mesa/src/mesa/drivers/dri/i965/brw_vec4_nir.cpp

833 lines
24 KiB
C++
Raw Normal View History

/*
* Copyright © 2015 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include "brw_nir.h"
#include "brw_vec4.h"
#include "glsl/ir_uniform.h"
namespace brw {
void
vec4_visitor::emit_nir_code()
{
nir_shader *nir = prog->nir;
if (nir->num_inputs > 0)
nir_setup_inputs(nir);
if (nir->num_uniforms > 0)
nir_setup_uniforms(nir);
nir_setup_system_values(nir);
/* get the main function and emit it */
nir_foreach_overload(nir, overload) {
assert(strcmp(overload->function->name, "main") == 0);
assert(overload->impl);
nir_emit_impl(overload->impl);
}
}
void
vec4_visitor::nir_setup_system_value_intrinsic(nir_intrinsic_instr *instr)
{
dst_reg *reg;
switch (instr->intrinsic) {
case nir_intrinsic_load_vertex_id:
unreachable("should be lowered by lower_vertex_id().");
case nir_intrinsic_load_vertex_id_zero_base:
reg = &this->nir_system_values[SYSTEM_VALUE_VERTEX_ID_ZERO_BASE];
if (reg->file == BAD_FILE)
*reg =
*this->make_reg_for_system_value(SYSTEM_VALUE_VERTEX_ID_ZERO_BASE,
glsl_type::int_type);
break;
case nir_intrinsic_load_base_vertex:
reg = &this->nir_system_values[SYSTEM_VALUE_BASE_VERTEX];
if (reg->file == BAD_FILE)
*reg = *this->make_reg_for_system_value(SYSTEM_VALUE_BASE_VERTEX,
glsl_type::int_type);
break;
case nir_intrinsic_load_instance_id:
reg = &this->nir_system_values[SYSTEM_VALUE_INSTANCE_ID];
if (reg->file == BAD_FILE)
*reg = *this->make_reg_for_system_value(SYSTEM_VALUE_INSTANCE_ID,
glsl_type::int_type);
break;
default:
break;
}
}
static bool
setup_system_values_block(nir_block *block, void *void_visitor)
{
vec4_visitor *v = (vec4_visitor *)void_visitor;
nir_foreach_instr(block, instr) {
if (instr->type != nir_instr_type_intrinsic)
continue;
nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
v->nir_setup_system_value_intrinsic(intrin);
}
return true;
}
void
vec4_visitor::nir_setup_system_values(nir_shader *shader)
{
nir_system_values = ralloc_array(mem_ctx, dst_reg, SYSTEM_VALUE_MAX);
nir_foreach_overload(shader, overload) {
assert(strcmp(overload->function->name, "main") == 0);
assert(overload->impl);
nir_foreach_block(overload->impl, setup_system_values_block, this);
}
}
void
vec4_visitor::nir_setup_inputs(nir_shader *shader)
{
nir_inputs = ralloc_array(mem_ctx, src_reg, shader->num_inputs);
foreach_list_typed(nir_variable, var, node, &shader->inputs) {
int offset = var->data.driver_location;
unsigned size = type_size(var->type);
for (unsigned i = 0; i < size; i++) {
src_reg src = src_reg(ATTR, var->data.location + i, var->type);
nir_inputs[offset + i] = src;
}
}
}
void
vec4_visitor::nir_setup_uniforms(nir_shader *shader)
{
uniforms = 0;
nir_uniform_driver_location =
rzalloc_array(mem_ctx, unsigned, this->uniform_array_size);
if (shader_prog) {
foreach_list_typed(nir_variable, var, node, &shader->uniforms) {
/* UBO's, atomics and samplers don't take up space in the
uniform file */
if (var->interface_type != NULL || var->type->contains_atomic() ||
type_size(var->type) == 0) {
continue;
}
assert(uniforms < uniform_array_size);
this->uniform_size[uniforms] = type_size(var->type);
if (strncmp(var->name, "gl_", 3) == 0)
nir_setup_builtin_uniform(var);
else
nir_setup_uniform(var);
}
} else {
/* ARB_vertex_program is not supported yet */
assert("Not implemented");
}
}
void
vec4_visitor::nir_setup_uniform(nir_variable *var)
{
int namelen = strlen(var->name);
/* The data for our (non-builtin) uniforms is stored in a series of
* gl_uniform_driver_storage structs for each subcomponent that
* glGetUniformLocation() could name. We know it's been set up in the same
* order we'd walk the type, so walk the list of storage and find anything
* with our name, or the prefix of a component that starts with our name.
*/
for (unsigned u = 0; u < shader_prog->NumUniformStorage; u++) {
struct gl_uniform_storage *storage = &shader_prog->UniformStorage[u];
if (storage->builtin)
continue;
if (strncmp(var->name, storage->name, namelen) != 0 ||
(storage->name[namelen] != 0 &&
storage->name[namelen] != '.' &&
storage->name[namelen] != '[')) {
continue;
}
gl_constant_value *components = storage->storage;
unsigned vector_count = (MAX2(storage->array_elements, 1) *
storage->type->matrix_columns);
for (unsigned s = 0; s < vector_count; s++) {
assert(uniforms < uniform_array_size);
uniform_vector_size[uniforms] = storage->type->vector_elements;
int i;
for (i = 0; i < uniform_vector_size[uniforms]; i++) {
stage_prog_data->param[uniforms * 4 + i] = components;
components++;
}
for (; i < 4; i++) {
static const gl_constant_value zero = { 0.0 };
stage_prog_data->param[uniforms * 4 + i] = &zero;
}
nir_uniform_driver_location[uniforms] = var->data.driver_location;
uniforms++;
}
}
}
void
vec4_visitor::nir_setup_builtin_uniform(nir_variable *var)
{
const nir_state_slot *const slots = var->state_slots;
assert(var->state_slots != NULL);
for (unsigned int i = 0; i < var->num_state_slots; i++) {
/* This state reference has already been setup by ir_to_mesa,
* but we'll get the same index back here. We can reference
* ParameterValues directly, since unlike brw_fs.cpp, we never
* add new state references during compile.
*/
int index = _mesa_add_state_reference(this->prog->Parameters,
(gl_state_index *)slots[i].tokens);
gl_constant_value *values =
&this->prog->Parameters->ParameterValues[index][0];
assert(uniforms < uniform_array_size);
for (unsigned j = 0; j < 4; j++)
stage_prog_data->param[uniforms * 4 + j] =
&values[GET_SWZ(slots[i].swizzle, j)];
this->uniform_vector_size[uniforms] =
(var->type->is_scalar() || var->type->is_vector() ||
var->type->is_matrix() ? var->type->vector_elements : 4);
nir_uniform_driver_location[uniforms] = var->data.driver_location;
uniforms++;
}
}
void
vec4_visitor::nir_emit_impl(nir_function_impl *impl)
{
nir_locals = ralloc_array(mem_ctx, dst_reg, impl->reg_alloc);
foreach_list_typed(nir_register, reg, node, &impl->registers) {
unsigned array_elems =
reg->num_array_elems == 0 ? 1 : reg->num_array_elems;
nir_locals[reg->index] = dst_reg(GRF, alloc.allocate(array_elems));
}
nir_ssa_values = ralloc_array(mem_ctx, dst_reg, impl->ssa_alloc);
nir_emit_cf_list(&impl->body);
}
void
vec4_visitor::nir_emit_cf_list(exec_list *list)
{
exec_list_validate(list);
foreach_list_typed(nir_cf_node, node, node, list) {
switch (node->type) {
case nir_cf_node_if:
nir_emit_if(nir_cf_node_as_if(node));
break;
case nir_cf_node_loop:
nir_emit_loop(nir_cf_node_as_loop(node));
break;
case nir_cf_node_block:
nir_emit_block(nir_cf_node_as_block(node));
break;
default:
unreachable("Invalid CFG node block");
}
}
}
void
vec4_visitor::nir_emit_if(nir_if *if_stmt)
{
/* First, put the condition in f0 */
src_reg condition = get_nir_src(if_stmt->condition, BRW_REGISTER_TYPE_D, 1);
vec4_instruction *inst = emit(MOV(dst_null_d(), condition));
inst->conditional_mod = BRW_CONDITIONAL_NZ;
emit(IF(BRW_PREDICATE_NORMAL));
nir_emit_cf_list(&if_stmt->then_list);
/* note: if the else is empty, dead CF elimination will remove it */
emit(BRW_OPCODE_ELSE);
nir_emit_cf_list(&if_stmt->else_list);
emit(BRW_OPCODE_ENDIF);
}
void
vec4_visitor::nir_emit_loop(nir_loop *loop)
{
emit(BRW_OPCODE_DO);
nir_emit_cf_list(&loop->body);
emit(BRW_OPCODE_WHILE);
}
void
vec4_visitor::nir_emit_block(nir_block *block)
{
nir_foreach_instr(block, instr) {
nir_emit_instr(instr);
}
}
void
vec4_visitor::nir_emit_instr(nir_instr *instr)
{
this->base_ir = instr;
switch (instr->type) {
case nir_instr_type_load_const:
nir_emit_load_const(nir_instr_as_load_const(instr));
break;
case nir_instr_type_intrinsic:
nir_emit_intrinsic(nir_instr_as_intrinsic(instr));
break;
case nir_instr_type_alu:
nir_emit_alu(nir_instr_as_alu(instr));
break;
case nir_instr_type_jump:
nir_emit_jump(nir_instr_as_jump(instr));
break;
case nir_instr_type_tex:
nir_emit_texture(nir_instr_as_tex(instr));
break;
default:
fprintf(stderr, "VS instruction not yet implemented by NIR->vec4\n");
break;
}
}
static dst_reg
dst_reg_for_nir_reg(vec4_visitor *v, nir_register *nir_reg,
unsigned base_offset, nir_src *indirect)
{
dst_reg reg;
reg = v->nir_locals[nir_reg->index];
reg = offset(reg, base_offset);
if (indirect) {
reg.reladdr =
new(v->mem_ctx) src_reg(v->get_nir_src(*indirect,
BRW_REGISTER_TYPE_D,
1));
}
return reg;
}
dst_reg
vec4_visitor::get_nir_dest(nir_dest dest)
{
assert(!dest.is_ssa);
return dst_reg_for_nir_reg(this, dest.reg.reg, dest.reg.base_offset,
dest.reg.indirect);
}
dst_reg
vec4_visitor::get_nir_dest(nir_dest dest, enum brw_reg_type type)
{
return retype(get_nir_dest(dest), type);
}
dst_reg
vec4_visitor::get_nir_dest(nir_dest dest, nir_alu_type type)
{
return get_nir_dest(dest, brw_type_for_nir_type(type));
}
src_reg
vec4_visitor::get_nir_src(nir_src src, enum brw_reg_type type,
unsigned num_components)
{
dst_reg reg;
if (src.is_ssa) {
assert(src.ssa != NULL);
reg = nir_ssa_values[src.ssa->index];
}
else {
reg = dst_reg_for_nir_reg(this, src.reg.reg, src.reg.base_offset,
src.reg.indirect);
}
reg = retype(reg, type);
src_reg reg_as_src = src_reg(reg);
reg_as_src.swizzle = brw_swizzle_for_size(num_components);
return reg_as_src;
}
src_reg
vec4_visitor::get_nir_src(nir_src src, nir_alu_type type,
unsigned num_components)
{
return get_nir_src(src, brw_type_for_nir_type(type), num_components);
}
src_reg
vec4_visitor::get_nir_src(nir_src src, unsigned num_components)
{
/* if type is not specified, default to signed int */
return get_nir_src(src, nir_type_int, num_components);
}
void
vec4_visitor::nir_emit_load_const(nir_load_const_instr *instr)
{
dst_reg reg = dst_reg(GRF, alloc.allocate(1));
reg.type = BRW_REGISTER_TYPE_F;
/* @FIXME: consider emitting vector operations to save some MOVs in
* cases where the components are representable in 8 bits.
* By now, we emit a MOV for each component.
*/
for (unsigned i = 0; i < instr->def.num_components; ++i) {
reg.writemask = 1 << i;
emit(MOV(reg, src_reg(instr->value.f[i])));
}
/* Set final writemask */
reg.writemask = brw_writemask_for_size(instr->def.num_components);
nir_ssa_values[instr->def.index] = reg;
}
void
vec4_visitor::nir_emit_intrinsic(nir_intrinsic_instr *instr)
{
dst_reg dest;
src_reg src;
bool has_indirect = false;
switch (instr->intrinsic) {
case nir_intrinsic_load_input_indirect:
has_indirect = true;
/* fallthrough */
case nir_intrinsic_load_input: {
int offset = instr->const_index[0];
src = nir_inputs[offset];
if (has_indirect) {
dest.reladdr = new(mem_ctx) src_reg(get_nir_src(instr->src[0],
BRW_REGISTER_TYPE_D,
1));
}
dest = get_nir_dest(instr->dest, src.type);
dest.writemask = brw_writemask_for_size(instr->num_components);
emit(MOV(dest, src));
break;
}
case nir_intrinsic_store_output_indirect:
has_indirect = true;
/* fallthrough */
case nir_intrinsic_store_output: {
int varying = instr->const_index[0];
src = get_nir_src(instr->src[0], BRW_REGISTER_TYPE_F,
instr->num_components);
dest = dst_reg(src);
if (has_indirect) {
dest.reladdr = new(mem_ctx) src_reg(get_nir_src(instr->src[1],
BRW_REGISTER_TYPE_D,
1));
}
output_reg[varying] = dest;
break;
}
case nir_intrinsic_load_vertex_id:
unreachable("should be lowered by lower_vertex_id()");
case nir_intrinsic_load_vertex_id_zero_base: {
src_reg vertex_id =
src_reg(nir_system_values[SYSTEM_VALUE_VERTEX_ID_ZERO_BASE]);
assert(vertex_id.file != BAD_FILE);
dest = get_nir_dest(instr->dest, vertex_id.type);
emit(MOV(dest, vertex_id));
break;
}
case nir_intrinsic_load_base_vertex: {
src_reg base_vertex =
src_reg(nir_system_values[SYSTEM_VALUE_BASE_VERTEX]);
assert(base_vertex.file != BAD_FILE);
dest = get_nir_dest(instr->dest, base_vertex.type);
emit(MOV(dest, base_vertex));
break;
}
case nir_intrinsic_load_instance_id: {
src_reg instance_id =
src_reg(nir_system_values[SYSTEM_VALUE_INSTANCE_ID]);
assert(instance_id.file != BAD_FILE);
dest = get_nir_dest(instr->dest, instance_id.type);
emit(MOV(dest, instance_id));
break;
}
case nir_intrinsic_load_uniform_indirect:
has_indirect = true;
/* fallthrough */
case nir_intrinsic_load_uniform: {
int uniform = instr->const_index[0];
dest = get_nir_dest(instr->dest);
if (has_indirect) {
/* Split addressing into uniform and offset */
int offset = uniform - nir_uniform_driver_location[uniform];
assert(offset >= 0);
uniform -= offset;
assert(uniform >= 0);
src = src_reg(dst_reg(UNIFORM, uniform));
src.reg_offset = offset;
src_reg tmp = get_nir_src(instr->src[0], BRW_REGISTER_TYPE_D, 1);
src.reladdr = new(mem_ctx) src_reg(tmp);
} else {
src = src_reg(dst_reg(UNIFORM, uniform));
}
emit(MOV(dest, src));
break;
}
case nir_intrinsic_atomic_counter_read:
case nir_intrinsic_atomic_counter_inc:
case nir_intrinsic_atomic_counter_dec: {
unsigned surf_index = prog_data->base.binding_table.abo_start +
(unsigned) instr->const_index[0];
src_reg offset = get_nir_src(instr->src[0], nir_type_int,
instr->num_components);
dest = get_nir_dest(instr->dest);
switch (instr->intrinsic) {
case nir_intrinsic_atomic_counter_inc:
emit_untyped_atomic(BRW_AOP_INC, surf_index, dest, offset,
src_reg(), src_reg());
break;
case nir_intrinsic_atomic_counter_dec:
emit_untyped_atomic(BRW_AOP_PREDEC, surf_index, dest, offset,
src_reg(), src_reg());
break;
case nir_intrinsic_atomic_counter_read:
emit_untyped_surface_read(surf_index, dest, offset);
break;
default:
unreachable("Unreachable");
}
brw_mark_surface_used(stage_prog_data, surf_index);
break;
}
case nir_intrinsic_load_ubo_indirect:
has_indirect = true;
/* fallthrough */
case nir_intrinsic_load_ubo: {
nir_const_value *const_block_index = nir_src_as_const_value(instr->src[0]);
src_reg surf_index;
dest = get_nir_dest(instr->dest);
if (const_block_index) {
/* The block index is a constant, so just emit the binding table entry
* as an immediate.
*/
surf_index = src_reg(prog_data->base.binding_table.ubo_start +
const_block_index->u[0]);
} else {
/* The block index is not a constant. Evaluate the index expression
* per-channel and add the base UBO index; we have to select a value
* from any live channel.
*/
surf_index = src_reg(this, glsl_type::uint_type);
emit(ADD(dst_reg(surf_index), get_nir_src(instr->src[0], nir_type_int,
instr->num_components),
src_reg(prog_data->base.binding_table.ubo_start)));
surf_index = emit_uniformize(surf_index);
/* Assume this may touch any UBO. It would be nice to provide
* a tighter bound, but the array information is already lowered away.
*/
brw_mark_surface_used(&prog_data->base,
prog_data->base.binding_table.ubo_start +
shader_prog->NumUniformBlocks - 1);
}
unsigned const_offset = instr->const_index[0];
src_reg offset;
if (!has_indirect) {
offset = src_reg(const_offset / 16);
} else {
offset = src_reg(this, glsl_type::uint_type);
emit(SHR(dst_reg(offset), get_nir_src(instr->src[1], nir_type_int, 1),
src_reg(4u)));
}
src_reg packed_consts = src_reg(this, glsl_type::vec4_type);
packed_consts.type = dest.type;
emit_pull_constant_load_reg(dst_reg(packed_consts),
surf_index,
offset,
NULL, NULL /* before_block/inst */);
packed_consts.swizzle = brw_swizzle_for_size(instr->num_components);
packed_consts.swizzle += BRW_SWIZZLE4(const_offset % 16 / 4,
const_offset % 16 / 4,
const_offset % 16 / 4,
const_offset % 16 / 4);
emit(MOV(dest, packed_consts));
break;
}
default:
unreachable("Unknown intrinsic");
}
}
static unsigned
brw_swizzle_for_nir_swizzle(uint8_t swizzle[4])
{
return BRW_SWIZZLE4(swizzle[0], swizzle[1], swizzle[2], swizzle[3]);
}
void
vec4_visitor::nir_emit_alu(nir_alu_instr *instr)
{
vec4_instruction *inst;
dst_reg dst = get_nir_dest(instr->dest.dest,
nir_op_infos[instr->op].output_type);
dst.writemask = instr->dest.write_mask;
src_reg op[4];
for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
op[i] = get_nir_src(instr->src[i].src,
nir_op_infos[instr->op].input_types[i], 4);
op[i].swizzle = brw_swizzle_for_nir_swizzle(instr->src[i].swizzle);
op[i].abs = instr->src[i].abs;
op[i].negate = instr->src[i].negate;
}
switch (instr->op) {
case nir_op_imov:
case nir_op_fmov:
inst = emit(MOV(dst, op[0]));
inst->saturate = instr->dest.saturate;
break;
case nir_op_vec2:
case nir_op_vec3:
case nir_op_vec4:
unreachable("not reached: should be handled by lower_vec_to_movs()");
case nir_op_i2f:
case nir_op_u2f:
inst = emit(MOV(dst, op[0]));
inst->saturate = instr->dest.saturate;
break;
case nir_op_f2i:
case nir_op_f2u:
inst = emit(MOV(dst, op[0]));
break;
case nir_op_fadd:
/* fall through */
case nir_op_iadd:
inst = emit(ADD(dst, op[0], op[1]));
inst->saturate = instr->dest.saturate;
break;
case nir_op_fmul:
inst = emit(MUL(dst, op[0], op[1]));
inst->saturate = instr->dest.saturate;
break;
case nir_op_imul: {
nir_const_value *value0 = nir_src_as_const_value(instr->src[0].src);
nir_const_value *value1 = nir_src_as_const_value(instr->src[1].src);
/* For integer multiplication, the MUL uses the low 16 bits of one of
* the operands (src0 through SNB, src1 on IVB and later). The MACH
* accumulates in the contribution of the upper 16 bits of that
* operand. If we can determine that one of the args is in the low
* 16 bits, though, we can just emit a single MUL.
*/
if (value0 && value0->u[0] < (1 << 16)) {
if (devinfo->gen < 7)
emit(MUL(dst, op[0], op[1]));
else
emit(MUL(dst, op[1], op[0]));
} else if (value1 && value1->u[0] < (1 << 16)) {
if (devinfo->gen < 7)
emit(MUL(dst, op[1], op[0]));
else
emit(MUL(dst, op[0], op[1]));
} else {
struct brw_reg acc = retype(brw_acc_reg(8), dst.type);
emit(MUL(acc, op[0], op[1]));
emit(MACH(dst_null_d(), op[0], op[1]));
emit(MOV(dst, src_reg(acc)));
}
break;
}
case nir_op_imul_high:
case nir_op_umul_high: {
struct brw_reg acc = retype(brw_acc_reg(8), dst.type);
emit(MUL(acc, op[0], op[1]));
emit(MACH(dst, op[0], op[1]));
break;
}
case nir_op_frcp:
inst = emit_math(SHADER_OPCODE_RCP, dst, op[0]);
inst->saturate = instr->dest.saturate;
break;
case nir_op_fexp2:
inst = emit_math(SHADER_OPCODE_EXP2, dst, op[0]);
inst->saturate = instr->dest.saturate;
break;
case nir_op_flog2:
inst = emit_math(SHADER_OPCODE_LOG2, dst, op[0]);
inst->saturate = instr->dest.saturate;
break;
case nir_op_fsin:
inst = emit_math(SHADER_OPCODE_SIN, dst, op[0]);
inst->saturate = instr->dest.saturate;
break;
case nir_op_fcos:
inst = emit_math(SHADER_OPCODE_COS, dst, op[0]);
inst->saturate = instr->dest.saturate;
break;
case nir_op_idiv:
case nir_op_udiv:
emit_math(SHADER_OPCODE_INT_QUOTIENT, dst, op[0], op[1]);
break;
case nir_op_umod:
emit_math(SHADER_OPCODE_INT_REMAINDER, dst, op[0], op[1]);
break;
case nir_op_ldexp:
unreachable("not reached: should be handled by ldexp_to_arith()");
case nir_op_fsqrt:
inst = emit_math(SHADER_OPCODE_SQRT, dst, op[0]);
inst->saturate = instr->dest.saturate;
break;
case nir_op_frsq:
inst = emit_math(SHADER_OPCODE_RSQ, dst, op[0]);
inst->saturate = instr->dest.saturate;
break;
case nir_op_fpow:
inst = emit_math(SHADER_OPCODE_POW, dst, op[0], op[1]);
inst->saturate = instr->dest.saturate;
break;
case nir_op_uadd_carry: {
struct brw_reg acc = retype(brw_acc_reg(8), BRW_REGISTER_TYPE_UD);
emit(ADDC(dst_null_ud(), op[0], op[1]));
emit(MOV(dst, src_reg(acc)));
break;
}
case nir_op_usub_borrow: {
struct brw_reg acc = retype(brw_acc_reg(8), BRW_REGISTER_TYPE_UD);
emit(SUBB(dst_null_ud(), op[0], op[1]));
emit(MOV(dst, src_reg(acc)));
break;
}
default:
unreachable("Unimplemented ALU operation");
}
}
void
vec4_visitor::nir_emit_jump(nir_jump_instr *instr)
{
/* @TODO: Not yet implemented */
}
void
vec4_visitor::nir_emit_texture(nir_tex_instr *instr)
{
/* @TODO: Not yet implemented */
}
}