mesa/src/vulkan/anv_pipeline.c

1289 lines
44 KiB
C
Raw Normal View History

2015-05-08 22:32:37 -07:00
/*
* Copyright © 2015 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include <assert.h>
#include <stdbool.h>
#include <string.h>
#include <unistd.h>
#include <fcntl.h>
#include "anv_private.h"
#include "brw_nir.h"
#include "anv_nir.h"
#include "glsl/nir/nir_spirv.h"
/* Needed for SWIZZLE macros */
#include "program/prog_instruction.h"
2015-05-08 22:32:37 -07:00
// Shader functions
VkResult anv_CreateShaderModule(
VkDevice _device,
const VkShaderModuleCreateInfo* pCreateInfo,
VkShaderModule* pShaderModule)
{
ANV_FROM_HANDLE(anv_device, device, _device);
struct anv_shader_module *module;
assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO);
assert(pCreateInfo->flags == 0);
module = anv_device_alloc(device, sizeof(*module) + pCreateInfo->codeSize, 8,
VK_SYSTEM_ALLOC_TYPE_API_OBJECT);
if (module == NULL)
return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
module->nir = NULL;
module->size = pCreateInfo->codeSize;
memcpy(module->data, pCreateInfo->pCode, module->size);
*pShaderModule = anv_shader_module_to_handle(module);
return VK_SUCCESS;
}
void anv_DestroyShaderModule(
2015-07-14 10:12:10 -07:00
VkDevice _device,
VkShaderModule _module)
{
ANV_FROM_HANDLE(anv_device, device, _device);
ANV_FROM_HANDLE(anv_shader_module, module, _module);
anv_device_free(device, module);
}
VkResult anv_CreateShader(
2015-05-08 22:32:37 -07:00
VkDevice _device,
const VkShaderCreateInfo* pCreateInfo,
VkShader* pShader)
{
ANV_FROM_HANDLE(anv_device, device, _device);
ANV_FROM_HANDLE(anv_shader_module, module, pCreateInfo->module);
2015-05-08 22:32:37 -07:00
struct anv_shader *shader;
assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_SHADER_CREATE_INFO);
assert(pCreateInfo->flags == 0);
2015-05-08 22:32:37 -07:00
const char *name = pCreateInfo->pName ? pCreateInfo->pName : "main";
size_t name_len = strlen(name);
shader = anv_device_alloc(device, sizeof(*shader) + name_len + 1, 8,
VK_SYSTEM_ALLOC_TYPE_API_OBJECT);
2015-05-08 22:32:37 -07:00
if (shader == NULL)
return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
shader->module = module,
memcpy(shader->entrypoint, name, name_len + 1);
2015-05-08 22:32:37 -07:00
*pShader = anv_shader_to_handle(shader);
2015-05-08 22:32:37 -07:00
return VK_SUCCESS;
}
void anv_DestroyShader(
2015-07-14 10:16:22 -07:00
VkDevice _device,
VkShader _shader)
{
ANV_FROM_HANDLE(anv_device, device, _device);
ANV_FROM_HANDLE(anv_shader, shader, _shader);
anv_device_free(device, shader);
}
#define SPIR_V_MAGIC_NUMBER 0x07230203
static const gl_shader_stage vk_shader_stage_to_mesa_stage[] = {
[VK_SHADER_STAGE_VERTEX] = MESA_SHADER_VERTEX,
[VK_SHADER_STAGE_TESS_CONTROL] = -1,
[VK_SHADER_STAGE_TESS_EVALUATION] = -1,
[VK_SHADER_STAGE_GEOMETRY] = MESA_SHADER_GEOMETRY,
[VK_SHADER_STAGE_FRAGMENT] = MESA_SHADER_FRAGMENT,
[VK_SHADER_STAGE_COMPUTE] = MESA_SHADER_COMPUTE,
};
static bool
is_scalar_shader_stage(const struct brw_compiler *compiler, VkShaderStage stage)
{
switch (stage) {
case VK_SHADER_STAGE_VERTEX:
return compiler->scalar_vs;
case VK_SHADER_STAGE_GEOMETRY:
return false;
case VK_SHADER_STAGE_FRAGMENT:
case VK_SHADER_STAGE_COMPUTE:
return true;
default:
unreachable("Unsupported shader stage");
}
}
/* Eventually, this will become part of anv_CreateShader. Unfortunately,
* we can't do that yet because we don't have the ability to copy nir.
*/
static nir_shader *
anv_shader_compile_to_nir(struct anv_device *device,
struct anv_shader *shader, VkShaderStage vk_stage)
{
if (strcmp(shader->entrypoint, "main") != 0) {
anv_finishme("Multiple shaders per module not really supported");
}
gl_shader_stage stage = vk_shader_stage_to_mesa_stage[vk_stage];
const struct brw_compiler *compiler =
device->instance->physicalDevice.compiler;
const nir_shader_compiler_options *nir_options =
compiler->glsl_compiler_options[stage].NirOptions;
nir_shader *nir;
if (shader->module->nir) {
/* Some things such as our meta clear/blit code will give us a NIR
* shader directly. In that case, we just ignore the SPIR-V entirely
* and just use the NIR shader */
nir = shader->module->nir;
nir->options = nir_options;
} else {
uint32_t *spirv = (uint32_t *) shader->module->data;
assert(spirv[0] == SPIR_V_MAGIC_NUMBER);
assert(shader->module->size % 4 == 0);
nir = spirv_to_nir(spirv, shader->module->size / 4, stage, nir_options);
}
nir_validate_shader(nir);
2015-10-23 10:53:00 -07:00
/* Vulkan uses the separate-shader linking model */
nir->info.separate_shader = true;
/* Make sure the provided shader has exactly one entrypoint and that the
* name matches the name that came in from the VkShader.
*/
nir_function_impl *entrypoint = NULL;
nir_foreach_overload(nir, overload) {
if (strcmp(shader->entrypoint, overload->function->name) == 0 &&
overload->impl) {
assert(entrypoint == NULL);
entrypoint = overload->impl;
}
}
assert(entrypoint != NULL);
brw_preprocess_nir(nir, &device->info,
is_scalar_shader_stage(compiler, vk_stage));
nir_shader_gather_info(nir, entrypoint);
return nir;
}
2015-07-14 10:16:22 -07:00
VkResult anv_CreatePipelineCache(
VkDevice device,
const VkPipelineCacheCreateInfo* pCreateInfo,
VkPipelineCache* pPipelineCache)
{
2015-07-15 15:48:41 -07:00
pPipelineCache->handle = 1;
stub_return(VK_SUCCESS);
}
void anv_DestroyPipelineCache(
2015-07-14 10:19:27 -07:00
VkDevice _device,
VkPipelineCache _cache)
{
}
size_t anv_GetPipelineCacheSize(
VkDevice device,
VkPipelineCache pipelineCache)
{
stub_return(0);
}
VkResult anv_GetPipelineCacheData(
VkDevice device,
VkPipelineCache pipelineCache,
void* pData)
{
stub_return(VK_UNSUPPORTED);
}
VkResult anv_MergePipelineCaches(
VkDevice device,
VkPipelineCache destCache,
uint32_t srcCacheCount,
const VkPipelineCache* pSrcCaches)
{
stub_return(VK_UNSUPPORTED);
}
void anv_DestroyPipeline(
2015-07-14 10:26:17 -07:00
VkDevice _device,
VkPipeline _pipeline)
{
ANV_FROM_HANDLE(anv_device, device, _device);
ANV_FROM_HANDLE(anv_pipeline, pipeline, _pipeline);
anv_reloc_list_finish(&pipeline->batch_relocs, pipeline->device);
2015-07-14 10:26:17 -07:00
anv_state_stream_finish(&pipeline->program_stream);
anv_state_pool_free(&device->dynamic_state_pool, pipeline->blend_state);
anv_device_free(pipeline->device, pipeline);
}
static const uint32_t vk_to_gen_primitive_type[] = {
[VK_PRIMITIVE_TOPOLOGY_POINT_LIST] = _3DPRIM_POINTLIST,
[VK_PRIMITIVE_TOPOLOGY_LINE_LIST] = _3DPRIM_LINELIST,
[VK_PRIMITIVE_TOPOLOGY_LINE_STRIP] = _3DPRIM_LINESTRIP,
[VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST] = _3DPRIM_TRILIST,
[VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP] = _3DPRIM_TRISTRIP,
[VK_PRIMITIVE_TOPOLOGY_TRIANGLE_FAN] = _3DPRIM_TRIFAN,
[VK_PRIMITIVE_TOPOLOGY_LINE_LIST_ADJ] = _3DPRIM_LINELIST_ADJ,
[VK_PRIMITIVE_TOPOLOGY_LINE_STRIP_ADJ] = _3DPRIM_LINESTRIP_ADJ,
[VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST_ADJ] = _3DPRIM_TRILIST_ADJ,
[VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP_ADJ] = _3DPRIM_TRISTRIP_ADJ,
[VK_PRIMITIVE_TOPOLOGY_PATCH] = _3DPRIM_PATCHLIST_1
};
static void
populate_sampler_prog_key(const struct brw_device_info *devinfo,
struct brw_sampler_prog_key_data *key)
{
/* XXX: Handle texture swizzle on HSW- */
for (int i = 0; i < MAX_SAMPLERS; i++) {
/* Assume color sampler, no swizzling. (Works for BDW+) */
key->swizzles[i] = SWIZZLE_XYZW;
}
}
static void
populate_vs_prog_key(const struct brw_device_info *devinfo,
struct brw_vs_prog_key *key)
{
memset(key, 0, sizeof(*key));
populate_sampler_prog_key(devinfo, &key->tex);
/* XXX: Handle vertex input work-arounds */
/* XXX: Handle sampler_prog_key */
}
static void
populate_gs_prog_key(const struct brw_device_info *devinfo,
struct brw_gs_prog_key *key)
{
memset(key, 0, sizeof(*key));
populate_sampler_prog_key(devinfo, &key->tex);
}
static void
populate_wm_prog_key(const struct brw_device_info *devinfo,
const VkGraphicsPipelineCreateInfo *info,
struct brw_wm_prog_key *key)
{
ANV_FROM_HANDLE(anv_render_pass, render_pass, info->renderPass);
memset(key, 0, sizeof(*key));
populate_sampler_prog_key(devinfo, &key->tex);
/* TODO: Fill out key->input_slots_valid */
/* Vulkan doesn't specify a default */
key->high_quality_derivatives = false;
/* XXX Vulkan doesn't appear to specify */
key->clamp_fragment_color = false;
2015-10-20 16:00:55 -07:00
/* Vulkan always specifies upper-left coordinates */
key->drawable_height = 0;
key->render_to_fbo = false;
key->nr_color_regions = render_pass->subpasses[info->subpass].color_count;
key->replicate_alpha = key->nr_color_regions > 1 &&
info->pColorBlendState->alphaToCoverageEnable;
if (info->pMultisampleState && info->pMultisampleState->rasterSamples > 1) {
/* We should probably pull this out of the shader, but it's fairly
* harmless to compute it and then let dead-code take care of it.
*/
key->persample_shading = info->pMultisampleState->sampleShadingEnable;
if (key->persample_shading)
key->persample_2x = info->pMultisampleState->rasterSamples == 2;
key->compute_pos_offset = info->pMultisampleState->sampleShadingEnable;
key->compute_sample_id = info->pMultisampleState->sampleShadingEnable;
}
}
static void
populate_cs_prog_key(const struct brw_device_info *devinfo,
struct brw_cs_prog_key *key)
{
memset(key, 0, sizeof(*key));
populate_sampler_prog_key(devinfo, &key->tex);
}
static nir_shader *
anv_pipeline_compile(struct anv_pipeline *pipeline,
struct anv_shader *shader,
VkShaderStage stage,
struct brw_stage_prog_data *prog_data)
{
const struct brw_compiler *compiler =
pipeline->device->instance->physicalDevice.compiler;
nir_shader *nir = anv_shader_compile_to_nir(pipeline->device, shader, stage);
if (nir == NULL)
return NULL;
bool have_push_constants = false;
nir_foreach_variable(var, &nir->uniforms) {
const struct glsl_type *type = var->type;
if (glsl_type_is_array(type))
type = glsl_get_array_element(type);
if (!glsl_type_is_sampler(type)) {
have_push_constants = true;
break;
}
}
/* Figure out the number of parameters */
prog_data->nr_params = 0;
if (have_push_constants) {
/* If the shader uses any push constants at all, we'll just give
* them the maximum possible number
*/
prog_data->nr_params += MAX_PUSH_CONSTANTS_SIZE / sizeof(float);
}
if (pipeline->layout && pipeline->layout->stage[stage].has_dynamic_offsets)
prog_data->nr_params += MAX_DYNAMIC_BUFFERS;
if (prog_data->nr_params > 0) {
prog_data->param = (const gl_constant_value **)
anv_device_alloc(pipeline->device,
prog_data->nr_params * sizeof(gl_constant_value *),
8, VK_SYSTEM_ALLOC_TYPE_INTERNAL_SHADER);
/* We now set the param values to be offsets into a
* anv_push_constant_data structure. Since the compiler doesn't
* actually dereference any of the gl_constant_value pointers in the
* params array, it doesn't really matter what we put here.
*/
struct anv_push_constants *null_data = NULL;
if (have_push_constants) {
/* Fill out the push constants section of the param array */
for (unsigned i = 0; i < MAX_PUSH_CONSTANTS_SIZE / sizeof(float); i++)
prog_data->param[i] = (const gl_constant_value *)
&null_data->client_data[i * sizeof(float)];
}
}
/* Set up dynamic offsets */
anv_nir_apply_dynamic_offsets(pipeline, nir, prog_data);
/* Apply the actual pipeline layout to UBOs, SSBOs, and textures */
anv_nir_apply_pipeline_layout(nir, pipeline->layout);
/* All binding table offsets provided by apply_pipeline_layout() are
* relative to the start of the bindint table (plus MAX_RTS for VS).
*/
unsigned bias = stage == VK_SHADER_STAGE_FRAGMENT ? MAX_RTS : 0;
prog_data->binding_table.size_bytes = 0;
prog_data->binding_table.texture_start = bias;
prog_data->binding_table.ubo_start = bias;
prog_data->binding_table.image_start = bias;
/* Finish the optimization and compilation process */
brw_postprocess_nir(nir, &pipeline->device->info,
is_scalar_shader_stage(compiler, stage));
/* nir_lower_io will only handle the push constants; we need to set this
* to the full number of possible uniforms.
*/
nir->num_uniforms = prog_data->nr_params;
return nir;
}
static uint32_t
anv_pipeline_upload_kernel(struct anv_pipeline *pipeline,
const void *data, size_t size)
{
struct anv_state state =
anv_state_stream_alloc(&pipeline->program_stream, size, 64);
assert(size < pipeline->program_stream.block_pool->block_size);
memcpy(state.map, data, size);
return state.offset;
}
static void
anv_pipeline_add_compiled_stage(struct anv_pipeline *pipeline,
VkShaderStage stage,
struct brw_stage_prog_data *prog_data)
{
struct brw_device_info *devinfo = &pipeline->device->info;
uint32_t max_threads[] = {
[VK_SHADER_STAGE_VERTEX] = devinfo->max_vs_threads,
[VK_SHADER_STAGE_TESS_CONTROL] = 0,
[VK_SHADER_STAGE_TESS_EVALUATION] = 0,
[VK_SHADER_STAGE_GEOMETRY] = devinfo->max_gs_threads,
[VK_SHADER_STAGE_FRAGMENT] = devinfo->max_wm_threads,
[VK_SHADER_STAGE_COMPUTE] = devinfo->max_cs_threads,
};
pipeline->prog_data[stage] = prog_data;
pipeline->active_stages |= 1 << stage;
pipeline->scratch_start[stage] = pipeline->total_scratch;
pipeline->total_scratch =
align_u32(pipeline->total_scratch, 1024) +
prog_data->total_scratch * max_threads[stage];
}
static VkResult
anv_pipeline_compile_vs(struct anv_pipeline *pipeline,
const VkGraphicsPipelineCreateInfo *info,
struct anv_shader *shader)
{
const struct brw_compiler *compiler =
pipeline->device->instance->physicalDevice.compiler;
struct brw_vs_prog_data *prog_data = &pipeline->vs_prog_data;
struct brw_vs_prog_key key;
populate_vs_prog_key(&pipeline->device->info, &key);
/* TODO: Look up shader in cache */
memset(prog_data, 0, sizeof(*prog_data));
nir_shader *nir = anv_pipeline_compile(pipeline, shader,
VK_SHADER_STAGE_VERTEX,
&prog_data->base.base);
if (nir == NULL)
return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
void *mem_ctx = ralloc_context(NULL);
if (shader->module->nir == NULL)
ralloc_steal(mem_ctx, nir);
prog_data->inputs_read = nir->info.inputs_read;
pipeline->writes_point_size = nir->info.outputs_written & VARYING_SLOT_PSIZ;
brw_compute_vue_map(&pipeline->device->info,
&prog_data->base.vue_map,
nir->info.outputs_written,
nir->info.separate_shader);
unsigned code_size;
const unsigned *shader_code =
brw_compile_vs(compiler, NULL, mem_ctx, &key, prog_data, nir,
NULL, false, -1, &code_size, NULL);
if (shader_code == NULL) {
ralloc_free(mem_ctx);
return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
}
const uint32_t offset =
anv_pipeline_upload_kernel(pipeline, shader_code, code_size);
if (prog_data->base.dispatch_mode == DISPATCH_MODE_SIMD8) {
pipeline->vs_simd8 = offset;
pipeline->vs_vec4 = NO_KERNEL;
} else {
pipeline->vs_simd8 = NO_KERNEL;
pipeline->vs_vec4 = offset;
}
ralloc_free(mem_ctx);
anv_pipeline_add_compiled_stage(pipeline, VK_SHADER_STAGE_VERTEX,
&prog_data->base.base);
return VK_SUCCESS;
}
static VkResult
anv_pipeline_compile_gs(struct anv_pipeline *pipeline,
const VkGraphicsPipelineCreateInfo *info,
struct anv_shader *shader)
{
const struct brw_compiler *compiler =
pipeline->device->instance->physicalDevice.compiler;
struct brw_gs_prog_data *prog_data = &pipeline->gs_prog_data;
struct brw_gs_prog_key key;
populate_gs_prog_key(&pipeline->device->info, &key);
/* TODO: Look up shader in cache */
memset(prog_data, 0, sizeof(*prog_data));
nir_shader *nir = anv_pipeline_compile(pipeline, shader,
VK_SHADER_STAGE_GEOMETRY,
&prog_data->base.base);
if (nir == NULL)
return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
void *mem_ctx = ralloc_context(NULL);
if (shader->module->nir == NULL)
ralloc_steal(mem_ctx, nir);
brw_compute_vue_map(&pipeline->device->info,
&prog_data->base.vue_map,
nir->info.outputs_written,
nir->info.separate_shader);
unsigned code_size;
const unsigned *shader_code =
brw_compile_gs(compiler, NULL, mem_ctx, &key, prog_data, nir,
NULL, -1, &code_size, NULL);
if (shader_code == NULL) {
ralloc_free(mem_ctx);
return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
}
/* TODO: SIMD8 GS */
pipeline->gs_vec4 =
anv_pipeline_upload_kernel(pipeline, shader_code, code_size);
pipeline->gs_vertex_count = nir->info.gs.vertices_in;
ralloc_free(mem_ctx);
anv_pipeline_add_compiled_stage(pipeline, VK_SHADER_STAGE_GEOMETRY,
&prog_data->base.base);
return VK_SUCCESS;
}
static VkResult
anv_pipeline_compile_fs(struct anv_pipeline *pipeline,
const VkGraphicsPipelineCreateInfo *info,
struct anv_shader *shader)
{
const struct brw_compiler *compiler =
pipeline->device->instance->physicalDevice.compiler;
struct brw_wm_prog_data *prog_data = &pipeline->wm_prog_data;
struct brw_wm_prog_key key;
populate_wm_prog_key(&pipeline->device->info, info, &key);
if (pipeline->use_repclear)
key.nr_color_regions = 1;
/* TODO: Look up shader in cache */
memset(prog_data, 0, sizeof(*prog_data));
prog_data->binding_table.render_target_start = 0;
nir_shader *nir = anv_pipeline_compile(pipeline, shader,
VK_SHADER_STAGE_FRAGMENT,
&prog_data->base);
if (nir == NULL)
return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
void *mem_ctx = ralloc_context(NULL);
if (shader->module->nir == NULL)
ralloc_steal(mem_ctx, nir);
unsigned code_size;
const unsigned *shader_code =
brw_compile_fs(compiler, NULL, mem_ctx, &key, prog_data, nir,
NULL, -1, -1, pipeline->use_repclear, &code_size, NULL);
if (shader_code == NULL) {
ralloc_free(mem_ctx);
return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
}
uint32_t offset = anv_pipeline_upload_kernel(pipeline,
shader_code, code_size);
if (prog_data->no_8)
pipeline->ps_simd8 = NO_KERNEL;
else
pipeline->ps_simd8 = offset;
if (prog_data->no_8 || prog_data->prog_offset_16) {
pipeline->ps_simd16 = offset + prog_data->prog_offset_16;
} else {
pipeline->ps_simd16 = NO_KERNEL;
}
pipeline->ps_ksp2 = 0;
pipeline->ps_grf_start2 = 0;
if (pipeline->ps_simd8 != NO_KERNEL) {
pipeline->ps_ksp0 = pipeline->ps_simd8;
pipeline->ps_grf_start0 = prog_data->base.dispatch_grf_start_reg;
if (pipeline->ps_simd16 != NO_KERNEL) {
pipeline->ps_ksp2 = pipeline->ps_simd16;
pipeline->ps_grf_start2 = prog_data->dispatch_grf_start_reg_16;
}
} else if (pipeline->ps_simd16 != NO_KERNEL) {
pipeline->ps_ksp0 = pipeline->ps_simd16;
pipeline->ps_grf_start0 = prog_data->dispatch_grf_start_reg_16;
}
ralloc_free(mem_ctx);
anv_pipeline_add_compiled_stage(pipeline, VK_SHADER_STAGE_FRAGMENT,
&prog_data->base);
return VK_SUCCESS;
}
VkResult
anv_pipeline_compile_cs(struct anv_pipeline *pipeline,
const VkComputePipelineCreateInfo *info,
struct anv_shader *shader)
{
const struct brw_compiler *compiler =
pipeline->device->instance->physicalDevice.compiler;
struct brw_cs_prog_data *prog_data = &pipeline->cs_prog_data;
struct brw_cs_prog_key key;
populate_cs_prog_key(&pipeline->device->info, &key);
/* TODO: Look up shader in cache */
memset(prog_data, 0, sizeof(*prog_data));
nir_shader *nir = anv_pipeline_compile(pipeline, shader,
VK_SHADER_STAGE_COMPUTE,
&prog_data->base);
if (nir == NULL)
return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
void *mem_ctx = ralloc_context(NULL);
if (shader->module->nir == NULL)
ralloc_steal(mem_ctx, nir);
unsigned code_size;
const unsigned *shader_code =
brw_compile_cs(compiler, NULL, mem_ctx, &key, prog_data, nir,
-1, &code_size, NULL);
if (shader_code == NULL) {
ralloc_free(mem_ctx);
return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
}
pipeline->cs_simd = anv_pipeline_upload_kernel(pipeline,
shader_code, code_size);
ralloc_free(mem_ctx);
anv_pipeline_add_compiled_stage(pipeline, VK_SHADER_STAGE_COMPUTE,
&prog_data->base);
return VK_SUCCESS;
}
static const int gen8_push_size = 32 * 1024;
static void
gen7_compute_urb_partition(struct anv_pipeline *pipeline)
{
const struct brw_device_info *devinfo = &pipeline->device->info;
bool vs_present = pipeline->active_stages & VK_SHADER_STAGE_VERTEX_BIT;
unsigned vs_size = vs_present ? pipeline->vs_prog_data.base.urb_entry_size : 1;
unsigned vs_entry_size_bytes = vs_size * 64;
bool gs_present = pipeline->active_stages & VK_SHADER_STAGE_GEOMETRY_BIT;
unsigned gs_size = gs_present ? pipeline->gs_prog_data.base.urb_entry_size : 1;
unsigned gs_entry_size_bytes = gs_size * 64;
/* From p35 of the Ivy Bridge PRM (section 1.7.1: 3DSTATE_URB_GS):
*
* VS Number of URB Entries must be divisible by 8 if the VS URB Entry
* Allocation Size is less than 9 512-bit URB entries.
*
* Similar text exists for GS.
*/
unsigned vs_granularity = (vs_size < 9) ? 8 : 1;
unsigned gs_granularity = (gs_size < 9) ? 8 : 1;
/* URB allocations must be done in 8k chunks. */
unsigned chunk_size_bytes = 8192;
/* Determine the size of the URB in chunks. */
unsigned urb_chunks = devinfo->urb.size * 1024 / chunk_size_bytes;
/* Reserve space for push constants */
unsigned push_constant_bytes = gen8_push_size;
unsigned push_constant_chunks =
push_constant_bytes / chunk_size_bytes;
/* Initially, assign each stage the minimum amount of URB space it needs,
* and make a note of how much additional space it "wants" (the amount of
* additional space it could actually make use of).
*/
/* VS has a lower limit on the number of URB entries */
unsigned vs_chunks =
ALIGN(devinfo->urb.min_vs_entries * vs_entry_size_bytes,
chunk_size_bytes) / chunk_size_bytes;
unsigned vs_wants =
ALIGN(devinfo->urb.max_vs_entries * vs_entry_size_bytes,
chunk_size_bytes) / chunk_size_bytes - vs_chunks;
unsigned gs_chunks = 0;
unsigned gs_wants = 0;
if (gs_present) {
/* There are two constraints on the minimum amount of URB space we can
* allocate:
*
* (1) We need room for at least 2 URB entries, since we always operate
* the GS in DUAL_OBJECT mode.
*
* (2) We can't allocate less than nr_gs_entries_granularity.
*/
gs_chunks = ALIGN(MAX2(gs_granularity, 2) * gs_entry_size_bytes,
chunk_size_bytes) / chunk_size_bytes;
gs_wants =
ALIGN(devinfo->urb.max_gs_entries * gs_entry_size_bytes,
chunk_size_bytes) / chunk_size_bytes - gs_chunks;
}
/* There should always be enough URB space to satisfy the minimum
* requirements of each stage.
*/
unsigned total_needs = push_constant_chunks + vs_chunks + gs_chunks;
assert(total_needs <= urb_chunks);
/* Mete out remaining space (if any) in proportion to "wants". */
unsigned total_wants = vs_wants + gs_wants;
unsigned remaining_space = urb_chunks - total_needs;
if (remaining_space > total_wants)
remaining_space = total_wants;
if (remaining_space > 0) {
unsigned vs_additional = (unsigned)
round(vs_wants * (((double) remaining_space) / total_wants));
vs_chunks += vs_additional;
remaining_space -= vs_additional;
gs_chunks += remaining_space;
}
/* Sanity check that we haven't over-allocated. */
assert(push_constant_chunks + vs_chunks + gs_chunks <= urb_chunks);
/* Finally, compute the number of entries that can fit in the space
* allocated to each stage.
*/
unsigned nr_vs_entries = vs_chunks * chunk_size_bytes / vs_entry_size_bytes;
unsigned nr_gs_entries = gs_chunks * chunk_size_bytes / gs_entry_size_bytes;
/* Since we rounded up when computing *_wants, this may be slightly more
* than the maximum allowed amount, so correct for that.
*/
nr_vs_entries = MIN2(nr_vs_entries, devinfo->urb.max_vs_entries);
nr_gs_entries = MIN2(nr_gs_entries, devinfo->urb.max_gs_entries);
/* Ensure that we program a multiple of the granularity. */
nr_vs_entries = ROUND_DOWN_TO(nr_vs_entries, vs_granularity);
nr_gs_entries = ROUND_DOWN_TO(nr_gs_entries, gs_granularity);
/* Finally, sanity check to make sure we have at least the minimum number
* of entries needed for each stage.
*/
assert(nr_vs_entries >= devinfo->urb.min_vs_entries);
if (gs_present)
assert(nr_gs_entries >= 2);
/* Lay out the URB in the following order:
* - push constants
* - VS
* - GS
*/
pipeline->urb.vs_start = push_constant_chunks;
pipeline->urb.vs_size = vs_size;
pipeline->urb.nr_vs_entries = nr_vs_entries;
pipeline->urb.gs_start = push_constant_chunks + vs_chunks;
pipeline->urb.gs_size = gs_size;
pipeline->urb.nr_gs_entries = nr_gs_entries;
}
static void
anv_pipeline_init_dynamic_state(struct anv_pipeline *pipeline,
const VkGraphicsPipelineCreateInfo *pCreateInfo)
{
anv_cmd_dirty_mask_t states = ANV_CMD_DIRTY_DYNAMIC_ALL;
ANV_FROM_HANDLE(anv_render_pass, pass, pCreateInfo->renderPass);
struct anv_subpass *subpass = &pass->subpasses[pCreateInfo->subpass];
pipeline->dynamic_state = default_dynamic_state;
if (pCreateInfo->pDynamicState) {
/* Remove all of the states that are marked as dynamic */
uint32_t count = pCreateInfo->pDynamicState->dynamicStateCount;
for (uint32_t s = 0; s < count; s++)
states &= ~(1 << pCreateInfo->pDynamicState->pDynamicStates[s]);
}
struct anv_dynamic_state *dynamic = &pipeline->dynamic_state;
dynamic->viewport.count = pCreateInfo->pViewportState->viewportCount;
if (states & (1 << VK_DYNAMIC_STATE_VIEWPORT)) {
typed_memcpy(dynamic->viewport.viewports,
pCreateInfo->pViewportState->pViewports,
pCreateInfo->pViewportState->viewportCount);
}
dynamic->scissor.count = pCreateInfo->pViewportState->scissorCount;
if (states & (1 << VK_DYNAMIC_STATE_SCISSOR)) {
typed_memcpy(dynamic->scissor.scissors,
pCreateInfo->pViewportState->pScissors,
pCreateInfo->pViewportState->scissorCount);
}
if (states & (1 << VK_DYNAMIC_STATE_LINE_WIDTH)) {
assert(pCreateInfo->pRasterState);
dynamic->line_width = pCreateInfo->pRasterState->lineWidth;
}
if (states & (1 << VK_DYNAMIC_STATE_DEPTH_BIAS)) {
assert(pCreateInfo->pRasterState);
dynamic->depth_bias.bias = pCreateInfo->pRasterState->depthBias;
dynamic->depth_bias.clamp = pCreateInfo->pRasterState->depthBiasClamp;
dynamic->depth_bias.slope_scaled =
pCreateInfo->pRasterState->slopeScaledDepthBias;
}
if (states & (1 << VK_DYNAMIC_STATE_BLEND_CONSTANTS)) {
assert(pCreateInfo->pColorBlendState);
typed_memcpy(dynamic->blend_constants,
pCreateInfo->pColorBlendState->blendConst, 4);
}
/* If there is no depthstencil attachment, then don't read
* pDepthStencilState. The Vulkan spec states that pDepthStencilState may
* be NULL in this case. Even if pDepthStencilState is non-NULL, there is
* no need to override the depthstencil defaults in
* anv_pipeline::dynamic_state when there is no depthstencil attachment.
*
* From the Vulkan spec (20 Oct 2015, git-aa308cb):
*
* pDepthStencilState [...] may only be NULL if renderPass and subpass
* specify a subpass that has no depth/stencil attachment.
*/
if (subpass->depth_stencil_attachment != VK_ATTACHMENT_UNUSED) {
if (states & (1 << VK_DYNAMIC_STATE_DEPTH_BOUNDS)) {
assert(pCreateInfo->pDepthStencilState);
dynamic->depth_bounds.min =
pCreateInfo->pDepthStencilState->minDepthBounds;
dynamic->depth_bounds.max =
pCreateInfo->pDepthStencilState->maxDepthBounds;
}
if (states & (1 << VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK)) {
assert(pCreateInfo->pDepthStencilState);
dynamic->stencil_compare_mask.front =
pCreateInfo->pDepthStencilState->front.stencilCompareMask;
dynamic->stencil_compare_mask.back =
pCreateInfo->pDepthStencilState->back.stencilCompareMask;
}
if (states & (1 << VK_DYNAMIC_STATE_STENCIL_WRITE_MASK)) {
assert(pCreateInfo->pDepthStencilState);
dynamic->stencil_write_mask.front =
pCreateInfo->pDepthStencilState->front.stencilWriteMask;
dynamic->stencil_write_mask.back =
pCreateInfo->pDepthStencilState->back.stencilWriteMask;
}
if (states & (1 << VK_DYNAMIC_STATE_STENCIL_REFERENCE)) {
assert(pCreateInfo->pDepthStencilState);
dynamic->stencil_reference.front =
pCreateInfo->pDepthStencilState->front.stencilReference;
dynamic->stencil_reference.back =
pCreateInfo->pDepthStencilState->back.stencilReference;
}
}
pipeline->dynamic_state_mask = states;
}
static void
anv_pipeline_validate_create_info(const VkGraphicsPipelineCreateInfo *info)
{
struct anv_render_pass *renderpass = NULL;
struct anv_subpass *subpass = NULL;
/* Assert that all required members of VkGraphicsPipelineCreateInfo are
* present, as explained by the Vulkan (20 Oct 2015, git-aa308cb), Section
* 4.2 Graphics Pipeline.
*/
assert(info->sType == VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO);
renderpass = anv_render_pass_from_handle(info->renderPass);
assert(renderpass);
if (renderpass != &anv_meta_dummy_renderpass) {
assert(info->subpass < renderpass->subpass_count);
subpass = &renderpass->subpasses[info->subpass];
}
assert(info->stageCount >= 1);
assert(info->pVertexInputState);
assert(info->pInputAssemblyState);
assert(info->pViewportState);
assert(info->pRasterState);
assert(info->pMultisampleState);
if (subpass && subpass->depth_stencil_attachment != VK_ATTACHMENT_UNUSED)
assert(info->pDepthStencilState);
if (subpass && subpass->color_count > 0)
assert(info->pColorBlendState);
for (uint32_t i = 0; i < info->stageCount; ++i) {
switch (info->pStages[i].stage) {
case VK_SHADER_STAGE_TESS_CONTROL:
case VK_SHADER_STAGE_TESS_EVALUATION:
assert(info->pTessellationState);
break;
default:
break;
}
}
}
VkResult
anv_pipeline_init(struct anv_pipeline *pipeline, struct anv_device *device,
const VkGraphicsPipelineCreateInfo *pCreateInfo,
const struct anv_graphics_pipeline_create_info *extra)
{
VkResult result;
anv_validate {
anv_pipeline_validate_create_info(pCreateInfo);
}
pipeline->device = device;
pipeline->layout = anv_pipeline_layout_from_handle(pCreateInfo->layout);
result = anv_reloc_list_init(&pipeline->batch_relocs, device);
if (result != VK_SUCCESS) {
anv_device_free(device, pipeline);
return result;
}
pipeline->batch.next = pipeline->batch.start = pipeline->batch_data;
pipeline->batch.end = pipeline->batch.start + sizeof(pipeline->batch_data);
pipeline->batch.relocs = &pipeline->batch_relocs;
anv_state_stream_init(&pipeline->program_stream,
&device->instruction_block_pool);
anv_pipeline_init_dynamic_state(pipeline, pCreateInfo);
if (pCreateInfo->pTessellationState)
anv_finishme("VK_STRUCTURE_TYPE_PIPELINE_TESSELLATION_STATE_CREATE_INFO");
if (pCreateInfo->pMultisampleState &&
pCreateInfo->pMultisampleState->rasterSamples > 1)
anv_finishme("VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO");
pipeline->use_repclear = extra && extra->use_repclear;
pipeline->writes_point_size = false;
/* When we free the pipeline, we detect stages based on the NULL status
* of various prog_data pointers. Make them NULL by default.
*/
memset(pipeline->prog_data, 0, sizeof(pipeline->prog_data));
memset(pipeline->scratch_start, 0, sizeof(pipeline->scratch_start));
pipeline->vs_simd8 = NO_KERNEL;
pipeline->vs_vec4 = NO_KERNEL;
pipeline->gs_vec4 = NO_KERNEL;
pipeline->active_stages = 0;
pipeline->total_scratch = 0;
for (uint32_t i = 0; i < pCreateInfo->stageCount; i++) {
ANV_FROM_HANDLE(anv_shader, shader, pCreateInfo->pStages[i].shader);
switch (pCreateInfo->pStages[i].stage) {
case VK_SHADER_STAGE_VERTEX:
anv_pipeline_compile_vs(pipeline, pCreateInfo, shader);
break;
case VK_SHADER_STAGE_GEOMETRY:
anv_pipeline_compile_gs(pipeline, pCreateInfo, shader);
break;
case VK_SHADER_STAGE_FRAGMENT:
anv_pipeline_compile_fs(pipeline, pCreateInfo, shader);
break;
default:
anv_finishme("Unsupported shader stage");
}
}
if (!(pipeline->active_stages & VK_SHADER_STAGE_VERTEX_BIT)) {
/* Vertex is only optional if disable_vs is set */
assert(extra->disable_vs);
memset(&pipeline->vs_prog_data, 0, sizeof(pipeline->vs_prog_data));
}
gen7_compute_urb_partition(pipeline);
const VkPipelineVertexInputStateCreateInfo *vi_info =
pCreateInfo->pVertexInputState;
pipeline->vb_used = 0;
for (uint32_t i = 0; i < vi_info->bindingCount; i++) {
const VkVertexInputBindingDescription *desc =
&vi_info->pVertexBindingDescriptions[i];
pipeline->vb_used |= 1 << desc->binding;
pipeline->binding_stride[desc->binding] = desc->strideInBytes;
/* Step rate is programmed per vertex element (attribute), not
* binding. Set up a map of which bindings step per instance, for
* reference by vertex element setup. */
switch (desc->stepRate) {
default:
case VK_VERTEX_INPUT_STEP_RATE_VERTEX:
pipeline->instancing_enable[desc->binding] = false;
break;
case VK_VERTEX_INPUT_STEP_RATE_INSTANCE:
pipeline->instancing_enable[desc->binding] = true;
break;
}
}
const VkPipelineInputAssemblyStateCreateInfo *ia_info =
pCreateInfo->pInputAssemblyState;
pipeline->primitive_restart = ia_info->primitiveRestartEnable;
pipeline->topology = vk_to_gen_primitive_type[ia_info->topology];
if (extra && extra->use_rectlist)
pipeline->topology = _3DPRIM_RECTLIST;
return VK_SUCCESS;
}
VkResult
anv_graphics_pipeline_create(
VkDevice _device,
const VkGraphicsPipelineCreateInfo *pCreateInfo,
const struct anv_graphics_pipeline_create_info *extra,
VkPipeline *pPipeline)
{
ANV_FROM_HANDLE(anv_device, device, _device);
switch (device->info.gen) {
case 7:
return gen7_graphics_pipeline_create(_device, pCreateInfo, extra, pPipeline);
case 8:
return gen8_graphics_pipeline_create(_device, pCreateInfo, extra, pPipeline);
default:
unreachable("unsupported gen\n");
}
}
VkResult anv_CreateGraphicsPipelines(
VkDevice _device,
VkPipelineCache pipelineCache,
uint32_t count,
const VkGraphicsPipelineCreateInfo* pCreateInfos,
VkPipeline* pPipelines)
2015-05-08 22:32:37 -07:00
{
VkResult result = VK_SUCCESS;
unsigned i = 0;
for (; i < count; i++) {
result = anv_graphics_pipeline_create(_device, &pCreateInfos[i],
NULL, &pPipelines[i]);
if (result != VK_SUCCESS) {
for (unsigned j = 0; j < i; j++) {
anv_DestroyPipeline(_device, pPipelines[j]);
}
return result;
}
}
return VK_SUCCESS;
2015-05-08 22:32:37 -07:00
}
static VkResult anv_compute_pipeline_create(
VkDevice _device,
2015-05-08 22:32:37 -07:00
const VkComputePipelineCreateInfo* pCreateInfo,
VkPipeline* pPipeline)
{
ANV_FROM_HANDLE(anv_device, device, _device);
switch (device->info.gen) {
case 7:
return gen7_compute_pipeline_create(_device, pCreateInfo, pPipeline);
case 8:
return gen8_compute_pipeline_create(_device, pCreateInfo, pPipeline);
default:
unreachable("unsupported gen\n");
}
2015-05-08 22:32:37 -07:00
}
VkResult anv_CreateComputePipelines(
VkDevice _device,
VkPipelineCache pipelineCache,
uint32_t count,
const VkComputePipelineCreateInfo* pCreateInfos,
VkPipeline* pPipelines)
2015-05-08 22:32:37 -07:00
{
VkResult result = VK_SUCCESS;
unsigned i = 0;
for (; i < count; i++) {
result = anv_compute_pipeline_create(_device, &pCreateInfos[i],
&pPipelines[i]);
if (result != VK_SUCCESS) {
for (unsigned j = 0; j < i; j++) {
anv_DestroyPipeline(_device, pPipelines[j]);
}
return result;
}
}
2015-05-08 22:32:37 -07:00
return VK_SUCCESS;
2015-05-08 22:32:37 -07:00
}
// Pipeline layout functions
VkResult anv_CreatePipelineLayout(
2015-05-08 22:32:37 -07:00
VkDevice _device,
const VkPipelineLayoutCreateInfo* pCreateInfo,
VkPipelineLayout* pPipelineLayout)
{
ANV_FROM_HANDLE(anv_device, device, _device);
struct anv_pipeline_layout l, *layout;
2015-05-08 22:32:37 -07:00
assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO);
l.num_sets = pCreateInfo->descriptorSetCount;
unsigned dynamic_offset_count = 0;
memset(l.stage, 0, sizeof(l.stage));
for (uint32_t set = 0; set < pCreateInfo->descriptorSetCount; set++) {
ANV_FROM_HANDLE(anv_descriptor_set_layout, set_layout,
pCreateInfo->pSetLayouts[set]);
l.set[set].layout = set_layout;
l.set[set].dynamic_offset_start = dynamic_offset_count;
for (uint32_t b = 0; b < set_layout->binding_count; b++) {
if (set_layout->binding[b].dynamic_offset_index >= 0)
dynamic_offset_count += set_layout->binding[b].array_size;
}
for (VkShaderStage s = 0; s < VK_SHADER_STAGE_NUM; s++) {
l.set[set].stage[s].surface_start = l.stage[s].surface_count;
l.set[set].stage[s].sampler_start = l.stage[s].sampler_count;
for (uint32_t b = 0; b < set_layout->binding_count; b++) {
unsigned array_size = set_layout->binding[b].array_size;
2015-05-08 22:32:37 -07:00
if (set_layout->binding[b].stage[s].surface_index >= 0) {
l.stage[s].surface_count += array_size;
if (set_layout->binding[b].dynamic_offset_index >= 0)
l.stage[s].has_dynamic_offsets = true;
}
if (set_layout->binding[b].stage[s].sampler_index >= 0)
l.stage[s].sampler_count += array_size;
}
}
}
unsigned num_bindings = 0;
for (VkShaderStage s = 0; s < VK_SHADER_STAGE_NUM; s++)
num_bindings += l.stage[s].surface_count + l.stage[s].sampler_count;
size_t size = sizeof(*layout) + num_bindings * sizeof(layout->entries[0]);
layout = anv_device_alloc(device, size, 8, VK_SYSTEM_ALLOC_TYPE_API_OBJECT);
if (layout == NULL)
return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
/* Now we can actually build our surface and sampler maps */
struct anv_pipeline_binding *entry = layout->entries;
for (VkShaderStage s = 0; s < VK_SHADER_STAGE_NUM; s++) {
l.stage[s].surface_to_descriptor = entry;
entry += l.stage[s].surface_count;
l.stage[s].sampler_to_descriptor = entry;
entry += l.stage[s].sampler_count;
int surface = 0;
int sampler = 0;
for (uint32_t set = 0; set < pCreateInfo->descriptorSetCount; set++) {
struct anv_descriptor_set_layout *set_layout = l.set[set].layout;
unsigned set_offset = 0;
for (uint32_t b = 0; b < set_layout->binding_count; b++) {
unsigned array_size = set_layout->binding[b].array_size;
if (set_layout->binding[b].stage[s].surface_index >= 0) {
assert(surface == l.set[set].stage[s].surface_start +
set_layout->binding[b].stage[s].surface_index);
for (unsigned i = 0; i < array_size; i++) {
l.stage[s].surface_to_descriptor[surface + i].set = set;
l.stage[s].surface_to_descriptor[surface + i].offset = set_offset + i;
}
surface += array_size;
}
if (set_layout->binding[b].stage[s].sampler_index >= 0) {
assert(sampler == l.set[set].stage[s].sampler_start +
set_layout->binding[b].stage[s].sampler_index);
for (unsigned i = 0; i < array_size; i++) {
l.stage[s].sampler_to_descriptor[sampler + i].set = set;
l.stage[s].sampler_to_descriptor[sampler + i].offset = set_offset + i;
}
sampler += array_size;
}
set_offset += array_size;
}
}
2015-05-08 22:32:37 -07:00
}
/* Finally, we're done setting it up, copy into the allocated version */
*layout = l;
*pPipelineLayout = anv_pipeline_layout_to_handle(layout);
2015-05-08 22:32:37 -07:00
return VK_SUCCESS;
}
void anv_DestroyPipelineLayout(
VkDevice _device,
VkPipelineLayout _pipelineLayout)
{
ANV_FROM_HANDLE(anv_device, device, _device);
ANV_FROM_HANDLE(anv_pipeline_layout, pipeline_layout, _pipelineLayout);
anv_device_free(device, pipeline_layout);
}