mesa/src/glsl/linker.cpp

1934 lines
60 KiB
C++
Raw Normal View History

/*
* Copyright © 2010 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
/**
* \file linker.cpp
* GLSL linker implementation
*
* Given a set of shaders that are to be linked to generate a final program,
* there are three distinct stages.
*
* In the first stage shaders are partitioned into groups based on the shader
* type. All shaders of a particular type (e.g., vertex shaders) are linked
* together.
*
* - Undefined references in each shader are resolve to definitions in
* another shader.
* - Types and qualifiers of uniforms, outputs, and global variables defined
* in multiple shaders with the same name are verified to be the same.
* - Initializers for uniforms and global variables defined
* in multiple shaders with the same name are verified to be the same.
*
* The result, in the terminology of the GLSL spec, is a set of shader
* executables for each processing unit.
*
* After the first stage is complete, a series of semantic checks are performed
* on each of the shader executables.
*
* - Each shader executable must define a \c main function.
* - Each vertex shader executable must write to \c gl_Position.
* - Each fragment shader executable must write to either \c gl_FragData or
* \c gl_FragColor.
*
* In the final stage individual shader executables are linked to create a
* complete exectuable.
*
* - Types of uniforms defined in multiple shader stages with the same name
* are verified to be the same.
* - Initializers for uniforms defined in multiple shader stages with the
* same name are verified to be the same.
* - Types and qualifiers of outputs defined in one stage are verified to
* be the same as the types and qualifiers of inputs defined with the same
* name in a later stage.
*
* \author Ian Romanick <ian.d.romanick@intel.com>
*/
#include "main/core.h"
#include "glsl_symbol_table.h"
#include "ir.h"
#include "program.h"
#include "program/hash_table.h"
#include "linker.h"
#include "link_varyings.h"
#include "ir_optimization.h"
extern "C" {
#include "main/shaderobj.h"
}
/**
* Visitor that determines whether or not a variable is ever written.
*/
class find_assignment_visitor : public ir_hierarchical_visitor {
public:
find_assignment_visitor(const char *name)
: name(name), found(false)
{
/* empty */
}
virtual ir_visitor_status visit_enter(ir_assignment *ir)
{
ir_variable *const var = ir->lhs->variable_referenced();
if (strcmp(name, var->name) == 0) {
found = true;
return visit_stop;
}
return visit_continue_with_parent;
}
virtual ir_visitor_status visit_enter(ir_call *ir)
{
exec_list_iterator sig_iter = ir->callee->parameters.iterator();
foreach_iter(exec_list_iterator, iter, *ir) {
ir_rvalue *param_rval = (ir_rvalue *)iter.get();
ir_variable *sig_param = (ir_variable *)sig_iter.get();
if (sig_param->mode == ir_var_function_out ||
sig_param->mode == ir_var_function_inout) {
ir_variable *var = param_rval->variable_referenced();
if (var && strcmp(name, var->name) == 0) {
found = true;
return visit_stop;
}
}
sig_iter.next();
}
if (ir->return_deref != NULL) {
ir_variable *const var = ir->return_deref->variable_referenced();
if (strcmp(name, var->name) == 0) {
found = true;
return visit_stop;
}
}
return visit_continue_with_parent;
}
bool variable_found()
{
return found;
}
private:
const char *name; /**< Find writes to a variable with this name. */
bool found; /**< Was a write to the variable found? */
};
/**
* Visitor that determines whether or not a variable is ever read.
*/
class find_deref_visitor : public ir_hierarchical_visitor {
public:
find_deref_visitor(const char *name)
: name(name), found(false)
{
/* empty */
}
virtual ir_visitor_status visit(ir_dereference_variable *ir)
{
if (strcmp(this->name, ir->var->name) == 0) {
this->found = true;
return visit_stop;
}
return visit_continue;
}
bool variable_found() const
{
return this->found;
}
private:
const char *name; /**< Find writes to a variable with this name. */
bool found; /**< Was a write to the variable found? */
};
void
linker_error(gl_shader_program *prog, const char *fmt, ...)
{
va_list ap;
ralloc_strcat(&prog->InfoLog, "error: ");
va_start(ap, fmt);
ralloc_vasprintf_append(&prog->InfoLog, fmt, ap);
va_end(ap);
prog->LinkStatus = false;
}
void
linker_warning(gl_shader_program *prog, const char *fmt, ...)
{
va_list ap;
ralloc_strcat(&prog->InfoLog, "error: ");
va_start(ap, fmt);
ralloc_vasprintf_append(&prog->InfoLog, fmt, ap);
va_end(ap);
}
/**
* Given a string identifying a program resource, break it into a base name
* and an optional array index in square brackets.
*
* If an array index is present, \c out_base_name_end is set to point to the
* "[" that precedes the array index, and the array index itself is returned
* as a long.
*
* If no array index is present (or if the array index is negative or
* mal-formed), \c out_base_name_end, is set to point to the null terminator
* at the end of the input string, and -1 is returned.
*
* Only the final array index is parsed; if the string contains other array
* indices (or structure field accesses), they are left in the base name.
*
* No attempt is made to check that the base name is properly formed;
* typically the caller will look up the base name in a hash table, so
* ill-formed base names simply turn into hash table lookup failures.
*/
long
parse_program_resource_name(const GLchar *name,
const GLchar **out_base_name_end)
{
/* Section 7.3.1 ("Program Interfaces") of the OpenGL 4.3 spec says:
*
* "When an integer array element or block instance number is part of
* the name string, it will be specified in decimal form without a "+"
* or "-" sign or any extra leading zeroes. Additionally, the name
* string will not include white space anywhere in the string."
*/
const size_t len = strlen(name);
*out_base_name_end = name + len;
if (len == 0 || name[len-1] != ']')
return -1;
/* Walk backwards over the string looking for a non-digit character. This
* had better be the opening bracket for an array index.
*
* Initially, i specifies the location of the ']'. Since the string may
* contain only the ']' charcater, walk backwards very carefully.
*/
unsigned i;
for (i = len - 1; (i > 0) && isdigit(name[i-1]); --i)
/* empty */ ;
if ((i == 0) || name[i-1] != '[')
return -1;
long array_index = strtol(&name[i], NULL, 10);
if (array_index < 0)
return -1;
*out_base_name_end = name + (i - 1);
return array_index;
}
void
link_invalidate_variable_locations(gl_shader *sh, int input_base,
int output_base)
{
foreach_list(node, sh->ir) {
ir_variable *const var = ((ir_instruction *) node)->as_variable();
if (var == NULL)
continue;
int base;
switch (var->mode) {
case ir_var_shader_in:
base = input_base;
break;
case ir_var_shader_out:
base = output_base;
break;
default:
continue;
}
/* Only assign locations for generic attributes / varyings / etc.
*/
if ((var->location >= base) && !var->explicit_location)
var->location = -1;
if ((var->location == -1) && !var->explicit_location) {
var->is_unmatched_generic_inout = 1;
var->location_frac = 0;
} else {
var->is_unmatched_generic_inout = 0;
}
}
}
/**
* Determine the number of attribute slots required for a particular type
*
* This code is here because it implements the language rules of a specific
* GLSL version. Since it's a property of the language and not a property of
* types in general, it doesn't really belong in glsl_type.
*/
unsigned
count_attribute_slots(const glsl_type *t)
{
/* From page 31 (page 37 of the PDF) of the GLSL 1.50 spec:
*
* "A scalar input counts the same amount against this limit as a vec4,
* so applications may want to consider packing groups of four
* unrelated float inputs together into a vector to better utilize the
* capabilities of the underlying hardware. A matrix input will use up
* multiple locations. The number of locations used will equal the
* number of columns in the matrix."
*
* The spec does not explicitly say how arrays are counted. However, it
* should be safe to assume the total number of slots consumed by an array
* is the number of entries in the array multiplied by the number of slots
* consumed by a single element of the array.
*/
if (t->is_array())
return t->array_size() * count_attribute_slots(t->element_type());
if (t->is_matrix())
return t->matrix_columns;
return 1;
}
/**
* Verify that a vertex shader executable meets all semantic requirements.
*
* Also sets prog->Vert.UsesClipDistance and prog->Vert.ClipDistanceArraySize
* as a side effect.
*
* \param shader Vertex shader executable to be verified
*/
bool
validate_vertex_shader_executable(struct gl_shader_program *prog,
struct gl_shader *shader)
{
if (shader == NULL)
return true;
/* From the GLSL 1.10 spec, page 48:
*
* "The variable gl_Position is available only in the vertex
* language and is intended for writing the homogeneous vertex
* position. All executions of a well-formed vertex shader
* executable must write a value into this variable. [...] The
* variable gl_Position is available only in the vertex
* language and is intended for writing the homogeneous vertex
* position. All executions of a well-formed vertex shader
* executable must write a value into this variable."
*
* while in GLSL 1.40 this text is changed to:
*
* "The variable gl_Position is available only in the vertex
* language and is intended for writing the homogeneous vertex
* position. It can be written at any time during shader
* execution. It may also be read back by a vertex shader
* after being written. This value will be used by primitive
* assembly, clipping, culling, and other fixed functionality
* operations, if present, that operate on primitives after
* vertex processing has occurred. Its value is undefined if
* the vertex shader executable does not write gl_Position."
*
* GLSL ES 3.00 is similar to GLSL 1.40--failing to write to gl_Position is
* not an error.
*/
if (prog->Version < (prog->IsES ? 300 : 140)) {
find_assignment_visitor find("gl_Position");
find.run(shader->ir);
if (!find.variable_found()) {
linker_error(prog, "vertex shader does not write to `gl_Position'\n");
return false;
}
}
prog->Vert.ClipDistanceArraySize = 0;
if (!prog->IsES && prog->Version >= 130) {
/* From section 7.1 (Vertex Shader Special Variables) of the
* GLSL 1.30 spec:
*
* "It is an error for a shader to statically write both
* gl_ClipVertex and gl_ClipDistance."
*
* This does not apply to GLSL ES shaders, since GLSL ES defines neither
* gl_ClipVertex nor gl_ClipDistance.
*/
find_assignment_visitor clip_vertex("gl_ClipVertex");
find_assignment_visitor clip_distance("gl_ClipDistance");
clip_vertex.run(shader->ir);
clip_distance.run(shader->ir);
if (clip_vertex.variable_found() && clip_distance.variable_found()) {
linker_error(prog, "vertex shader writes to both `gl_ClipVertex' "
"and `gl_ClipDistance'\n");
return false;
}
prog->Vert.UsesClipDistance = clip_distance.variable_found();
ir_variable *clip_distance_var =
shader->symbols->get_variable("gl_ClipDistance");
if (clip_distance_var)
prog->Vert.ClipDistanceArraySize = clip_distance_var->type->length;
}
return true;
}
/**
* Verify that a fragment shader executable meets all semantic requirements
*
* \param shader Fragment shader executable to be verified
*/
bool
validate_fragment_shader_executable(struct gl_shader_program *prog,
struct gl_shader *shader)
{
if (shader == NULL)
return true;
find_assignment_visitor frag_color("gl_FragColor");
find_assignment_visitor frag_data("gl_FragData");
frag_color.run(shader->ir);
frag_data.run(shader->ir);
if (frag_color.variable_found() && frag_data.variable_found()) {
linker_error(prog, "fragment shader writes to both "
"`gl_FragColor' and `gl_FragData'\n");
return false;
}
return true;
}
/**
* Generate a string describing the mode of a variable
*/
static const char *
mode_string(const ir_variable *var)
{
switch (var->mode) {
case ir_var_auto:
return (var->read_only) ? "global constant" : "global variable";
case ir_var_uniform: return "uniform";
case ir_var_shader_in: return "shader input";
case ir_var_shader_out: return "shader output";
case ir_var_const_in:
case ir_var_temporary:
default:
assert(!"Should not get here.");
return "invalid variable";
}
}
/**
* Perform validation of global variables used across multiple shaders
*/
bool
cross_validate_globals(struct gl_shader_program *prog,
struct gl_shader **shader_list,
unsigned num_shaders,
bool uniforms_only)
{
/* Examine all of the uniforms in all of the shaders and cross validate
* them.
*/
glsl_symbol_table variables;
for (unsigned i = 0; i < num_shaders; i++) {
if (shader_list[i] == NULL)
continue;
foreach_list(node, shader_list[i]->ir) {
ir_variable *const var = ((ir_instruction *) node)->as_variable();
if (var == NULL)
continue;
if (uniforms_only && (var->mode != ir_var_uniform))
continue;
/* Don't cross validate temporaries that are at global scope. These
* will eventually get pulled into the shaders 'main'.
*/
if (var->mode == ir_var_temporary)
continue;
/* If a global with this name has already been seen, verify that the
* new instance has the same type. In addition, if the globals have
* initializers, the values of the initializers must be the same.
*/
ir_variable *const existing = variables.get_variable(var->name);
if (existing != NULL) {
if (var->type != existing->type) {
/* Consider the types to be "the same" if both types are arrays
* of the same type and one of the arrays is implicitly sized.
* In addition, set the type of the linked variable to the
* explicitly sized array.
*/
if (var->type->is_array()
&& existing->type->is_array()
&& (var->type->fields.array == existing->type->fields.array)
&& ((var->type->length == 0)
|| (existing->type->length == 0))) {
if (var->type->length != 0) {
existing->type = var->type;
}
} else {
linker_error(prog, "%s `%s' declared as type "
"`%s' and type `%s'\n",
mode_string(var),
var->name, var->type->name,
existing->type->name);
return false;
}
}
if (var->explicit_location) {
if (existing->explicit_location
&& (var->location != existing->location)) {
linker_error(prog, "explicit locations for %s "
"`%s' have differing values\n",
mode_string(var), var->name);
return false;
}
existing->location = var->location;
existing->explicit_location = true;
}
/* Validate layout qualifiers for gl_FragDepth.
*
* From the AMD/ARB_conservative_depth specs:
*
* "If gl_FragDepth is redeclared in any fragment shader in a
* program, it must be redeclared in all fragment shaders in
* that program that have static assignments to
* gl_FragDepth. All redeclarations of gl_FragDepth in all
* fragment shaders in a single program must have the same set
* of qualifiers."
*/
if (strcmp(var->name, "gl_FragDepth") == 0) {
bool layout_declared = var->depth_layout != ir_depth_layout_none;
bool layout_differs =
var->depth_layout != existing->depth_layout;
if (layout_declared && layout_differs) {
linker_error(prog,
"All redeclarations of gl_FragDepth in all "
"fragment shaders in a single program must have "
"the same set of qualifiers.");
}
if (var->used && layout_differs) {
linker_error(prog,
"If gl_FragDepth is redeclared with a layout "
"qualifier in any fragment shader, it must be "
"redeclared with the same layout qualifier in "
"all fragment shaders that have assignments to "
"gl_FragDepth");
}
}
2011-10-31 14:31:07 -07:00
/* Page 35 (page 41 of the PDF) of the GLSL 4.20 spec says:
*
* "If a shared global has multiple initializers, the
* initializers must all be constant expressions, and they
* must all have the same value. Otherwise, a link error will
* result. (A shared global having only one initializer does
* not require that initializer to be a constant expression.)"
*
* Previous to 4.20 the GLSL spec simply said that initializers
* must have the same value. In this case of non-constant
* initializers, this was impossible to determine. As a result,
* no vendor actually implemented that behavior. The 4.20
* behavior matches the implemented behavior of at least one other
* vendor, so we'll implement that for all GLSL versions.
*/
2011-10-31 14:31:07 -07:00
if (var->constant_initializer != NULL) {
if (existing->constant_initializer != NULL) {
if (!var->constant_initializer->has_value(existing->constant_initializer)) {
linker_error(prog, "initializers for %s "
"`%s' have differing values\n",
mode_string(var), var->name);
return false;
}
2011-10-31 14:31:07 -07:00
} else {
/* If the first-seen instance of a particular uniform did not
* have an initializer but a later instance does, copy the
* initializer to the version stored in the symbol table.
*/
/* FINISHME: This is wrong. The constant_value field should
* FINISHME: not be modified! Imagine a case where a shader
* FINISHME: without an initializer is linked in two different
* FINISHME: programs with shaders that have differing
* FINISHME: initializers. Linking with the first will
* FINISHME: modify the shader, and linking with the second
* FINISHME: will fail.
*/
2011-10-31 14:31:07 -07:00
existing->constant_initializer =
var->constant_initializer->clone(ralloc_parent(existing),
NULL);
}
}
if (var->has_initializer) {
if (existing->has_initializer
&& (var->constant_initializer == NULL
|| existing->constant_initializer == NULL)) {
linker_error(prog,
"shared global variable `%s' has multiple "
"non-constant initializers.\n",
var->name);
return false;
}
/* Some instance had an initializer, so keep track of that. In
* this location, all sorts of initializers (constant or
* otherwise) will propagate the existence to the variable
* stored in the symbol table.
*/
existing->has_initializer = true;
}
if (existing->invariant != var->invariant) {
linker_error(prog, "declarations for %s `%s' have "
"mismatching invariant qualifiers\n",
mode_string(var), var->name);
return false;
}
if (existing->centroid != var->centroid) {
linker_error(prog, "declarations for %s `%s' have "
"mismatching centroid qualifiers\n",
mode_string(var), var->name);
return false;
}
} else
variables.add_variable(var);
}
}
return true;
}
/**
* Perform validation of uniforms used across multiple shader stages
*/
bool
cross_validate_uniforms(struct gl_shader_program *prog)
{
return cross_validate_globals(prog, prog->_LinkedShaders,
MESA_SHADER_TYPES, true);
}
/**
* Accumulates the array of prog->UniformBlocks and checks that all
* definitons of blocks agree on their contents.
*/
static bool
interstage_cross_validate_uniform_blocks(struct gl_shader_program *prog)
{
unsigned max_num_uniform_blocks = 0;
for (unsigned i = 0; i < MESA_SHADER_TYPES; i++) {
if (prog->_LinkedShaders[i])
max_num_uniform_blocks += prog->_LinkedShaders[i]->NumUniformBlocks;
}
for (unsigned i = 0; i < MESA_SHADER_TYPES; i++) {
struct gl_shader *sh = prog->_LinkedShaders[i];
prog->UniformBlockStageIndex[i] = ralloc_array(prog, int,
max_num_uniform_blocks);
for (unsigned int j = 0; j < max_num_uniform_blocks; j++)
prog->UniformBlockStageIndex[i][j] = -1;
if (sh == NULL)
continue;
for (unsigned int j = 0; j < sh->NumUniformBlocks; j++) {
int index = link_cross_validate_uniform_block(prog,
&prog->UniformBlocks,
&prog->NumUniformBlocks,
&sh->UniformBlocks[j]);
if (index == -1) {
linker_error(prog, "uniform block `%s' has mismatching definitions",
sh->UniformBlocks[j].Name);
return false;
}
prog->UniformBlockStageIndex[i][index] = j;
}
}
return true;
}
2010-07-09 14:09:34 -07:00
/**
* Populates a shaders symbol table with all global declarations
*/
static void
populate_symbol_table(gl_shader *sh)
{
sh->symbols = new(sh) glsl_symbol_table;
foreach_list(node, sh->ir) {
ir_instruction *const inst = (ir_instruction *) node;
ir_variable *var;
ir_function *func;
if ((func = inst->as_function()) != NULL) {
sh->symbols->add_function(func);
2010-07-09 14:09:34 -07:00
} else if ((var = inst->as_variable()) != NULL) {
sh->symbols->add_variable(var);
2010-07-09 14:09:34 -07:00
}
}
}
/**
* Remap variables referenced in an instruction tree
*
* This is used when instruction trees are cloned from one shader and placed in
* another. These trees will contain references to \c ir_variable nodes that
* do not exist in the target shader. This function finds these \c ir_variable
* references and replaces the references with matching variables in the target
* shader.
*
* If there is no matching variable in the target shader, a clone of the
* \c ir_variable is made and added to the target shader. The new variable is
* added to \b both the instruction stream and the symbol table.
*
* \param inst IR tree that is to be processed.
* \param symbols Symbol table containing global scope symbols in the
* linked shader.
* \param instructions Instruction stream where new variable declarations
* should be added.
*/
void
remap_variables(ir_instruction *inst, struct gl_shader *target,
hash_table *temps)
{
class remap_visitor : public ir_hierarchical_visitor {
public:
remap_visitor(struct gl_shader *target,
hash_table *temps)
{
this->target = target;
this->symbols = target->symbols;
this->instructions = target->ir;
this->temps = temps;
}
virtual ir_visitor_status visit(ir_dereference_variable *ir)
{
if (ir->var->mode == ir_var_temporary) {
ir_variable *var = (ir_variable *) hash_table_find(temps, ir->var);
assert(var != NULL);
ir->var = var;
return visit_continue;
}
ir_variable *const existing =
this->symbols->get_variable(ir->var->name);
if (existing != NULL)
ir->var = existing;
else {
ir_variable *copy = ir->var->clone(this->target, NULL);
this->symbols->add_variable(copy);
this->instructions->push_head(copy);
ir->var = copy;
}
return visit_continue;
}
private:
struct gl_shader *target;
glsl_symbol_table *symbols;
exec_list *instructions;
hash_table *temps;
};
remap_visitor v(target, temps);
inst->accept(&v);
}
/**
* Move non-declarations from one instruction stream to another
*
* The intended usage pattern of this function is to pass the pointer to the
2010-07-29 13:52:25 -07:00
* head sentinel of a list (i.e., a pointer to the list cast to an \c exec_node
* pointer) for \c last and \c false for \c make_copies on the first
* call. Successive calls pass the return value of the previous call for
* \c last and \c true for \c make_copies.
*
* \param instructions Source instruction stream
* \param last Instruction after which new instructions should be
* inserted in the target instruction stream
* \param make_copies Flag selecting whether instructions in \c instructions
* should be copied (via \c ir_instruction::clone) into the
* target list or moved.
*
* \return
* The new "last" instruction in the target instruction stream. This pointer
* is suitable for use as the \c last parameter of a later call to this
* function.
*/
exec_node *
move_non_declarations(exec_list *instructions, exec_node *last,
bool make_copies, gl_shader *target)
{
hash_table *temps = NULL;
if (make_copies)
temps = hash_table_ctor(0, hash_table_pointer_hash,
hash_table_pointer_compare);
foreach_list_safe(node, instructions) {
ir_instruction *inst = (ir_instruction *) node;
if (inst->as_function())
continue;
ir_variable *var = inst->as_variable();
if ((var != NULL) && (var->mode != ir_var_temporary))
continue;
assert(inst->as_assignment()
|| inst->as_call()
|| inst->as_if() /* for initializers with the ?: operator */
|| ((var != NULL) && (var->mode == ir_var_temporary)));
if (make_copies) {
inst = inst->clone(target, NULL);
if (var != NULL)
hash_table_insert(temps, inst, var);
else
remap_variables(inst, target, temps);
} else {
inst->remove();
}
last->insert_after(inst);
last = inst;
}
if (make_copies)
hash_table_dtor(temps);
return last;
}
/**
* Get the function signature for main from a shader
*/
static ir_function_signature *
get_main_function_signature(gl_shader *sh)
{
ir_function *const f = sh->symbols->get_function("main");
if (f != NULL) {
exec_list void_parameters;
/* Look for the 'void main()' signature and ensure that it's defined.
* This keeps the linker from accidentally pick a shader that just
* contains a prototype for main.
*
* We don't have to check for multiple definitions of main (in multiple
* shaders) because that would have already been caught above.
*/
ir_function_signature *sig = f->matching_signature(&void_parameters);
if ((sig != NULL) && sig->is_defined) {
return sig;
}
}
return NULL;
}
/**
* This class is only used in link_intrastage_shaders() below but declaring
* it inside that function leads to compiler warnings with some versions of
* gcc.
*/
class array_sizing_visitor : public ir_hierarchical_visitor {
public:
virtual ir_visitor_status visit(ir_variable *var)
{
if (var->type->is_array() && (var->type->length == 0)) {
const glsl_type *type =
glsl_type::get_array_instance(var->type->fields.array,
var->max_array_access + 1);
assert(type != NULL);
var->type = type;
}
return visit_continue;
}
};
2010-07-09 14:09:34 -07:00
/**
* Combine a group of shaders for a single stage to generate a linked shader
*
* \note
* If this function is supplied a single shader, it is cloned, and the new
* shader is returned.
*/
static struct gl_shader *
link_intrastage_shaders(void *mem_ctx,
struct gl_context *ctx,
struct gl_shader_program *prog,
2010-07-09 14:09:34 -07:00
struct gl_shader **shader_list,
unsigned num_shaders)
{
struct gl_uniform_block *uniform_blocks = NULL;
/* Check that global variables defined in multiple shaders are consistent.
*/
if (!cross_validate_globals(prog, shader_list, num_shaders, false))
return NULL;
/* Check that uniform blocks between shaders for a stage agree. */
const int num_uniform_blocks =
link_uniform_blocks(mem_ctx, prog, shader_list, num_shaders,
&uniform_blocks);
if (num_uniform_blocks < 0)
return NULL;
/* Check that there is only a single definition of each function signature
* across all shaders.
*/
for (unsigned i = 0; i < (num_shaders - 1); i++) {
foreach_list(node, shader_list[i]->ir) {
ir_function *const f = ((ir_instruction *) node)->as_function();
if (f == NULL)
continue;
for (unsigned j = i + 1; j < num_shaders; j++) {
ir_function *const other =
shader_list[j]->symbols->get_function(f->name);
/* If the other shader has no function (and therefore no function
* signatures) with the same name, skip to the next shader.
*/
if (other == NULL)
continue;
foreach_iter (exec_list_iterator, iter, *f) {
ir_function_signature *sig =
(ir_function_signature *) iter.get();
if (!sig->is_defined || sig->is_builtin)
continue;
ir_function_signature *other_sig =
other->exact_matching_signature(& sig->parameters);
if ((other_sig != NULL) && other_sig->is_defined
&& !other_sig->is_builtin) {
linker_error(prog, "function `%s' is multiply defined",
f->name);
return NULL;
}
}
}
}
}
/* Find the shader that defines main, and make a clone of it.
*
* Starting with the clone, search for undefined references. If one is
* found, find the shader that defines it. Clone the reference and add
* it to the shader. Repeat until there are no undefined references or
* until a reference cannot be resolved.
*/
gl_shader *main = NULL;
for (unsigned i = 0; i < num_shaders; i++) {
if (get_main_function_signature(shader_list[i]) != NULL) {
main = shader_list[i];
break;
}
}
if (main == NULL) {
linker_error(prog, "%s shader lacks `main'\n",
(shader_list[0]->Type == GL_VERTEX_SHADER)
? "vertex" : "fragment");
return NULL;
}
gl_shader *linked = ctx->Driver.NewShader(NULL, 0, main->Type);
2010-07-09 14:09:34 -07:00
linked->ir = new(linked) exec_list;
clone_ir_list(mem_ctx, linked->ir, main->ir);
2010-07-09 14:09:34 -07:00
linked->UniformBlocks = uniform_blocks;
linked->NumUniformBlocks = num_uniform_blocks;
ralloc_steal(linked, linked->UniformBlocks);
2010-07-09 14:09:34 -07:00
populate_symbol_table(linked);
/* The a pointer to the main function in the final linked shader (i.e., the
* copy of the original shader that contained the main function).
*/
ir_function_signature *const main_sig = get_main_function_signature(linked);
/* Move any instructions other than variable declarations or function
* declarations into main.
*/
exec_node *insertion_point =
move_non_declarations(linked->ir, (exec_node *) &main_sig->body, false,
linked);
for (unsigned i = 0; i < num_shaders; i++) {
if (shader_list[i] == main)
continue;
insertion_point = move_non_declarations(shader_list[i]->ir,
insertion_point, true, linked);
}
/* Resolve initializers for global variables in the linked shader.
*/
unsigned num_linking_shaders = num_shaders;
for (unsigned i = 0; i < num_shaders; i++)
num_linking_shaders += shader_list[i]->num_builtins_to_link;
gl_shader **linking_shaders =
(gl_shader **) calloc(num_linking_shaders, sizeof(gl_shader *));
memcpy(linking_shaders, shader_list,
sizeof(linking_shaders[0]) * num_shaders);
unsigned idx = num_shaders;
for (unsigned i = 0; i < num_shaders; i++) {
memcpy(&linking_shaders[idx], shader_list[i]->builtins_to_link,
sizeof(linking_shaders[0]) * shader_list[i]->num_builtins_to_link);
idx += shader_list[i]->num_builtins_to_link;
}
assert(idx == num_linking_shaders);
if (!link_function_calls(prog, linked, linking_shaders,
num_linking_shaders)) {
ctx->Driver.DeleteShader(ctx, linked);
linked = NULL;
}
free(linking_shaders);
/* At this point linked should contain all of the linked IR, so
* validate it to make sure nothing went wrong.
*/
if (linked)
validate_ir_tree(linked->ir);
/* Make a pass over all variable declarations to ensure that arrays with
* unspecified sizes have a size specified. The size is inferred from the
* max_array_access field.
*/
if (linked != NULL) {
array_sizing_visitor v;
v.run(linked->ir);
}
2010-07-09 14:09:34 -07:00
return linked;
}
/**
* Update the sizes of linked shader uniform arrays to the maximum
* array index used.
*
* From page 81 (page 95 of the PDF) of the OpenGL 2.1 spec:
*
* If one or more elements of an array are active,
* GetActiveUniform will return the name of the array in name,
* subject to the restrictions listed above. The type of the array
* is returned in type. The size parameter contains the highest
* array element index used, plus one. The compiler or linker
* determines the highest index used. There will be only one
* active uniform reported by the GL per uniform array.
*/
static void
update_array_sizes(struct gl_shader_program *prog)
{
for (unsigned i = 0; i < MESA_SHADER_TYPES; i++) {
if (prog->_LinkedShaders[i] == NULL)
continue;
foreach_list(node, prog->_LinkedShaders[i]->ir) {
ir_variable *const var = ((ir_instruction *) node)->as_variable();
if ((var == NULL) || (var->mode != ir_var_uniform &&
var->mode != ir_var_shader_in &&
var->mode != ir_var_shader_out) ||
!var->type->is_array())
continue;
/* GL_ARB_uniform_buffer_object says that std140 uniforms
* will not be eliminated. Since we always do std140, just
* don't resize arrays in UBOs.
*/
if (var->is_in_uniform_block())
continue;
unsigned int size = var->max_array_access;
for (unsigned j = 0; j < MESA_SHADER_TYPES; j++) {
if (prog->_LinkedShaders[j] == NULL)
continue;
foreach_list(node2, prog->_LinkedShaders[j]->ir) {
ir_variable *other_var = ((ir_instruction *) node2)->as_variable();
if (!other_var)
continue;
if (strcmp(var->name, other_var->name) == 0 &&
other_var->max_array_access > size) {
size = other_var->max_array_access;
}
}
}
if (size + 1 != var->type->fields.array->length) {
/* If this is a built-in uniform (i.e., it's backed by some
* fixed-function state), adjust the number of state slots to
* match the new array size. The number of slots per array entry
2011-04-23 19:29:15 -05:00
* is not known. It seems safe to assume that the total number of
* slots is an integer multiple of the number of array elements.
* Determine the number of slots per array element by dividing by
* the old (total) size.
*/
if (var->num_state_slots > 0) {
var->num_state_slots = (size + 1)
* (var->num_state_slots / var->type->length);
}
var->type = glsl_type::get_array_instance(var->type->fields.array,
size + 1);
/* FINISHME: We should update the types of array
* dereferences of this variable now.
*/
}
}
}
}
/**
2011-04-23 19:29:15 -05:00
* Find a contiguous set of available bits in a bitmask.
*
* \param used_mask Bits representing used (1) and unused (0) locations
* \param needed_count Number of contiguous bits needed.
*
* \return
* Base location of the available bits on success or -1 on failure.
*/
int
find_available_slots(unsigned used_mask, unsigned needed_count)
{
unsigned needed_mask = (1 << needed_count) - 1;
const int max_bit_to_test = (8 * sizeof(used_mask)) - needed_count;
/* The comparison to 32 is redundant, but without it GCC emits "warning:
* cannot optimize possibly infinite loops" for the loop below.
*/
if ((needed_count == 0) || (max_bit_to_test < 0) || (max_bit_to_test > 32))
return -1;
for (int i = 0; i <= max_bit_to_test; i++) {
if ((needed_mask & ~used_mask) == needed_mask)
return i;
needed_mask <<= 1;
}
return -1;
}
/**
* Assign locations for either VS inputs for FS outputs
*
* \param prog Shader program whose variables need locations assigned
* \param target_index Selector for the program target to receive location
* assignmnets. Must be either \c MESA_SHADER_VERTEX or
* \c MESA_SHADER_FRAGMENT.
* \param max_index Maximum number of generic locations. This corresponds
* to either the maximum number of draw buffers or the
* maximum number of generic attributes.
*
* \return
* If locations are successfully assigned, true is returned. Otherwise an
* error is emitted to the shader link log and false is returned.
*/
bool
assign_attribute_or_color_locations(gl_shader_program *prog,
unsigned target_index,
unsigned max_index)
{
/* Mark invalid locations as being used.
*/
unsigned used_locations = (max_index >= 32)
? ~0 : ~((1 << max_index) - 1);
assert((target_index == MESA_SHADER_VERTEX)
|| (target_index == MESA_SHADER_FRAGMENT));
gl_shader *const sh = prog->_LinkedShaders[target_index];
if (sh == NULL)
return true;
/* Operate in a total of four passes.
*
* 1. Invalidate the location assignments for all vertex shader inputs.
*
* 2. Assign locations for inputs that have user-defined (via
* glBindVertexAttribLocation) locations and outputs that have
* user-defined locations (via glBindFragDataLocation).
*
* 3. Sort the attributes without assigned locations by number of slots
* required in decreasing order. Fragmentation caused by attribute
* locations assigned by the application may prevent large attributes
* from having enough contiguous space.
*
* 4. Assign locations to any inputs without assigned locations.
*/
const int generic_base = (target_index == MESA_SHADER_VERTEX)
2011-07-07 16:47:59 -06:00
? (int) VERT_ATTRIB_GENERIC0 : (int) FRAG_RESULT_DATA0;
const enum ir_variable_mode direction =
(target_index == MESA_SHADER_VERTEX)
? ir_var_shader_in : ir_var_shader_out;
/* Temporary storage for the set of attributes that need locations assigned.
*/
struct temp_attr {
unsigned slots;
ir_variable *var;
/* Used below in the call to qsort. */
static int compare(const void *a, const void *b)
{
const temp_attr *const l = (const temp_attr *) a;
const temp_attr *const r = (const temp_attr *) b;
/* Reversed because we want a descending order sort below. */
return r->slots - l->slots;
}
} to_assign[16];
unsigned num_attr = 0;
foreach_list(node, sh->ir) {
ir_variable *const var = ((ir_instruction *) node)->as_variable();
2011-07-19 21:10:25 -06:00
if ((var == NULL) || (var->mode != (unsigned) direction))
continue;
if (var->explicit_location) {
if ((var->location >= (int)(max_index + generic_base))
|| (var->location < 0)) {
linker_error(prog,
"invalid explicit location %d specified for `%s'\n",
(var->location < 0)
? var->location : var->location - generic_base,
var->name);
return false;
}
} else if (target_index == MESA_SHADER_VERTEX) {
unsigned binding;
if (prog->AttributeBindings->get(binding, var->name)) {
assert(binding >= VERT_ATTRIB_GENERIC0);
var->location = binding;
var->is_unmatched_generic_inout = 0;
}
} else if (target_index == MESA_SHADER_FRAGMENT) {
unsigned binding;
unsigned index;
if (prog->FragDataBindings->get(binding, var->name)) {
assert(binding >= FRAG_RESULT_DATA0);
var->location = binding;
var->is_unmatched_generic_inout = 0;
if (prog->FragDataIndexBindings->get(index, var->name)) {
var->index = index;
}
}
}
/* If the variable is not a built-in and has a location statically
* assigned in the shader (presumably via a layout qualifier), make sure
* that it doesn't collide with other assigned locations. Otherwise,
* add it to the list of variables that need linker-assigned locations.
*/
const unsigned slots = count_attribute_slots(var->type);
if (var->location != -1) {
if (var->location >= generic_base && var->index < 1) {
/* From page 61 of the OpenGL 4.0 spec:
*
* "LinkProgram will fail if the attribute bindings assigned
* by BindAttribLocation do not leave not enough space to
* assign a location for an active matrix attribute or an
* active attribute array, both of which require multiple
* contiguous generic attributes."
*
* Previous versions of the spec contain similar language but omit
* the bit about attribute arrays.
*
* Page 61 of the OpenGL 4.0 spec also says:
*
* "It is possible for an application to bind more than one
* attribute name to the same location. This is referred to as
* aliasing. This will only work if only one of the aliased
* attributes is active in the executable program, or if no
* path through the shader consumes more than one attribute of
* a set of attributes aliased to the same location. A link
* error can occur if the linker determines that every path
* through the shader consumes multiple aliased attributes,
* but implementations are not required to generate an error
* in this case."
*
* These two paragraphs are either somewhat contradictory, or I
* don't fully understand one or both of them.
*/
/* FINISHME: The code as currently written does not support
* FINISHME: attribute location aliasing (see comment above).
*/
/* Mask representing the contiguous slots that will be used by
* this attribute.
*/
const unsigned attr = var->location - generic_base;
const unsigned use_mask = (1 << slots) - 1;
/* Generate a link error if the set of bits requested for this
* attribute overlaps any previously allocated bits.
*/
if ((~(use_mask << attr) & used_locations) != used_locations) {
const char *const string = (target_index == MESA_SHADER_VERTEX)
? "vertex shader input" : "fragment shader output";
linker_error(prog,
"insufficient contiguous locations "
"available for %s `%s' %d %d %d", string,
var->name, used_locations, use_mask, attr);
return false;
}
used_locations |= (use_mask << attr);
}
continue;
}
to_assign[num_attr].slots = slots;
to_assign[num_attr].var = var;
num_attr++;
}
/* If all of the attributes were assigned locations by the application (or
* are built-in attributes with fixed locations), return early. This should
* be the common case.
*/
if (num_attr == 0)
return true;
qsort(to_assign, num_attr, sizeof(to_assign[0]), temp_attr::compare);
if (target_index == MESA_SHADER_VERTEX) {
/* VERT_ATTRIB_GENERIC0 is a pseudo-alias for VERT_ATTRIB_POS. It can
* only be explicitly assigned by via glBindAttribLocation. Mark it as
* reserved to prevent it from being automatically allocated below.
*/
find_deref_visitor find("gl_Vertex");
find.run(sh->ir);
if (find.variable_found())
used_locations |= (1 << 0);
}
for (unsigned i = 0; i < num_attr; i++) {
/* Mask representing the contiguous slots that will be used by this
* attribute.
*/
const unsigned use_mask = (1 << to_assign[i].slots) - 1;
int location = find_available_slots(used_locations, to_assign[i].slots);
if (location < 0) {
const char *const string = (target_index == MESA_SHADER_VERTEX)
? "vertex shader input" : "fragment shader output";
linker_error(prog,
"insufficient contiguous locations "
"available for %s `%s'",
string, to_assign[i].var->name);
return false;
}
to_assign[i].var->location = generic_base + location;
to_assign[i].var->is_unmatched_generic_inout = 0;
used_locations |= (use_mask << location);
}
return true;
}
/**
* Demote shader inputs and outputs that are not used in other stages
*/
void
demote_shader_inputs_and_outputs(gl_shader *sh, enum ir_variable_mode mode)
{
foreach_list(node, sh->ir) {
ir_variable *const var = ((ir_instruction *) node)->as_variable();
if ((var == NULL) || (var->mode != int(mode)))
continue;
/* A shader 'in' or 'out' variable is only really an input or output if
* its value is used by other shader stages. This will cause the variable
* to have a location assigned.
*/
if (var->is_unmatched_generic_inout) {
var->mode = ir_var_auto;
}
}
}
/**
* Store the gl_FragDepth layout in the gl_shader_program struct.
*/
static void
store_fragdepth_layout(struct gl_shader_program *prog)
{
if (prog->_LinkedShaders[MESA_SHADER_FRAGMENT] == NULL) {
return;
}
struct exec_list *ir = prog->_LinkedShaders[MESA_SHADER_FRAGMENT]->ir;
/* We don't look up the gl_FragDepth symbol directly because if
* gl_FragDepth is not used in the shader, it's removed from the IR.
* However, the symbol won't be removed from the symbol table.
*
* We're only interested in the cases where the variable is NOT removed
* from the IR.
*/
foreach_list(node, ir) {
ir_variable *const var = ((ir_instruction *) node)->as_variable();
if (var == NULL || var->mode != ir_var_shader_out) {
continue;
}
if (strcmp(var->name, "gl_FragDepth") == 0) {
switch (var->depth_layout) {
case ir_depth_layout_none:
prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_NONE;
return;
case ir_depth_layout_any:
prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_ANY;
return;
case ir_depth_layout_greater:
prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_GREATER;
return;
case ir_depth_layout_less:
prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_LESS;
return;
case ir_depth_layout_unchanged:
prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_UNCHANGED;
return;
default:
assert(0);
return;
}
}
}
}
/**
* Validate the resources used by a program versus the implementation limits
*/
static bool
check_resources(struct gl_context *ctx, struct gl_shader_program *prog)
{
static const char *const shader_names[MESA_SHADER_TYPES] = {
"vertex", "fragment", "geometry"
};
const unsigned max_samplers[MESA_SHADER_TYPES] = {
ctx->Const.VertexProgram.MaxTextureImageUnits,
ctx->Const.FragmentProgram.MaxTextureImageUnits,
ctx->Const.GeometryProgram.MaxTextureImageUnits
};
const unsigned max_uniform_components[MESA_SHADER_TYPES] = {
ctx->Const.VertexProgram.MaxUniformComponents,
ctx->Const.FragmentProgram.MaxUniformComponents,
ctx->Const.GeometryProgram.MaxUniformComponents
};
const unsigned max_uniform_blocks[MESA_SHADER_TYPES] = {
ctx->Const.VertexProgram.MaxUniformBlocks,
ctx->Const.FragmentProgram.MaxUniformBlocks,
ctx->Const.GeometryProgram.MaxUniformBlocks,
};
for (unsigned i = 0; i < MESA_SHADER_TYPES; i++) {
struct gl_shader *sh = prog->_LinkedShaders[i];
if (sh == NULL)
continue;
if (sh->num_samplers > max_samplers[i]) {
linker_error(prog, "Too many %s shader texture samplers",
shader_names[i]);
}
if (sh->num_uniform_components > max_uniform_components[i]) {
if (ctx->Const.GLSLSkipStrictMaxUniformLimitCheck) {
linker_warning(prog, "Too many %s shader uniform components, "
"but the driver will try to optimize them out; "
"this is non-portable out-of-spec behavior\n",
shader_names[i]);
} else {
linker_error(prog, "Too many %s shader uniform components",
shader_names[i]);
}
}
}
unsigned blocks[MESA_SHADER_TYPES] = {0};
unsigned total_uniform_blocks = 0;
for (unsigned i = 0; i < prog->NumUniformBlocks; i++) {
for (unsigned j = 0; j < MESA_SHADER_TYPES; j++) {
if (prog->UniformBlockStageIndex[j][i] != -1) {
blocks[j]++;
total_uniform_blocks++;
}
}
if (total_uniform_blocks > ctx->Const.MaxCombinedUniformBlocks) {
linker_error(prog, "Too many combined uniform blocks (%d/%d)",
prog->NumUniformBlocks,
ctx->Const.MaxCombinedUniformBlocks);
} else {
for (unsigned i = 0; i < MESA_SHADER_TYPES; i++) {
if (blocks[i] > max_uniform_blocks[i]) {
linker_error(prog, "Too many %s uniform blocks (%d/%d)",
shader_names[i],
blocks[i],
max_uniform_blocks[i]);
break;
}
}
}
}
return prog->LinkStatus;
}
void
link_shaders(struct gl_context *ctx, struct gl_shader_program *prog)
{
tfeedback_decl *tfeedback_decls = NULL;
unsigned num_tfeedback_decls = prog->TransformFeedback.NumVarying;
void *mem_ctx = ralloc_context(NULL); // temporary linker context
prog->LinkStatus = false;
prog->Validated = false;
prog->_Used = false;
ralloc_free(prog->InfoLog);
prog->InfoLog = ralloc_strdup(NULL, "");
ralloc_free(prog->UniformBlocks);
prog->UniformBlocks = NULL;
prog->NumUniformBlocks = 0;
for (int i = 0; i < MESA_SHADER_TYPES; i++) {
ralloc_free(prog->UniformBlockStageIndex[i]);
prog->UniformBlockStageIndex[i] = NULL;
}
/* Separate the shaders into groups based on their type.
*/
struct gl_shader **vert_shader_list;
unsigned num_vert_shaders = 0;
struct gl_shader **frag_shader_list;
unsigned num_frag_shaders = 0;
vert_shader_list = (struct gl_shader **)
calloc(2 * prog->NumShaders, sizeof(struct gl_shader *));
frag_shader_list = &vert_shader_list[prog->NumShaders];
unsigned min_version = UINT_MAX;
unsigned max_version = 0;
const bool is_es_prog =
(prog->NumShaders > 0 && prog->Shaders[0]->IsES) ? true : false;
for (unsigned i = 0; i < prog->NumShaders; i++) {
min_version = MIN2(min_version, prog->Shaders[i]->Version);
max_version = MAX2(max_version, prog->Shaders[i]->Version);
if (prog->Shaders[i]->IsES != is_es_prog) {
linker_error(prog, "all shaders must use same shading "
"language version\n");
goto done;
}
switch (prog->Shaders[i]->Type) {
case GL_VERTEX_SHADER:
vert_shader_list[num_vert_shaders] = prog->Shaders[i];
num_vert_shaders++;
break;
case GL_FRAGMENT_SHADER:
frag_shader_list[num_frag_shaders] = prog->Shaders[i];
num_frag_shaders++;
break;
case GL_GEOMETRY_SHADER:
/* FINISHME: Support geometry shaders. */
assert(prog->Shaders[i]->Type != GL_GEOMETRY_SHADER);
break;
}
}
/* Previous to GLSL version 1.30, different compilation units could mix and
* match shading language versions. With GLSL 1.30 and later, the versions
* of all shaders must match.
*
* GLSL ES has never allowed mixing of shading language versions.
*/
if ((is_es_prog || max_version >= 130)
&& min_version != max_version) {
linker_error(prog, "all shaders must use same shading "
"language version\n");
goto done;
}
prog->Version = max_version;
prog->IsES = is_es_prog;
for (unsigned int i = 0; i < MESA_SHADER_TYPES; i++) {
if (prog->_LinkedShaders[i] != NULL)
ctx->Driver.DeleteShader(ctx, prog->_LinkedShaders[i]);
prog->_LinkedShaders[i] = NULL;
}
/* Link all shaders for a particular stage and validate the result.
*/
2010-07-09 14:09:34 -07:00
if (num_vert_shaders > 0) {
gl_shader *const sh =
link_intrastage_shaders(mem_ctx, ctx, prog, vert_shader_list,
num_vert_shaders);
2010-07-09 14:09:34 -07:00
if (sh == NULL)
goto done;
2010-07-09 14:09:34 -07:00
if (!validate_vertex_shader_executable(prog, sh))
2010-10-14 17:55:17 -07:00
goto done;
_mesa_reference_shader(ctx, &prog->_LinkedShaders[MESA_SHADER_VERTEX],
sh);
}
if (num_frag_shaders > 0) {
2010-07-09 14:09:34 -07:00
gl_shader *const sh =
link_intrastage_shaders(mem_ctx, ctx, prog, frag_shader_list,
num_frag_shaders);
2010-07-09 14:09:34 -07:00
if (sh == NULL)
goto done;
if (!validate_fragment_shader_executable(prog, sh))
2010-10-14 17:55:17 -07:00
goto done;
2010-07-09 14:09:34 -07:00
_mesa_reference_shader(ctx, &prog->_LinkedShaders[MESA_SHADER_FRAGMENT],
sh);
}
/* Here begins the inter-stage linking phase. Some initial validation is
* performed, then locations are assigned for uniforms, attributes, and
* varyings.
*/
if (cross_validate_uniforms(prog)) {
unsigned prev;
for (prev = 0; prev < MESA_SHADER_TYPES; prev++) {
if (prog->_LinkedShaders[prev] != NULL)
break;
}
2011-04-23 19:29:15 -05:00
/* Validate the inputs of each stage with the output of the preceding
* stage.
*/
for (unsigned i = prev + 1; i < MESA_SHADER_TYPES; i++) {
if (prog->_LinkedShaders[i] == NULL)
continue;
if (!cross_validate_outputs_to_inputs(prog,
prog->_LinkedShaders[prev],
prog->_LinkedShaders[i]))
goto done;
prev = i;
}
prog->LinkStatus = true;
}
/* Implement the GLSL 1.30+ rule for discard vs infinite loops Do
* it before optimization because we want most of the checks to get
* dropped thanks to constant propagation.
*
* This rule also applies to GLSL ES 3.00.
*/
if (max_version >= (is_es_prog ? 300 : 130)) {
struct gl_shader *sh = prog->_LinkedShaders[MESA_SHADER_FRAGMENT];
if (sh) {
lower_discard_flow(sh->ir);
}
}
if (!interstage_cross_validate_uniform_blocks(prog))
goto done;
/* Do common optimization before assigning storage for attributes,
* uniforms, and varyings. Later optimization could possibly make
* some of that unused.
*/
for (unsigned i = 0; i < MESA_SHADER_TYPES; i++) {
if (prog->_LinkedShaders[i] == NULL)
continue;
detect_recursion_linked(prog, prog->_LinkedShaders[i]->ir);
if (!prog->LinkStatus)
goto done;
if (ctx->ShaderCompilerOptions[i].LowerClipDistance) {
lower_clip_distance(prog->_LinkedShaders[i]);
}
unsigned max_unroll = ctx->ShaderCompilerOptions[i].MaxUnrollIterations;
while (do_common_optimization(prog->_LinkedShaders[i]->ir, true, false, max_unroll))
;
}
/* Mark all generic shader inputs and outputs as unpaired. */
if (prog->_LinkedShaders[MESA_SHADER_VERTEX] != NULL) {
link_invalidate_variable_locations(
prog->_LinkedShaders[MESA_SHADER_VERTEX],
VERT_ATTRIB_GENERIC0, VARYING_SLOT_VAR0);
}
/* FINISHME: Geometry shaders not implemented yet */
if (prog->_LinkedShaders[MESA_SHADER_FRAGMENT] != NULL) {
link_invalidate_variable_locations(
prog->_LinkedShaders[MESA_SHADER_FRAGMENT],
VARYING_SLOT_VAR0, FRAG_RESULT_DATA0);
}
/* FINISHME: The value of the max_attribute_index parameter is
* FINISHME: implementation dependent based on the value of
* FINISHME: GL_MAX_VERTEX_ATTRIBS. GL_MAX_VERTEX_ATTRIBS must be
* FINISHME: at least 16, so hardcode 16 for now.
*/
if (!assign_attribute_or_color_locations(prog, MESA_SHADER_VERTEX, 16)) {
goto done;
}
if (!assign_attribute_or_color_locations(prog, MESA_SHADER_FRAGMENT, MAX2(ctx->Const.MaxDrawBuffers, ctx->Const.MaxDualSourceDrawBuffers))) {
goto done;
}
unsigned prev;
for (prev = 0; prev < MESA_SHADER_TYPES; prev++) {
if (prog->_LinkedShaders[prev] != NULL)
break;
}
if (num_tfeedback_decls != 0) {
/* From GL_EXT_transform_feedback:
* A program will fail to link if:
*
* * the <count> specified by TransformFeedbackVaryingsEXT is
* non-zero, but the program object has no vertex or geometry
* shader;
*/
if (prev >= MESA_SHADER_FRAGMENT) {
linker_error(prog, "Transform feedback varyings specified, but "
"no vertex or geometry shader is present.");
goto done;
}
tfeedback_decls = ralloc_array(mem_ctx, tfeedback_decl,
prog->TransformFeedback.NumVarying);
if (!parse_tfeedback_decls(ctx, prog, mem_ctx, num_tfeedback_decls,
prog->TransformFeedback.VaryingNames,
tfeedback_decls))
goto done;
}
for (unsigned i = prev + 1; i < MESA_SHADER_TYPES; i++) {
if (prog->_LinkedShaders[i] == NULL)
continue;
if (!assign_varying_locations(
ctx, mem_ctx, prog, prog->_LinkedShaders[prev], prog->_LinkedShaders[i],
i == MESA_SHADER_FRAGMENT ? num_tfeedback_decls : 0,
tfeedback_decls))
goto done;
prev = i;
}
if (prev != MESA_SHADER_FRAGMENT && num_tfeedback_decls != 0) {
/* There was no fragment shader, but we still have to assign varying
* locations for use by transform feedback.
*/
if (!assign_varying_locations(
ctx, mem_ctx, prog, prog->_LinkedShaders[prev], NULL, num_tfeedback_decls,
tfeedback_decls))
goto done;
}
if (!store_tfeedback_info(ctx, prog, num_tfeedback_decls, tfeedback_decls))
goto done;
if (prog->_LinkedShaders[MESA_SHADER_VERTEX] != NULL) {
demote_shader_inputs_and_outputs(prog->_LinkedShaders[MESA_SHADER_VERTEX],
ir_var_shader_out);
linker: Eliminate more dead code after demoting shader inputs and outputs Consider the following vertex shader and fragment shader: // vertex shader varying vec4 v; uniform vec4 u; void main() { gl_Position = vec4(0.0); v = u; } // fragment shader void main() { gl_FragColor = vec4(0.0); } Since the fragment shader does not use 'v', it is demoted from a varying to a simple global variable. Once that happens, the assignment to 'v' is useless, and it should be removed. In addition, 'u' is no longer active, and it should also be removed. Performing extra dead code elimination after demoting shader inputs and outputs takes care of this. This elimination must occur before assigning uniform locations, or the declaration of 'u' cannot be removed. This change *breaks* the piglit test getuniform-01, but that test is already incorrect. The test uses a vertex shader that assigns to a user-defined varying, but it has no fragment shader. Since Mesa does not support ARB_separate_shader_objects (we only support the EXT version), the linker correctly eliminates the user-defined varying. The cascading effect is that the uniform queried by the C code of the test is also (correctly) eliminated. Signed-off-by: Ian Romanick <ian.d.romanick@intel.com> Bugzilla: https://bugs.freedesktop.org/show_bug.cgi?id=41980 Tested-by: Brian Paul <brianp@vmware.com> Cc: Bryan Cain <bryancain3@gmail.com> Cc: Vinson Lee <vlee@vmware.com> Cc: José Fonseca <jfonseca@vmware.com> Reviewed-by: Kenneth Graunke <kenneth@whitecape.org> Reviewed-by: Yuanhan Liu <yuanhan.liu@linux.intel.com>
2011-10-21 11:21:02 -07:00
/* Eliminate code that is now dead due to unused vertex outputs being
* demoted.
*/
while (do_dead_code(prog->_LinkedShaders[MESA_SHADER_VERTEX]->ir, false))
;
}
if (prog->_LinkedShaders[MESA_SHADER_GEOMETRY] != NULL) {
gl_shader *const sh = prog->_LinkedShaders[MESA_SHADER_GEOMETRY];
demote_shader_inputs_and_outputs(sh, ir_var_shader_in);
demote_shader_inputs_and_outputs(sh, ir_var_shader_out);
linker: Eliminate more dead code after demoting shader inputs and outputs Consider the following vertex shader and fragment shader: // vertex shader varying vec4 v; uniform vec4 u; void main() { gl_Position = vec4(0.0); v = u; } // fragment shader void main() { gl_FragColor = vec4(0.0); } Since the fragment shader does not use 'v', it is demoted from a varying to a simple global variable. Once that happens, the assignment to 'v' is useless, and it should be removed. In addition, 'u' is no longer active, and it should also be removed. Performing extra dead code elimination after demoting shader inputs and outputs takes care of this. This elimination must occur before assigning uniform locations, or the declaration of 'u' cannot be removed. This change *breaks* the piglit test getuniform-01, but that test is already incorrect. The test uses a vertex shader that assigns to a user-defined varying, but it has no fragment shader. Since Mesa does not support ARB_separate_shader_objects (we only support the EXT version), the linker correctly eliminates the user-defined varying. The cascading effect is that the uniform queried by the C code of the test is also (correctly) eliminated. Signed-off-by: Ian Romanick <ian.d.romanick@intel.com> Bugzilla: https://bugs.freedesktop.org/show_bug.cgi?id=41980 Tested-by: Brian Paul <brianp@vmware.com> Cc: Bryan Cain <bryancain3@gmail.com> Cc: Vinson Lee <vlee@vmware.com> Cc: José Fonseca <jfonseca@vmware.com> Reviewed-by: Kenneth Graunke <kenneth@whitecape.org> Reviewed-by: Yuanhan Liu <yuanhan.liu@linux.intel.com>
2011-10-21 11:21:02 -07:00
/* Eliminate code that is now dead due to unused geometry outputs being
* demoted.
*/
while (do_dead_code(prog->_LinkedShaders[MESA_SHADER_GEOMETRY]->ir, false))
;
}
if (prog->_LinkedShaders[MESA_SHADER_FRAGMENT] != NULL) {
gl_shader *const sh = prog->_LinkedShaders[MESA_SHADER_FRAGMENT];
demote_shader_inputs_and_outputs(sh, ir_var_shader_in);
linker: Eliminate more dead code after demoting shader inputs and outputs Consider the following vertex shader and fragment shader: // vertex shader varying vec4 v; uniform vec4 u; void main() { gl_Position = vec4(0.0); v = u; } // fragment shader void main() { gl_FragColor = vec4(0.0); } Since the fragment shader does not use 'v', it is demoted from a varying to a simple global variable. Once that happens, the assignment to 'v' is useless, and it should be removed. In addition, 'u' is no longer active, and it should also be removed. Performing extra dead code elimination after demoting shader inputs and outputs takes care of this. This elimination must occur before assigning uniform locations, or the declaration of 'u' cannot be removed. This change *breaks* the piglit test getuniform-01, but that test is already incorrect. The test uses a vertex shader that assigns to a user-defined varying, but it has no fragment shader. Since Mesa does not support ARB_separate_shader_objects (we only support the EXT version), the linker correctly eliminates the user-defined varying. The cascading effect is that the uniform queried by the C code of the test is also (correctly) eliminated. Signed-off-by: Ian Romanick <ian.d.romanick@intel.com> Bugzilla: https://bugs.freedesktop.org/show_bug.cgi?id=41980 Tested-by: Brian Paul <brianp@vmware.com> Cc: Bryan Cain <bryancain3@gmail.com> Cc: Vinson Lee <vlee@vmware.com> Cc: José Fonseca <jfonseca@vmware.com> Reviewed-by: Kenneth Graunke <kenneth@whitecape.org> Reviewed-by: Yuanhan Liu <yuanhan.liu@linux.intel.com>
2011-10-21 11:21:02 -07:00
/* Eliminate code that is now dead due to unused fragment inputs being
* demoted. This shouldn't actually do anything other than remove
* declarations of the (now unused) global variables.
*/
while (do_dead_code(prog->_LinkedShaders[MESA_SHADER_FRAGMENT]->ir, false))
;
}
linker: Eliminate more dead code after demoting shader inputs and outputs Consider the following vertex shader and fragment shader: // vertex shader varying vec4 v; uniform vec4 u; void main() { gl_Position = vec4(0.0); v = u; } // fragment shader void main() { gl_FragColor = vec4(0.0); } Since the fragment shader does not use 'v', it is demoted from a varying to a simple global variable. Once that happens, the assignment to 'v' is useless, and it should be removed. In addition, 'u' is no longer active, and it should also be removed. Performing extra dead code elimination after demoting shader inputs and outputs takes care of this. This elimination must occur before assigning uniform locations, or the declaration of 'u' cannot be removed. This change *breaks* the piglit test getuniform-01, but that test is already incorrect. The test uses a vertex shader that assigns to a user-defined varying, but it has no fragment shader. Since Mesa does not support ARB_separate_shader_objects (we only support the EXT version), the linker correctly eliminates the user-defined varying. The cascading effect is that the uniform queried by the C code of the test is also (correctly) eliminated. Signed-off-by: Ian Romanick <ian.d.romanick@intel.com> Bugzilla: https://bugs.freedesktop.org/show_bug.cgi?id=41980 Tested-by: Brian Paul <brianp@vmware.com> Cc: Bryan Cain <bryancain3@gmail.com> Cc: Vinson Lee <vlee@vmware.com> Cc: José Fonseca <jfonseca@vmware.com> Reviewed-by: Kenneth Graunke <kenneth@whitecape.org> Reviewed-by: Yuanhan Liu <yuanhan.liu@linux.intel.com>
2011-10-21 11:21:02 -07:00
update_array_sizes(prog);
link_assign_uniform_locations(prog);
store_fragdepth_layout(prog);
linker: Eliminate more dead code after demoting shader inputs and outputs Consider the following vertex shader and fragment shader: // vertex shader varying vec4 v; uniform vec4 u; void main() { gl_Position = vec4(0.0); v = u; } // fragment shader void main() { gl_FragColor = vec4(0.0); } Since the fragment shader does not use 'v', it is demoted from a varying to a simple global variable. Once that happens, the assignment to 'v' is useless, and it should be removed. In addition, 'u' is no longer active, and it should also be removed. Performing extra dead code elimination after demoting shader inputs and outputs takes care of this. This elimination must occur before assigning uniform locations, or the declaration of 'u' cannot be removed. This change *breaks* the piglit test getuniform-01, but that test is already incorrect. The test uses a vertex shader that assigns to a user-defined varying, but it has no fragment shader. Since Mesa does not support ARB_separate_shader_objects (we only support the EXT version), the linker correctly eliminates the user-defined varying. The cascading effect is that the uniform queried by the C code of the test is also (correctly) eliminated. Signed-off-by: Ian Romanick <ian.d.romanick@intel.com> Bugzilla: https://bugs.freedesktop.org/show_bug.cgi?id=41980 Tested-by: Brian Paul <brianp@vmware.com> Cc: Bryan Cain <bryancain3@gmail.com> Cc: Vinson Lee <vlee@vmware.com> Cc: José Fonseca <jfonseca@vmware.com> Reviewed-by: Kenneth Graunke <kenneth@whitecape.org> Reviewed-by: Yuanhan Liu <yuanhan.liu@linux.intel.com>
2011-10-21 11:21:02 -07:00
if (!check_resources(ctx, prog))
goto done;
/* OpenGL ES requires that a vertex shader and a fragment shader both be
* present in a linked program. By checking prog->IsES, we also
* catch the GL_ARB_ES2_compatibility case.
*/
if (!prog->InternalSeparateShader &&
(ctx->API == API_OPENGLES2 || prog->IsES)) {
if (prog->_LinkedShaders[MESA_SHADER_VERTEX] == NULL) {
linker_error(prog, "program lacks a vertex shader\n");
} else if (prog->_LinkedShaders[MESA_SHADER_FRAGMENT] == NULL) {
linker_error(prog, "program lacks a fragment shader\n");
}
}
/* FINISHME: Assign fragment shader output locations. */
done:
free(vert_shader_list);
for (unsigned i = 0; i < MESA_SHADER_TYPES; i++) {
if (prog->_LinkedShaders[i] == NULL)
continue;
/* Retain any live IR, but trash the rest. */
reparent_ir(prog->_LinkedShaders[i]->ir, prog->_LinkedShaders[i]->ir);
/* The symbol table in the linked shaders may contain references to
* variables that were removed (e.g., unused uniforms). Since it may
* contain junk, there is no possible valid use. Delete it and set the
* pointer to NULL.
*/
delete prog->_LinkedShaders[i]->symbols;
prog->_LinkedShaders[i]->symbols = NULL;
}
ralloc_free(mem_ctx);
}