mesa/src/intel/compiler/brw_ir_fs.h

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

848 lines
26 KiB
C
Raw Normal View History

/* -*- c++ -*- */
/*
* Copyright © 2010-2015 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#ifndef BRW_IR_FS_H
#define BRW_IR_FS_H
#include "brw_ir.h"
#include "brw_ir_allocator.h"
class fs_reg : public backend_reg {
public:
DECLARE_RALLOC_CXX_OPERATORS(fs_reg)
void init();
fs_reg();
fs_reg(struct ::brw_reg reg);
fs_reg(enum brw_reg_file file, unsigned nr);
fs_reg(enum brw_reg_file file, unsigned nr, enum brw_reg_type type);
bool equals(const fs_reg &r) const;
bool negative_equals(const fs_reg &r) const;
bool is_contiguous() const;
/**
* Return the size in bytes of a single logical component of the
* register assuming the given execution width.
*/
unsigned component_size(unsigned width) const;
/** Register region horizontal stride */
uint8_t stride;
};
static inline fs_reg
negate(fs_reg reg)
{
assert(reg.file != IMM);
reg.negate = !reg.negate;
return reg;
}
static inline fs_reg
retype(fs_reg reg, enum brw_reg_type type)
{
reg.type = type;
return reg;
}
static inline fs_reg
byte_offset(fs_reg reg, unsigned delta)
{
switch (reg.file) {
case BAD_FILE:
break;
case VGRF:
case ATTR:
case UNIFORM:
reg.offset += delta;
break;
case ARF:
case FIXED_GRF: {
const unsigned suboffset = reg.subnr + delta;
reg.nr += suboffset / REG_SIZE;
reg.subnr = suboffset % REG_SIZE;
break;
}
case IMM:
default:
assert(delta == 0);
}
return reg;
}
static inline fs_reg
horiz_offset(const fs_reg &reg, unsigned delta)
{
switch (reg.file) {
case BAD_FILE:
case UNIFORM:
case IMM:
/* These only have a single component that is implicitly splatted. A
* horizontal offset should be a harmless no-op.
* XXX - Handle vector immediates correctly.
*/
return reg;
case VGRF:
case ATTR:
return byte_offset(reg, delta * reg.stride * type_sz(reg.type));
case ARF:
case FIXED_GRF:
if (reg.is_null()) {
return reg;
} else {
const unsigned hstride = reg.hstride ? 1 << (reg.hstride - 1) : 0;
const unsigned vstride = reg.vstride ? 1 << (reg.vstride - 1) : 0;
const unsigned width = 1 << reg.width;
if (delta % width == 0) {
return byte_offset(reg, delta / width * vstride * type_sz(reg.type));
} else {
assert(vstride == hstride * width);
return byte_offset(reg, delta * hstride * type_sz(reg.type));
}
}
}
unreachable("Invalid register file");
}
static inline fs_reg
offset(fs_reg reg, unsigned width, unsigned delta)
{
switch (reg.file) {
case BAD_FILE:
break;
case ARF:
case FIXED_GRF:
case VGRF:
case ATTR:
case UNIFORM:
return byte_offset(reg, delta * reg.component_size(width));
case IMM:
assert(delta == 0);
}
return reg;
}
/**
* Get the scalar channel of \p reg given by \p idx and replicate it to all
* channels of the result.
*/
static inline fs_reg
component(fs_reg reg, unsigned idx)
{
reg = horiz_offset(reg, idx);
reg.stride = 0;
if (reg.file == ARF || reg.file == FIXED_GRF) {
reg.vstride = BRW_VERTICAL_STRIDE_0;
reg.width = BRW_WIDTH_1;
reg.hstride = BRW_HORIZONTAL_STRIDE_0;
}
return reg;
}
/**
* Return an integer identifying the discrete address space a register is
* contained in. A register is by definition fully contained in the single
* reg_space it belongs to, so two registers with different reg_space ids are
* guaranteed not to overlap. Most register files are a single reg_space of
* its own, only the VGRF and ATTR files are composed of multiple discrete
* address spaces, one for each allocation and input attribute respectively.
*/
static inline uint32_t
reg_space(const fs_reg &r)
{
return r.file << 16 | (r.file == VGRF || r.file == ATTR ? r.nr : 0);
}
/**
* Return the base offset in bytes of a register relative to the start of its
* reg_space().
*/
static inline unsigned
reg_offset(const fs_reg &r)
{
return (r.file == VGRF || r.file == IMM || r.file == ATTR ? 0 : r.nr) *
(r.file == UNIFORM ? 4 : REG_SIZE) + r.offset +
(r.file == ARF || r.file == FIXED_GRF ? r.subnr : 0);
}
/**
* Return the amount of padding in bytes left unused between individual
* components of register \p r due to a (horizontal) stride value greater than
* one, or zero if components are tightly packed in the register file.
*/
static inline unsigned
reg_padding(const fs_reg &r)
{
const unsigned stride = ((r.file != ARF && r.file != FIXED_GRF) ? r.stride :
r.hstride == 0 ? 0 :
1 << (r.hstride - 1));
return (MAX2(1, stride) - 1) * type_sz(r.type);
}
/**
* Return whether the register region starting at \p r and spanning \p dr
* bytes could potentially overlap the register region starting at \p s and
* spanning \p ds bytes.
*/
static inline bool
regions_overlap(const fs_reg &r, unsigned dr, const fs_reg &s, unsigned ds)
{
if (r.file != s.file)
return false;
if (r.file == VGRF) {
return r.nr == s.nr &&
!(r.offset + dr <= s.offset || s.offset + ds <= r.offset);
} else {
return !(reg_offset(r) + dr <= reg_offset(s) ||
reg_offset(s) + ds <= reg_offset(r));
}
}
/**
* Check that the register region given by r [r.offset, r.offset + dr[
* is fully contained inside the register region given by s
* [s.offset, s.offset + ds[.
*/
static inline bool
region_contained_in(const fs_reg &r, unsigned dr, const fs_reg &s, unsigned ds)
{
return reg_space(r) == reg_space(s) &&
reg_offset(r) >= reg_offset(s) &&
reg_offset(r) + dr <= reg_offset(s) + ds;
}
/**
* Return whether the given register region is n-periodic, i.e. whether the
* original region remains invariant after shifting it by \p n scalar
* channels.
*/
static inline bool
is_periodic(const fs_reg &reg, unsigned n)
{
if (reg.file == BAD_FILE || reg.is_null()) {
return true;
} else if (reg.file == IMM) {
const unsigned period = (reg.type == BRW_REGISTER_TYPE_UV ||
reg.type == BRW_REGISTER_TYPE_V ? 8 :
reg.type == BRW_REGISTER_TYPE_VF ? 4 :
1);
return n % period == 0;
} else if (reg.file == ARF || reg.file == FIXED_GRF) {
const unsigned period = (reg.hstride == 0 && reg.vstride == 0 ? 1 :
reg.vstride == 0 ? 1 << reg.width :
~0);
return n % period == 0;
} else {
return reg.stride == 0;
}
}
static inline bool
is_uniform(const fs_reg &reg)
{
return is_periodic(reg, 1);
}
/**
* Get the specified 8-component quarter of a register.
*/
static inline fs_reg
quarter(const fs_reg &reg, unsigned idx)
{
assert(idx < 4);
return horiz_offset(reg, 8 * idx);
}
/**
* Reinterpret each channel of register \p reg as a vector of values of the
* given smaller type and take the i-th subcomponent from each.
*/
static inline fs_reg
subscript(fs_reg reg, brw_reg_type type, unsigned i)
{
assert((i + 1) * type_sz(type) <= type_sz(reg.type));
if (reg.file == ARF || reg.file == FIXED_GRF) {
/* The stride is encoded inconsistently for fixed GRF and ARF registers
* as the log2 of the actual vertical and horizontal strides.
*/
const int delta = util_logbase2(type_sz(reg.type)) -
util_logbase2(type_sz(type));
reg.hstride += (reg.hstride ? delta : 0);
reg.vstride += (reg.vstride ? delta : 0);
} else if (reg.file == IMM) {
unsigned bit_size = type_sz(type) * 8;
reg.u64 >>= i * bit_size;
reg.u64 &= BITFIELD64_MASK(bit_size);
if (bit_size <= 16)
reg.u64 |= reg.u64 << 16;
return retype(reg, type);
} else {
reg.stride *= type_sz(reg.type) / type_sz(type);
}
return byte_offset(retype(reg, type), i * type_sz(type));
}
static inline fs_reg
horiz_stride(fs_reg reg, unsigned s)
{
reg.stride *= s;
return reg;
}
static const fs_reg reg_undef;
struct fs_inst : public exec_node {
private:
fs_inst &operator=(const fs_inst &);
void init(enum opcode opcode, uint8_t exec_width, const fs_reg &dst,
const fs_reg *src, unsigned sources);
public:
DECLARE_RALLOC_CXX_OPERATORS(fs_inst)
fs_inst();
fs_inst(enum opcode opcode, uint8_t exec_size);
fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst);
fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
const fs_reg &src0);
fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
const fs_reg &src0, const fs_reg &src1);
fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
const fs_reg &src0, const fs_reg &src1, const fs_reg &src2);
fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
const fs_reg src[], unsigned sources);
fs_inst(const fs_inst &that);
~fs_inst();
void resize_sources(uint8_t num_sources);
bool is_send_from_grf() const;
bool is_payload(unsigned arg) const;
bool is_partial_write() const;
unsigned components_read(unsigned i) const;
unsigned size_read(int arg) const;
bool can_do_source_mods(const struct intel_device_info *devinfo) const;
bool can_do_cmod() const;
bool can_change_types() const;
i965: Add src/dst interference for certain instructions with hazards. When working on tessellation shaders, I created some vec4 virtual opcodes for creating message headers through a sequence like: mov(8) g7<1>UD 0x00000000UD { align1 WE_all 1Q compacted }; mov(1) g7.5<1>UD 0x00000100UD { align1 WE_all }; mov(1) g7<1>UD g0<0,1,0>UD { align1 WE_all compacted }; mov(1) g7.3<1>UD g8<0,1,0>UD { align1 WE_all }; This is done in the generator since the vec4 backend can't handle align1 regioning. From the visitor's point of view, this is a single opcode: hs_set_output_urb_offsets vgrf7.0:UD, 1U, vgrf8.xxxx:UD Normally, there's no hazard between sources and destinations - an instruction (naturally) reads its sources, then writes the result to the destination. However, when the virtual instruction generates multiple hardware instructions, we can get into trouble. In the above example, if the register allocator assigned vgrf7 and vgrf8 to the same hardware register, then we'd clobber the source with 0 in the first instruction, and read back the wrong value in the last one. It occured to me that this is exactly the same problem we have with SIMD16 instructions that use W/UW or B/UB types with 0 stride. The hardware implicitly decodes them as two SIMD8 instructions, and with the overlapping regions, the first would clobber the second. Previously, we handled that by incrementing the live range end IP by 1, which works, but is excessive: the next instruction doesn't actually care about that. It might also be the end of control flow. This might keep values alive too long. What we really want is to say "my source and destinations interfere". This patch creates new infrastructure for doing just that, and teaches the register allocator to add interference when there's a hazard. For my vec4 case, we can determine this by switching on opcodes. For the SIMD16 case, we just move the existing code there. I audited our existing virtual opcodes that generate multiple instructions; I believe FS_OPCODE_PACK_HALF_2x16_SPLIT needs this treatment as well, but no others. v2: Rebased by mattst88. Signed-off-by: Kenneth Graunke <kenneth@whitecape.org> Reviewed-by: Matt Turner <mattst88@gmail.com>
2015-11-19 16:00:18 -08:00
bool has_source_and_destination_hazard() const;
bool is_3src(const struct brw_compiler *compiler) const;
bool is_math() const;
bool is_control_flow_begin() const;
bool is_control_flow_end() const;
bool is_control_flow() const;
bool is_commutative() const;
bool can_do_saturate() const;
bool reads_accumulator_implicitly() const;
bool writes_accumulator_implicitly(const struct intel_device_info *devinfo) const;
/**
* Instructions that use indirect addressing have additional register
* regioning restrictions.
*/
bool uses_indirect_addressing() const;
void remove(bblock_t *block, bool defer_later_block_ip_updates = false);
void insert_after(bblock_t *block, fs_inst *inst);
void insert_before(bblock_t *block, fs_inst *inst);
/**
* True if the instruction has side effects other than writing to
* its destination registers. You are expected not to reorder or
* optimize these out unless you know what you are doing.
*/
bool has_side_effects() const;
/**
* True if the instruction might be affected by side effects of other
* instructions.
*/
bool is_volatile() const;
/**
* Return whether \p arg is a control source of a virtual instruction which
* shouldn't contribute to the execution type and usual regioning
* restriction calculations of arithmetic instructions.
*/
bool is_control_source(unsigned arg) const;
/**
* Return the subset of flag registers read by the instruction as a bitset
* with byte granularity.
*/
unsigned flags_read(const intel_device_info *devinfo) const;
/**
* Return the subset of flag registers updated by the instruction (either
* partially or fully) as a bitset with byte granularity.
*/
intel/fs: sel.cond writes the flags on Gfx4 and Gfx5 On Gfx4 and Gfx5, sel.l (for min) and sel.ge (for max) are implemented using a separte cmpn and sel instruction. This lowering occurs in fs_vistor::lower_minmax which is called very, very late... a long, long time after the first calls to opt_cmod_propagation. As a result, conditional modifiers can be incorrectly propagated across sel.cond on those platforms. No tests were affected by this change, and I find that quite shocking. After just changing flags_written(), all of the atan tests started failing on ILK. That required the change in cmod_propagatin (and the addition of the prop_across_into_sel_gfx5 unit test). Shader-db results for ILK and GM45 are below. I looked at a couple before and after shaders... and every case that I looked at had experienced incorrect cmod propagation. This affected a LOT of apps! Euro Truck Simulator 2, The Talos Principle, Serious Sam 3, Sanctum 2, Gang Beasts, and on and on... :( I discovered this bug while working on a couple new optimization passes. One of the passes attempts to remove condition modifiers that are never used. The pass made no progress except on ILK and GM45. After investigating a couple of the affected shaders, I noticed that the code in those shaders looked wrong... investigation led to this cause. v2: Trivial changes in the unit tests. v3: Fix type in comment in unit tests. Noticed by Jason and Priit. v4: Tweak handling of BRW_OPCODE_SEL special case. Suggested by Jason. Fixes: df1aec763eb ("i965/fs: Define methods to calculate the flag subset read or written by an fs_inst.") Reviewed-by: Jason Ekstrand <jason@jlekstrand.net> Tested-by: Dave Airlie <airlied@redhat.com> Iron Lake total instructions in shared programs: 8180493 -> 8181781 (0.02%) instructions in affected programs: 541796 -> 543084 (0.24%) helped: 28 HURT: 1158 helped stats (abs) min: 1 max: 1 x̄: 1.00 x̃: 1 helped stats (rel) min: 0.35% max: 0.86% x̄: 0.53% x̃: 0.50% HURT stats (abs) min: 1 max: 3 x̄: 1.14 x̃: 1 HURT stats (rel) min: 0.12% max: 4.00% x̄: 0.37% x̃: 0.23% 95% mean confidence interval for instructions value: 1.06 1.11 95% mean confidence interval for instructions %-change: 0.31% 0.38% Instructions are HURT. total cycles in shared programs: 239420470 -> 239421690 (<.01%) cycles in affected programs: 2925992 -> 2927212 (0.04%) helped: 49 HURT: 157 helped stats (abs) min: 2 max: 284 x̄: 62.69 x̃: 70 helped stats (rel) min: 0.04% max: 6.20% x̄: 1.68% x̃: 1.96% HURT stats (abs) min: 2 max: 48 x̄: 27.34 x̃: 24 HURT stats (rel) min: 0.02% max: 2.91% x̄: 0.31% x̃: 0.20% 95% mean confidence interval for cycles value: -0.80 12.64 95% mean confidence interval for cycles %-change: -0.31% <.01% Inconclusive result (value mean confidence interval includes 0). GM45 total instructions in shared programs: 4985517 -> 4986207 (0.01%) instructions in affected programs: 306935 -> 307625 (0.22%) helped: 14 HURT: 625 helped stats (abs) min: 1 max: 1 x̄: 1.00 x̃: 1 helped stats (rel) min: 0.35% max: 0.82% x̄: 0.52% x̃: 0.49% HURT stats (abs) min: 1 max: 3 x̄: 1.13 x̃: 1 HURT stats (rel) min: 0.12% max: 3.90% x̄: 0.34% x̃: 0.22% 95% mean confidence interval for instructions value: 1.04 1.12 95% mean confidence interval for instructions %-change: 0.29% 0.36% Instructions are HURT. total cycles in shared programs: 153827268 -> 153828052 (<.01%) cycles in affected programs: 1669290 -> 1670074 (0.05%) helped: 24 HURT: 84 helped stats (abs) min: 2 max: 232 x̄: 64.33 x̃: 67 helped stats (rel) min: 0.04% max: 4.62% x̄: 1.60% x̃: 1.94% HURT stats (abs) min: 2 max: 48 x̄: 27.71 x̃: 24 HURT stats (rel) min: 0.02% max: 2.66% x̄: 0.34% x̃: 0.14% 95% mean confidence interval for cycles value: -1.94 16.46 95% mean confidence interval for cycles %-change: -0.29% 0.11% Inconclusive result (value mean confidence interval includes 0). Part-of: <https://gitlab.freedesktop.org/mesa/mesa/-/merge_requests/12191>
2021-08-02 21:33:17 -07:00
unsigned flags_written(const intel_device_info *devinfo) const;
/**
* Return true if this instruction is a sampler message gathering residency
* data.
*/
bool has_sampler_residency() const;
/** @{
* Annotation for the generated IR. One of the two can be set.
*/
const void *ir;
const char *annotation;
/** @} */
/**
* Execution size of the instruction. This is used by the generator to
* generate the correct binary for the given instruction. Current valid
* values are 1, 4, 8, 16, 32.
*/
uint8_t exec_size;
/**
* Channel group from the hardware execution and predication mask that
* should be applied to the instruction. The subset of channel enable
* signals (calculated from the EU control flow and predication state)
* given by [group, group + exec_size) will be used to mask GRF writes and
* any other side effects of the instruction.
*/
uint8_t group;
uint32_t offset; /**< spill/unspill offset or texture offset bitfield */
uint8_t mlen; /**< SEND message length */
uint8_t ex_mlen; /**< SENDS extended message length */
uint8_t target; /**< MRT target. */
uint8_t sfid; /**< SFID for SEND instructions */
uint32_t desc; /**< SEND[S] message descriptor immediate */
uint32_t ex_desc; /**< SEND[S] extended message descriptor immediate */
unsigned size_written; /**< Data written to the destination register in bytes. */
enum opcode opcode; /* BRW_OPCODE_* or FS_OPCODE_* */
enum brw_conditional_mod conditional_mod; /**< BRW_CONDITIONAL_* */
enum brw_predicate predicate;
bool predicate_inverse:1;
bool writes_accumulator:1; /**< instruction implicitly writes accumulator */
bool force_writemask_all:1;
bool no_dd_clear:1;
bool no_dd_check:1;
bool saturate:1;
bool shadow_compare:1;
bool check_tdr:1; /**< Only valid for SEND; turns it into a SENDC */
bool send_has_side_effects:1; /**< Only valid for SHADER_OPCODE_SEND */
bool send_is_volatile:1; /**< Only valid for SHADER_OPCODE_SEND */
bool send_ex_desc_scratch:1; /**< Only valid for SHADER_OPCODE_SEND, use
* the scratch surface offset to build
* extended descriptor
*/
bool send_ex_bso:1; /**< Only for SHADER_OPCODE_SEND, use extended bindless
* surface offset (26bits instead of 20bits)
*/
bool predicate_trivial:1; /**< The predication mask applied to this
* instruction is guaranteed to be uniform and
* a superset of the execution mask of the
* present block, no currently enabled channels
* will be disabled by the predicate.
*/
bool eot:1;
/* Chooses which flag subregister (f0.0 to f3.1) is used for conditional
* mod and predication.
*/
unsigned flag_subreg:3;
/**
* Systolic depth used by DPAS instruction.
*/
unsigned sdepth:4;
/**
* Repeat count used by DPAS instruction.
*/
unsigned rcount:4;
/** The number of hardware registers used for a message header. */
uint8_t header_size;
fs_reg dst;
fs_reg *src;
uint8_t sources; /**< Number of fs_reg sources. */
bool last_rt:1;
bool pi_noperspective:1; /**< Pixel interpolator noperspective flag */
bool keep_payload_trailing_zeros;
tgl_swsb sched; /**< Scheduling info. */
/* Hint that this instruction has combined LOD/LOD bias with array index */
bool has_packed_lod_ai_src;
};
/**
* Make the execution of \p inst dependent on the evaluation of a possibly
* inverted predicate.
*/
static inline fs_inst *
set_predicate_inv(enum brw_predicate pred, bool inverse,
fs_inst *inst)
{
inst->predicate = pred;
inst->predicate_inverse = inverse;
return inst;
}
/**
* Make the execution of \p inst dependent on the evaluation of a predicate.
*/
static inline fs_inst *
set_predicate(enum brw_predicate pred, fs_inst *inst)
{
return set_predicate_inv(pred, false, inst);
}
/**
* Write the result of evaluating the condition given by \p mod to a flag
* register.
*/
static inline fs_inst *
set_condmod(enum brw_conditional_mod mod, fs_inst *inst)
{
inst->conditional_mod = mod;
return inst;
}
/**
* Clamp the result of \p inst to the saturation range of its destination
* datatype.
*/
static inline fs_inst *
set_saturate(bool saturate, fs_inst *inst)
{
inst->saturate = saturate;
return inst;
}
/**
* Return the number of dataflow registers written by the instruction (either
* fully or partially) counted from 'floor(reg_offset(inst->dst) /
* register_size)'. The somewhat arbitrary register size unit is 4B for the
* UNIFORM and IMM files and 32B for all other files.
*/
inline unsigned
regs_written(const fs_inst *inst)
{
assert(inst->dst.file != UNIFORM && inst->dst.file != IMM);
return DIV_ROUND_UP(reg_offset(inst->dst) % REG_SIZE +
inst->size_written -
MIN2(inst->size_written, reg_padding(inst->dst)),
REG_SIZE);
}
/**
* Return the number of dataflow registers read by the instruction (either
* fully or partially) counted from 'floor(reg_offset(inst->src[i]) /
* register_size)'. The somewhat arbitrary register size unit is 4B for the
* UNIFORM files and 32B for all other files.
*/
inline unsigned
regs_read(const fs_inst *inst, unsigned i)
{
if (inst->src[i].file == IMM)
return 1;
const unsigned reg_size = inst->src[i].file == UNIFORM ? 4 : REG_SIZE;
return DIV_ROUND_UP(reg_offset(inst->src[i]) % reg_size +
inst->size_read(i) -
MIN2(inst->size_read(i), reg_padding(inst->src[i])),
reg_size);
}
static inline enum brw_reg_type
get_exec_type(const fs_inst *inst)
{
brw_reg_type exec_type = BRW_REGISTER_TYPE_B;
for (int i = 0; i < inst->sources; i++) {
if (inst->src[i].file != BAD_FILE &&
!inst->is_control_source(i)) {
const brw_reg_type t = get_exec_type(inst->src[i].type);
if (type_sz(t) > type_sz(exec_type))
exec_type = t;
else if (type_sz(t) == type_sz(exec_type) &&
brw_reg_type_is_floating_point(t))
exec_type = t;
}
}
if (exec_type == BRW_REGISTER_TYPE_B)
exec_type = inst->dst.type;
assert(exec_type != BRW_REGISTER_TYPE_B);
/* Promotion of the execution type to 32-bit for conversions from or to
* half-float seems to be consistent with the following text from the
* Cherryview PRM Vol. 7, "Execution Data Type":
*
* "When single precision and half precision floats are mixed between
* source operands or between source and destination operand [..] single
* precision float is the execution datatype."
*
* and from "Register Region Restrictions":
*
* "Conversion between Integer and HF (Half Float) must be DWord aligned
* and strided by a DWord on the destination."
*/
if (type_sz(exec_type) == 2 &&
inst->dst.type != exec_type) {
if (exec_type == BRW_REGISTER_TYPE_HF)
exec_type = BRW_REGISTER_TYPE_F;
else if (inst->dst.type == BRW_REGISTER_TYPE_HF)
exec_type = BRW_REGISTER_TYPE_D;
}
return exec_type;
}
static inline unsigned
get_exec_type_size(const fs_inst *inst)
{
return type_sz(get_exec_type(inst));
}
static inline bool
is_send(const fs_inst *inst)
{
return inst->mlen || inst->is_send_from_grf();
}
/**
* Return whether the instruction isn't an ALU instruction and cannot be
* assumed to complete in-order.
*/
static inline bool
is_unordered(const intel_device_info *devinfo, const fs_inst *inst)
{
return is_send(inst) || (devinfo->ver < 20 && inst->is_math()) ||
inst->opcode == BRW_OPCODE_DPAS ||
(devinfo->has_64bit_float_via_math_pipe &&
(get_exec_type(inst) == BRW_REGISTER_TYPE_DF ||
inst->dst.type == BRW_REGISTER_TYPE_DF));
}
/**
* Return whether the following regioning restriction applies to the specified
* instruction. From the Cherryview PRM Vol 7. "Register Region
* Restrictions":
*
* "When source or destination datatype is 64b or operation is integer DWord
* multiply, regioning in Align1 must follow these rules:
*
* 1. Source and Destination horizontal stride must be aligned to the same qword.
* 2. Regioning must ensure Src.Vstride = Src.Width * Src.Hstride.
* 3. Source and Destination offset must be the same, except the case of
* scalar source."
*/
static inline bool
has_dst_aligned_region_restriction(const intel_device_info *devinfo,
const fs_inst *inst,
brw_reg_type dst_type)
{
const brw_reg_type exec_type = get_exec_type(inst);
/* Even though the hardware spec claims that "integer DWord multiply"
* operations are restricted, empirical evidence and the behavior of the
* simulator suggest that only 32x32-bit integer multiplication is
* restricted.
*/
const bool is_dword_multiply = !brw_reg_type_is_floating_point(exec_type) &&
((inst->opcode == BRW_OPCODE_MUL &&
MIN2(type_sz(inst->src[0].type), type_sz(inst->src[1].type)) >= 4) ||
(inst->opcode == BRW_OPCODE_MAD &&
MIN2(type_sz(inst->src[1].type), type_sz(inst->src[2].type)) >= 4));
if (type_sz(dst_type) > 4 || type_sz(exec_type) > 4 ||
(type_sz(exec_type) == 4 && is_dword_multiply))
return devinfo->platform == INTEL_PLATFORM_CHV ||
intel_device_info_is_9lp(devinfo) ||
devinfo->verx10 >= 125;
else if (brw_reg_type_is_floating_point(dst_type))
return devinfo->verx10 >= 125;
else
return false;
}
static inline bool
has_dst_aligned_region_restriction(const intel_device_info *devinfo,
const fs_inst *inst)
{
return has_dst_aligned_region_restriction(devinfo, inst, inst->dst.type);
}
/**
* Return whether the LOAD_PAYLOAD instruction is a plain copy of bits from
* the specified register file into a VGRF.
*
* This implies identity register regions without any source-destination
* overlap, but otherwise has no implications on the location of sources and
* destination in the register file: Gathering any number of portions from
* multiple virtual registers in any order is allowed.
*/
inline bool
is_copy_payload(brw_reg_file file, const fs_inst *inst)
{
if (inst->opcode != SHADER_OPCODE_LOAD_PAYLOAD ||
inst->is_partial_write() || inst->saturate ||
inst->dst.file != VGRF)
return false;
for (unsigned i = 0; i < inst->sources; i++) {
if (inst->src[i].file != file ||
inst->src[i].abs || inst->src[i].negate)
return false;
if (!inst->src[i].is_contiguous())
return false;
if (regions_overlap(inst->dst, inst->size_written,
inst->src[i], inst->size_read(i)))
return false;
}
return true;
}
/**
* Like is_copy_payload(), but the instruction is required to copy a single
* contiguous block of registers from the given register file into the
* destination without any reordering.
*/
inline bool
is_identity_payload(brw_reg_file file, const fs_inst *inst) {
if (is_copy_payload(file, inst)) {
fs_reg reg = inst->src[0];
for (unsigned i = 0; i < inst->sources; i++) {
reg.type = inst->src[i].type;
if (!inst->src[i].equals(reg))
return false;
reg = byte_offset(reg, inst->size_read(i));
}
return true;
} else {
return false;
}
}
/**
* Like is_copy_payload(), but the instruction is required to source data from
* at least two disjoint VGRFs.
*
* This doesn't necessarily rule out the elimination of this instruction
* through register coalescing, but due to limitations of the register
* coalesce pass it might be impossible to do so directly until a later stage,
* when the LOAD_PAYLOAD instruction is unrolled into a sequence of MOV
* instructions.
*/
inline bool
is_multi_copy_payload(const fs_inst *inst) {
if (is_copy_payload(VGRF, inst)) {
for (unsigned i = 0; i < inst->sources; i++) {
if (inst->src[i].nr != inst->src[0].nr)
return true;
}
}
return false;
}
/**
* Like is_identity_payload(), but the instruction is required to copy the
* whole contents of a single VGRF into the destination.
*
* This means that there is a good chance that the instruction will be
* eliminated through register coalescing, but it's neither a necessary nor a
* sufficient condition for that to happen -- E.g. consider the case where
* source and destination registers diverge due to other instructions in the
* program overwriting part of their contents, which isn't something we can
* predict up front based on a cheap strictly local test of the copy
* instruction.
*/
inline bool
is_coalescing_payload(const brw::simple_allocator &alloc, const fs_inst *inst)
{
return is_identity_payload(VGRF, inst) &&
inst->src[0].offset == 0 &&
alloc.sizes[inst->src[0].nr] * REG_SIZE == inst->size_written;
}
bool
has_bank_conflict(const struct brw_isa_info *isa, const fs_inst *inst);
/* Return the subset of flag registers that an instruction could
* potentially read or write based on the execution controls and flag
* subregister number of the instruction.
*/
static inline unsigned
brw_fs_flag_mask(const fs_inst *inst, unsigned width)
{
assert(util_is_power_of_two_nonzero(width));
const unsigned start = (inst->flag_subreg * 16 + inst->group) &
~(width - 1);
const unsigned end = start + ALIGN(inst->exec_size, width);
return ((1 << DIV_ROUND_UP(end, 8)) - 1) & ~((1 << (start / 8)) - 1);
}
static inline unsigned
brw_fs_bit_mask(unsigned n)
{
return (n >= CHAR_BIT * sizeof(brw_fs_bit_mask(n)) ? ~0u : (1u << n) - 1);
}
static inline unsigned
brw_fs_flag_mask(const fs_reg &r, unsigned sz)
{
if (r.file == ARF) {
const unsigned start = (r.nr - BRW_ARF_FLAG) * 4 + r.subnr;
const unsigned end = start + sz;
return brw_fs_bit_mask(end) & ~brw_fs_bit_mask(start);
} else {
return 0;
}
}
#endif