mesa/src/gallium/drivers/iris/iris_state.c

1220 lines
42 KiB
C
Raw Normal View History

/*
* Copyright © 2017 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* on the rights to use, copy, modify, merge, publish, distribute, sub
* license, and/or sell copies of the Software, and to permit persons to whom
* the Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
* THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
* DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
* OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
* USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#include <stdio.h>
#include <errno.h>
#ifdef HAVE_VALGRIND
#include <valgrind.h>
#include <memcheck.h>
#define VG(x) x
#define __gen_validate_value(x) VALGRIND_CHECK_MEM_IS_DEFINED(&(x), sizeof(x))
#else
#define VG(x)
#endif
#include "pipe/p_defines.h"
#include "pipe/p_state.h"
#include "pipe/p_context.h"
#include "pipe/p_screen.h"
#include "util/u_inlines.h"
#include "util/u_transfer.h"
#include "intel/compiler/brw_compiler.h"
2017-12-27 02:54:26 -08:00
#include "iris_batch.h"
#include "iris_context.h"
#include "iris_resource.h"
#define __gen_address_type unsigned
#define __gen_user_data void
static uint64_t
__gen_combine_address(void *user_data, void *location,
unsigned address, uint32_t delta)
{
return delta;
}
#define __genxml_cmd_length(cmd) cmd ## _length
#define __genxml_cmd_length_bias(cmd) cmd ## _length_bias
#define __genxml_cmd_header(cmd) cmd ## _header
#define __genxml_cmd_pack(cmd) cmd ## _pack
#define iris_pack_command(cmd, dst, name) \
for (struct cmd name = { __genxml_cmd_header(cmd) }, \
*_dst = (void *)(dst); __builtin_expect(_dst != NULL, 1); \
({ __genxml_cmd_pack(cmd)(NULL, (void *)_dst, &name); \
VG(VALGRIND_CHECK_MEM_IS_DEFINED(_dst, __genxml_cmd_length(cmd) * 4)); \
_dst = NULL; \
}))
#define iris_pack_state(cmd, dst, name) \
for (struct cmd name = {}, \
*_dst = (void *)(dst); __builtin_expect(_dst != NULL, 1); \
__genxml_cmd_pack(cmd)(NULL, (void *)_dst, &name), \
_dst = NULL)
2017-12-27 02:54:26 -08:00
#define iris_emit_cmd(batch, cmd, name) \
iris_require_command_space(batch, 4 * __genxml_cmd_length(cmd)); \
iris_pack_command(cmd, batch->cmdbuf.map_next, name)
#include "genxml/genX_pack.h"
#include "genxml/gen_macros.h"
#define MOCS_WB (2 << 1)
UNUSED static void pipe_asserts()
{
#define PIPE_ASSERT(x) STATIC_ASSERT((int)x)
/* pipe_logicop happens to match the hardware. */
PIPE_ASSERT(PIPE_LOGICOP_CLEAR == LOGICOP_CLEAR);
PIPE_ASSERT(PIPE_LOGICOP_NOR == LOGICOP_NOR);
PIPE_ASSERT(PIPE_LOGICOP_AND_INVERTED == LOGICOP_AND_INVERTED);
PIPE_ASSERT(PIPE_LOGICOP_COPY_INVERTED == LOGICOP_COPY_INVERTED);
PIPE_ASSERT(PIPE_LOGICOP_AND_REVERSE == LOGICOP_AND_REVERSE);
PIPE_ASSERT(PIPE_LOGICOP_INVERT == LOGICOP_INVERT);
PIPE_ASSERT(PIPE_LOGICOP_XOR == LOGICOP_XOR);
PIPE_ASSERT(PIPE_LOGICOP_NAND == LOGICOP_NAND);
PIPE_ASSERT(PIPE_LOGICOP_AND == LOGICOP_AND);
PIPE_ASSERT(PIPE_LOGICOP_EQUIV == LOGICOP_EQUIV);
PIPE_ASSERT(PIPE_LOGICOP_NOOP == LOGICOP_NOOP);
PIPE_ASSERT(PIPE_LOGICOP_OR_INVERTED == LOGICOP_OR_INVERTED);
PIPE_ASSERT(PIPE_LOGICOP_COPY == LOGICOP_COPY);
PIPE_ASSERT(PIPE_LOGICOP_OR_REVERSE == LOGICOP_OR_REVERSE);
PIPE_ASSERT(PIPE_LOGICOP_OR == LOGICOP_OR);
PIPE_ASSERT(PIPE_LOGICOP_SET == LOGICOP_SET);
/* pipe_blend_func happens to match the hardware. */
PIPE_ASSERT(PIPE_BLENDFACTOR_ONE == BLENDFACTOR_ONE);
PIPE_ASSERT(PIPE_BLENDFACTOR_SRC_COLOR == BLENDFACTOR_SRC_COLOR);
PIPE_ASSERT(PIPE_BLENDFACTOR_SRC_ALPHA == BLENDFACTOR_SRC_ALPHA);
PIPE_ASSERT(PIPE_BLENDFACTOR_DST_ALPHA == BLENDFACTOR_DST_ALPHA);
PIPE_ASSERT(PIPE_BLENDFACTOR_DST_COLOR == BLENDFACTOR_DST_COLOR);
PIPE_ASSERT(PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE == BLENDFACTOR_SRC_ALPHA_SATURATE);
PIPE_ASSERT(PIPE_BLENDFACTOR_CONST_COLOR == BLENDFACTOR_CONST_COLOR);
PIPE_ASSERT(PIPE_BLENDFACTOR_CONST_ALPHA == BLENDFACTOR_CONST_ALPHA);
PIPE_ASSERT(PIPE_BLENDFACTOR_SRC1_COLOR == BLENDFACTOR_SRC1_COLOR);
PIPE_ASSERT(PIPE_BLENDFACTOR_SRC1_ALPHA == BLENDFACTOR_SRC1_ALPHA);
PIPE_ASSERT(PIPE_BLENDFACTOR_ZERO == BLENDFACTOR_ZERO);
PIPE_ASSERT(PIPE_BLENDFACTOR_INV_SRC_COLOR == BLENDFACTOR_INV_SRC_COLOR);
PIPE_ASSERT(PIPE_BLENDFACTOR_INV_SRC_ALPHA == BLENDFACTOR_INV_SRC_ALPHA);
PIPE_ASSERT(PIPE_BLENDFACTOR_INV_DST_ALPHA == BLENDFACTOR_INV_DST_ALPHA);
PIPE_ASSERT(PIPE_BLENDFACTOR_INV_DST_COLOR == BLENDFACTOR_INV_DST_COLOR);
PIPE_ASSERT(PIPE_BLENDFACTOR_INV_CONST_COLOR == BLENDFACTOR_INV_CONST_COLOR);
PIPE_ASSERT(PIPE_BLENDFACTOR_INV_CONST_ALPHA == BLENDFACTOR_INV_CONST_ALPHA);
PIPE_ASSERT(PIPE_BLENDFACTOR_INV_SRC1_COLOR == BLENDFACTOR_INV_SRC1_COLOR);
PIPE_ASSERT(PIPE_BLENDFACTOR_INV_SRC1_ALPHA == BLENDFACTOR_INV_SRC1_ALPHA);
/* pipe_blend_func happens to match the hardware. */
PIPE_ASSERT(PIPE_BLEND_ADD == BLENDFUNCTION_ADD);
PIPE_ASSERT(PIPE_BLEND_SUBTRACT == BLENDFUNCTION_SUBTRACT);
PIPE_ASSERT(PIPE_BLEND_REVERSE_SUBTRACT == BLENDFUNCTION_REVERSE_SUBTRACT);
PIPE_ASSERT(PIPE_BLEND_MIN == BLENDFUNCTION_MIN);
PIPE_ASSERT(PIPE_BLEND_MAX == BLENDFUNCTION_MAX);
/* pipe_stencil_op happens to match the hardware. */
PIPE_ASSERT(PIPE_STENCIL_OP_KEEP == STENCILOP_KEEP);
PIPE_ASSERT(PIPE_STENCIL_OP_ZERO == STENCILOP_ZERO);
PIPE_ASSERT(PIPE_STENCIL_OP_REPLACE == STENCILOP_REPLACE);
PIPE_ASSERT(PIPE_STENCIL_OP_INCR == STENCILOP_INCRSAT);
PIPE_ASSERT(PIPE_STENCIL_OP_DECR == STENCILOP_DECRSAT);
PIPE_ASSERT(PIPE_STENCIL_OP_INCR_WRAP == STENCILOP_INCR);
PIPE_ASSERT(PIPE_STENCIL_OP_DECR_WRAP == STENCILOP_DECR);
PIPE_ASSERT(PIPE_STENCIL_OP_INVERT == STENCILOP_INVERT);
#undef PIPE_ASSERT
}
static unsigned
translate_compare_func(enum pipe_compare_func pipe_func)
{
static const unsigned map[] = {
[PIPE_FUNC_NEVER] = COMPAREFUNCTION_NEVER,
[PIPE_FUNC_LESS] = COMPAREFUNCTION_LESS,
[PIPE_FUNC_EQUAL] = COMPAREFUNCTION_EQUAL,
[PIPE_FUNC_LEQUAL] = COMPAREFUNCTION_LEQUAL,
[PIPE_FUNC_GREATER] = COMPAREFUNCTION_GREATER,
[PIPE_FUNC_NOTEQUAL] = COMPAREFUNCTION_NOTEQUAL,
[PIPE_FUNC_GEQUAL] = COMPAREFUNCTION_GEQUAL,
[PIPE_FUNC_ALWAYS] = COMPAREFUNCTION_ALWAYS,
};
return map[pipe_func];
}
static unsigned
translate_shadow_func(enum pipe_compare_func pipe_func)
{
/* Gallium specifies the result of shadow comparisons as:
*
* 1 if ref <op> texel,
* 0 otherwise.
*
* The hardware does:
*
* 0 if texel <op> ref,
* 1 otherwise.
*
* So we need to flip the operator and also negate.
*/
static const unsigned map[] = {
[PIPE_FUNC_NEVER] = PREFILTEROPALWAYS,
[PIPE_FUNC_LESS] = PREFILTEROPLEQUAL,
[PIPE_FUNC_EQUAL] = PREFILTEROPNOTEQUAL,
[PIPE_FUNC_LEQUAL] = PREFILTEROPLESS,
[PIPE_FUNC_GREATER] = PREFILTEROPGEQUAL,
[PIPE_FUNC_NOTEQUAL] = PREFILTEROPEQUAL,
[PIPE_FUNC_GEQUAL] = PREFILTEROPGREATER,
[PIPE_FUNC_ALWAYS] = PREFILTEROPNEVER,
};
return map[pipe_func];
}
static unsigned
translate_cull_mode(unsigned pipe_face)
{
static const unsigned map[4] = {
[PIPE_FACE_NONE] = CULLMODE_NONE,
[PIPE_FACE_FRONT] = CULLMODE_FRONT,
[PIPE_FACE_BACK] = CULLMODE_BACK,
[PIPE_FACE_FRONT_AND_BACK] = CULLMODE_BOTH,
};
return map[pipe_face];
}
static unsigned
translate_fill_mode(unsigned pipe_polymode)
{
static const unsigned map[4] = {
[PIPE_POLYGON_MODE_FILL] = FILL_MODE_SOLID,
[PIPE_POLYGON_MODE_LINE] = FILL_MODE_WIREFRAME,
[PIPE_POLYGON_MODE_POINT] = FILL_MODE_POINT,
[PIPE_POLYGON_MODE_FILL_RECTANGLE] = FILL_MODE_SOLID,
};
return map[pipe_polymode];
}
static void
iris_draw_vbo(struct pipe_context *ctx, const struct pipe_draw_info *info)
{
}
static void
iris_launch_grid(struct pipe_context *ctx, const struct pipe_grid_info *info)
{
}
static void
iris_set_blend_color(struct pipe_context *ctx,
const struct pipe_blend_color *state)
{
struct iris_context *ice = (struct iris_context *) ctx;
memcpy(&ice->state.blend_color, state, sizeof(struct pipe_blend_color));
ice->state.dirty |= IRIS_DIRTY_COLOR_CALC_STATE;
}
struct iris_blend_state {
uint32_t ps_blend[GENX(3DSTATE_PS_BLEND_length)];
uint32_t blend_state[GENX(BLEND_STATE_length)];
uint32_t blend_entries[BRW_MAX_DRAW_BUFFERS *
GENX(BLEND_STATE_ENTRY_length)];
};
static void *
iris_create_blend_state(struct pipe_context *ctx,
const struct pipe_blend_state *state)
{
struct iris_blend_state *cso = malloc(sizeof(struct iris_blend_state));
iris_pack_state(GENX(BLEND_STATE), cso->blend_state, bs) {
bs.AlphaToCoverageEnable = state->alpha_to_coverage;
bs.IndependentAlphaBlendEnable = state->independent_blend_enable;
bs.AlphaToOneEnable = state->alpha_to_one;
bs.AlphaToCoverageDitherEnable = state->alpha_to_coverage;
bs.ColorDitherEnable = state->dither;
//bs.AlphaTestEnable = <comes from alpha state> :(
//bs.AlphaTestFunction = <comes from alpha state> :(
}
iris_pack_command(GENX(3DSTATE_PS_BLEND), cso->ps_blend, pb) {
//pb.HasWriteableRT = <comes from somewhere> :(
//pb.AlphaTestEnable = <comes from alpha state> :(
pb.AlphaToCoverageEnable = state->alpha_to_coverage;
pb.IndependentAlphaBlendEnable = state->independent_blend_enable;
pb.ColorBufferBlendEnable = state->rt[0].blend_enable;
pb.SourceBlendFactor = state->rt[0].rgb_src_factor;
pb.SourceAlphaBlendFactor = state->rt[0].alpha_func;
pb.DestinationBlendFactor = state->rt[0].rgb_dst_factor;
pb.DestinationAlphaBlendFactor = state->rt[0].alpha_dst_factor;
}
for (int i = 0; i < BRW_MAX_DRAW_BUFFERS; i++) {
iris_pack_state(GENX(BLEND_STATE_ENTRY), &cso->blend_entries[i], be) {
be.LogicOpEnable = state->logicop_enable;
be.LogicOpFunction = state->logicop_func;
be.PreBlendSourceOnlyClampEnable = false;
be.ColorClampRange = COLORCLAMP_RTFORMAT;
be.PreBlendColorClampEnable = true;
be.PostBlendColorClampEnable = true;
be.ColorBufferBlendEnable = state->rt[i].blend_enable;
be.ColorBlendFunction = state->rt[i].rgb_func;
be.AlphaBlendFunction = state->rt[i].alpha_func;
be.SourceBlendFactor = state->rt[i].rgb_src_factor;
be.SourceAlphaBlendFactor = state->rt[i].alpha_func;
be.DestinationBlendFactor = state->rt[i].rgb_dst_factor;
be.DestinationAlphaBlendFactor = state->rt[i].alpha_dst_factor;
be.WriteDisableRed = state->rt[i].colormask & PIPE_MASK_R;
be.WriteDisableGreen = state->rt[i].colormask & PIPE_MASK_G;
be.WriteDisableBlue = state->rt[i].colormask & PIPE_MASK_B;
be.WriteDisableAlpha = state->rt[i].colormask & PIPE_MASK_A;
}
}
return cso;
}
2017-12-27 02:54:26 -08:00
static void
iris_bind_blend_state(struct pipe_context *ctx, void *state)
{
struct iris_context *ice = (struct iris_context *) ctx;
ice->state.cso_blend = state;
ice->state.dirty |= IRIS_DIRTY_CC_VIEWPORT;
ice->state.dirty |= IRIS_DIRTY_WM_DEPTH_STENCIL;
}
struct iris_depth_stencil_alpha_state {
uint32_t wmds[GENX(3DSTATE_WM_DEPTH_STENCIL_length)];
uint32_t cc_vp[GENX(CC_VIEWPORT_length)];
struct pipe_alpha_state alpha; /* to BLEND_STATE, 3DSTATE_PS_BLEND */
};
static void *
2017-12-27 02:54:26 -08:00
iris_create_zsa_state(struct pipe_context *ctx,
const struct pipe_depth_stencil_alpha_state *state)
{
struct iris_depth_stencil_alpha_state *cso =
malloc(sizeof(struct iris_depth_stencil_alpha_state));
cso->alpha = state->alpha;
bool two_sided_stencil = state->stencil[1].enabled;
/* The state tracker needs to optimize away EQUAL writes for us. */
assert(!(state->depth.func == PIPE_FUNC_EQUAL && state->depth.writemask));
iris_pack_command(GENX(3DSTATE_WM_DEPTH_STENCIL), cso->wmds, wmds) {
wmds.StencilFailOp = state->stencil[0].fail_op;
wmds.StencilPassDepthFailOp = state->stencil[0].zfail_op;
wmds.StencilPassDepthPassOp = state->stencil[0].zpass_op;
wmds.StencilTestFunction =
translate_compare_func(state->stencil[0].func);
wmds.BackfaceStencilFailOp = state->stencil[1].fail_op;
wmds.BackfaceStencilPassDepthFailOp = state->stencil[1].zfail_op;
wmds.BackfaceStencilPassDepthPassOp = state->stencil[1].zpass_op;
wmds.BackfaceStencilTestFunction =
translate_compare_func(state->stencil[1].func);
wmds.DepthTestFunction = translate_compare_func(state->depth.func);
wmds.DoubleSidedStencilEnable = two_sided_stencil;
wmds.StencilTestEnable = state->stencil[0].enabled;
wmds.StencilBufferWriteEnable =
state->stencil[0].writemask != 0 ||
(two_sided_stencil && state->stencil[1].writemask != 0);
wmds.DepthTestEnable = state->depth.enabled;
wmds.DepthBufferWriteEnable = state->depth.writemask;
wmds.StencilTestMask = state->stencil[0].valuemask;
wmds.StencilWriteMask = state->stencil[0].writemask;
wmds.BackfaceStencilTestMask = state->stencil[1].valuemask;
wmds.BackfaceStencilWriteMask = state->stencil[1].writemask;
//wmds.StencilReferenceValue = <comes from elsewhere>
//wmds.BackfaceStencilReferenceValue = <comes from elsewhere>
}
iris_pack_state(GENX(CC_VIEWPORT), cso->cc_vp, ccvp) {
ccvp.MinimumDepth = state->depth.bounds_min;
ccvp.MaximumDepth = state->depth.bounds_max;
}
return cso;
}
2017-12-27 02:54:26 -08:00
static void
iris_bind_zsa_state(struct pipe_context *ctx, void *state)
{
struct iris_context *ice = (struct iris_context *) ctx;
ice->state.cso_zsa = state;
ice->state.dirty |= IRIS_DIRTY_CC_VIEWPORT;
ice->state.dirty |= IRIS_DIRTY_WM_DEPTH_STENCIL;
}
struct iris_rasterizer_state {
uint32_t sf[GENX(3DSTATE_SF_length)];
uint32_t clip[GENX(3DSTATE_CLIP_length)];
uint32_t raster[GENX(3DSTATE_RASTER_length)];
uint32_t wm[GENX(3DSTATE_WM_length)];
bool flatshade; /* for shader state */
bool light_twoside; /* for shader state */
bool rasterizer_discard; /* for 3DSTATE_STREAMOUT */
enum pipe_sprite_coord_mode sprite_coord_mode; /* PIPE_SPRITE_* */
uint8_t line_stipple_factor;
uint16_t line_stipple_pattern;
};
static void *
iris_create_rasterizer_state(struct pipe_context *ctx,
const struct pipe_rasterizer_state *state)
{
struct iris_rasterizer_state *cso =
malloc(sizeof(struct iris_rasterizer_state));
#if 0
sprite_coord_mode -> SBE PointSpriteTextureCoordinateOrigin
sprite_coord_enable -> SBE PointSpriteTextureCoordinateEnable
point_quad_rasterization -> SBE?
not necessary?
{
poly_smooth
force_persample_interp - ?
bottom_edge_rule
offset_units_unscaled - cap not exposed
}
unsigned line_stipple_factor:8; /**< [1..256] actually */
unsigned line_stipple_pattern:16;
#endif
cso->flatshade = state->flatshade;
cso->light_twoside = state->light_twoside;
cso->rasterizer_discard = state->rasterizer_discard;
cso->line_stipple_factor = state->line_stipple_factor;
cso->line_stipple_pattern = state->line_stipple_pattern;
// for 3DSTATE_MULTISAMPLE, if we want it.
//cso->half_pixel_center = state->half_pixel_center;
iris_pack_command(GENX(3DSTATE_SF), cso->sf, sf) {
sf.StatisticsEnable = true;
sf.ViewportTransformEnable = true;
sf.AALineDistanceMode = AALINEDISTANCE_TRUE;
sf.LineEndCapAntialiasingRegionWidth =
state->line_smooth ? _10pixels : _05pixels;
sf.LastPixelEnable = state->line_last_pixel;
sf.LineWidth = state->line_width;
sf.SmoothPointEnable = state->point_smooth;
sf.PointWidthSource = state->point_size_per_vertex ? Vertex : State;
sf.PointWidth = state->point_size;
if (state->flatshade_first) {
sf.TriangleStripListProvokingVertexSelect = 2;
sf.TriangleFanProvokingVertexSelect = 2;
sf.LineStripListProvokingVertexSelect = 1;
} else {
sf.TriangleFanProvokingVertexSelect = 1;
}
}
/* COMPLETE! */
iris_pack_command(GENX(3DSTATE_RASTER), cso->raster, rr) {
rr.FrontWinding = state->front_ccw ? CounterClockwise : Clockwise;
rr.CullMode = translate_cull_mode(state->cull_face);
rr.FrontFaceFillMode = translate_fill_mode(state->fill_front);
rr.BackFaceFillMode = translate_fill_mode(state->fill_back);
rr.DXMultisampleRasterizationEnable = state->multisample;
rr.GlobalDepthOffsetEnableSolid = state->offset_tri;
rr.GlobalDepthOffsetEnableWireframe = state->offset_line;
rr.GlobalDepthOffsetEnablePoint = state->offset_point;
rr.GlobalDepthOffsetConstant = state->offset_units;
rr.GlobalDepthOffsetScale = state->offset_scale;
rr.GlobalDepthOffsetClamp = state->offset_clamp;
rr.SmoothPointEnable = state->point_smooth;
rr.AntialiasingEnable = state->line_smooth;
rr.ScissorRectangleEnable = state->scissor;
rr.ViewportZNearClipTestEnable = state->depth_clip_near;
rr.ViewportZFarClipTestEnable = state->depth_clip_far;
//rr.ConservativeRasterizationEnable = not yet supported by Gallium...
}
iris_pack_command(GENX(3DSTATE_CLIP), cso->clip, cl) {
cl.StatisticsEnable = true;
cl.EarlyCullEnable = true;
cl.UserClipDistanceClipTestEnableBitmask = state->clip_plane_enable;
cl.ForceUserClipDistanceClipTestEnableBitmask = true;
cl.APIMode = state->clip_halfz ? APIMODE_D3D : APIMODE_OGL;
cl.GuardbandClipTestEnable = true;
cl.ClipMode = CLIPMODE_NORMAL;
cl.ClipEnable = true;
cl.ViewportXYClipTestEnable = state->point_tri_clip;
cl.MinimumPointWidth = 0.125;
cl.MaximumPointWidth = 255.875;
//.NonPerspectiveBarycentricEnable = <comes from FS prog> :(
//.ForceZeroRTAIndexEnable = <comes from FB layers being 0>
if (state->flatshade_first) {
cl.TriangleStripListProvokingVertexSelect = 2;
cl.TriangleFanProvokingVertexSelect = 2;
cl.LineStripListProvokingVertexSelect = 1;
} else {
cl.TriangleFanProvokingVertexSelect = 1;
}
}
iris_pack_command(GENX(3DSTATE_WM), cso->wm, wm) {
wm.LineAntialiasingRegionWidth = _10pixels;
wm.LineEndCapAntialiasingRegionWidth = _05pixels;
wm.PointRasterizationRule = RASTRULE_UPPER_RIGHT;
wm.StatisticsEnable = true;
wm.LineStippleEnable = state->line_stipple_enable;
wm.PolygonStippleEnable = state->poly_stipple_enable;
// wm.BarycentricInterpolationMode = <comes from FS program> :(
// wm.EarlyDepthStencilControl = <comes from FS program> :(
}
return cso;
}
static uint32_t
translate_wrap(unsigned pipe_wrap)
{
static const unsigned map[] = {
[PIPE_TEX_WRAP_REPEAT] = TCM_WRAP,
[PIPE_TEX_WRAP_CLAMP] = TCM_HALF_BORDER,
[PIPE_TEX_WRAP_CLAMP_TO_EDGE] = TCM_CLAMP,
[PIPE_TEX_WRAP_CLAMP_TO_BORDER] = TCM_CLAMP_BORDER,
[PIPE_TEX_WRAP_MIRROR_REPEAT] = TCM_MIRROR,
[PIPE_TEX_WRAP_MIRROR_CLAMP_TO_EDGE] = TCM_MIRROR_ONCE,
[PIPE_TEX_WRAP_MIRROR_CLAMP] = -1, // XXX: ???
[PIPE_TEX_WRAP_MIRROR_CLAMP_TO_BORDER] = -1, // XXX: ???
};
return map[pipe_wrap];
}
/**
* Return true if the given wrap mode requires the border color to exist.
*/
static bool
wrap_mode_needs_border_color(unsigned wrap_mode)
{
return wrap_mode == TCM_CLAMP_BORDER || wrap_mode == TCM_HALF_BORDER;
}
static unsigned
translate_mip_filter(enum pipe_tex_mipfilter pipe_mip)
{
static const unsigned map[] = {
[PIPE_TEX_MIPFILTER_NEAREST] = MIPFILTER_NEAREST,
[PIPE_TEX_MIPFILTER_LINEAR] = MIPFILTER_LINEAR,
[PIPE_TEX_MIPFILTER_NONE] = MIPFILTER_NONE,
};
return map[pipe_mip];
}
struct iris_sampler_state {
struct pipe_sampler_state base;
bool needs_border_color;
uint32_t sampler_state[GENX(SAMPLER_STATE_length)];
};
static void *
iris_create_sampler_state(struct pipe_context *pctx,
const struct pipe_sampler_state *state)
{
struct iris_sampler_state *cso = CALLOC_STRUCT(iris_sampler_state);
if (!cso)
return NULL;
STATIC_ASSERT(PIPE_TEX_FILTER_NEAREST == MAPFILTER_NEAREST);
STATIC_ASSERT(PIPE_TEX_FILTER_LINEAR == MAPFILTER_LINEAR);
unsigned wrap_s = translate_wrap(state->wrap_s);
unsigned wrap_t = translate_wrap(state->wrap_t);
unsigned wrap_r = translate_wrap(state->wrap_r);
cso->needs_border_color = wrap_mode_needs_border_color(wrap_s) ||
wrap_mode_needs_border_color(wrap_t) ||
wrap_mode_needs_border_color(wrap_r);
iris_pack_state(GENX(SAMPLER_STATE), cso->sampler_state, samp) {
samp.TCXAddressControlMode = wrap_s;
samp.TCYAddressControlMode = wrap_t;
samp.TCZAddressControlMode = wrap_r;
samp.CubeSurfaceControlMode = state->seamless_cube_map;
samp.NonnormalizedCoordinateEnable = !state->normalized_coords;
samp.MinModeFilter = state->min_img_filter;
samp.MagModeFilter = state->mag_img_filter;
samp.MipModeFilter = translate_mip_filter(state->min_mip_filter);
samp.MaximumAnisotropy = RATIO21;
if (state->max_anisotropy >= 2) {
if (state->min_img_filter == PIPE_TEX_FILTER_LINEAR) {
samp.MinModeFilter = MAPFILTER_ANISOTROPIC;
samp.AnisotropicAlgorithm = EWAApproximation;
}
if (state->mag_img_filter == PIPE_TEX_FILTER_LINEAR)
samp.MagModeFilter = MAPFILTER_ANISOTROPIC;
samp.MaximumAnisotropy =
MIN2((state->max_anisotropy - 2) / 2, RATIO161);
}
/* Set address rounding bits if not using nearest filtering. */
if (state->min_img_filter != PIPE_TEX_FILTER_NEAREST) {
samp.UAddressMinFilterRoundingEnable = true;
samp.VAddressMinFilterRoundingEnable = true;
samp.RAddressMinFilterRoundingEnable = true;
}
if (state->mag_img_filter != PIPE_TEX_FILTER_NEAREST) {
samp.UAddressMagFilterRoundingEnable = true;
samp.VAddressMagFilterRoundingEnable = true;
samp.RAddressMagFilterRoundingEnable = true;
}
if (state->compare_mode == PIPE_TEX_COMPARE_R_TO_TEXTURE)
samp.ShadowFunction = translate_shadow_func(state->compare_func);
const float hw_max_lod = GEN_GEN >= 7 ? 14 : 13;
samp.LODPreClampMode = CLAMP_MODE_OGL;
samp.MinLOD = CLAMP(state->min_lod, 0, hw_max_lod);
samp.MaxLOD = CLAMP(state->max_lod, 0, hw_max_lod);
samp.TextureLODBias = CLAMP(state->lod_bias, -16, 15);
//samp.BorderColorPointer = <<comes from elsewhere>>
}
return cso;
}
static struct pipe_sampler_view *
iris_create_sampler_view(struct pipe_context *ctx,
struct pipe_resource *texture,
const struct pipe_sampler_view *state)
{
struct pipe_sampler_view *sampler_view = CALLOC_STRUCT(pipe_sampler_view);
if (!sampler_view)
return NULL;
/* initialize base object */
*sampler_view = *state;
sampler_view->texture = NULL;
pipe_resource_reference(&sampler_view->texture, texture);
pipe_reference_init(&sampler_view->reference, 1);
sampler_view->context = ctx;
return sampler_view;
}
static struct pipe_surface *
iris_create_surface(struct pipe_context *ctx,
struct pipe_resource *tex,
const struct pipe_surface *surf_tmpl)
{
struct pipe_surface *surface = CALLOC_STRUCT(pipe_surface);
if (!surface)
return NULL;
pipe_reference_init(&surface->reference, 1);
pipe_resource_reference(&surface->texture, tex);
surface->context = ctx;
surface->format = surf_tmpl->format;
surface->width = tex->width0;
surface->height = tex->height0;
surface->texture = tex;
surface->u.tex.first_layer = surf_tmpl->u.tex.first_layer;
surface->u.tex.last_layer = surf_tmpl->u.tex.last_layer;
surface->u.tex.level = surf_tmpl->u.tex.level;
return surface;
}
static void
iris_set_sampler_views(struct pipe_context *ctx,
enum pipe_shader_type shader,
unsigned start, unsigned count,
struct pipe_sampler_view **views)
{
}
static void
iris_bind_sampler_states(struct pipe_context *ctx,
enum pipe_shader_type shader,
unsigned start, unsigned count,
void **states)
{
}
static void
iris_set_clip_state(struct pipe_context *ctx,
const struct pipe_clip_state *state)
{
}
static void
iris_set_polygon_stipple(struct pipe_context *ctx,
const struct pipe_poly_stipple *state)
{
struct iris_context *ice = (struct iris_context *) ctx;
memcpy(&ice->state.poly_stipple, state, sizeof(*state));
ice->state.dirty |= IRIS_DIRTY_POLYGON_STIPPLE;
}
static void
iris_set_sample_mask(struct pipe_context *pipe, unsigned sample_mask)
{
}
static void
iris_set_scissor_states(struct pipe_context *ctx,
unsigned start_slot,
unsigned num_scissors,
const struct pipe_scissor_state *state)
{
struct iris_context *ice = (struct iris_context *) ctx;
for (unsigned i = start_slot; i < start_slot + num_scissors; i++) {
ice->state.scissors[i] = *state;
}
ice->state.dirty |= IRIS_DIRTY_SCISSOR_RECT;
}
static void
iris_set_stencil_ref(struct pipe_context *ctx,
const struct pipe_stencil_ref *state)
{
struct iris_context *ice = (struct iris_context *) ctx;
memcpy(&ice->state.stencil_ref, state, sizeof(*state));
ice->state.dirty |= IRIS_DIRTY_WM_DEPTH_STENCIL;
}
2017-12-23 14:33:04 -08:00
struct iris_viewport_state {
uint32_t sf_cl_vp[GENX(3DSTATE_SF_length)];
};
static float
extent_from_matrix(const struct pipe_viewport_state *state, int axis)
{
return fabsf(state->scale[axis]) * state->translate[axis];
}
#if 0
static void
calculate_guardband_size(uint32_t fb_width, uint32_t fb_height,
float m00, float m11, float m30, float m31,
float *xmin, float *xmax,
float *ymin, float *ymax)
{
/* According to the "Vertex X,Y Clamping and Quantization" section of the
* Strips and Fans documentation:
*
* "The vertex X and Y screen-space coordinates are also /clamped/ to the
* fixed-point "guardband" range supported by the rasterization hardware"
*
* and
*
* "In almost all circumstances, if an objects vertices are actually
* modified by this clamping (i.e., had X or Y coordinates outside of
* the guardband extent the rendered object will not match the intended
* result. Therefore software should take steps to ensure that this does
* not happen - e.g., by clipping objects such that they do not exceed
* these limits after the Drawing Rectangle is applied."
*
* I believe the fundamental restriction is that the rasterizer (in
* the SF/WM stages) have a limit on the number of pixels that can be
* rasterized. We need to ensure any coordinates beyond the rasterizer
* limit are handled by the clipper. So effectively that limit becomes
* the clipper's guardband size.
*
* It goes on to say:
*
* "In addition, in order to be correctly rendered, objects must have a
* screenspace bounding box not exceeding 8K in the X or Y direction.
* This additional restriction must also be comprehended by software,
* i.e., enforced by use of clipping."
*
* This makes no sense. Gen7+ hardware supports 16K render targets,
* and you definitely need to be able to draw polygons that fill the
* surface. Our assumption is that the rasterizer was limited to 8K
* on Sandybridge, which only supports 8K surfaces, and it was actually
* increased to 16K on Ivybridge and later.
*
* So, limit the guardband to 16K on Gen7+ and 8K on Sandybridge.
*/
const float gb_size = GEN_GEN >= 7 ? 16384.0f : 8192.0f;
if (m00 != 0 && m11 != 0) {
/* First, we compute the screen-space render area */
const float ss_ra_xmin = MIN3( 0, m30 + m00, m30 - m00);
const float ss_ra_xmax = MAX3( fb_width, m30 + m00, m30 - m00);
const float ss_ra_ymin = MIN3( 0, m31 + m11, m31 - m11);
const float ss_ra_ymax = MAX3(fb_height, m31 + m11, m31 - m11);
/* We want the guardband to be centered on that */
const float ss_gb_xmin = (ss_ra_xmin + ss_ra_xmax) / 2 - gb_size;
const float ss_gb_xmax = (ss_ra_xmin + ss_ra_xmax) / 2 + gb_size;
const float ss_gb_ymin = (ss_ra_ymin + ss_ra_ymax) / 2 - gb_size;
const float ss_gb_ymax = (ss_ra_ymin + ss_ra_ymax) / 2 + gb_size;
/* Now we need it in native device coordinates */
const float ndc_gb_xmin = (ss_gb_xmin - m30) / m00;
const float ndc_gb_xmax = (ss_gb_xmax - m30) / m00;
const float ndc_gb_ymin = (ss_gb_ymin - m31) / m11;
const float ndc_gb_ymax = (ss_gb_ymax - m31) / m11;
/* Thanks to Y-flipping and ORIGIN_UPPER_LEFT, the Y coordinates may be
* flipped upside-down. X should be fine though.
*/
assert(ndc_gb_xmin <= ndc_gb_xmax);
*xmin = ndc_gb_xmin;
*xmax = ndc_gb_xmax;
*ymin = MIN2(ndc_gb_ymin, ndc_gb_ymax);
*ymax = MAX2(ndc_gb_ymin, ndc_gb_ymax);
} else {
/* The viewport scales to 0, so nothing will be rendered. */
*xmin = 0.0f;
*xmax = 0.0f;
*ymin = 0.0f;
*ymax = 0.0f;
}
}
#endif
static void
iris_set_viewport_states(struct pipe_context *ctx,
unsigned start_slot,
unsigned num_viewports,
const struct pipe_viewport_state *state)
{
2017-12-23 14:33:04 -08:00
struct iris_viewport_state *cso =
malloc(sizeof(struct iris_viewport_state));
for (unsigned i = start_slot; i < start_slot + num_viewports; i++) {
float x_extent = extent_from_matrix(&state[i], 0);
float y_extent = extent_from_matrix(&state[i], 1);
iris_pack_state(GENX(SF_CLIP_VIEWPORT), cso->sf_cl_vp, vp) {
vp.ViewportMatrixElementm00 = state[i].scale[0];
vp.ViewportMatrixElementm11 = state[i].scale[1];
vp.ViewportMatrixElementm22 = state[i].scale[2];
vp.ViewportMatrixElementm30 = state[i].translate[0];
vp.ViewportMatrixElementm31 = state[i].translate[1];
vp.ViewportMatrixElementm32 = state[i].translate[2];
/* XXX: in i965 this is computed based on the drawbuffer size,
* but we don't have that here...
*/
vp.XMinClipGuardband = -1.0;
vp.XMaxClipGuardband = 1.0;
vp.YMinClipGuardband = -1.0;
vp.YMaxClipGuardband = 1.0;
vp.XMinViewPort = -x_extent;
vp.XMaxViewPort = x_extent;
vp.YMinViewPort = -y_extent;
vp.YMaxViewPort = y_extent;
}
}
}
static void
iris_set_framebuffer_state(struct pipe_context *ctx,
const struct pipe_framebuffer_state *state)
{
}
static void
iris_set_constant_buffer(struct pipe_context *ctx,
enum pipe_shader_type shader, uint index,
const struct pipe_constant_buffer *cb)
{
}
static void
iris_sampler_view_destroy(struct pipe_context *ctx,
struct pipe_sampler_view *state)
{
pipe_resource_reference(&state->texture, NULL);
free(state);
}
static void
iris_surface_destroy(struct pipe_context *ctx, struct pipe_surface *surface)
{
pipe_resource_reference(&surface->texture, NULL);
free(surface);
}
static void
iris_delete_state(struct pipe_context *ctx, void *state)
{
free(state);
}
struct iris_vertex_buffer_state {
uint32_t vertex_buffers[1 + 33 * GENX(VERTEX_BUFFER_STATE_length)];
unsigned length; /* length of 3DSTATE_VERTEX_BUFFERS in DWords */
};
static void
iris_set_vertex_buffers(struct pipe_context *ctx,
unsigned start_slot, unsigned count,
const struct pipe_vertex_buffer *buffers)
{
struct iris_vertex_buffer_state *cso =
malloc(sizeof(struct iris_vertex_buffer_state));
cso->length = 4 * count - 1;
iris_pack_state(GENX(3DSTATE_VERTEX_BUFFERS), cso->vertex_buffers, vb) {
vb.DWordLength = cso->length;
}
/* If there are no buffers, do nothing. We can leave the stale
* 3DSTATE_VERTEX_BUFFERS in place - as long as there are no vertex
* elements that point to them, it should be fine.
*/
if (!buffers)
return;
uint32_t *vb_pack_dest = &cso->vertex_buffers[1];
for (unsigned i = 0; i < count; i++) {
assert(!buffers[i].is_user_buffer);
iris_pack_state(GENX(VERTEX_BUFFER_STATE), vb_pack_dest, vb) {
vb.VertexBufferIndex = start_slot + i;
vb.MOCS = MOCS_WB;
vb.AddressModifyEnable = true;
vb.BufferPitch = buffers[i].stride;
//vb.BufferStartingAddress = ro_bo(bo, buffers[i].buffer_offset);
//vb.BufferSize = bo->size;
}
vb_pack_dest += GENX(VERTEX_BUFFER_STATE_length);
}
/* XXX: actually do something with this! */
}
struct iris_vertex_element_state {
uint32_t vertex_elements[1 + 33 * GENX(VERTEX_ELEMENT_STATE_length)];
uint32_t vf_instancing[GENX(3DSTATE_VF_INSTANCING_length)];
unsigned count;
};
static void *
iris_create_vertex_elements(struct pipe_context *ctx,
unsigned count,
const struct pipe_vertex_element *state)
{
struct iris_vertex_element_state *cso =
malloc(sizeof(struct iris_vertex_element_state));
cso->count = count;
/* TODO:
* - create edge flag one
* - create SGV ones
* - if those are necessary, use count + 1/2/3... OR in the length
*/
iris_pack_state(GENX(3DSTATE_VERTEX_ELEMENTS), cso->vertex_elements, ve);
uint32_t *ve_pack_dest = &cso->vertex_elements[1];
for (int i = 0; i < count; i++) {
iris_pack_state(GENX(VERTEX_ELEMENT_STATE), ve_pack_dest, ve) {
ve.VertexBufferIndex = state[i].vertex_buffer_index;
ve.Valid = true;
ve.SourceElementOffset = state[i].src_offset;
ve.SourceElementFormat =
iris_isl_format_for_pipe_format(state[i].src_format);
}
iris_pack_state(GENX(3DSTATE_VF_INSTANCING), cso->vf_instancing, vi) {
vi.VertexElementIndex = i;
vi.InstancingEnable = state[i].instance_divisor > 0;
vi.InstanceDataStepRate = state[i].instance_divisor;
}
ve_pack_dest += GENX(VERTEX_ELEMENT_STATE_length);
}
return cso;
}
static void *
iris_create_compute_state(struct pipe_context *ctx,
const struct pipe_compute_state *state)
{
return malloc(1);
}
static struct pipe_stream_output_target *
iris_create_stream_output_target(struct pipe_context *ctx,
struct pipe_resource *res,
unsigned buffer_offset,
unsigned buffer_size)
{
struct pipe_stream_output_target *t =
CALLOC_STRUCT(pipe_stream_output_target);
if (!t)
return NULL;
pipe_reference_init(&t->reference, 1);
pipe_resource_reference(&t->buffer, res);
t->buffer_offset = buffer_offset;
t->buffer_size = buffer_size;
return t;
}
static void
iris_stream_output_target_destroy(struct pipe_context *ctx,
struct pipe_stream_output_target *t)
{
pipe_resource_reference(&t->buffer, NULL);
free(t);
}
static void
iris_set_stream_output_targets(struct pipe_context *ctx,
unsigned num_targets,
struct pipe_stream_output_target **targets,
const unsigned *offsets)
{
}
2017-12-27 02:54:26 -08:00
void
iris_upload_render_state(struct iris_context *ice, struct iris_batch *batch)
{
const uint64_t dirty = ice->state.dirty;
if (dirty & IRIS_DIRTY_WM_DEPTH_STENCIL) {
// XXX: import stencil ref...
struct iris_depth_stencil_alpha_state *cso = ice->state.cso_zsa;
iris_batch_emit(batch, cso->wmds, sizeof(cso->wmds));
}
if (dirty & IRIS_DIRTY_CC_VIEWPORT) {
struct iris_depth_stencil_alpha_state *cso = ice->state.cso_zsa;
iris_emit_cmd(batch, GENX(3DSTATE_VIEWPORT_STATE_POINTERS_CC), ptr) {
ptr.CCViewportPointer =
iris_emit_state(batch, cso->cc_vp, sizeof(cso->cc_vp), 32);
}
}
if (dirty & IRIS_DIRTY_PS_BLEND) {
struct iris_blend_state *cso = ice->state.cso_blend;
iris_batch_emit(batch, cso->ps_blend, sizeof(cso->ps_blend));
}
if (dirty & IRIS_DIRTY_BLEND_STATE) {
struct iris_blend_state *cso = ice->state.cso_blend;
// XXX: 3DSTATE_BLEND_STATE_POINTERS - BLEND_STATE
// -> from iris_blend_state (most) + iris_depth_stencil_alpha_state
// (alpha test function/enable) + has writeable RT from ???????
}
if (dirty & IRIS_DIRTY_SF_CL_VIEWPORT) {
struct iris_depth_stencil_alpha_state *cso = ice->state.cso_zsa;
iris_emit_cmd(batch, GENX(3DSTATE_VIEWPORT_STATE_POINTERS_CC), ptr) {
ptr.CCViewportPointer =
iris_emit_state(batch, cso->cc_vp, sizeof(cso->cc_vp), 32);
}
}
#if 0
l3 configuration
3DSTATE_VIEWPORT_STATE_POINTERS_SF_CL - SF_CLIP_VIEWPORT
-> pipe_viewport_state for matrix elements, guardband is calculated
from those. can calculate screen space from matrix apparently...
3DSTATE_SCISSOR_STATE_POINTERS - SCISSOR_RECT
-> from ice->state.scissors
3DSTATE_PUSH_CONSTANT_ALLOC_*
3DSTATE_URB_*
-> TODO
3DSTATE_CC_STATE_POINTERS - COLOR_CALC_STATE
-> from ice->state.blend_color + iris_depth_stencil_alpha_state
(ref_value)
3DSTATE_CONSTANT_* - push constants
-> TODO
Surfaces:
- pull constants
- ubos/ssbos/abos
- images
- textures
- render targets - write and read
3DSTATE_BINDING_TABLE_POINTERS_*
-> TODO
3DSTATE_SAMPLER_STATE_POINTERS_*
-> TODO
3DSTATE_MULTISAMPLE
3DSTATE_SAMPLE_MASK
3DSTATE_VS
3DSTATE_HS
3DSTATE_TE
3DSTATE_DS
3DSTATE_GS
3DSTATE_PS_EXTRA
3DSTATE_PS
3DSTATE_STREAMOUT
3DSTATE_SO_BUFFER
3DSTATE_SO_DECL_LIST
3DSTATE_CLIP
-> iris_raster_state + ??? (Non-perspective Bary, ForceZeroRTAIndex)
3DSTATE_RASTER
3DSTATE_SF
-> iris_raster_state
3DSTATE_WM
-> iris_raster_state + FS state (barycentric, EDSC)
3DSTATE_SBE
-> iris_raster_state (point sprite texture coordinate origin)
-> bunch of shader state...
3DSTATE_SBE_SWIZ
-> FS state
3DSTATE_DEPTH_BUFFER
3DSTATE_HIER_DEPTH_BUFFER
3DSTATE_STENCIL_BUFFER
3DSTATE_CLEAR_PARAMS
-> iris_framebuffer_state?
3DSTATE_VF_TOPOLOGY
-> pipe_draw_info (prim_mode)
3DSTATE_VF
-> pipe_draw_info (restart_index, primitive_restart)
3DSTATE_INDEX_BUFFER
-> pipe_draw_info (index)
3DSTATE_VERTEX_BUFFERS
-> pipe_vertex_buffer (set_vertex_buffer hook)
3DSTATE_VERTEX_ELEMENTS
-> iris_vertex_element
3DSTATE_VF_INSTANCING
-> iris_vertex_element
3DSTATE_VF_SGVS
-> TODO ???
3DSTATE_VF_COMPONENT_PACKING
-> TODO ???
3DPRIMITIVE
-> pipe_draw_info
rare:
3DSTATE_POLY_STIPPLE_OFFSET
3DSTATE_POLY_STIPPLE_PATTERN
-> ice->state.poly_stipple
3DSTATE_LINE_STIPPLE
-> iris_raster_state
once:
3DSTATE_AA_LINE_PARAMETERS
3DSTATE_WM_CHROMAKEY
3DSTATE_SAMPLE_PATTERN
3DSTATE_DRAWING_RECTANGLE
3DSTATE_WM_HZ_OP
#endif
}
static void
iris_bind_state(struct pipe_context *ctx, void *state)
{
}
void
iris_init_state_functions(struct pipe_context *ctx)
{
ctx->create_blend_state = iris_create_blend_state;
2017-12-27 02:54:26 -08:00
ctx->create_depth_stencil_alpha_state = iris_create_zsa_state;
ctx->create_rasterizer_state = iris_create_rasterizer_state;
ctx->create_sampler_state = iris_create_sampler_state;
ctx->create_sampler_view = iris_create_sampler_view;
ctx->create_surface = iris_create_surface;
ctx->create_vertex_elements_state = iris_create_vertex_elements;
ctx->create_compute_state = iris_create_compute_state;
2017-12-27 02:54:26 -08:00
ctx->bind_blend_state = iris_bind_blend_state;
ctx->bind_depth_stencil_alpha_state = iris_bind_zsa_state;
ctx->bind_sampler_states = iris_bind_sampler_states;
ctx->bind_fs_state = iris_bind_state;
ctx->bind_rasterizer_state = iris_bind_state;
ctx->bind_vertex_elements_state = iris_bind_state;
ctx->bind_compute_state = iris_bind_state;
ctx->bind_tcs_state = iris_bind_state;
ctx->bind_tes_state = iris_bind_state;
ctx->bind_gs_state = iris_bind_state;
ctx->bind_vs_state = iris_bind_state;
ctx->delete_blend_state = iris_delete_state;
ctx->delete_depth_stencil_alpha_state = iris_delete_state;
ctx->delete_fs_state = iris_delete_state;
ctx->delete_rasterizer_state = iris_delete_state;
ctx->delete_sampler_state = iris_delete_state;
ctx->delete_vertex_elements_state = iris_delete_state;
ctx->delete_compute_state = iris_delete_state;
ctx->delete_tcs_state = iris_delete_state;
ctx->delete_tes_state = iris_delete_state;
ctx->delete_gs_state = iris_delete_state;
ctx->delete_vs_state = iris_delete_state;
ctx->set_blend_color = iris_set_blend_color;
ctx->set_clip_state = iris_set_clip_state;
ctx->set_constant_buffer = iris_set_constant_buffer;
ctx->set_sampler_views = iris_set_sampler_views;
ctx->set_framebuffer_state = iris_set_framebuffer_state;
ctx->set_polygon_stipple = iris_set_polygon_stipple;
ctx->set_sample_mask = iris_set_sample_mask;
ctx->set_scissor_states = iris_set_scissor_states;
ctx->set_stencil_ref = iris_set_stencil_ref;
ctx->set_vertex_buffers = iris_set_vertex_buffers;
ctx->set_viewport_states = iris_set_viewport_states;
ctx->sampler_view_destroy = iris_sampler_view_destroy;
ctx->surface_destroy = iris_surface_destroy;
ctx->draw_vbo = iris_draw_vbo;
ctx->launch_grid = iris_launch_grid;
ctx->create_stream_output_target = iris_create_stream_output_target;
ctx->stream_output_target_destroy = iris_stream_output_target_destroy;
ctx->set_stream_output_targets = iris_set_stream_output_targets;
}