mesa/src/mesa/drivers/dri/i965/brw_vec4_nir.cpp

1747 lines
54 KiB
C++
Raw Normal View History

/*
* Copyright © 2015 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include "brw_nir.h"
#include "brw_vec4.h"
#include "brw_vec4_builder.h"
#include "brw_vec4_surface_builder.h"
#include "glsl/ir_uniform.h"
using namespace brw;
using namespace brw::surface_access;
namespace brw {
void
vec4_visitor::emit_nir_code()
{
nir_shader *nir = prog->nir;
if (nir->num_inputs > 0)
nir_setup_inputs(nir);
if (nir->num_uniforms > 0)
nir_setup_uniforms(nir);
nir_setup_system_values(nir);
/* get the main function and emit it */
nir_foreach_overload(nir, overload) {
assert(strcmp(overload->function->name, "main") == 0);
assert(overload->impl);
nir_emit_impl(overload->impl);
}
}
void
vec4_visitor::nir_setup_system_value_intrinsic(nir_intrinsic_instr *instr)
{
dst_reg *reg;
switch (instr->intrinsic) {
case nir_intrinsic_load_vertex_id:
unreachable("should be lowered by lower_vertex_id().");
case nir_intrinsic_load_vertex_id_zero_base:
reg = &nir_system_values[SYSTEM_VALUE_VERTEX_ID_ZERO_BASE];
if (reg->file == BAD_FILE)
*reg = *make_reg_for_system_value(SYSTEM_VALUE_VERTEX_ID_ZERO_BASE,
glsl_type::int_type);
break;
case nir_intrinsic_load_base_vertex:
reg = &nir_system_values[SYSTEM_VALUE_BASE_VERTEX];
if (reg->file == BAD_FILE)
*reg = *make_reg_for_system_value(SYSTEM_VALUE_BASE_VERTEX,
glsl_type::int_type);
break;
case nir_intrinsic_load_instance_id:
reg = &nir_system_values[SYSTEM_VALUE_INSTANCE_ID];
if (reg->file == BAD_FILE)
*reg = *make_reg_for_system_value(SYSTEM_VALUE_INSTANCE_ID,
glsl_type::int_type);
break;
default:
break;
}
}
static bool
setup_system_values_block(nir_block *block, void *void_visitor)
{
vec4_visitor *v = (vec4_visitor *)void_visitor;
nir_foreach_instr(block, instr) {
if (instr->type != nir_instr_type_intrinsic)
continue;
nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
v->nir_setup_system_value_intrinsic(intrin);
}
return true;
}
void
vec4_visitor::nir_setup_system_values(nir_shader *shader)
{
nir_system_values = ralloc_array(mem_ctx, dst_reg, SYSTEM_VALUE_MAX);
nir_foreach_overload(shader, overload) {
assert(strcmp(overload->function->name, "main") == 0);
assert(overload->impl);
nir_foreach_block(overload->impl, setup_system_values_block, this);
}
}
void
vec4_visitor::nir_setup_inputs(nir_shader *shader)
{
nir_inputs = ralloc_array(mem_ctx, src_reg, shader->num_inputs);
foreach_list_typed(nir_variable, var, node, &shader->inputs) {
int offset = var->data.driver_location;
unsigned size = type_size_vec4(var->type);
for (unsigned i = 0; i < size; i++) {
src_reg src = src_reg(ATTR, var->data.location + i, var->type);
nir_inputs[offset + i] = src;
}
}
}
void
vec4_visitor::nir_setup_uniforms(nir_shader *shader)
{
uniforms = shader->num_uniforms;
foreach_list_typed(nir_variable, var, node, &shader->uniforms) {
/* UBO's and atomics don't take up space in the uniform file */
if (var->interface_type != NULL || var->type->contains_atomic())
continue;
if (type_size_vec4(var->type) > 0)
uniform_size[var->data.driver_location] = type_size_vec4(var->type);
}
}
void
vec4_visitor::nir_emit_impl(nir_function_impl *impl)
{
nir_locals = ralloc_array(mem_ctx, dst_reg, impl->reg_alloc);
foreach_list_typed(nir_register, reg, node, &impl->registers) {
unsigned array_elems =
reg->num_array_elems == 0 ? 1 : reg->num_array_elems;
nir_locals[reg->index] = dst_reg(GRF, alloc.allocate(array_elems));
}
nir_ssa_values = ralloc_array(mem_ctx, dst_reg, impl->ssa_alloc);
nir_emit_cf_list(&impl->body);
}
void
vec4_visitor::nir_emit_cf_list(exec_list *list)
{
exec_list_validate(list);
foreach_list_typed(nir_cf_node, node, node, list) {
switch (node->type) {
case nir_cf_node_if:
nir_emit_if(nir_cf_node_as_if(node));
break;
case nir_cf_node_loop:
nir_emit_loop(nir_cf_node_as_loop(node));
break;
case nir_cf_node_block:
nir_emit_block(nir_cf_node_as_block(node));
break;
default:
unreachable("Invalid CFG node block");
}
}
}
void
vec4_visitor::nir_emit_if(nir_if *if_stmt)
{
/* First, put the condition in f0 */
src_reg condition = get_nir_src(if_stmt->condition, BRW_REGISTER_TYPE_D, 1);
vec4_instruction *inst = emit(MOV(dst_null_d(), condition));
inst->conditional_mod = BRW_CONDITIONAL_NZ;
emit(IF(BRW_PREDICATE_NORMAL));
nir_emit_cf_list(&if_stmt->then_list);
/* note: if the else is empty, dead CF elimination will remove it */
emit(BRW_OPCODE_ELSE);
nir_emit_cf_list(&if_stmt->else_list);
emit(BRW_OPCODE_ENDIF);
}
void
vec4_visitor::nir_emit_loop(nir_loop *loop)
{
emit(BRW_OPCODE_DO);
nir_emit_cf_list(&loop->body);
emit(BRW_OPCODE_WHILE);
}
void
vec4_visitor::nir_emit_block(nir_block *block)
{
nir_foreach_instr(block, instr) {
nir_emit_instr(instr);
}
}
void
vec4_visitor::nir_emit_instr(nir_instr *instr)
{
base_ir = instr;
switch (instr->type) {
case nir_instr_type_load_const:
nir_emit_load_const(nir_instr_as_load_const(instr));
break;
case nir_instr_type_intrinsic:
nir_emit_intrinsic(nir_instr_as_intrinsic(instr));
break;
case nir_instr_type_alu:
nir_emit_alu(nir_instr_as_alu(instr));
break;
case nir_instr_type_jump:
nir_emit_jump(nir_instr_as_jump(instr));
break;
case nir_instr_type_tex:
nir_emit_texture(nir_instr_as_tex(instr));
break;
case nir_instr_type_ssa_undef:
nir_emit_undef(nir_instr_as_ssa_undef(instr));
break;
default:
fprintf(stderr, "VS instruction not yet implemented by NIR->vec4\n");
break;
}
}
static dst_reg
dst_reg_for_nir_reg(vec4_visitor *v, nir_register *nir_reg,
unsigned base_offset, nir_src *indirect)
{
dst_reg reg;
reg = v->nir_locals[nir_reg->index];
reg = offset(reg, base_offset);
if (indirect) {
reg.reladdr =
new(v->mem_ctx) src_reg(v->get_nir_src(*indirect,
BRW_REGISTER_TYPE_D,
1));
}
return reg;
}
dst_reg
vec4_visitor::get_nir_dest(nir_dest dest)
{
if (dest.is_ssa) {
dst_reg dst = dst_reg(GRF, alloc.allocate(1));
nir_ssa_values[dest.ssa.index] = dst;
return dst;
} else {
return dst_reg_for_nir_reg(this, dest.reg.reg, dest.reg.base_offset,
dest.reg.indirect);
}
}
dst_reg
vec4_visitor::get_nir_dest(nir_dest dest, enum brw_reg_type type)
{
return retype(get_nir_dest(dest), type);
}
dst_reg
vec4_visitor::get_nir_dest(nir_dest dest, nir_alu_type type)
{
return get_nir_dest(dest, brw_type_for_nir_type(type));
}
src_reg
vec4_visitor::get_nir_src(nir_src src, enum brw_reg_type type,
unsigned num_components)
{
dst_reg reg;
if (src.is_ssa) {
assert(src.ssa != NULL);
reg = nir_ssa_values[src.ssa->index];
}
else {
reg = dst_reg_for_nir_reg(this, src.reg.reg, src.reg.base_offset,
src.reg.indirect);
}
reg = retype(reg, type);
src_reg reg_as_src = src_reg(reg);
reg_as_src.swizzle = brw_swizzle_for_size(num_components);
return reg_as_src;
}
src_reg
vec4_visitor::get_nir_src(nir_src src, nir_alu_type type,
unsigned num_components)
{
return get_nir_src(src, brw_type_for_nir_type(type), num_components);
}
src_reg
vec4_visitor::get_nir_src(nir_src src, unsigned num_components)
{
/* if type is not specified, default to signed int */
return get_nir_src(src, nir_type_int, num_components);
}
void
vec4_visitor::nir_emit_load_const(nir_load_const_instr *instr)
{
dst_reg reg = dst_reg(GRF, alloc.allocate(1));
reg.type = BRW_REGISTER_TYPE_D;
unsigned remaining = brw_writemask_for_size(instr->def.num_components);
/* @FIXME: consider emitting vector operations to save some MOVs in
* cases where the components are representable in 8 bits.
* For now, we emit a MOV for each distinct value.
*/
for (unsigned i = 0; i < instr->def.num_components; i++) {
unsigned writemask = 1 << i;
if ((remaining & writemask) == 0)
continue;
for (unsigned j = i; j < instr->def.num_components; j++) {
if (instr->value.u[i] == instr->value.u[j]) {
writemask |= 1 << j;
}
}
reg.writemask = writemask;
emit(MOV(reg, src_reg(instr->value.i[i])));
remaining &= ~writemask;
}
/* Set final writemask */
reg.writemask = brw_writemask_for_size(instr->def.num_components);
nir_ssa_values[instr->def.index] = reg;
}
void
vec4_visitor::nir_emit_intrinsic(nir_intrinsic_instr *instr)
{
dst_reg dest;
src_reg src;
bool has_indirect = false;
switch (instr->intrinsic) {
case nir_intrinsic_load_input_indirect:
has_indirect = true;
/* fallthrough */
case nir_intrinsic_load_input: {
int offset = instr->const_index[0];
src = nir_inputs[offset];
if (has_indirect) {
dest.reladdr = new(mem_ctx) src_reg(get_nir_src(instr->src[0],
BRW_REGISTER_TYPE_D,
1));
}
dest = get_nir_dest(instr->dest, src.type);
dest.writemask = brw_writemask_for_size(instr->num_components);
emit(MOV(dest, src));
break;
}
case nir_intrinsic_store_output_indirect:
has_indirect = true;
/* fallthrough */
case nir_intrinsic_store_output: {
int varying = instr->const_index[0];
src = get_nir_src(instr->src[0], BRW_REGISTER_TYPE_F,
instr->num_components);
dest = dst_reg(src);
if (has_indirect) {
dest.reladdr = new(mem_ctx) src_reg(get_nir_src(instr->src[1],
BRW_REGISTER_TYPE_D,
1));
}
output_reg[varying] = dest;
break;
}
case nir_intrinsic_get_buffer_size: {
nir_const_value *const_uniform_block = nir_src_as_const_value(instr->src[0]);
unsigned ubo_index = const_uniform_block ? const_uniform_block->u[0] : 0;
assert(shader->base.UniformBlocks[ubo_index].IsShaderStorage);
src_reg surf_index = src_reg(prog_data->base.binding_table.ubo_start +
ubo_index);
dst_reg result_dst = get_nir_dest(instr->dest);
vec4_instruction *inst = new(mem_ctx)
vec4_instruction(VS_OPCODE_GET_BUFFER_SIZE, result_dst);
inst->base_mrf = 2;
inst->mlen = 1; /* always at least one */
inst->src[1] = src_reg(surf_index);
/* MRF for the first parameter */
src_reg lod = src_reg(0);
int param_base = inst->base_mrf;
int writemask = WRITEMASK_X;
emit(MOV(dst_reg(MRF, param_base, glsl_type::int_type, writemask), lod));
emit(inst);
break;
}
case nir_intrinsic_store_ssbo_indirect:
has_indirect = true;
/* fallthrough */
case nir_intrinsic_store_ssbo: {
assert(devinfo->gen >= 7);
/* Block index */
src_reg surf_index;
nir_const_value *const_uniform_block =
nir_src_as_const_value(instr->src[1]);
if (const_uniform_block) {
unsigned index = prog_data->base.binding_table.ubo_start +
const_uniform_block->u[0];
surf_index = src_reg(index);
brw_mark_surface_used(&prog_data->base, index);
} else {
surf_index = src_reg(this, glsl_type::uint_type);
emit(ADD(dst_reg(surf_index), get_nir_src(instr->src[1], 1),
src_reg(prog_data->base.binding_table.ubo_start)));
surf_index = emit_uniformize(surf_index);
brw_mark_surface_used(&prog_data->base,
prog_data->base.binding_table.ubo_start +
shader_prog->NumBufferInterfaceBlocks - 1);
}
/* Offset */
src_reg offset_reg = src_reg(this, glsl_type::uint_type);
unsigned const_offset_bytes = 0;
if (has_indirect) {
emit(MOV(dst_reg(offset_reg), get_nir_src(instr->src[2], 1)));
} else {
const_offset_bytes = instr->const_index[0];
emit(MOV(dst_reg(offset_reg), src_reg(const_offset_bytes)));
}
/* Value */
src_reg val_reg = get_nir_src(instr->src[0], 4);
/* Writemask */
unsigned write_mask = instr->const_index[1];
/* IvyBridge does not have a native SIMD4x2 untyped write message so untyped
* writes will use SIMD8 mode. In order to hide this and keep symmetry across
* typed and untyped messages and across hardware platforms, the
* current implementation of the untyped messages will transparently convert
* the SIMD4x2 payload into an equivalent SIMD8 payload by transposing it
* and enabling only channel X on the SEND instruction.
*
* The above, works well for full vector writes, but not for partial writes
* where we want to write some channels and not others, like when we have
* code such as v.xyw = vec3(1,2,4). Because the untyped write messages are
* quite restrictive with regards to the channel enables we can configure in
* the message descriptor (not all combinations are allowed) we cannot simply
* implement these scenarios with a single message while keeping the
* aforementioned symmetry in the implementation. For now we de decided that
* it is better to keep the symmetry to reduce complexity, so in situations
* such as the one described we end up emitting two untyped write messages
* (one for xy and another for w).
*
* The code below packs consecutive channels into a single write message,
* detects gaps in the vector write and if needed, sends a second message
* with the remaining channels. If in the future we decide that we want to
* emit a single message at the expense of losing the symmetry in the
* implementation we can:
*
* 1) For IvyBridge: Only use the red channel of the untyped write SIMD8
* message payload. In this mode we can write up to 8 offsets and dwords
* to the red channel only (for the two vec4s in the SIMD4x2 execution)
* and select which of the 8 channels carry data to write by setting the
* appropriate writemask in the dst register of the SEND instruction.
* It would require to write a new generator opcode specifically for
* IvyBridge since we would need to prepare a SIMD8 payload that could
* use any channel, not just X.
*
* 2) For Haswell+: Simply send a single write message but set the writemask
* on the dst of the SEND instruction to select the channels we want to
* write. It would require to modify the current messages to receive
* and honor the writemask provided.
*/
const vec4_builder bld = vec4_builder(this).at_end()
.annotate(current_annotation, base_ir);
int swizzle[4] = { 0, 0, 0, 0};
int num_channels = 0;
unsigned skipped_channels = 0;
int num_components = instr->num_components;
for (int i = 0; i < num_components; i++) {
/* Check if this channel needs to be written. If so, record the
* channel we need to take the data from in the swizzle array
*/
int component_mask = 1 << i;
int write_test = write_mask & component_mask;
if (write_test)
swizzle[num_channels++] = i;
/* If we don't have to write this channel it means we have a gap in the
* vector, so write the channels we accumulated until now, if any. Do
* the same if this was the last component in the vector.
*/
if (!write_test || i == num_components - 1) {
if (num_channels > 0) {
/* We have channels to write, so update the offset we need to
* write at to skip the channels we skipped, if any.
*/
if (skipped_channels > 0) {
if (!has_indirect) {
const_offset_bytes += 4 * skipped_channels;
offset_reg = src_reg(const_offset_bytes);
} else {
emit(ADD(dst_reg(offset_reg), offset_reg,
brw_imm_ud(4 * skipped_channels)));
}
}
/* Swizzle the data register so we take the data from the channels
* we need to write and send the write message. This will write
* num_channels consecutive dwords starting at offset.
*/
val_reg.swizzle =
BRW_SWIZZLE4(swizzle[0], swizzle[1], swizzle[2], swizzle[3]);
emit_untyped_write(bld, surf_index, offset_reg, val_reg,
1 /* dims */, num_channels /* size */,
BRW_PREDICATE_NONE);
/* If we have to do a second write we will have to update the
* offset so that we jump over the channels we have just written
* now.
*/
skipped_channels = num_channels;
/* Restart the count for the next write message */
num_channels = 0;
}
/* We did not write the current channel, so increase skipped count */
skipped_channels++;
}
}
break;
}
case nir_intrinsic_load_ssbo_indirect:
has_indirect = true;
/* fallthrough */
case nir_intrinsic_load_ssbo: {
assert(devinfo->gen >= 7);
nir_const_value *const_uniform_block =
nir_src_as_const_value(instr->src[0]);
src_reg surf_index;
if (const_uniform_block) {
unsigned index = prog_data->base.binding_table.ubo_start +
const_uniform_block->u[0];
surf_index = src_reg(index);
brw_mark_surface_used(&prog_data->base, index);
} else {
surf_index = src_reg(this, glsl_type::uint_type);
emit(ADD(dst_reg(surf_index), get_nir_src(instr->src[0], 1),
src_reg(prog_data->base.binding_table.ubo_start)));
surf_index = emit_uniformize(surf_index);
/* Assume this may touch any UBO. It would be nice to provide
* a tighter bound, but the array information is already lowered away.
*/
brw_mark_surface_used(&prog_data->base,
prog_data->base.binding_table.ubo_start +
shader_prog->NumBufferInterfaceBlocks - 1);
}
src_reg offset_reg = src_reg(this, glsl_type::uint_type);
unsigned const_offset_bytes = 0;
if (has_indirect) {
emit(MOV(dst_reg(offset_reg), get_nir_src(instr->src[1], 1)));
} else {
const_offset_bytes = instr->const_index[0];
emit(MOV(dst_reg(offset_reg), src_reg(const_offset_bytes)));
}
/* Read the vector */
const vec4_builder bld = vec4_builder(this).at_end()
.annotate(current_annotation, base_ir);
src_reg read_result = emit_untyped_read(bld, surf_index, offset_reg,
1 /* dims */, 4 /* size*/,
BRW_PREDICATE_NONE);
dst_reg dest = get_nir_dest(instr->dest);
read_result.type = dest.type;
read_result.swizzle = brw_swizzle_for_size(instr->num_components);
emit(MOV(dest, read_result));
break;
}
case nir_intrinsic_ssbo_atomic_add:
nir_emit_ssbo_atomic(BRW_AOP_ADD, instr);
break;
case nir_intrinsic_ssbo_atomic_min:
if (dest.type == BRW_REGISTER_TYPE_D)
nir_emit_ssbo_atomic(BRW_AOP_IMIN, instr);
else
nir_emit_ssbo_atomic(BRW_AOP_UMIN, instr);
break;
case nir_intrinsic_ssbo_atomic_max:
if (dest.type == BRW_REGISTER_TYPE_D)
nir_emit_ssbo_atomic(BRW_AOP_IMAX, instr);
else
nir_emit_ssbo_atomic(BRW_AOP_UMAX, instr);
break;
case nir_intrinsic_ssbo_atomic_and:
nir_emit_ssbo_atomic(BRW_AOP_AND, instr);
break;
case nir_intrinsic_ssbo_atomic_or:
nir_emit_ssbo_atomic(BRW_AOP_OR, instr);
break;
case nir_intrinsic_ssbo_atomic_xor:
nir_emit_ssbo_atomic(BRW_AOP_XOR, instr);
break;
case nir_intrinsic_ssbo_atomic_exchange:
nir_emit_ssbo_atomic(BRW_AOP_MOV, instr);
break;
case nir_intrinsic_ssbo_atomic_comp_swap:
nir_emit_ssbo_atomic(BRW_AOP_CMPWR, instr);
break;
case nir_intrinsic_load_vertex_id:
unreachable("should be lowered by lower_vertex_id()");
case nir_intrinsic_load_vertex_id_zero_base:
case nir_intrinsic_load_base_vertex:
case nir_intrinsic_load_instance_id: {
gl_system_value sv = nir_system_value_from_intrinsic(instr->intrinsic);
src_reg val = src_reg(nir_system_values[sv]);
assert(val.file != BAD_FILE);
dest = get_nir_dest(instr->dest, val.type);
emit(MOV(dest, val));
break;
}
case nir_intrinsic_load_uniform_indirect:
has_indirect = true;
/* fallthrough */
case nir_intrinsic_load_uniform: {
dest = get_nir_dest(instr->dest);
src = src_reg(dst_reg(UNIFORM, instr->const_index[0]));
src.reg_offset = instr->const_index[1];
if (has_indirect) {
src_reg tmp = get_nir_src(instr->src[0], BRW_REGISTER_TYPE_D, 1);
src.reladdr = new(mem_ctx) src_reg(tmp);
}
emit(MOV(dest, src));
break;
}
case nir_intrinsic_atomic_counter_read:
case nir_intrinsic_atomic_counter_inc:
case nir_intrinsic_atomic_counter_dec: {
unsigned surf_index = prog_data->base.binding_table.abo_start +
(unsigned) instr->const_index[0];
src_reg offset = get_nir_src(instr->src[0], nir_type_int,
instr->num_components);
dest = get_nir_dest(instr->dest);
switch (instr->intrinsic) {
case nir_intrinsic_atomic_counter_inc:
emit_untyped_atomic(BRW_AOP_INC, surf_index, dest, offset,
src_reg(), src_reg());
break;
case nir_intrinsic_atomic_counter_dec:
emit_untyped_atomic(BRW_AOP_PREDEC, surf_index, dest, offset,
src_reg(), src_reg());
break;
case nir_intrinsic_atomic_counter_read:
emit_untyped_surface_read(surf_index, dest, offset);
break;
default:
unreachable("Unreachable");
}
brw_mark_surface_used(stage_prog_data, surf_index);
break;
}
case nir_intrinsic_load_ubo_indirect:
has_indirect = true;
/* fallthrough */
case nir_intrinsic_load_ubo: {
nir_const_value *const_block_index = nir_src_as_const_value(instr->src[0]);
src_reg surf_index;
dest = get_nir_dest(instr->dest);
if (const_block_index) {
/* The block index is a constant, so just emit the binding table entry
* as an immediate.
*/
surf_index = src_reg(prog_data->base.binding_table.ubo_start +
const_block_index->u[0]);
} else {
/* The block index is not a constant. Evaluate the index expression
* per-channel and add the base UBO index; we have to select a value
* from any live channel.
*/
surf_index = src_reg(this, glsl_type::uint_type);
emit(ADD(dst_reg(surf_index), get_nir_src(instr->src[0], nir_type_int,
instr->num_components),
src_reg(prog_data->base.binding_table.ubo_start)));
surf_index = emit_uniformize(surf_index);
/* Assume this may touch any UBO. It would be nice to provide
* a tighter bound, but the array information is already lowered away.
*/
brw_mark_surface_used(&prog_data->base,
prog_data->base.binding_table.ubo_start +
shader_prog->NumBufferInterfaceBlocks - 1);
}
unsigned const_offset = instr->const_index[0];
src_reg offset;
if (!has_indirect) {
offset = src_reg(const_offset / 16);
} else {
offset = src_reg(this, glsl_type::uint_type);
emit(SHR(dst_reg(offset), get_nir_src(instr->src[1], nir_type_int, 1),
src_reg(4u)));
}
src_reg packed_consts = src_reg(this, glsl_type::vec4_type);
packed_consts.type = dest.type;
emit_pull_constant_load_reg(dst_reg(packed_consts),
surf_index,
offset,
NULL, NULL /* before_block/inst */);
packed_consts.swizzle = brw_swizzle_for_size(instr->num_components);
packed_consts.swizzle += BRW_SWIZZLE4(const_offset % 16 / 4,
const_offset % 16 / 4,
const_offset % 16 / 4,
const_offset % 16 / 4);
emit(MOV(dest, packed_consts));
break;
}
case nir_intrinsic_memory_barrier: {
const vec4_builder bld =
vec4_builder(this).at_end().annotate(current_annotation, base_ir);
const dst_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
bld.emit(SHADER_OPCODE_MEMORY_FENCE, tmp)
->regs_written = 2;
break;
}
default:
unreachable("Unknown intrinsic");
}
}
void
vec4_visitor::nir_emit_ssbo_atomic(int op, nir_intrinsic_instr *instr)
{
dst_reg dest;
if (nir_intrinsic_infos[instr->intrinsic].has_dest)
dest = get_nir_dest(instr->dest);
src_reg surface;
nir_const_value *const_surface = nir_src_as_const_value(instr->src[0]);
if (const_surface) {
unsigned surf_index = prog_data->base.binding_table.ubo_start +
const_surface->u[0];
surface = src_reg(surf_index);
brw_mark_surface_used(&prog_data->base, surf_index);
} else {
surface = src_reg(this, glsl_type::uint_type);
emit(ADD(dst_reg(surface), get_nir_src(instr->src[0]),
src_reg(prog_data->base.binding_table.ubo_start)));
/* Assume this may touch any UBO. This is the same we do for other
* UBO/SSBO accesses with non-constant surface.
*/
brw_mark_surface_used(&prog_data->base,
prog_data->base.binding_table.ubo_start +
shader_prog->NumBufferInterfaceBlocks - 1);
}
src_reg offset = get_nir_src(instr->src[1], 1);
src_reg data1 = get_nir_src(instr->src[2], 1);
src_reg data2;
if (op == BRW_AOP_CMPWR)
data2 = get_nir_src(instr->src[3], 1);
/* Emit the actual atomic operation operation */
const vec4_builder bld =
vec4_builder(this).at_end().annotate(current_annotation, base_ir);
src_reg atomic_result =
surface_access::emit_untyped_atomic(bld, surface, offset,
data1, data2,
1 /* dims */, 1 /* rsize */,
op,
BRW_PREDICATE_NONE);
dest.type = atomic_result.type;
bld.MOV(dest, atomic_result);
}
static unsigned
brw_swizzle_for_nir_swizzle(uint8_t swizzle[4])
{
return BRW_SWIZZLE4(swizzle[0], swizzle[1], swizzle[2], swizzle[3]);
}
static enum brw_conditional_mod
brw_conditional_for_nir_comparison(nir_op op)
{
switch (op) {
case nir_op_flt:
case nir_op_ilt:
case nir_op_ult:
return BRW_CONDITIONAL_L;
case nir_op_fge:
case nir_op_ige:
case nir_op_uge:
return BRW_CONDITIONAL_GE;
case nir_op_feq:
case nir_op_ieq:
case nir_op_ball_fequal2:
case nir_op_ball_iequal2:
case nir_op_ball_fequal3:
case nir_op_ball_iequal3:
case nir_op_ball_fequal4:
case nir_op_ball_iequal4:
return BRW_CONDITIONAL_Z;
case nir_op_fne:
case nir_op_ine:
case nir_op_bany_fnequal2:
case nir_op_bany_inequal2:
case nir_op_bany_fnequal3:
case nir_op_bany_inequal3:
case nir_op_bany_fnequal4:
case nir_op_bany_inequal4:
return BRW_CONDITIONAL_NZ;
default:
unreachable("not reached: bad operation for comparison");
}
}
void
vec4_visitor::nir_emit_alu(nir_alu_instr *instr)
{
vec4_instruction *inst;
dst_reg dst = get_nir_dest(instr->dest.dest,
nir_op_infos[instr->op].output_type);
dst.writemask = instr->dest.write_mask;
src_reg op[4];
for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
op[i] = get_nir_src(instr->src[i].src,
nir_op_infos[instr->op].input_types[i], 4);
op[i].swizzle = brw_swizzle_for_nir_swizzle(instr->src[i].swizzle);
op[i].abs = instr->src[i].abs;
op[i].negate = instr->src[i].negate;
}
switch (instr->op) {
case nir_op_imov:
case nir_op_fmov:
inst = emit(MOV(dst, op[0]));
inst->saturate = instr->dest.saturate;
break;
case nir_op_vec2:
case nir_op_vec3:
case nir_op_vec4:
unreachable("not reached: should be handled by lower_vec_to_movs()");
case nir_op_i2f:
case nir_op_u2f:
inst = emit(MOV(dst, op[0]));
inst->saturate = instr->dest.saturate;
break;
case nir_op_f2i:
case nir_op_f2u:
inst = emit(MOV(dst, op[0]));
break;
case nir_op_fadd:
/* fall through */
case nir_op_iadd:
inst = emit(ADD(dst, op[0], op[1]));
inst->saturate = instr->dest.saturate;
break;
case nir_op_fmul:
inst = emit(MUL(dst, op[0], op[1]));
inst->saturate = instr->dest.saturate;
break;
case nir_op_imul: {
if (devinfo->gen < 8) {
nir_const_value *value0 = nir_src_as_const_value(instr->src[0].src);
nir_const_value *value1 = nir_src_as_const_value(instr->src[1].src);
/* For integer multiplication, the MUL uses the low 16 bits of one of
* the operands (src0 through SNB, src1 on IVB and later). The MACH
* accumulates in the contribution of the upper 16 bits of that
* operand. If we can determine that one of the args is in the low
* 16 bits, though, we can just emit a single MUL.
*/
if (value0 && value0->u[0] < (1 << 16)) {
if (devinfo->gen < 7)
emit(MUL(dst, op[0], op[1]));
else
emit(MUL(dst, op[1], op[0]));
} else if (value1 && value1->u[0] < (1 << 16)) {
if (devinfo->gen < 7)
emit(MUL(dst, op[1], op[0]));
else
emit(MUL(dst, op[0], op[1]));
} else {
struct brw_reg acc = retype(brw_acc_reg(8), dst.type);
emit(MUL(acc, op[0], op[1]));
emit(MACH(dst_null_d(), op[0], op[1]));
emit(MOV(dst, src_reg(acc)));
}
} else {
emit(MUL(dst, op[0], op[1]));
}
break;
}
case nir_op_imul_high:
case nir_op_umul_high: {
struct brw_reg acc = retype(brw_acc_reg(8), dst.type);
emit(MUL(acc, op[0], op[1]));
emit(MACH(dst, op[0], op[1]));
break;
}
case nir_op_frcp:
inst = emit_math(SHADER_OPCODE_RCP, dst, op[0]);
inst->saturate = instr->dest.saturate;
break;
case nir_op_fexp2:
inst = emit_math(SHADER_OPCODE_EXP2, dst, op[0]);
inst->saturate = instr->dest.saturate;
break;
case nir_op_flog2:
inst = emit_math(SHADER_OPCODE_LOG2, dst, op[0]);
inst->saturate = instr->dest.saturate;
break;
case nir_op_fsin:
inst = emit_math(SHADER_OPCODE_SIN, dst, op[0]);
inst->saturate = instr->dest.saturate;
break;
case nir_op_fcos:
inst = emit_math(SHADER_OPCODE_COS, dst, op[0]);
inst->saturate = instr->dest.saturate;
break;
case nir_op_idiv:
case nir_op_udiv:
emit_math(SHADER_OPCODE_INT_QUOTIENT, dst, op[0], op[1]);
break;
case nir_op_umod:
emit_math(SHADER_OPCODE_INT_REMAINDER, dst, op[0], op[1]);
break;
case nir_op_ldexp:
unreachable("not reached: should be handled by ldexp_to_arith()");
case nir_op_fsqrt:
inst = emit_math(SHADER_OPCODE_SQRT, dst, op[0]);
inst->saturate = instr->dest.saturate;
break;
case nir_op_frsq:
inst = emit_math(SHADER_OPCODE_RSQ, dst, op[0]);
inst->saturate = instr->dest.saturate;
break;
case nir_op_fpow:
inst = emit_math(SHADER_OPCODE_POW, dst, op[0], op[1]);
inst->saturate = instr->dest.saturate;
break;
case nir_op_uadd_carry: {
struct brw_reg acc = retype(brw_acc_reg(8), BRW_REGISTER_TYPE_UD);
emit(ADDC(dst_null_ud(), op[0], op[1]));
emit(MOV(dst, src_reg(acc)));
break;
}
case nir_op_usub_borrow: {
struct brw_reg acc = retype(brw_acc_reg(8), BRW_REGISTER_TYPE_UD);
emit(SUBB(dst_null_ud(), op[0], op[1]));
emit(MOV(dst, src_reg(acc)));
break;
}
case nir_op_ftrunc:
inst = emit(RNDZ(dst, op[0]));
inst->saturate = instr->dest.saturate;
break;
case nir_op_fceil: {
src_reg tmp = src_reg(this, glsl_type::float_type);
tmp.swizzle =
brw_swizzle_for_size(instr->src[0].src.is_ssa ?
instr->src[0].src.ssa->num_components :
instr->src[0].src.reg.reg->num_components);
op[0].negate = !op[0].negate;
emit(RNDD(dst_reg(tmp), op[0]));
tmp.negate = true;
inst = emit(MOV(dst, tmp));
inst->saturate = instr->dest.saturate;
break;
}
case nir_op_ffloor:
inst = emit(RNDD(dst, op[0]));
inst->saturate = instr->dest.saturate;
break;
case nir_op_ffract:
inst = emit(FRC(dst, op[0]));
inst->saturate = instr->dest.saturate;
break;
case nir_op_fround_even:
inst = emit(RNDE(dst, op[0]));
inst->saturate = instr->dest.saturate;
break;
case nir_op_fmin:
case nir_op_imin:
case nir_op_umin:
inst = emit_minmax(BRW_CONDITIONAL_L, dst, op[0], op[1]);
inst->saturate = instr->dest.saturate;
break;
case nir_op_fmax:
case nir_op_imax:
case nir_op_umax:
inst = emit_minmax(BRW_CONDITIONAL_GE, dst, op[0], op[1]);
inst->saturate = instr->dest.saturate;
break;
case nir_op_fddx:
case nir_op_fddx_coarse:
case nir_op_fddx_fine:
case nir_op_fddy:
case nir_op_fddy_coarse:
case nir_op_fddy_fine:
unreachable("derivatives are not valid in vertex shaders");
case nir_op_flt:
case nir_op_ilt:
case nir_op_ult:
case nir_op_fge:
case nir_op_ige:
case nir_op_uge:
case nir_op_feq:
case nir_op_ieq:
case nir_op_fne:
case nir_op_ine:
emit(CMP(dst, op[0], op[1],
brw_conditional_for_nir_comparison(instr->op)));
break;
case nir_op_ball_fequal2:
case nir_op_ball_iequal2:
case nir_op_ball_fequal3:
case nir_op_ball_iequal3:
case nir_op_ball_fequal4:
case nir_op_ball_iequal4: {
dst_reg tmp = dst_reg(this, glsl_type::bool_type);
switch (instr->op) {
case nir_op_ball_fequal2:
case nir_op_ball_iequal2:
tmp.writemask = WRITEMASK_XY;
break;
case nir_op_ball_fequal3:
case nir_op_ball_iequal3:
tmp.writemask = WRITEMASK_XYZ;
break;
case nir_op_ball_fequal4:
case nir_op_ball_iequal4:
tmp.writemask = WRITEMASK_XYZW;
break;
default:
unreachable("not reached");
}
emit(CMP(tmp, op[0], op[1],
brw_conditional_for_nir_comparison(instr->op)));
emit(MOV(dst, src_reg(0)));
inst = emit(MOV(dst, src_reg(~0)));
inst->predicate = BRW_PREDICATE_ALIGN16_ALL4H;
break;
}
case nir_op_bany_fnequal2:
case nir_op_bany_inequal2:
case nir_op_bany_fnequal3:
case nir_op_bany_inequal3:
case nir_op_bany_fnequal4:
case nir_op_bany_inequal4: {
dst_reg tmp = dst_reg(this, glsl_type::bool_type);
switch (instr->op) {
case nir_op_bany_fnequal2:
case nir_op_bany_inequal2:
tmp.writemask = WRITEMASK_XY;
break;
case nir_op_bany_fnequal3:
case nir_op_bany_inequal3:
tmp.writemask = WRITEMASK_XYZ;
break;
case nir_op_bany_fnequal4:
case nir_op_bany_inequal4:
tmp.writemask = WRITEMASK_XYZW;
break;
default:
unreachable("not reached");
}
emit(CMP(tmp, op[0], op[1],
brw_conditional_for_nir_comparison(instr->op)));
emit(MOV(dst, src_reg(0)));
inst = emit(MOV(dst, src_reg(~0)));
inst->predicate = BRW_PREDICATE_ALIGN16_ANY4H;
break;
}
case nir_op_inot:
if (devinfo->gen >= 8) {
op[0] = resolve_source_modifiers(op[0]);
}
emit(NOT(dst, op[0]));
break;
case nir_op_ixor:
if (devinfo->gen >= 8) {
op[0] = resolve_source_modifiers(op[0]);
op[1] = resolve_source_modifiers(op[1]);
}
emit(XOR(dst, op[0], op[1]));
break;
case nir_op_ior:
if (devinfo->gen >= 8) {
op[0] = resolve_source_modifiers(op[0]);
op[1] = resolve_source_modifiers(op[1]);
}
emit(OR(dst, op[0], op[1]));
break;
case nir_op_iand:
if (devinfo->gen >= 8) {
op[0] = resolve_source_modifiers(op[0]);
op[1] = resolve_source_modifiers(op[1]);
}
emit(AND(dst, op[0], op[1]));
break;
case nir_op_b2i:
emit(AND(dst, op[0], src_reg(1)));
break;
case nir_op_b2f:
op[0].type = BRW_REGISTER_TYPE_D;
dst.type = BRW_REGISTER_TYPE_D;
emit(AND(dst, op[0], src_reg(0x3f800000u)));
dst.type = BRW_REGISTER_TYPE_F;
break;
case nir_op_f2b:
emit(CMP(dst, op[0], src_reg(0.0f), BRW_CONDITIONAL_NZ));
break;
case nir_op_i2b:
emit(CMP(dst, op[0], src_reg(0), BRW_CONDITIONAL_NZ));
break;
case nir_op_fnoise1_1:
case nir_op_fnoise1_2:
case nir_op_fnoise1_3:
case nir_op_fnoise1_4:
case nir_op_fnoise2_1:
case nir_op_fnoise2_2:
case nir_op_fnoise2_3:
case nir_op_fnoise2_4:
case nir_op_fnoise3_1:
case nir_op_fnoise3_2:
case nir_op_fnoise3_3:
case nir_op_fnoise3_4:
case nir_op_fnoise4_1:
case nir_op_fnoise4_2:
case nir_op_fnoise4_3:
case nir_op_fnoise4_4:
unreachable("not reached: should be handled by lower_noise");
case nir_op_unpack_half_2x16_split_x:
case nir_op_unpack_half_2x16_split_y:
case nir_op_pack_half_2x16_split:
unreachable("not reached: should not occur in vertex shader");
case nir_op_unpack_snorm_2x16:
case nir_op_unpack_unorm_2x16:
case nir_op_pack_snorm_2x16:
case nir_op_pack_unorm_2x16:
unreachable("not reached: should be handled by lower_packing_builtins");
case nir_op_unpack_half_2x16:
/* As NIR does not guarantee that we have a correct swizzle outside the
* boundaries of a vector, and the implementation of emit_unpack_half_2x16
* uses the source operand in an operation with WRITEMASK_Y while our
* source operand has only size 1, it accessed incorrect data producing
* regressions in Piglit. We repeat the swizzle of the first component on the
* rest of components to avoid regressions. In the vec4_visitor IR code path
* this is not needed because the operand has already the correct swizzle.
*/
op[0].swizzle = brw_compose_swizzle(BRW_SWIZZLE_XXXX, op[0].swizzle);
emit_unpack_half_2x16(dst, op[0]);
break;
case nir_op_pack_half_2x16:
emit_pack_half_2x16(dst, op[0]);
break;
case nir_op_unpack_unorm_4x8:
emit_unpack_unorm_4x8(dst, op[0]);
break;
case nir_op_pack_unorm_4x8:
emit_pack_unorm_4x8(dst, op[0]);
break;
case nir_op_unpack_snorm_4x8:
emit_unpack_snorm_4x8(dst, op[0]);
break;
case nir_op_pack_snorm_4x8:
emit_pack_snorm_4x8(dst, op[0]);
break;
case nir_op_bitfield_reverse:
emit(BFREV(dst, op[0]));
break;
case nir_op_bit_count:
emit(CBIT(dst, op[0]));
break;
case nir_op_ufind_msb:
case nir_op_ifind_msb: {
src_reg temp = src_reg(this, glsl_type::uint_type);
inst = emit(FBH(dst_reg(temp), op[0]));
inst->dst.writemask = WRITEMASK_XYZW;
/* FBH counts from the MSB side, while GLSL's findMSB() wants the count
* from the LSB side. If FBH didn't return an error (0xFFFFFFFF), then
* subtract the result from 31 to convert the MSB count into an LSB count.
*/
/* FBH only supports UD type for dst, so use a MOV to convert UD to D. */
temp.swizzle = BRW_SWIZZLE_NOOP;
emit(MOV(dst, temp));
src_reg src_tmp = src_reg(dst);
emit(CMP(dst_null_d(), src_tmp, src_reg(-1), BRW_CONDITIONAL_NZ));
src_tmp.negate = true;
inst = emit(ADD(dst, src_tmp, src_reg(31)));
inst->predicate = BRW_PREDICATE_NORMAL;
break;
}
case nir_op_find_lsb:
emit(FBL(dst, op[0]));
break;
case nir_op_ubitfield_extract:
case nir_op_ibitfield_extract:
op[0] = fix_3src_operand(op[0]);
op[1] = fix_3src_operand(op[1]);
op[2] = fix_3src_operand(op[2]);
emit(BFE(dst, op[2], op[1], op[0]));
break;
case nir_op_bfm:
emit(BFI1(dst, op[0], op[1]));
break;
case nir_op_bfi:
op[0] = fix_3src_operand(op[0]);
op[1] = fix_3src_operand(op[1]);
op[2] = fix_3src_operand(op[2]);
emit(BFI2(dst, op[0], op[1], op[2]));
break;
case nir_op_bitfield_insert:
unreachable("not reached: should be handled by "
"lower_instructions::bitfield_insert_to_bfm_bfi");
case nir_op_fsign:
/* AND(val, 0x80000000) gives the sign bit.
*
* Predicated OR ORs 1.0 (0x3f800000) with the sign bit if val is not
* zero.
*/
emit(CMP(dst_null_f(), op[0], src_reg(0.0f), BRW_CONDITIONAL_NZ));
op[0].type = BRW_REGISTER_TYPE_UD;
dst.type = BRW_REGISTER_TYPE_UD;
emit(AND(dst, op[0], src_reg(0x80000000u)));
inst = emit(OR(dst, src_reg(dst), src_reg(0x3f800000u)));
inst->predicate = BRW_PREDICATE_NORMAL;
dst.type = BRW_REGISTER_TYPE_F;
if (instr->dest.saturate) {
inst = emit(MOV(dst, src_reg(dst)));
inst->saturate = true;
}
break;
case nir_op_isign:
/* ASR(val, 31) -> negative val generates 0xffffffff (signed -1).
* -> non-negative val generates 0x00000000.
* Predicated OR sets 1 if val is positive.
*/
emit(CMP(dst_null_d(), op[0], src_reg(0), BRW_CONDITIONAL_G));
emit(ASR(dst, op[0], src_reg(31)));
inst = emit(OR(dst, src_reg(dst), src_reg(1)));
inst->predicate = BRW_PREDICATE_NORMAL;
break;
case nir_op_ishl:
emit(SHL(dst, op[0], op[1]));
break;
case nir_op_ishr:
emit(ASR(dst, op[0], op[1]));
break;
case nir_op_ushr:
emit(SHR(dst, op[0], op[1]));
break;
case nir_op_ffma:
op[0] = fix_3src_operand(op[0]);
op[1] = fix_3src_operand(op[1]);
op[2] = fix_3src_operand(op[2]);
inst = emit(MAD(dst, op[2], op[1], op[0]));
inst->saturate = instr->dest.saturate;
break;
case nir_op_flrp:
inst = emit_lrp(dst, op[0], op[1], op[2]);
inst->saturate = instr->dest.saturate;
break;
case nir_op_bcsel:
emit(CMP(dst_null_d(), op[0], src_reg(0), BRW_CONDITIONAL_NZ));
inst = emit(BRW_OPCODE_SEL, dst, op[1], op[2]);
inst->predicate = BRW_PREDICATE_NORMAL;
break;
case nir_op_fdot_replicated2:
inst = emit(BRW_OPCODE_DP2, dst, op[0], op[1]);
inst->saturate = instr->dest.saturate;
break;
case nir_op_fdot_replicated3:
inst = emit(BRW_OPCODE_DP3, dst, op[0], op[1]);
inst->saturate = instr->dest.saturate;
break;
case nir_op_fdot_replicated4:
inst = emit(BRW_OPCODE_DP4, dst, op[0], op[1]);
inst->saturate = instr->dest.saturate;
break;
case nir_op_fdph_replicated:
inst = emit(BRW_OPCODE_DPH, dst, op[0], op[1]);
inst->saturate = instr->dest.saturate;
break;
case nir_op_bany2:
case nir_op_bany3:
case nir_op_bany4: {
dst_reg tmp = dst_reg(this, glsl_type::bool_type);
tmp.writemask = brw_writemask_for_size(nir_op_infos[instr->op].input_sizes[0]);
emit(CMP(tmp, op[0], src_reg(0), BRW_CONDITIONAL_NZ));
emit(MOV(dst, src_reg(0)));
inst = emit(MOV(dst, src_reg(~0)));
inst->predicate = BRW_PREDICATE_ALIGN16_ANY4H;
break;
}
case nir_op_fabs:
case nir_op_iabs:
case nir_op_fneg:
case nir_op_ineg:
case nir_op_fsat:
unreachable("not reached: should be lowered by lower_source mods");
case nir_op_fdiv:
unreachable("not reached: should be lowered by DIV_TO_MUL_RCP in the compiler");
case nir_op_fmod:
unreachable("not reached: should be lowered by MOD_TO_FLOOR in the compiler");
case nir_op_fsub:
case nir_op_isub:
unreachable("not reached: should be handled by ir_sub_to_add_neg");
default:
unreachable("Unimplemented ALU operation");
}
/* If we need to do a boolean resolve, replace the result with -(x & 1)
* to sign extend the low bit to 0/~0
*/
if (devinfo->gen <= 5 &&
(instr->instr.pass_flags & BRW_NIR_BOOLEAN_MASK) ==
BRW_NIR_BOOLEAN_NEEDS_RESOLVE) {
dst_reg masked = dst_reg(this, glsl_type::int_type);
masked.writemask = dst.writemask;
emit(AND(masked, src_reg(dst), src_reg(1)));
src_reg masked_neg = src_reg(masked);
masked_neg.negate = true;
emit(MOV(retype(dst, BRW_REGISTER_TYPE_D), masked_neg));
}
}
void
vec4_visitor::nir_emit_jump(nir_jump_instr *instr)
{
switch (instr->type) {
case nir_jump_break:
emit(BRW_OPCODE_BREAK);
break;
case nir_jump_continue:
emit(BRW_OPCODE_CONTINUE);
break;
case nir_jump_return:
/* fall through */
default:
unreachable("unknown jump");
}
}
enum ir_texture_opcode
ir_texture_opcode_for_nir_texop(nir_texop texop)
{
enum ir_texture_opcode op;
switch (texop) {
case nir_texop_lod: op = ir_lod; break;
case nir_texop_query_levels: op = ir_query_levels; break;
case nir_texop_texture_samples: op = ir_texture_samples; break;
case nir_texop_tex: op = ir_tex; break;
case nir_texop_tg4: op = ir_tg4; break;
case nir_texop_txb: op = ir_txb; break;
case nir_texop_txd: op = ir_txd; break;
case nir_texop_txf: op = ir_txf; break;
case nir_texop_txf_ms: op = ir_txf_ms; break;
case nir_texop_txl: op = ir_txl; break;
case nir_texop_txs: op = ir_txs; break;
default:
unreachable("unknown texture opcode");
}
return op;
}
const glsl_type *
glsl_type_for_nir_alu_type(nir_alu_type alu_type,
unsigned components)
{
switch (alu_type) {
case nir_type_float:
return glsl_type::vec(components);
case nir_type_int:
return glsl_type::ivec(components);
case nir_type_unsigned:
return glsl_type::uvec(components);
case nir_type_bool:
return glsl_type::bvec(components);
default:
return glsl_type::error_type;
}
return glsl_type::error_type;
}
void
vec4_visitor::nir_emit_texture(nir_tex_instr *instr)
{
unsigned sampler = instr->sampler_index;
src_reg sampler_reg = src_reg(sampler);
src_reg coordinate;
const glsl_type *coord_type = NULL;
src_reg shadow_comparitor;
src_reg offset_value;
src_reg lod, lod2;
src_reg sample_index;
src_reg mcs;
const glsl_type *dest_type =
glsl_type_for_nir_alu_type(instr->dest_type,
nir_tex_instr_dest_size(instr));
dst_reg dest = get_nir_dest(instr->dest, instr->dest_type);
/* When tg4 is used with the degenerate ZERO/ONE swizzles, don't bother
* emitting anything other than setting up the constant result.
*/
if (instr->op == nir_texop_tg4) {
int swiz = GET_SWZ(key_tex->swizzles[sampler], instr->component);
if (swiz == SWIZZLE_ZERO || swiz == SWIZZLE_ONE) {
emit(MOV(dest, src_reg(swiz == SWIZZLE_ONE ? 1.0f : 0.0f)));
return;
}
}
/* Load the texture operation sources */
for (unsigned i = 0; i < instr->num_srcs; i++) {
switch (instr->src[i].src_type) {
case nir_tex_src_comparitor:
shadow_comparitor = get_nir_src(instr->src[i].src,
BRW_REGISTER_TYPE_F, 1);
break;
case nir_tex_src_coord: {
unsigned src_size = nir_tex_instr_src_size(instr, i);
switch (instr->op) {
case nir_texop_txf:
case nir_texop_txf_ms:
coordinate = get_nir_src(instr->src[i].src, BRW_REGISTER_TYPE_D,
src_size);
coord_type = glsl_type::ivec(src_size);
break;
default:
coordinate = get_nir_src(instr->src[i].src, BRW_REGISTER_TYPE_F,
src_size);
coord_type = glsl_type::vec(src_size);
break;
}
break;
}
case nir_tex_src_ddx:
lod = get_nir_src(instr->src[i].src, BRW_REGISTER_TYPE_F,
nir_tex_instr_src_size(instr, i));
break;
case nir_tex_src_ddy:
lod2 = get_nir_src(instr->src[i].src, BRW_REGISTER_TYPE_F,
nir_tex_instr_src_size(instr, i));
break;
case nir_tex_src_lod:
switch (instr->op) {
case nir_texop_txs:
case nir_texop_txf:
lod = get_nir_src(instr->src[i].src, BRW_REGISTER_TYPE_D, 1);
break;
default:
lod = get_nir_src(instr->src[i].src, BRW_REGISTER_TYPE_F, 1);
break;
}
break;
case nir_tex_src_ms_index: {
sample_index = get_nir_src(instr->src[i].src, BRW_REGISTER_TYPE_D, 1);
assert(coord_type != NULL);
if (devinfo->gen >= 7 &&
key_tex->compressed_multisample_layout_mask & (1 << sampler)) {
mcs = emit_mcs_fetch(coord_type, coordinate, sampler_reg);
} else {
mcs = src_reg(0u);
}
mcs = retype(mcs, BRW_REGISTER_TYPE_UD);
break;
}
case nir_tex_src_offset:
offset_value = get_nir_src(instr->src[i].src, BRW_REGISTER_TYPE_D, 2);
break;
case nir_tex_src_sampler_offset: {
/* The highest sampler which may be used by this operation is
* the last element of the array. Mark it here, because the generator
* doesn't have enough information to determine the bound.
*/
uint32_t array_size = instr->sampler_array_size;
uint32_t max_used = sampler + array_size - 1;
if (instr->op == nir_texop_tg4) {
max_used += prog_data->base.binding_table.gather_texture_start;
} else {
max_used += prog_data->base.binding_table.texture_start;
}
brw_mark_surface_used(&prog_data->base, max_used);
/* Emit code to evaluate the actual indexing expression */
src_reg src = get_nir_src(instr->src[i].src, 1);
src_reg temp(this, glsl_type::uint_type);
emit(ADD(dst_reg(temp), src, src_reg(sampler)));
sampler_reg = emit_uniformize(temp);
break;
}
case nir_tex_src_projector:
unreachable("Should be lowered by do_lower_texture_projection");
case nir_tex_src_bias:
unreachable("LOD bias is not valid for vertex shaders.\n");
default:
unreachable("unknown texture source");
}
}
uint32_t constant_offset = 0;
for (unsigned i = 0; i < 3; i++) {
if (instr->const_offset[i] != 0) {
constant_offset = brw_texture_offset(instr->const_offset, 3);
break;
}
}
/* Stuff the channel select bits in the top of the texture offset */
if (instr->op == nir_texop_tg4)
constant_offset |= gather_channel(instr->component, sampler) << 16;
ir_texture_opcode op = ir_texture_opcode_for_nir_texop(instr->op);
bool is_cube_array =
instr->op == nir_texop_txs &&
instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE &&
instr->is_array;
emit_texture(op, dest, dest_type, coordinate, instr->coord_components,
shadow_comparitor,
lod, lod2, sample_index,
constant_offset, offset_value,
mcs, is_cube_array, sampler, sampler_reg);
}
void
vec4_visitor::nir_emit_undef(nir_ssa_undef_instr *instr)
{
nir_ssa_values[instr->def.index] = dst_reg(GRF, alloc.allocate(1));
}
}