multisampled texture is for 16x MSAA with a surface
* width greater than 8k which is a bit of an edge case. Since the sampler
* just ignores the MCS parameter to ld2ms when MCS is disabled, it's safe
* to tell the compiler to always assume compression.
*/
key->compressed_multisample_layout_mask = ~0;
/* SkyLake added support for 16x MSAA. With this came a new message for
* reading from a 16x MSAA surface with compression. The new message was
* needed because now the MCS data is 64 bits instead of 32 or lower as is
* the case for 8x, 4x, and 2x. The key->msaa_16 bit-field controls which
* message we use. Fortunately, the 16x message works for 8x, 4x, and 2x
* so we can just use it unconditionally. This may not be quite as
* efficient but it saves us from recompiling.
*/
if (devinfo->gen >= 9)
key->msaa_16 = ~0;
/* XXX: Handle texture swizzle on HSW- */
for (int i = 0; i < MAX_SAMPLERS; i++) {
/* Assume color sampler, no swizzling. (Works for BDW+) */
key->swizzles[i] = SWIZZLE_XYZW;
}
}
static void
populate_base_prog_key(const struct gen_device_info *devinfo,
VkPipelineShaderStageCreateFlags flags,
struct brw_base_prog_key *key)
{
if (flags & VK_PIPELINE_SHADER_STAGE_CREATE_ALLOW_VARYING_SUBGROUP_SIZE_BIT_EXT)
key->subgroup_size_type = BRW_SUBGROUP_SIZE_VARYING;
else
key->subgroup_size_type = BRW_SUBGROUP_SIZE_API_CONSTANT;
populate_sampler_prog_key(devinfo, &key->tex);
}
static void
populate_vs_prog_key(const struct gen_device_info *devinfo,
VkPipelineShaderStageCreateFlags flags,
struct brw_vs_prog_key *key)
{
memset(key, 0, sizeof(*key));
populate_base_prog_key(devinfo, flags, &key->base);
/* XXX: Handle vertex input work-arounds */
/* XXX: Handle sampler_prog_key */
}
static void
populate_tcs_prog_key(const struct gen_device_info *devinfo,
VkPipelineShaderStageCreateFlags flags,
unsigned input_vertices,
struct brw_tcs_prog_key *key)
{
memset(key, 0, sizeof(*key));
populate_base_prog_key(devinfo, flags, &key->base);
key->input_vertices = input_vertices;
}
static void
populate_tes_prog_key(const struct gen_device_info *devinfo,
VkPipelineShaderStageCreateFlags flags,
struct brw_tes_prog_key *key)
{
memset(key, 0, sizeof(*key));
populate_base_prog_key(devinfo, flags, &key->base);
}
static void
populate_gs_prog_key(const struct gen_device_info *devinfo,
VkPipelineShaderStageCreateFlags flags,
struct brw_gs_prog_key *key)
{
memset(key, 0, sizeof(*key));
populate_base_prog_key(devinfo, flags, &key->base);
}
static void
populate_wm_prog_key(const struct gen_device_info *devinfo,
VkPipelineShaderStageCreateFlags flags,
const struct anv_subpass *subpass,
const VkPipelineMultisampleStateCreateInfo *ms_info,
struct brw_wm_prog_key *key)
{
memset(key, 0, sizeof(*key));
populate_base_prog_key(devinfo, flags, &key->base);
/* We set this to 0 here and set to the actual value before we call
* brw_compile_fs.
*/
key->input_slots_valid = 0;
/* Vulkan doesn't specify a default */
key->high_quality_derivatives = false;
/* XXX Vulkan doesn't appear to specify */
key->clamp_fragment_color = false;
assert(subpass->color_count <= MAX_RTS);
for (uint32_t i = 0; i < subpass->color_count; i++) {
if (subpass->color_attachments[i].attachment != VK_ATTACHMENT_UNUSED)
key->color_outputs_valid |= (1 << i);
}
key->nr_color_regions = util_bitcount(key->color_outputs_valid);
i965,iris,anv: Make alpha to coverage work with sample mask From "Alpha Coverage" section of SKL PRM Volume 7: "If Pixel Shader outputs oMask, AlphaToCoverage is disabled in hardware, regardless of the state setting for this feature." From OpenGL spec 4.6, "15.2 Shader Execution": "The built-in integer array gl_SampleMask can be used to change the sample coverage for a fragment from within the shader." From OpenGL spec 4.6, "17.3.1 Alpha To Coverage": "If SAMPLE_ALPHA_TO_COVERAGE is enabled, a temporary coverage value is generated where each bit is determined by the alpha value at the corresponding sample location. The temporary coverage value is then ANDed with the fragment coverage value to generate a new fragment coverage value." Similar wording could be found in Vulkan spec 1.1.100 "25.6. Multisample Coverage" Thus we need to compute alpha to coverage dithering manually in shader and replace sample mask store with the bitwise-AND of sample mask and alpha to coverage dithering. The following formula is used to compute final sample mask: m = int(16.0 * clamp(src0_alpha, 0.0, 1.0)) dither_mask = 0x1111 * ((0xfea80 >> (m & ~3)) & 0xf) | 0x0808 * (m & 2) | 0x0100 * (m & 1) sample_mask = sample_mask & dither_mask Credits to Francisco Jerez <currojerez@riseup.net> for creating it. It gives a number of ones proportional to the alpha for 2, 4, 8 or 16 least significant bits of the result. GEN6 hardware does not have issue with simultaneous usage of sample mask and alpha to coverage however due to the wrong sending order of oMask and src0_alpha it is still affected by it. Bugzilla: https://bugs.freedesktop.org/show_bug.cgi?id=109743 Signed-off-by: Danylo Piliaiev <danylo.piliaiev@globallogic.com> Reviewed-by: Francisco Jerez <currojerez@riseup.net>
2019-02-20 19:39:18 +02:00
/* To reduce possible shader recompilations we would need to know if
* there is a SampleMask output variable to compute if we should emit
* code to workaround the issue that hardware disables alpha to coverage
* when there is SampleMask output.
*/
key->alpha_to_coverage = ms_info && ms_info->alphaToCoverageEnable;
/* Vulkan doesn't support fixed-function alpha test */
key->alpha_test_replicate_alpha = false;
if (ms_info) {
/* We should probably pull this out of the shader, but it's fairly
* harmless to compute it and then let dead-code take care of it.
*/
if (ms_info->rasterizationSamples > 1) {
key->persample_interp = ms_info->sampleShadingEnable &&
(ms_info->minSampleShading * ms_info->rasterizationSamples) > 1;
key->multisample_fbo = true;
}
key->frag_coord_adds_sample_pos = key->persample_interp;
}
}
static void
populate_cs_prog_key(const struct gen_device_info *devinfo,
VkPipelineShaderStageCreateFlags flags,
const VkPipelineShaderStageRequiredSubgroupSizeCreateInfoEXT *rss_info,
struct brw_cs_prog_key *key)
{
memset(key, 0, sizeof(*key));
populate_base_prog_key(devinfo, flags, &key->base);
if (rss_info) {
assert(key->base.subgroup_size_type != BRW_SUBGROUP_SIZE_VARYING);
/* These enum values are expressly chosen to be equal to the subgroup
* size that they require.
*/
assert(rss_info->requiredSubgroupSize == 8 ||
rss_info->requiredSubgroupSize == 16 ||
rss_info->requiredSubgroupSize == 32);
key->base.subgroup_size_type = rss_info->requiredSubgroupSize;
} else if (flags & VK_PIPELINE_SHADER_STAGE_CREATE_REQUIRE_FULL_SUBGROUPS_BIT_EXT) {
/* If the client expressly requests full subgroups and they don't
* specify a subgroup size, we need to pick one. If they're requested
* varying subgroup sizes, we set it to UNIFORM and let the back-end
* compiler pick. Otherwise, we specify the API value of 32.
* Performance will likely be terrible in this case but there's nothing
* we can do about that. The client should have chosen a size.
*/
if (flags & VK_PIPELINE_SHADER_STAGE_CREATE_ALLOW_VARYING_SUBGROUP_SIZE_BIT_EXT)
key->base.subgroup_size_type = BRW_SUBGROUP_SIZE_UNIFORM;
else
key->base.subgroup_size_type = BRW_SUBGROUP_SIZE_REQUIRE_32;
}
}
struct anv_pipeline_stage {
gl_shader_stage stage;
const struct anv_shader_module *module;
const char *entrypoint;
const VkSpecializationInfo *spec_info;
unsigned char shader_sha1[20];
union brw_any_prog_key key;
struct {
gl_shader_stage stage;
unsigned char sha1[20];
} cache_key;
nir_shader *nir;
struct anv_pipeline_binding surface_to_descriptor[256];
struct anv_pipeline_binding sampler_to_descriptor[256];
struct anv_pipeline_bind_map bind_map;
union brw_any_prog_data prog_data;
uint32_t num_stats;
struct brw_compile_stats stats[3];
char *disasm[3];
VkPipelineCreationFeedbackEXT feedback;
const unsigned *code;
};
static void
anv_pipeline_hash_shader(const struct anv_shader_module *module,
const char *entrypoint,
gl_shader_stage stage,
const VkSpecializationInfo *spec_info,
unsigned char *sha1_out)
{
struct mesa_sha1 ctx;
_mesa_sha1_init(&ctx);
_mesa_sha1_update(&ctx, module->sha1, sizeof(module->sha1));
_mesa_sha1_update(&ctx, entrypoint, strlen(entrypoint));
_mesa_sha1_update(&ctx, &stage, sizeof(stage));
if (spec_info) {
_mesa_sha1_update(&ctx, spec_info->pMapEntries,
spec_info->mapEntryCount *
sizeof(*spec_info->pMapEntries));
_mesa_sha1_update(&ctx, spec_info->pData,
spec_info->dataSize);
}
_mesa_sha1_final(&ctx, sha1_out);
}
static void
anv_pipeline_hash_graphics(struct anv_pipeline *pipeline,
struct anv_pipeline_layout *layout,
struct anv_pipeline_stage *stages,
unsigned char *sha1_out)
{
struct mesa_sha1 ctx;
_mesa_sha1_init(&ctx);
_mesa_sha1_update(&ctx, &pipeline->subpass->view_mask,
sizeof(pipeline->subpass->view_mask));
if (layout)
_mesa_sha1_update(&ctx, layout->sha1, sizeof(layout->sha1));
const bool rba = pipeline->device->robust_buffer_access;
_mesa_sha1_update(&ctx, &rba, sizeof(rba));
for (unsigned s = 0; s < MESA_SHADER_STAGES; s++) {
if (stages[s].entrypoint) {
_mesa_sha1_update(&ctx, stages[s].shader_sha1,
sizeof(stages[s].shader_sha1));
_mesa_sha1_update(&ctx, &stages[s].key, brw_prog_key_size(s));
}
}
_mesa_sha1_final(&ctx, sha1_out);
}
static void
anv_pipeline_hash_compute(struct anv_pipeline *pipeline,
struct anv_pipeline_layout *layout,
struct anv_pipeline_stage *stage,
unsigned char *sha1_out)
{
struct mesa_sha1 ctx;
_mesa_sha1_init(&ctx);
if (layout)
_mesa_sha1_update(&ctx, layout->sha1, sizeof(layout->sha1));
const bool rba = pipeline->device->robust_buffer_access;
_mesa_sha1_update(&ctx, &rba, sizeof(rba));
_mesa_sha1_update(&ctx, stage->shader_sha1,
sizeof(stage->shader_sha1));
_mesa_sha1_update(&ctx, &stage->key.cs, sizeof(stage->key.cs));
_mesa_sha1_final(&ctx, sha1_out);
}
static nir_shader *
anv_pipeline_stage_get_nir(struct anv_pipeline *pipeline,
struct anv_pipeline_cache *cache,
void *mem_ctx,
struct anv_pipeline_stage *stage)
{
const struct brw_compiler *compiler =
pipeline->device->instance->physicalDevice.compiler;
const nir_shader_compiler_options *nir_options =
compiler->glsl_compiler_options[stage->stage].NirOptions;
nir_shader *nir;
nir = anv_device_search_for_nir(pipeline->device, cache,
nir_options,
stage->shader_sha1,
mem_ctx);
if (nir) {
assert(nir->info.stage == stage->stage);
return nir;
}
nir = anv_shader_compile_to_nir(pipeline->device,
mem_ctx,
stage->module,
stage->entrypoint,
stage->stage,
stage->spec_info);
if (nir) {
anv_device_upload_nir(pipeline->device, cache, nir, stage->shader_sha1);
return nir;
}
return NULL;
}
static void
anv_pipeline_lower_nir(struct anv_pipeline *pipeline,
void *mem_ctx,
struct anv_pipeline_stage *stage,
struct anv_pipeline_layout *layout)
{
const struct anv_physical_device *pdevice =
&pipeline->device->instance->physicalDevice;
const struct brw_compiler *compiler = pdevice->compiler;
struct brw_stage_prog_data *prog_data = &stage->prog_data.base;
nir_shader *nir = stage->nir;
if (nir->info.stage == MESA_SHADER_FRAGMENT) {
NIR_PASS_V(nir, nir_lower_wpos_center, pipeline->sample_shading_enable);
NIR_PASS_V(nir, nir_lower_input_attachments, true);
}
NIR_PASS_V(nir, anv_nir_lower_ycbcr_textures, layout);
NIR_PASS_V(nir, anv_nir_lower_push_constants);
if (nir->info.stage != MESA_SHADER_COMPUTE)
NIR_PASS_V(nir, anv_nir_lower_multiview, pipeline->subpass->view_mask);
nir_shader_gather_info(nir, nir_shader_get_entrypoint(nir));
if (nir->num_uniforms > 0) {
assert(prog_data->nr_params == 0);
/* If the shader uses any push constants at all, we'll just give
* them the maximum possible number
*/
assert(nir->num_uniforms <= MAX_PUSH_CONSTANTS_SIZE);
nir->num_uniforms = MAX_PUSH_CONSTANTS_SIZE;
prog_data->nr_params += MAX_PUSH_CONSTANTS_SIZE / sizeof(float);
prog_data->param = ralloc_array(mem_ctx, uint32_t, prog_data->nr_params);
/* We now set the param values to be offsets into a
* anv_push_constant_data structure. Since the compiler doesn't
* actually dereference any of the gl_constant_value pointers in the
* params array, it doesn't really matter what we put here.
*/
struct anv_push_constants *null_data = NULL;
/* Fill out the push constants section of the param array */
for (unsigned i = 0; i < MAX_PUSH_CONSTANTS_SIZE / sizeof(float); i++) {
prog_data->param[i] = ANV_PARAM_PUSH(
(uintptr_t)&null_data->client_data[i * sizeof(float)]);
}
}
if (nir->info.num_ssbos > 0 || nir->info.num_images > 0)
pipeline->needs_data_cache = true;
anv,i965: Lower away image derefs in the driver Previously, the back-end compiler turn image access into magic uniform reads and there was a complex contract between back-end compiler and driver about setting up and filling out those params. As of this commit, both drivers now lower image_deref_load_param_intel intrinsics to load_uniform intrinsics controlled by the driver and lower the other image_deref_* intrinsics to image_* intrinsics which take an actual binding table index. There are still "magic" uniforms but they are now added and controlled entirely by the driver and that contract no longer spans components. This also has the side-effect of making most image use compile-time binding table indices. Previously, all image access pulled the binding table index from a uniform. Part of the reason for this was that the magic uniforms made it difficult to decouple binding table indices from the uniforms and, since they are indexed completely differently (especially in Vulkan), it was hard to pull them apart. Now that the driver is handling both, it's trivial to decouple the two and provide actual binding table indices. Shader-db results on Kaby Lake: total instructions in shared programs: 15166872 -> 15164293 (-0.02%) instructions in affected programs: 115834 -> 113255 (-2.23%) helped: 191 HURT: 0 total cycles in shared programs: 571311495 -> 571196465 (-0.02%) cycles in affected programs: 4757115 -> 4642085 (-2.42%) helped: 73 HURT: 67 total spills in shared programs: 10951 -> 10926 (-0.23%) spills in affected programs: 742 -> 717 (-3.37%) helped: 7 HURT: 0 total fills in shared programs: 22226 -> 22201 (-0.11%) fills in affected programs: 1146 -> 1121 (-2.18%) helped: 7 HURT: 0 Reviewed-by: Kenneth Graunke <kenneth@whitecape.org>
2018-08-16 16:23:10 -05:00
NIR_PASS_V(nir, brw_nir_lower_image_load_store, compiler->devinfo);
NIR_PASS_V(nir, nir_lower_explicit_io, nir_var_mem_global,
nir_address_format_64bit_global);
/* Apply the actual pipeline layout to UBOs, SSBOs, and textures */
if (layout) {
anv_nir_apply_pipeline_layout(pdevice,
pipeline->device->robust_buffer_access,
layout, nir, prog_data,
&stage->bind_map);
NIR_PASS_V(nir, nir_lower_explicit_io, nir_var_mem_ubo,
nir_address_format_32bit_index_offset);
NIR_PASS_V(nir, nir_lower_explicit_io, nir_var_mem_ssbo,
anv_nir_ssbo_addr_format(pdevice,
pipeline->device->robust_buffer_access));
NIR_PASS_V(nir, nir_opt_constant_folding);
/* We don't support non-uniform UBOs and non-uniform SSBO access is
* handled naturally by falling back to A64 messages.
*/
NIR_PASS_V(nir, nir_lower_non_uniform_access,
nir_lower_non_uniform_texture_access |
nir_lower_non_uniform_image_access);
}
if (nir->info.stage != MESA_SHADER_COMPUTE)
brw_nir_analyze_ubo_ranges(compiler, nir, NULL, prog_data->ubo_ranges);
assert(nir->num_uniforms == prog_data->nr_params * 4);
stage->nir = nir;
}
static void
anv_pipeline_link_vs(const struct brw_compiler *compiler,
struct anv_pipeline_stage *vs_stage,
struct anv_pipeline_stage *next_stage)
{
if (next_stage)
brw_nir_link_shaders(compiler, vs_stage->nir, next_stage->nir);
}
static void
anv_pipeline_compile_vs(const struct brw_compiler *compiler,
void *mem_ctx,
struct anv_device *device,
struct anv_pipeline_stage *vs_stage)
{
brw_compute_vue_map(compiler->devinfo,
&vs_stage->prog_data.vs.base.vue_map,
vs_stage->nir->info.outputs_written,
vs_stage->nir->info.separate_shader);
vs_stage->num_stats = 1;
vs_stage->code = brw_compile_vs(compiler, device, mem_ctx,
&vs_stage->key.vs,
&vs_stage->prog_data.vs,
vs_stage->nir, -1,
vs_stage->stats, NULL);
}
static void
merge_tess_info(struct shader_info *tes_info,
const struct shader_info *tcs_info)
{
/* The Vulkan 1.0.38 spec, section 21.1 Tessellator says:
*
* "PointMode. Controls generation of points rather than triangles
* or lines. This functionality defaults to disabled, and is
* enabled if either shader stage includes the execution mode.
*
* and about Triangles, Quads, IsoLines, VertexOrderCw, VertexOrderCcw,
* PointMode, SpacingEqual, SpacingFractionalEven, SpacingFractionalOdd,
* and OutputVertices, it says:
*
* "One mode must be set in at least one of the tessellation
* shader stages."
*
* So, the fields can be set in either the TCS or TES, but they must
* agree if set in both. Our backend looks at TES, so bitwise-or in
* the values from the TCS.
*/
assert(tcs_info->tess.tcs_vertices_out == 0 ||
tes_info->tess.tcs_vertices_out == 0 ||
tcs_info->tess.tcs_vertices_out == tes_info->tess.tcs_vertices_out);
tes_info->tess.tcs_vertices_out |= tcs_info->tess.tcs_vertices_out;
assert(tcs_info->tess.spacing == TESS_SPACING_UNSPECIFIED ||
tes_info->tess.spacing == TESS_SPACING_UNSPECIFIED ||
tcs_info->tess.spacing == tes_info->tess.spacing);
tes_info->tess.spacing |= tcs_info->tess.spacing;
assert(tcs_info->tess.primitive_mode == 0 ||
tes_info->tess.primitive_mode == 0 ||
tcs_info->tess.primitive_mode == tes_info->tess.primitive_mode);
tes_info->tess.primitive_mode |= tcs_info->tess.primitive_mode;
tes_info->tess.ccw |= tcs_info->tess.ccw;
tes_info->tess.point_mode |= tcs_info->tess.point_mode;
}
static void
anv_pipeline_link_tcs(const struct brw_compiler *compiler,
struct anv_pipeline_stage *tcs_stage,
struct anv_pipeline_stage *tes_stage)
{
assert(tes_stage && tes_stage->stage == MESA_SHADER_TESS_EVAL);
brw_nir_link_shaders(compiler, tcs_stage->nir, tes_stage->nir);
nir_lower_patch_vertices(tes_stage->nir,
tcs_stage->nir->info.tess.tcs_vertices_out,
NULL);
/* Copy TCS info into the TES info */
merge_tess_info(&tes_stage->nir->info, &tcs_stage->nir->info);
/* Whacking the key after cache lookup is a bit sketchy, but all of
* this comes from the SPIR-V, which is part of the hash used for the
* pipeline cache. So it should be safe.
*/
tcs_stage->key.tcs.tes_primitive_mode =
tes_stage->nir->info.tess.primitive_mode;
tcs_stage->key.tcs.quads_workaround =
compiler->devinfo->gen < 9 &&
tes_stage->nir->info.tess.primitive_mode == 7 /* GL_QUADS */ &&
tes_stage->nir->info.tess.spacing == TESS_SPACING_EQUAL;
}
static void
anv_pipeline_compile_tcs(const struct brw_compiler *compiler,
void *mem_ctx,
struct anv_device *device,
struct anv_pipeline_stage *tcs_stage,
struct anv_pipeline_stage *prev_stage)
{
tcs_stage->key.tcs.outputs_written =
tcs_stage->nir->info.outputs_written;
tcs_stage->key.tcs.patch_outputs_written =
tcs_stage->nir->info.patch_outputs_written;
tcs_stage->num_stats = 1;
tcs_stage->code = brw_compile_tcs(compiler, device, mem_ctx,
&tcs_stage->key.tcs,
&tcs_stage->prog_data.tcs,
tcs_stage->nir, -1,
tcs_stage->stats, NULL);
}
static void
anv_pipeline_link_tes(const struct brw_compiler *compiler,
struct anv_pipeline_stage *tes_stage,
struct anv_pipeline_stage *next_stage)
{
if (next_stage)
brw_nir_link_shaders(compiler, tes_stage->nir, next_stage->nir);
}
static void
anv_pipeline_compile_tes(const struct brw_compiler *compiler,
void *mem_ctx,
struct anv_device *device,
struct anv_pipeline_stage *tes_stage,
struct anv_pipeline_stage *tcs_stage)
{
tes_stage->key.tes.inputs_read =
tcs_stage->nir->info.outputs_written;
tes_stage->key.tes.patch_inputs_read =
tcs_stage->nir->info.patch_outputs_written;
tes_stage->num_stats = 1;
tes_stage->code = brw_compile_tes(compiler, device, mem_ctx,
&tes_stage->key.tes,
&tcs_stage->prog_data.tcs.base.vue_map,
&tes_stage->prog_data.tes,
tes_stage->nir, -1,
tes_stage->stats, NULL);
}
static void
anv_pipeline_link_gs(const struct brw_compiler *compiler,
struct anv_pipeline_stage *gs_stage,
struct anv_pipeline_stage *next_stage)
{
if (next_stage)
brw_nir_link_shaders(compiler, gs_stage->nir, next_stage->nir);
}
static void
anv_pipeline_compile_gs(const struct brw_compiler *compiler,
void *mem_ctx,
struct anv_device *device,
struct anv_pipeline_stage *gs_stage,
struct anv_pipeline_stage *prev_stage)
{
brw_compute_vue_map(compiler->devinfo,
&gs_stage->prog_data.gs.base.vue_map,
gs_stage->nir->info.outputs_written,
gs_stage->nir->info.separate_shader);
gs_stage->num_stats = 1;
gs_stage->code = brw_compile_gs(compiler, device, mem_ctx,
&gs_stage->key.gs,
&gs_stage->prog_data.gs,
gs_stage->nir, NULL, -1,
gs_stage->stats, NULL);
}
static void
anv_pipeline_link_fs(const struct brw_compiler *compiler,
struct anv_pipeline_stage *stage)
{
unsigned num_rts = 0;
const int max_rt = FRAG_RESULT_DATA7 - FRAG_RESULT_DATA0 + 1;
struct anv_pipeline_binding rt_bindings[max_rt];
nir_function_impl *impl = nir_shader_get_entrypoint(stage->nir);
int rt_to_bindings[max_rt];
memset(rt_to_bindings, -1, sizeof(rt_to_bindings));
bool rt_used[max_rt];
memset(rt_used, 0, sizeof(rt_used));
/* Flag used render targets */
nir_foreach_variable_safe(var, &stage->nir->outputs) {
if (var->data.location < FRAG_RESULT_DATA0)
continue;
const unsigned rt = var->data.location - FRAG_RESULT_DATA0;
/* Out-of-bounds */
if (rt >= MAX_RTS)
continue;
const unsigned array_len =
glsl_type_is_array(var->type) ? glsl_get_length(var->type) : 1;
assert(rt + array_len <= max_rt);
/* Unused */
if (!(stage->key.wm.color_outputs_valid & BITFIELD_RANGE(rt, array_len))) {
/* If this is the RT at location 0 and we have alpha to coverage
* enabled we will have to create a null RT for it, so mark it as
* used.
*/
if (rt > 0 || !stage->key.wm.alpha_to_coverage)
continue;
}
for (unsigned i = 0; i < array_len; i++)
rt_used[rt + i] = true;
}
/* Set new, compacted, location */
for (unsigned i = 0; i < max_rt; i++) {
if (!rt_used[i])
continue;
rt_to_bindings[i] = num_rts;
if (stage->key.wm.color_outputs_valid & (1 << i)) {
rt_bindings[rt_to_bindings[i]] = (struct anv_pipeline_binding) {
.set = ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS,
.binding = 0,
.index = i,
};
} else {
/* Setup a null render target */
rt_bindings[rt_to_bindings[i]] = (struct anv_pipeline_binding) {
.set = ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS,
.binding = 0,
.index = UINT32_MAX,
};
}
num_rts++;
}
bool deleted_output = false;
nir_foreach_variable_safe(var, &stage->nir->outputs) {
if (var->data.location < FRAG_RESULT_DATA0)
continue;
const unsigned rt = var->data.location - FRAG_RESULT_DATA0;
if (rt >= MAX_RTS || !rt_used[rt]) {
/* Unused or out-of-bounds, throw it away, unless it is the first
* RT and we have alpha to coverage enabled.
*/
deleted_output = true;
var->data.mode = nir_var_function_temp;
exec_node_remove(&var->node);
exec_list_push_tail(&impl->locals, &var->node);
continue;
}
/* Give it the new location */
assert(rt_to_bindings[rt] != -1);
var->data.location = rt_to_bindings[rt] + FRAG_RESULT_DATA0;
}
if (deleted_output)
nir_fixup_deref_modes(stage->nir);
if (num_rts == 0) {
/* If we have no render targets, we need a null render target */
rt_bindings[0] = (struct anv_pipeline_binding) {
.set = ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS,
.binding = 0,
.index = UINT32_MAX,
};
num_rts = 1;
}
/* Now that we've determined the actual number of render targets, adjust
* the key accordingly.
*/
stage->key.wm.nr_color_regions = num_rts;
stage->key.wm.color_outputs_valid = (1 << num_rts) - 1;
assert(num_rts <= max_rt);
assert(stage->bind_map.surface_count == 0);
typed_memcpy(stage->bind_map.surface_to_descriptor,
rt_bindings, num_rts);
stage->bind_map.surface_count += num_rts;
}
static void
anv_pipeline_compile_fs(const struct brw_compiler *compiler,
void *mem_ctx,
struct anv_device *device,
struct anv_pipeline_stage *fs_stage,
struct anv_pipeline_stage *prev_stage)
{
/* TODO: we could set this to 0 based on the information in nir_shader, but
* we need this before we call spirv_to_nir.
*/
assert(prev_stage);
fs_stage->key.wm.input_slots_valid =
prev_stage->prog_data.vue.vue_map.slots_valid;
fs_stage->code = brw_compile_fs(compiler, device, mem_ctx,
&fs_stage->key.wm,
&fs_stage->prog_data.wm,
fs_stage->nir, -1, -1, -1,
true, false, NULL,
fs_stage->stats, NULL);
fs_stage->num_stats = (uint32_t)fs_stage->prog_data.wm.dispatch_8 +
(uint32_t)fs_stage->prog_data.wm.dispatch_16 +
(uint32_t)fs_stage->prog_data.wm.dispatch_32;
if (fs_stage->key.wm.nr_color_regions == 0 &&
!fs_stage->prog_data.wm.has_side_effects &&
!fs_stage->prog_data.wm.uses_kill &&
fs_stage->prog_data.wm.computed_depth_mode == BRW_PSCDEPTH_OFF &&
!fs_stage->prog_data.wm.computed_stencil) {
/* This fragment shader has no outputs and no side effects. Go ahead
* and return the code pointer so we don't accidentally think the
* compile failed but zero out prog_data which will set program_size to
* zero and disable the stage.
*/
memset(&fs_stage->prog_data, 0, sizeof(fs_stage->prog_data));
}
}
static void
anv_pipeline_add_executable(struct anv_pipeline *pipeline,
struct anv_pipeline_stage *stage,
struct brw_compile_stats *stats,
uint32_t code_offset)
{
char *nir = NULL;
if (stage->nir &&
(pipeline->flags &
VK_PIPELINE_CREATE_CAPTURE_INTERNAL_REPRESENTATIONS_BIT_KHR)) {
char *stream_data = NULL;
size_t stream_size = 0;
FILE *stream = open_memstream(&stream_data, &stream_size);
nir_print_shader(stage->nir, stream);
fclose(stream);
/* Copy it to a ralloc'd thing */
nir = ralloc_size(pipeline->mem_ctx, stream_size + 1);
memcpy(nir, stream_data, stream_size);
nir[stream_size] = 0;
free(stream_data);
}
char *disasm = NULL;
if (stage->code &&
(pipeline->flags &
VK_PIPELINE_CREATE_CAPTURE_INTERNAL_REPRESENTATIONS_BIT_KHR)) {
char *stream_data = NULL;
size_t stream_size = 0;
FILE *stream = open_memstream(&stream_data, &stream_size);
/* Creating this is far cheaper than it looks. It's perfectly fine to
* do it for every binary.
*/
struct gen_disasm *d = gen_disasm_create(&pipeline->device->info);
gen_disasm_disassemble(d, stage->code, code_offset, stream);
gen_disasm_destroy(d);
fclose(stream);
/* Copy it to a ralloc'd thing */
disasm = ralloc_size(pipeline->mem_ctx, stream_size + 1);
memcpy(disasm, stream_data, stream_size);
disasm[stream_size] = 0;
free(stream_data);
}
pipeline->executables[pipeline->num_executables++] =
(struct anv_pipeline_executable) {
.stage = stage->stage,
.stats = *stats,
.nir = nir,
.disasm = disasm,
};
}
static void
anv_pipeline_add_executables(struct anv_pipeline *pipeline,
struct anv_pipeline_stage *stage,
struct anv_shader_bin *bin)
{
if (stage->stage == MESA_SHADER_FRAGMENT) {
/* We pull the prog data and stats out of the anv_shader_bin because
* the anv_pipeline_stage may not be fully populated if we successfully
* looked up the shader in a cache.
*/
const struct brw_wm_prog_data *wm_prog_data =
(const struct brw_wm_prog_data *)bin->prog_data;
struct brw_compile_stats *stats = bin->stats;
if (wm_prog_data->dispatch_8) {
anv_pipeline_add_executable(pipeline, stage, stats++, 0);
}
if (wm_prog_data->dispatch_16) {
anv_pipeline_add_executable(pipeline, stage, stats++,
wm_prog_data->prog_offset_16);
}
if (wm_prog_data->dispatch_32) {
anv_pipeline_add_executable(pipeline, stage, stats++,
wm_prog_data->prog_offset_32);
}
} else {
anv_pipeline_add_executable(pipeline, stage, bin->stats, 0);
}
}
static VkResult
anv_pipeline_compile_graphics(struct anv_pipeline *pipeline,
struct anv_pipeline_cache *cache,
const VkGraphicsPipelineCreateInfo *info)
{
VkPipelineCreationFeedbackEXT pipeline_feedback = {
.flags = VK_PIPELINE_CREATION_FEEDBACK_VALID_BIT_EXT,
};
int64_t pipeline_start = os_time_get_nano();
const struct brw_compiler *compiler =
pipeline->device->instance->physicalDevice.compiler;
struct anv_pipeline_stage stages[MESA_SHADER_STAGES] = {};
pipeline->active_stages = 0;
VkResult result;
for (uint32_t i = 0; i < info->stageCount; i++) {
const VkPipelineShaderStageCreateInfo *sinfo = &info->pStages[i];
gl_shader_stage stage = vk_to_mesa_shader_stage(sinfo->stage);
pipeline->active_stages |= sinfo->stage;
int64_t stage_start = os_time_get_nano();
stages[stage].stage = stage;
stages[stage].module = anv_shader_module_from_handle(sinfo->module);
stages[stage].entrypoint = sinfo->pName;
stages[stage].spec_info = sinfo->pSpecializationInfo;
anv_pipeline_hash_shader(stages[stage].module,
stages[stage].entrypoint,
stage,
stages[stage].spec_info,
stages[stage].shader_sha1);
const struct gen_device_info *devinfo = &pipeline->device->info;
switch (stage) {
case MESA_SHADER_VERTEX:
populate_vs_prog_key(devinfo, sinfo->flags, &stages[stage].key.vs);
break;
case MESA_SHADER_TESS_CTRL:
populate_tcs_prog_key(devinfo, sinfo->flags,
info->pTessellationState->patchControlPoints,
&stages[stage].key.tcs);
break;
case MESA_SHADER_TESS_EVAL:
populate_tes_prog_key(devinfo, sinfo->flags, &stages[stage].key.tes);
break;
case MESA_SHADER_GEOMETRY:
populate_gs_prog_key(devinfo, sinfo->flags, &stages[stage].key.gs);
break;
case MESA_SHADER_FRAGMENT:
populate_wm_prog_key(devinfo, sinfo->flags,
pipeline->subpass,
info->pMultisampleState,
&stages[stage].key.wm);
break;
default:
unreachable("Invalid graphics shader stage");
}
stages[stage].feedback.duration += os_time_get_nano() - stage_start;
stages[stage].feedback.flags |= VK_PIPELINE_CREATION_FEEDBACK_VALID_BIT_EXT;
}
if (pipeline->active_stages & VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT)
pipeline->active_stages |= VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT;
assert(pipeline->active_stages & VK_SHADER_STAGE_VERTEX_BIT);
ANV_FROM_HANDLE(anv_pipeline_layout, layout, info->layout);
unsigned char sha1[20];
anv_pipeline_hash_graphics(pipeline, layout, stages, sha1);
for (unsigned s = 0; s < MESA_SHADER_STAGES; s++) {
if (!stages[s].entrypoint)
continue;
stages[s].cache_key.stage = s;
memcpy(stages[s].cache_key.sha1, sha1, sizeof(sha1));
}
const bool skip_cache_lookup =
(pipeline->flags & VK_PIPELINE_CREATE_CAPTURE_INTERNAL_REPRESENTATIONS_BIT_KHR);
if (!skip_cache_lookup) {
unsigned found = 0;
unsigned cache_hits = 0;
for (unsigned s = 0; s < MESA_SHADER_STAGES; s++) {
if (!stages[s].entrypoint)
continue;
int64_t stage_start = os_time_get_nano();
bool cache_hit;
struct anv_shader_bin *bin =
anv_device_search_for_kernel(pipeline->device, cache,
&stages[s].cache_key,
sizeof(stages[s].cache_key), &cache_hit);
if (bin) {
found++;
pipeline->shaders[s] = bin;
}
if (cache_hit) {
cache_hits++;
stages[s].feedback.flags |=
VK_PIPELINE_CREATION_FEEDBACK_APPLICATION_PIPELINE_CACHE_HIT_BIT_EXT;
}
stages[s].feedback.duration += os_time_get_nano() - stage_start;
}
if (found == __builtin_popcount(pipeline->active_stages)) {
if (cache_hits == found) {
pipeline_feedback.flags |=
VK_PIPELINE_CREATION_FEEDBACK_APPLICATION_PIPELINE_CACHE_HIT_BIT_EXT;
}
/* We found all our shaders in the cache. We're done. */
for (unsigned s = 0; s < MESA_SHADER_STAGES; s++) {
if (!stages[s].entrypoint)
continue;
anv_pipeline_add_executables(pipeline, &stages[s],
pipeline->shaders[s]);
}
goto done;
} else if (found > 0) {
/* We found some but not all of our shaders. This shouldn't happen
* most of the time but it can if we have a partially populated
* pipeline cache.
*/
assert(found < __builtin_popcount(pipeline->active_stages));
vk_debug_report(&pipeline->device->instance->debug_report_callbacks,
VK_DEBUG_REPORT_WARNING_BIT_EXT |
VK_DEBUG_REPORT_PERFORMANCE_WARNING_BIT_EXT,
VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_CACHE_EXT,
(uint64_t)(uintptr_t)cache,
0, 0, "anv",
"Found a partial pipeline in the cache. This is "
"most likely caused by an incomplete pipeline cache "
"import or export");
/* We're going to have to recompile anyway, so just throw away our
* references to the shaders in the cache. We'll get them out of the
* cache again as part of the compilation process.
*/
for (unsigned s = 0; s < MESA_SHADER_STAGES; s++) {
stages[s].feedback.flags = 0;
if (pipeline->shaders[s]) {
anv_shader_bin_unref(pipeline->device, pipeline->shaders[s]);
pipeline->shaders[s] = NULL;
}
}
}
}
void *pipeline_ctx = ralloc_context(NULL);
for (unsigned s = 0; s < MESA_SHADER_STAGES; s++) {
if (!stages[s].entrypoint)
continue;
int64_t stage_start = os_time_get_nano();
assert(stages[s].stage == s);
assert(pipeline->shaders[s] == NULL);
stages[s].bind_map = (struct anv_pipeline_bind_map) {
.surface_to_descriptor = stages[s].surface_to_descriptor,
.sampler_to_descriptor = stages[s].sampler_to_descriptor
};
stages[s].nir = anv_pipeline_stage_get_nir(pipeline, cache,
pipeline_ctx,
&stages[s]);
if (stages[s].nir == NULL) {
result = vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
goto fail;
}
stages[s].feedback.duration += os_time_get_nano() - stage_start;
}
/* Walk backwards to link */
struct anv_pipeline_stage *next_stage = NULL;
for (int s = MESA_SHADER_STAGES - 1; s >= 0; s--) {
if (!stages[s].entrypoint)
continue;
switch (s) {
case MESA_SHADER_VERTEX:
anv_pipeline_link_vs(compiler, &stages[s], next_stage);
break;
case MESA_SHADER_TESS_CTRL:
anv_pipeline_link_tcs(compiler, &stages[s], next_stage);
break;
case MESA_SHADER_TESS_EVAL:
anv_pipeline_link_tes(compiler, &stages[s], next_stage);
break;
case MESA_SHADER_GEOMETRY:
anv_pipeline_link_gs(compiler, &stages[s], next_stage);
break;
case MESA_SHADER_FRAGMENT:
anv_pipeline_link_fs(compiler, &stages[s]);
break;
default:
unreachable("Invalid graphics shader stage");
}
next_stage = &stages[s];
}
struct anv_pipeline_stage *prev_stage = NULL;
for (unsigned s = 0; s < MESA_SHADER_STAGES; s++) {
if (!stages[s].entrypoint)
continue;
int64_t stage_start = os_time_get_nano();
void *stage_ctx = ralloc_context(NULL);
nir_xfb_info *xfb_info = NULL;
if (s == MESA_SHADER_VERTEX ||
s == MESA_SHADER_TESS_EVAL ||
s == MESA_SHADER_GEOMETRY)
xfb_info = nir_gather_xfb_info(stages[s].nir, stage_ctx);
anv_pipeline_lower_nir(pipeline, stage_ctx, &stages[s], layout);
switch (s) {
case MESA_SHADER_VERTEX:
anv_pipeline_compile_vs(compiler, stage_ctx, pipeline->device,
&stages[s]);
break;
case MESA_SHADER_TESS_CTRL:
anv_pipeline_compile_tcs(compiler, stage_ctx, pipeline->device,
&stages[s], prev_stage);
break;
case MESA_SHADER_TESS_EVAL:
anv_pipeline_compile_tes(compiler, stage_ctx, pipeline->device,
&stages[s], prev_stage);
break;
case MESA_SHADER_GEOMETRY:
anv_pipeline_compile_gs(compiler, stage_ctx, pipeline->device,
&stages[s], prev_stage);
break;
case MESA_SHADER_FRAGMENT:
anv_pipeline_compile_fs(compiler, stage_ctx, pipeline->device,
&stages[s], prev_stage);
break;
default:
unreachable("Invalid graphics shader stage");
}
if (stages[s].code == NULL) {
ralloc_free(stage_ctx);
result = vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
goto fail;
}
struct anv_shader_bin *bin =
anv_device_upload_kernel(pipeline->device, cache,
&stages[s].cache_key,
sizeof(stages[s].cache_key),
stages[s].code,
stages[s].prog_data.base.program_size,
stages[s].nir->constant_data,
stages[s].nir->constant_data_size,
&stages[s].prog_data.base,
brw_prog_data_size(s),
stages[s].stats, stages[s].num_stats,
xfb_info, &stages[s].bind_map);
if (!bin) {
ralloc_free(stage_ctx);
result = vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
goto fail;
}
anv_pipeline_add_executables(pipeline, &stages[s], bin);
pipeline->shaders[s] = bin;
ralloc_free(stage_ctx);
stages[s].feedback.duration += os_time_get_nano() - stage_start;
prev_stage = &stages[s];
}
ralloc_free(pipeline_ctx);
done:
if (pipeline->shaders[MESA_SHADER_FRAGMENT] &&
pipeline->shaders[MESA_SHADER_FRAGMENT]->prog_data->program_size == 0) {
/* This can happen if we decided to implicitly disable the fragment
* shader. See anv_pipeline_compile_fs().
*/
anv_shader_bin_unref(pipeline->device,
pipeline->shaders[MESA_SHADER_FRAGMENT]);
pipeline->shaders[MESA_SHADER_FRAGMENT] = NULL;
pipeline->active_stages &= ~VK_SHADER_STAGE_FRAGMENT_BIT;
}
pipeline_feedback.duration = os_time_get_nano() - pipeline_start;
const VkPipelineCreationFeedbackCreateInfoEXT *create_feedback =
vk_find_struct_const(info->pNext, PIPELINE_CREATION_FEEDBACK_CREATE_INFO_EXT);
if (create_feedback) {
*create_feedback->pPipelineCreationFeedback = pipeline_feedback;
assert(info->stageCount == create_feedback->pipelineStageCreationFeedbackCount);
for (uint32_t i = 0; i < info->stageCount; i++) {
gl_shader_stage s = vk_to_mesa_shader_stage(info->pStages[i].stage);
create_feedback->pPipelineStageCreationFeedbacks[i] = stages[s].feedback;
}
}
return VK_SUCCESS;
fail:
ralloc_free(pipeline_ctx);
for (unsigned s = 0; s < MESA_SHADER_STAGES; s++) {
if (pipeline->shaders[s])
anv_shader_bin_unref(pipeline->device, pipeline->shaders[s]);
}
return result;
}
static void
shared_type_info(const struct glsl_type *type, unsigned *size, unsigned *align)
{
assert(glsl_type_is_vector_or_scalar(type));
uint32_t comp_size = glsl_type_is_boolean(type)
? 4 : glsl_get_bit_size(type) / 8;
unsigned length = glsl_get_vector_elements(type);
*size = comp_size * length,
*align = comp_size * (length == 3 ? 4 : length);
}
VkResult
anv_pipeline_compile_cs(struct anv_pipeline *pipeline,
struct anv_pipeline_cache *cache,
const VkComputePipelineCreateInfo *info,
const struct anv_shader_module *module,
const char *entrypoint,
const VkSpecializationInfo *spec_info)
{
VkPipelineCreationFeedbackEXT pipeline_feedback = {
.flags = VK_PIPELINE_CREATION_FEEDBACK_VALID_BIT_EXT,
};
int64_t pipeline_start = os_time_get_nano();
const struct brw_compiler *compiler =
pipeline->device->instance->physicalDevice.compiler;
struct anv_pipeline_stage stage = {
.stage = MESA_SHADER_COMPUTE,
.module = module,
.entrypoint = entrypoint,
.spec_info = spec_info,
.cache_key = {
.stage = MESA_SHADER_COMPUTE,
},
.feedback = {
.flags = VK_PIPELINE_CREATION_FEEDBACK_VALID_BIT_EXT,
},
};
anv_pipeline_hash_shader(stage.module,
stage.entrypoint,
MESA_SHADER_COMPUTE,
stage.spec_info,
stage.shader_sha1);
struct anv_shader_bin *bin = NULL;
const VkPipelineShaderStageRequiredSubgroupSizeCreateInfoEXT *rss_info =
vk_find_struct_const(info->stage.pNext,
PIPELINE_SHADER_STAGE_REQUIRED_SUBGROUP_SIZE_CREATE_INFO_EXT);
populate_cs_prog_key(&pipeline->device->info, info->stage.flags,
rss_info, &stage.key.cs);
ANV_FROM_HANDLE(anv_pipeline_layout, layout, info->layout);
const bool skip_cache_lookup =
(pipeline->flags & VK_PIPELINE_CREATE_CAPTURE_INTERNAL_REPRESENTATIONS_BIT_KHR);
anv_pipeline_hash_compute(pipeline, layout, &stage, stage.cache_key.sha1);
bool cache_hit = false;
if (!skip_cache_lookup) {
bin = anv_device_search_for_kernel(pipeline->device, cache,
&stage.cache_key,
sizeof(stage.cache_key),
&cache_hit);
}
void *mem_ctx = ralloc_context(NULL);
if (bin == NULL) {
int64_t stage_start = os_time_get_nano();
stage.bind_map = (struct anv_pipeline_bind_map) {
.surface_to_descriptor = stage.surface_to_descriptor,
.sampler_to_descriptor = stage.sampler_to_descriptor
};
/* Set up a binding for the gl_NumWorkGroups */
stage.bind_map.surface_count = 1;
stage.bind_map.surface_to_descriptor[0] = (struct anv_pipeline_binding) {
.set = ANV_DESCRIPTOR_SET_NUM_WORK_GROUPS,
};
stage.nir = anv_pipeline_stage_get_nir(pipeline, cache, mem_ctx, &stage);
if (stage.nir == NULL) {
ralloc_free(mem_ctx);
return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
}
anv_pipeline_lower_nir(pipeline, mem_ctx, &stage, layout);
NIR_PASS_V(stage.nir, anv_nir_add_base_work_group_id,
&stage.prog_data.cs);
NIR_PASS_V(stage.nir, nir_lower_vars_to_explicit_types,
nir_var_mem_shared, shared_type_info);
NIR_PASS_V(stage.nir, nir_lower_explicit_io,
nir_var_mem_shared, nir_address_format_32bit_offset);
stage.num_stats = 1;
stage.code = brw_compile_cs(compiler, pipeline->device, mem_ctx,
&stage.key.cs, &stage.prog_data.cs,
stage.nir, -1, stage.stats, NULL);
if (stage.code == NULL) {
ralloc_free(mem_ctx);
return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
}
const unsigned code_size = stage.prog_data.base.program_size;
bin = anv_device_upload_kernel(pipeline->device, cache,
&stage.cache_key, sizeof(stage.cache_key),
stage.code, code_size,
stage.nir->constant_data,
stage.nir->constant_data_size,
&stage.prog_data.base,
sizeof(stage.prog_data.cs),
stage.stats, stage.num_stats,
NULL, &stage.bind_map);
if (!bin) {
ralloc_free(mem_ctx);
return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
}
stage.feedback.duration = os_time_get_nano() - stage_start;
}
anv_pipeline_add_executables(pipeline, &stage, bin);
ralloc_free(mem_ctx);
if (cache_hit) {
stage.feedback.flags |=
VK_PIPELINE_CREATION_FEEDBACK_APPLICATION_PIPELINE_CACHE_HIT_BIT_EXT;
pipeline_feedback.flags |=
VK_PIPELINE_CREATION_FEEDBACK_APPLICATION_PIPELINE_CACHE_HIT_BIT_EXT;
}
pipeline_feedback.duration = os_time_get_nano() - pipeline_start;
const VkPipelineCreationFeedbackCreateInfoEXT *create_feedback =
vk_find_struct_const(info->pNext, PIPELINE_CREATION_FEEDBACK_CREATE_INFO_EXT);
if (create_feedback) {
*create_feedback->pPipelineCreationFeedback = pipeline_feedback;
assert(create_feedback->pipelineStageCreationFeedbackCount == 1);
create_feedback->pPipelineStageCreationFeedbacks[0] = stage.feedback;
}
pipeline->active_stages = VK_SHADER_STAGE_COMPUTE_BIT;
pipeline->shaders[MESA_SHADER_COMPUTE] = bin;
return VK_SUCCESS;
}
/**
* Copy pipeline state not marked as dynamic.
* Dynamic state is pipeline state which hasn't been provided at pipeline
* creation time, but is dynamically provided afterwards using various
* vkCmdSet* functions.
*
* The set of state considered "non_dynamic" is determined by the pieces of
* state that have their corresponding VkDynamicState enums omitted from
* VkPipelineDynamicStateCreateInfo::pDynamicStates.
*
* @param[out] pipeline Destination non_dynamic state.
* @param[in] pCreateInfo Source of non_dynamic state to be copied.
*/
static void
copy_non_dynamic_state(struct anv_pipeline *pipeline,
const VkGraphicsPipelineCreateInfo *pCreateInfo)
{
anv_cmd_dirty_mask_t states = ANV_CMD_DIRTY_DYNAMIC_ALL;
struct anv_subpass *subpass = pipeline->subpass;
pipeline->dynamic_state = default_dynamic_state;
if (pCreateInfo->pDynamicState) {
/* Remove all of the states that are marked as dynamic */
uint32_t count = pCreateInfo->pDynamicState->dynamicStateCount;
for (uint32_t s = 0; s < count; s++) {
states &= ~anv_cmd_dirty_bit_for_vk_dynamic_state(
pCreateInfo->pDynamicState->pDynamicStates[s]);
}
}
struct anv_dynamic_state *dynamic = &pipeline->dynamic_state;
/* Section 9.2 of the Vulkan 1.0.15 spec says:
*
* pViewportState is [...] NULL if the pipeline
* has rasterization disabled.
*/
if (!pCreateInfo->pRasterizationState->rasterizerDiscardEnable) {
assert(pCreateInfo->pViewportState);
dynamic->viewport.count = pCreateInfo->pViewportState->viewportCount;
if (states & ANV_CMD_DIRTY_DYNAMIC_VIEWPORT) {
typed_memcpy(dynamic->viewport.viewports,
pCreateInfo->pViewportState->pViewports,
pCreateInfo->pViewportState->viewportCount);
}
dynamic->scissor.count = pCreateInfo->pViewportState->scissorCount;
if (states & ANV_CMD_DIRTY_DYNAMIC_SCISSOR) {
typed_memcpy(dynamic->scissor.scissors,
pCreateInfo->pViewportState->pScissors,
pCreateInfo->pViewportState->scissorCount);
}
}
if (states & ANV_CMD_DIRTY_DYNAMIC_LINE_WIDTH) {
2015-11-30 18:05:00 -08:00
assert(pCreateInfo->pRasterizationState);
dynamic->line_width = pCreateInfo->pRasterizationState->lineWidth;
}
if (states & ANV_CMD_DIRTY_DYNAMIC_DEPTH_BIAS) {
2015-11-30 18:05:00 -08:00
assert(pCreateInfo->pRasterizationState);
2015-11-30 14:19:41 -08:00
dynamic->depth_bias.bias =
2015-11-30 18:05:00 -08:00
pCreateInfo->pRasterizationState->depthBiasConstantFactor;
dynamic->depth_bias.clamp =
pCreateInfo->pRasterizationState->depthBiasClamp;
2015-11-30 14:19:41 -08:00
dynamic->depth_bias.slope =
2015-11-30 18:05:00 -08:00
pCreateInfo->pRasterizationState->depthBiasSlopeFactor;
}
/* Section 9.2 of the Vulkan 1.0.15 spec says:
*
* pColorBlendState is [...] NULL if the pipeline has rasterization
* disabled or if the subpass of the render pass the pipeline is
* created against does not use any color attachments.
*/
bool uses_color_att = false;
for (unsigned i = 0; i < subpass->color_count; ++i) {
if (subpass->color_attachments[i].attachment != VK_ATTACHMENT_UNUSED) {
uses_color_att = true;
break;
}
}
if (uses_color_att &&
!pCreateInfo->pRasterizationState->rasterizerDiscardEnable) {
assert(pCreateInfo->pColorBlendState);
if (states & ANV_CMD_DIRTY_DYNAMIC_BLEND_CONSTANTS)
typed_memcpy(dynamic->blend_constants,
pCreateInfo->pColorBlendState->blendConstants, 4);
}
/* If there is no depthstencil attachment, then don't read
* pDepthStencilState. The Vulkan spec states that pDepthStencilState may
* be NULL in this case. Even if pDepthStencilState is non-NULL, there is
* no need to override the depthstencil defaults in
* anv_pipeline::dynamic_state when there is no depthstencil attachment.
*
* Section 9.2 of the Vulkan 1.0.15 spec says:
*
* pDepthStencilState is [...] NULL if the pipeline has rasterization
* disabled or if the subpass of the render pass the pipeline is created
* against does not use a depth/stencil attachment.
*/
if (!pCreateInfo->pRasterizationState->rasterizerDiscardEnable &&
subpass->depth_stencil_attachment) {
assert(pCreateInfo->pDepthStencilState);
if (states & ANV_CMD_DIRTY_DYNAMIC_DEPTH_BOUNDS) {
dynamic->depth_bounds.min =
pCreateInfo->pDepthStencilState->minDepthBounds;
dynamic->depth_bounds.max =
pCreateInfo->pDepthStencilState->maxDepthBounds;
}
if (states & ANV_CMD_DIRTY_DYNAMIC_STENCIL_COMPARE_MASK) {
dynamic->stencil_compare_mask.front =
2015-11-30 14:19:41 -08:00
pCreateInfo->pDepthStencilState->front.compareMask;
dynamic->stencil_compare_mask.back =
2015-11-30 14:19:41 -08:00
pCreateInfo->pDepthStencilState->back.compareMask;
}
if (states & ANV_CMD_DIRTY_DYNAMIC_STENCIL_WRITE_MASK) {
dynamic->stencil_write_mask.front =
2015-11-30 14:19:41 -08:00
pCreateInfo->pDepthStencilState->front.writeMask;
dynamic->stencil_write_mask.back =
2015-11-30 14:19:41 -08:00
pCreateInfo->pDepthStencilState->back.writeMask;
}
if (states & ANV_CMD_DIRTY_DYNAMIC_STENCIL_REFERENCE) {
dynamic->stencil_reference.front =
2015-11-30 14:19:41 -08:00
pCreateInfo->pDepthStencilState->front.reference;
dynamic->stencil_reference.back =
2015-11-30 14:19:41 -08:00
pCreateInfo->pDepthStencilState->back.reference;
}
}
const VkPipelineRasterizationLineStateCreateInfoEXT *line_state =
vk_find_struct_const(pCreateInfo->pRasterizationState->pNext,
PIPELINE_RASTERIZATION_LINE_STATE_CREATE_INFO_EXT);
if (line_state) {
if (states & ANV_CMD_DIRTY_DYNAMIC_LINE_STIPPLE) {
dynamic->line_stipple.factor = line_state->lineStippleFactor;
dynamic->line_stipple.pattern = line_state->lineStipplePattern;
}
}
pipeline->dynamic_state_mask = states;
}
static void
anv_pipeline_validate_create_info(const VkGraphicsPipelineCreateInfo *info)
{
#ifdef DEBUG
struct anv_render_pass *renderpass = NULL;
struct anv_subpass *subpass = NULL;
/* Assert that all required members of VkGraphicsPipelineCreateInfo are
* present. See the Vulkan 1.0.28 spec, Section 9.2 Graphics Pipelines.
*/
assert(info->sType == VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO);
renderpass = anv_render_pass_from_handle(info->renderPass);
assert(renderpass);
assert(info->subpass < renderpass->subpass_count);
subpass = &renderpass->subpasses[info->subpass];
assert(info->stageCount >= 1);
assert(info->pVertexInputState);
assert(info->pInputAssemblyState);
2015-11-30 18:05:00 -08:00
assert(info->pRasterizationState);
if (!info->pRasterizationState->rasterizerDiscardEnable) {
assert(info->pViewportState);
assert(info->pMultisampleState);
if (subpass && subpass->depth_stencil_attachment)
assert(info->pDepthStencilState);
if (subpass && subpass->color_count > 0) {
bool all_color_unused = true;
for (int i = 0; i < subpass->color_count; i++) {
if (subpass->color_attachments[i].attachment != VK_ATTACHMENT_UNUSED)
all_color_unused = false;
}
/* pColorBlendState is ignored if the pipeline has rasterization
* disabled or if the subpass of the render pass the pipeline is
* created against does not use any color attachments.
*/
assert(info->pColorBlendState || all_color_unused);
}
}
for (uint32_t i = 0; i < info->stageCount; ++i) {
switch (info->pStages[i].stage) {
case VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT:
case VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT:
assert(info->pTessellationState);
break;
default:
break;
}
}
#endif
}
/**
* Calculate the desired L3 partitioning based on the current state of the
* pipeline. For now this simply returns the conservative defaults calculated
* by get_default_l3_weights(), but we could probably do better by gathering
* more statistics from the pipeline state (e.g. guess of expected URB usage
* and bound surfaces), or by using feed-back from performance counters.
*/
void
anv_pipeline_setup_l3_config(struct anv_pipeline *pipeline, bool needs_slm)
{
const struct gen_device_info *devinfo = &pipeline->device->info;
const struct gen_l3_weights w =
gen_get_default_l3_weights(devinfo, pipeline->needs_data_cache, needs_slm);
pipeline->urb.l3_config = gen_get_l3_config(devinfo, w);
pipeline->urb.total_size =
gen_get_l3_config_urb_size(devinfo, pipeline->urb.l3_config);
}
VkResult
anv_pipeline_init(struct anv_pipeline *pipeline,
struct anv_device *device,
struct anv_pipeline_cache *cache,
const VkGraphicsPipelineCreateInfo *pCreateInfo,
const VkAllocationCallbacks *alloc)
{
VkResult result;
anv_pipeline_validate_create_info(pCreateInfo);
if (alloc == NULL)
alloc = &device->alloc;
pipeline->device = device;
ANV_FROM_HANDLE(anv_render_pass, render_pass, pCreateInfo->renderPass);
assert(pCreateInfo->subpass < render_pass->subpass_count);
pipeline->subpass = &render_pass->subpasses[pCreateInfo->subpass];
result = anv_reloc_list_init(&pipeline->batch_relocs, alloc);
if (result != VK_SUCCESS)
return result;
pipeline->batch.alloc = alloc;
pipeline->batch.next = pipeline->batch.start = pipeline->batch_data;
pipeline->batch.end = pipeline->batch.start + sizeof(pipeline->batch_data);
pipeline->batch.relocs = &pipeline->batch_relocs;
pipeline->batch.status = VK_SUCCESS;
pipeline->mem_ctx = ralloc_context(NULL);
pipeline->flags = pCreateInfo->flags;
copy_non_dynamic_state(pipeline, pCreateInfo);
pipeline->depth_clamp_enable = pCreateInfo->pRasterizationState &&
pCreateInfo->pRasterizationState->depthClampEnable;
/* Previously we enabled depth clipping when !depthClampEnable.
* DepthClipStateCreateInfo now makes depth clipping explicit so if the
* clipping info is available, use its enable value to determine clipping,
* otherwise fallback to the previous !depthClampEnable logic.
*/
const VkPipelineRasterizationDepthClipStateCreateInfoEXT *clip_info =
vk_find_struct_const(pCreateInfo->pRasterizationState->pNext,
PIPELINE_RASTERIZATION_DEPTH_CLIP_STATE_CREATE_INFO_EXT);
pipeline->depth_clip_enable = clip_info ? clip_info->depthClipEnable : !pipeline->depth_clamp_enable;
pipeline->sample_shading_enable = pCreateInfo->pMultisampleState &&
pCreateInfo->pMultisampleState->sampleShadingEnable;
pipeline->needs_data_cache = false;
/* When we free the pipeline, we detect stages based on the NULL status
* of various prog_data pointers. Make them NULL by default.
*/
memset(pipeline->shaders, 0, sizeof(pipeline->shaders));
pipeline->num_executables = 0;
result = anv_pipeline_compile_graphics(pipeline, cache, pCreateInfo);
if (result != VK_SUCCESS) {
ralloc_free(pipeline->mem_ctx);
anv_reloc_list_finish(&pipeline->batch_relocs, alloc);
return result;
}
assert(pipeline->shaders[MESA_SHADER_VERTEX]);
anv_pipeline_setup_l3_config(pipeline, false);
const VkPipelineVertexInputStateCreateInfo *vi_info =
pCreateInfo->pVertexInputState;
const uint64_t inputs_read = get_vs_prog_data(pipeline)->inputs_read;
pipeline->vb_used = 0;
for (uint32_t i = 0; i < vi_info->vertexAttributeDescriptionCount; i++) {
const VkVertexInputAttributeDescription *desc =
&vi_info->pVertexAttributeDescriptions[i];
if (inputs_read & (1ull << (VERT_ATTRIB_GENERIC0 + desc->location)))
pipeline->vb_used |= 1 << desc->binding;
}
for (uint32_t i = 0; i < vi_info->vertexBindingDescriptionCount; i++) {
const VkVertexInputBindingDescription *desc =
&vi_info->pVertexBindingDescriptions[i];
pipeline->vb[desc->binding].stride = desc->stride;
/* Step rate is programmed per vertex element (attribute), not
* binding. Set up a map of which bindings step per instance, for
* reference by vertex element setup. */
switch (desc->inputRate) {
default:
case VK_VERTEX_INPUT_RATE_VERTEX:
pipeline->vb[desc->binding].instanced = false;
break;
case VK_VERTEX_INPUT_RATE_INSTANCE:
pipeline->vb[desc->binding].instanced = true;
break;
}
pipeline->vb[desc->binding].instance_divisor = 1;
}
const VkPipelineVertexInputDivisorStateCreateInfoEXT *vi_div_state =
vk_find_struct_const(vi_info->pNext,
PIPELINE_VERTEX_INPUT_DIVISOR_STATE_CREATE_INFO_EXT);
if (vi_div_state) {
for (uint32_t i = 0; i < vi_div_state->vertexBindingDivisorCount; i++) {
const VkVertexInputBindingDivisorDescriptionEXT *desc =
&vi_div_state->pVertexBindingDivisors[i];
pipeline->vb[desc->binding].instance_divisor = desc->divisor;
}
}
/* Our implementation of VK_KHR_multiview uses instancing to draw the
* different views. If the client asks for instancing, we need to multiply
* the instance divisor by the number of views ensure that we repeat the
* client's per-instance data once for each view.
*/
if (pipeline->subpass->view_mask) {
const uint32_t view_count = anv_subpass_view_count(pipeline->subpass);
for (uint32_t vb = 0; vb < MAX_VBS; vb++) {
if (pipeline->vb[vb].instanced)
pipeline->vb[vb].instance_divisor *= view_count;
}
}
const VkPipelineInputAssemblyStateCreateInfo *ia_info =
pCreateInfo->pInputAssemblyState;
const VkPipelineTessellationStateCreateInfo *tess_info =
pCreateInfo->pTessellationState;
pipeline->primitive_restart = ia_info->primitiveRestartEnable;
if (anv_pipeline_has_stage(pipeline, MESA_SHADER_TESS_EVAL))
pipeline->topology = _3DPRIM_PATCHLIST(tess_info->patchControlPoints);
else
pipeline->topology = vk_to_gen_primitive_type[ia_info->topology];
return VK_SUCCESS;
}
#define WRITE_STR(field, ...) ({ \
memset(field, 0, sizeof(field)); \
UNUSED int i = snprintf(field, sizeof(field), __VA_ARGS__); \
assert(i > 0 && i < sizeof(field)); \
})
VkResult anv_GetPipelineExecutablePropertiesKHR(
VkDevice device,
const VkPipelineInfoKHR* pPipelineInfo,
uint32_t* pExecutableCount,
VkPipelineExecutablePropertiesKHR* pProperties)
{
ANV_FROM_HANDLE(anv_pipeline, pipeline, pPipelineInfo->pipeline);
VK_OUTARRAY_MAKE(out, pProperties, pExecutableCount);
for (uint32_t i = 0; i < pipeline->num_executables; i++) {
vk_outarray_append(&out, props) {
gl_shader_stage stage = pipeline->executables[i].stage;
props->stages = mesa_to_vk_shader_stage(stage);
unsigned simd_width = pipeline->executables[i].stats.dispatch_width;
if (stage == MESA_SHADER_FRAGMENT) {
WRITE_STR(props->name, "%s%d %s",
simd_width ? "SIMD" : "vec",
simd_width ? simd_width : 4,
_mesa_shader_stage_to_string(stage));
} else {
WRITE_STR(props->name, "%s", _mesa_shader_stage_to_string(stage));
}
WRITE_STR(props->description, "%s%d %s shader",
simd_width ? "SIMD" : "vec",
simd_width ? simd_width : 4,
_mesa_shader_stage_to_string(stage));
/* The compiler gives us a dispatch width of 0 for vec4 but Vulkan
* wants a subgroup size of 1.
*/
props->subgroupSize = MAX2(simd_width, 1);
}
}
return vk_outarray_status(&out);
}
VkResult anv_GetPipelineExecutableStatisticsKHR(
VkDevice device,
const VkPipelineExecutableInfoKHR* pExecutableInfo,
uint32_t* pStatisticCount,
VkPipelineExecutableStatisticKHR* pStatistics)
{
ANV_FROM_HANDLE(anv_pipeline, pipeline, pExecutableInfo->pipeline);
VK_OUTARRAY_MAKE(out, pStatistics, pStatisticCount);
assert(pExecutableInfo->executableIndex < pipeline->num_executables);
const struct anv_pipeline_executable *exe =
&pipeline->executables[pExecutableInfo->executableIndex];
const struct brw_stage_prog_data *prog_data =
pipeline->shaders[exe->stage]->prog_data;
vk_outarray_append(&out, stat) {
WRITE_STR(stat->name, "Instruction Count");
WRITE_STR(stat->description,
"Number of GEN instructions in the final generated "
"shader executable.");
stat->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR;
stat->value.u64 = exe->stats.instructions;
}
vk_outarray_append(&out, stat) {
WRITE_STR(stat->name, "Loop Count");
WRITE_STR(stat->description,
"Number of loops (not unrolled) in the final generated "
"shader executable.");
stat->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR;
stat->value.u64 = exe->stats.loops;
}
vk_outarray_append(&out, stat) {
WRITE_STR(stat->name, "Cycle Count");
WRITE_STR(stat->description,
"Estimate of the number of EU cycles required to execute "
"the final generated executable. This is an estimate only "
"and may vary greatly from actual run-time performance.");
stat->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR;
stat->value.u64 = exe->stats.cycles;
}
vk_outarray_append(&out, stat) {
WRITE_STR(stat->name, "Spill Count");
WRITE_STR(stat->description,
"Number of scratch spill operations. This gives a rough "
"estimate of the cost incurred due to spilling temporary "
"values to memory. If this is non-zero, you may want to "
"adjust your shader to reduce register pressure.");
stat->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR;
stat->value.u64 = exe->stats.spills;
}
vk_outarray_append(&out, stat) {
WRITE_STR(stat->name, "Fill Count");
WRITE_STR(stat->description,
"Number of scratch fill operations. This gives a rough "
"estimate of the cost incurred due to spilling temporary "
"values to memory. If this is non-zero, you may want to "
"adjust your shader to reduce register pressure.");
stat->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR;
stat->value.u64 = exe->stats.fills;
}
vk_outarray_append(&out, stat) {
WRITE_STR(stat->name, "Scratch Memory Size");
WRITE_STR(stat->description,
"Number of bytes of scratch memory required by the "
"generated shader executable. If this is non-zero, you "
"may want to adjust your shader to reduce register "
"pressure.");
stat->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR;
stat->value.u64 = prog_data->total_scratch;
}
if (exe->stage == MESA_SHADER_COMPUTE) {
vk_outarray_append(&out, stat) {
WRITE_STR(stat->name, "Workgroup Memory Size");
WRITE_STR(stat->description,
"Number of bytes of workgroup shared memory used by this "
"compute shader including any padding.");
stat->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR;
stat->value.u64 = prog_data->total_scratch;
}
}
return vk_outarray_status(&out);
}
static bool
write_ir_text(VkPipelineExecutableInternalRepresentationKHR* ir,
const char *data)
{
ir->isText = VK_TRUE;
size_t data_len = strlen(data) + 1;
if (ir->pData == NULL) {
ir->dataSize = data_len;
return true;
}
strncpy(ir->pData, data, ir->dataSize);
if (ir->dataSize < data_len)
return false;
ir->dataSize = data_len;
return true;
}
VkResult anv_GetPipelineExecutableInternalRepresentationsKHR(
VkDevice device,
const VkPipelineExecutableInfoKHR* pExecutableInfo,
uint32_t* pInternalRepresentationCount,
VkPipelineExecutableInternalRepresentationKHR* pInternalRepresentations)
{
ANV_FROM_HANDLE(anv_pipeline, pipeline, pExecutableInfo->pipeline);
VK_OUTARRAY_MAKE(out, pInternalRepresentations,
pInternalRepresentationCount);
bool incomplete_text = false;
assert(pExecutableInfo->executableIndex < pipeline->num_executables);
const struct anv_pipeline_executable *exe =
&pipeline->executables[pExecutableInfo->executableIndex];
if (exe->nir) {
vk_outarray_append(&out, ir) {
WRITE_STR(ir->name, "Final NIR");
WRITE_STR(ir->description,
"Final NIR before going into the back-end compiler");
if (!write_ir_text(ir, exe->nir))
incomplete_text = true;
}
}
if (exe->disasm) {
vk_outarray_append(&out, ir) {
WRITE_STR(ir->name, "GEN Assembly");
WRITE_STR(ir->description,
"Final GEN assembly for the generated shader binary");
if (!write_ir_text(ir, exe->disasm))
incomplete_text = true;
}
}
return incomplete_text ? VK_INCOMPLETE : vk_outarray_status(&out);
}