mesa/src/intel/compiler/test_fs_cmod_propagation.cpp

2485 lines
76 KiB
C++
Raw Normal View History

/*
* Copyright © 2015 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include <gtest/gtest.h>
#include "brw_fs.h"
#include "brw_cfg.h"
#include "program/program.h"
using namespace brw;
class cmod_propagation_test : public ::testing::Test {
virtual void SetUp();
virtual void TearDown();
public:
struct brw_compiler *compiler;
struct gen_device_info *devinfo;
void *ctx;
struct brw_wm_prog_data *prog_data;
struct gl_shader_program *shader_prog;
fs_visitor *v;
void test_positive_float_saturate_prop(enum brw_conditional_mod before,
enum brw_conditional_mod after,
enum opcode op);
void test_negative_float_saturate_prop(enum brw_conditional_mod before,
enum opcode op);
void test_negative_int_saturate_prop(enum brw_conditional_mod before,
enum opcode op);
};
class cmod_propagation_fs_visitor : public fs_visitor
{
public:
cmod_propagation_fs_visitor(struct brw_compiler *compiler,
void *mem_ctx,
struct brw_wm_prog_data *prog_data,
nir_shader *shader)
: fs_visitor(compiler, NULL, mem_ctx, NULL,
&prog_data->base, shader, 8, -1, false) {}
};
void cmod_propagation_test::SetUp()
{
ctx = ralloc_context(NULL);
compiler = rzalloc(ctx, struct brw_compiler);
devinfo = rzalloc(ctx, struct gen_device_info);
compiler->devinfo = devinfo;
prog_data = ralloc(ctx, struct brw_wm_prog_data);
nir_shader *shader =
nir_shader_create(ctx, MESA_SHADER_FRAGMENT, NULL, NULL);
v = new cmod_propagation_fs_visitor(compiler, ctx, prog_data, shader);
devinfo->ver = 7;
devinfo->verx10 = devinfo->ver * 10;
}
void cmod_propagation_test::TearDown()
{
delete v;
v = NULL;
ralloc_free(ctx);
ctx = NULL;
}
static fs_inst *
instruction(bblock_t *block, int num)
{
fs_inst *inst = (fs_inst *)block->start();
for (int i = 0; i < num; i++) {
inst = (fs_inst *)inst->next;
}
return inst;
}
static bool
cmod_propagation(fs_visitor *v)
{
const bool print = getenv("TEST_DEBUG");
if (print) {
fprintf(stderr, "= Before =\n");
v->cfg->dump();
}
bool ret = v->opt_cmod_propagation();
if (print) {
fprintf(stderr, "\n= After =\n");
v->cfg->dump();
}
return ret;
}
TEST_F(cmod_propagation_test, basic)
{
const fs_builder &bld = v->bld;
fs_reg dest = v->vgrf(glsl_type::float_type);
fs_reg src0 = v->vgrf(glsl_type::float_type);
fs_reg src1 = v->vgrf(glsl_type::float_type);
fs_reg zero(brw_imm_f(0.0f));
bld.ADD(dest, src0, src1);
bld.CMP(bld.null_reg_f(), dest, zero, BRW_CONDITIONAL_GE);
/* = Before =
*
* 0: add(8) dest src0 src1
* 1: cmp.ge.f0(8) null dest 0.0f
*
* = After =
* 0: add.ge.f0(8) dest src0 src1
*/
v->calculate_cfg();
bblock_t *block0 = v->cfg->blocks[0];
EXPECT_EQ(0, block0->start_ip);
EXPECT_EQ(1, block0->end_ip);
EXPECT_TRUE(cmod_propagation(v));
EXPECT_EQ(0, block0->start_ip);
EXPECT_EQ(0, block0->end_ip);
EXPECT_EQ(BRW_OPCODE_ADD, instruction(block0, 0)->opcode);
EXPECT_EQ(BRW_CONDITIONAL_GE, instruction(block0, 0)->conditional_mod);
}
TEST_F(cmod_propagation_test, basic_other_flag)
{
const fs_builder &bld = v->bld;
fs_reg dest = v->vgrf(glsl_type::float_type);
fs_reg src0 = v->vgrf(glsl_type::float_type);
fs_reg src1 = v->vgrf(glsl_type::float_type);
fs_reg zero(brw_imm_f(0.0f));
bld.ADD(dest, src0, src1);
bld.CMP(bld.null_reg_f(), dest, zero, BRW_CONDITIONAL_GE)
->flag_subreg = 1;
/* = Before =
*
* 0: add(8) dest src0 src1
* 1: cmp.ge.f0.1(8) null dest 0.0f
*
* = After =
* 0: add.ge.f0.1(8) dest src0 src1
*/
v->calculate_cfg();
bblock_t *block0 = v->cfg->blocks[0];
EXPECT_EQ(0, block0->start_ip);
EXPECT_EQ(1, block0->end_ip);
EXPECT_TRUE(cmod_propagation(v));
EXPECT_EQ(0, block0->start_ip);
EXPECT_EQ(0, block0->end_ip);
EXPECT_EQ(BRW_OPCODE_ADD, instruction(block0, 0)->opcode);
EXPECT_EQ(1, instruction(block0, 0)->flag_subreg);
EXPECT_EQ(BRW_CONDITIONAL_GE, instruction(block0, 0)->conditional_mod);
}
TEST_F(cmod_propagation_test, cmp_nonzero)
{
const fs_builder &bld = v->bld;
fs_reg dest = v->vgrf(glsl_type::float_type);
fs_reg src0 = v->vgrf(glsl_type::float_type);
fs_reg src1 = v->vgrf(glsl_type::float_type);
fs_reg nonzero(brw_imm_f(1.0f));
bld.ADD(dest, src0, src1);
bld.CMP(bld.null_reg_f(), dest, nonzero, BRW_CONDITIONAL_GE);
/* = Before =
*
* 0: add(8) dest src0 src1
* 1: cmp.ge.f0(8) null dest 1.0f
*
* = After =
* (no changes)
*/
v->calculate_cfg();
bblock_t *block0 = v->cfg->blocks[0];
EXPECT_EQ(0, block0->start_ip);
EXPECT_EQ(1, block0->end_ip);
EXPECT_FALSE(cmod_propagation(v));
EXPECT_EQ(0, block0->start_ip);
EXPECT_EQ(1, block0->end_ip);
EXPECT_EQ(BRW_OPCODE_ADD, instruction(block0, 0)->opcode);
EXPECT_EQ(BRW_OPCODE_CMP, instruction(block0, 1)->opcode);
EXPECT_EQ(BRW_CONDITIONAL_GE, instruction(block0, 1)->conditional_mod);
}
TEST_F(cmod_propagation_test, non_cmod_instruction)
{
const fs_builder &bld = v->bld;
fs_reg dest = v->vgrf(glsl_type::uint_type);
fs_reg src0 = v->vgrf(glsl_type::uint_type);
fs_reg zero(brw_imm_ud(0u));
bld.FBL(dest, src0);
bld.CMP(bld.null_reg_ud(), dest, zero, BRW_CONDITIONAL_GE);
/* = Before =
*
* 0: fbl(8) dest src0
* 1: cmp.ge.f0(8) null dest 0u
*
* = After =
* (no changes)
*/
v->calculate_cfg();
bblock_t *block0 = v->cfg->blocks[0];
EXPECT_EQ(0, block0->start_ip);
EXPECT_EQ(1, block0->end_ip);
EXPECT_FALSE(cmod_propagation(v));
EXPECT_EQ(0, block0->start_ip);
EXPECT_EQ(1, block0->end_ip);
EXPECT_EQ(BRW_OPCODE_FBL, instruction(block0, 0)->opcode);
EXPECT_EQ(BRW_OPCODE_CMP, instruction(block0, 1)->opcode);
EXPECT_EQ(BRW_CONDITIONAL_GE, instruction(block0, 1)->conditional_mod);
}
TEST_F(cmod_propagation_test, intervening_flag_write)
{
const fs_builder &bld = v->bld;
fs_reg dest = v->vgrf(glsl_type::float_type);
fs_reg src0 = v->vgrf(glsl_type::float_type);
fs_reg src1 = v->vgrf(glsl_type::float_type);
fs_reg src2 = v->vgrf(glsl_type::float_type);
fs_reg zero(brw_imm_f(0.0f));
bld.ADD(dest, src0, src1);
bld.CMP(bld.null_reg_f(), src2, zero, BRW_CONDITIONAL_GE);
bld.CMP(bld.null_reg_f(), dest, zero, BRW_CONDITIONAL_GE);
/* = Before =
*
* 0: add(8) dest src0 src1
* 1: cmp.ge.f0(8) null src2 0.0f
* 2: cmp.ge.f0(8) null dest 0.0f
*
* = After =
* (no changes)
*/
v->calculate_cfg();
bblock_t *block0 = v->cfg->blocks[0];
EXPECT_EQ(0, block0->start_ip);
EXPECT_EQ(2, block0->end_ip);
EXPECT_FALSE(cmod_propagation(v));
EXPECT_EQ(0, block0->start_ip);
EXPECT_EQ(2, block0->end_ip);
EXPECT_EQ(BRW_OPCODE_ADD, instruction(block0, 0)->opcode);
EXPECT_EQ(BRW_OPCODE_CMP, instruction(block0, 1)->opcode);
EXPECT_EQ(BRW_CONDITIONAL_GE, instruction(block0, 1)->conditional_mod);
EXPECT_EQ(BRW_OPCODE_CMP, instruction(block0, 2)->opcode);
EXPECT_EQ(BRW_CONDITIONAL_GE, instruction(block0, 2)->conditional_mod);
}
TEST_F(cmod_propagation_test, intervening_mismatch_flag_write)
{
const fs_builder &bld = v->bld;
fs_reg dest = v->vgrf(glsl_type::float_type);
fs_reg src0 = v->vgrf(glsl_type::float_type);
fs_reg src1 = v->vgrf(glsl_type::float_type);
fs_reg src2 = v->vgrf(glsl_type::float_type);
fs_reg zero(brw_imm_f(0.0f));
bld.ADD(dest, src0, src1);
bld.CMP(bld.null_reg_f(), src2, zero, BRW_CONDITIONAL_GE)
->flag_subreg = 1;
bld.CMP(bld.null_reg_f(), dest, zero, BRW_CONDITIONAL_GE);
/* = Before =
*
* 0: add(8) dest src0 src1
* 1: cmp.ge.f0.1(8) null src2 0.0f
* 2: cmp.ge.f0(8) null dest 0.0f
*
* = After =
* 0: add.ge.f0(8) dest src0 src1
* 1: cmp.ge.f0.1(8) null src2 0.0f
*/
v->calculate_cfg();
bblock_t *block0 = v->cfg->blocks[0];
EXPECT_EQ(0, block0->start_ip);
EXPECT_EQ(2, block0->end_ip);
EXPECT_TRUE(cmod_propagation(v));
EXPECT_EQ(0, block0->start_ip);
EXPECT_EQ(1, block0->end_ip);
EXPECT_EQ(BRW_OPCODE_ADD, instruction(block0, 0)->opcode);
EXPECT_EQ(BRW_CONDITIONAL_GE, instruction(block0, 0)->conditional_mod);
EXPECT_EQ(0, instruction(block0, 0)->flag_subreg);
EXPECT_EQ(BRW_OPCODE_CMP, instruction(block0, 1)->opcode);
EXPECT_EQ(BRW_CONDITIONAL_GE, instruction(block0, 1)->conditional_mod);
EXPECT_EQ(1, instruction(block0, 1)->flag_subreg);
}
TEST_F(cmod_propagation_test, intervening_flag_read)
{
const fs_builder &bld = v->bld;
fs_reg dest0 = v->vgrf(glsl_type::float_type);
fs_reg dest1 = v->vgrf(glsl_type::float_type);
fs_reg src0 = v->vgrf(glsl_type::float_type);
fs_reg src1 = v->vgrf(glsl_type::float_type);
fs_reg src2 = v->vgrf(glsl_type::float_type);
fs_reg zero(brw_imm_f(0.0f));
bld.ADD(dest0, src0, src1);
set_predicate(BRW_PREDICATE_NORMAL, bld.SEL(dest1, src2, zero));
bld.CMP(bld.null_reg_f(), dest0, zero, BRW_CONDITIONAL_GE);
/* = Before =
*
* 0: add(8) dest0 src0 src1
* 1: (+f0) sel(8) dest1 src2 0.0f
* 2: cmp.ge.f0(8) null dest0 0.0f
*
* = After =
* (no changes)
*/
v->calculate_cfg();
bblock_t *block0 = v->cfg->blocks[0];
EXPECT_EQ(0, block0->start_ip);
EXPECT_EQ(2, block0->end_ip);
EXPECT_FALSE(cmod_propagation(v));
EXPECT_EQ(0, block0->start_ip);
EXPECT_EQ(2, block0->end_ip);
EXPECT_EQ(BRW_OPCODE_ADD, instruction(block0, 0)->opcode);
EXPECT_EQ(BRW_OPCODE_SEL, instruction(block0, 1)->opcode);
EXPECT_EQ(BRW_PREDICATE_NORMAL, instruction(block0, 1)->predicate);
EXPECT_EQ(BRW_OPCODE_CMP, instruction(block0, 2)->opcode);
EXPECT_EQ(BRW_CONDITIONAL_GE, instruction(block0, 2)->conditional_mod);
}
TEST_F(cmod_propagation_test, intervening_mismatch_flag_read)
{
const fs_builder &bld = v->bld;
fs_reg dest0 = v->vgrf(glsl_type::float_type);
fs_reg dest1 = v->vgrf(glsl_type::float_type);
fs_reg src0 = v->vgrf(glsl_type::float_type);
fs_reg src1 = v->vgrf(glsl_type::float_type);
fs_reg src2 = v->vgrf(glsl_type::float_type);
fs_reg zero(brw_imm_f(0.0f));
bld.ADD(dest0, src0, src1);
set_predicate(BRW_PREDICATE_NORMAL, bld.SEL(dest1, src2, zero))
->flag_subreg = 1;
bld.CMP(bld.null_reg_f(), dest0, zero, BRW_CONDITIONAL_GE);
/* = Before =
*
* 0: add(8) dest0 src0 src1
* 1: (+f0.1) sel(8) dest1 src2 0.0f
* 2: cmp.ge.f0(8) null dest0 0.0f
*
* = After =
* 0: add.ge.f0(8) dest0 src0 src1
* 1: (+f0.1) sel(8) dest1 src2 0.0f
*/
v->calculate_cfg();
bblock_t *block0 = v->cfg->blocks[0];
EXPECT_EQ(0, block0->start_ip);
EXPECT_EQ(2, block0->end_ip);
EXPECT_TRUE(cmod_propagation(v));
EXPECT_EQ(0, block0->start_ip);
EXPECT_EQ(1, block0->end_ip);
EXPECT_EQ(BRW_OPCODE_ADD, instruction(block0, 0)->opcode);
EXPECT_EQ(BRW_CONDITIONAL_GE, instruction(block0, 0)->conditional_mod);
EXPECT_EQ(0, instruction(block0, 0)->flag_subreg);
EXPECT_EQ(BRW_OPCODE_SEL, instruction(block0, 1)->opcode);
EXPECT_EQ(BRW_PREDICATE_NORMAL, instruction(block0, 1)->predicate);
EXPECT_EQ(1, instruction(block0, 1)->flag_subreg);
}
TEST_F(cmod_propagation_test, intervening_dest_write)
{
const fs_builder &bld = v->bld;
fs_reg dest = v->vgrf(glsl_type::vec4_type);
fs_reg src0 = v->vgrf(glsl_type::float_type);
fs_reg src1 = v->vgrf(glsl_type::float_type);
fs_reg src2 = v->vgrf(glsl_type::vec2_type);
fs_reg zero(brw_imm_f(0.0f));
bld.ADD(offset(dest, bld, 2), src0, src1);
bld.emit(SHADER_OPCODE_TEX, dest, src2)
->size_written = 4 * REG_SIZE;
bld.CMP(bld.null_reg_f(), offset(dest, bld, 2), zero, BRW_CONDITIONAL_GE);
/* = Before =
*
* 0: add(8) dest+2 src0 src1
* 1: tex(8) rlen 4 dest+0 src2
* 2: cmp.ge.f0(8) null dest+2 0.0f
*
* = After =
* (no changes)
*/
v->calculate_cfg();
bblock_t *block0 = v->cfg->blocks[0];
EXPECT_EQ(0, block0->start_ip);
EXPECT_EQ(2, block0->end_ip);
EXPECT_FALSE(cmod_propagation(v));
EXPECT_EQ(0, block0->start_ip);
EXPECT_EQ(2, block0->end_ip);
EXPECT_EQ(BRW_OPCODE_ADD, instruction(block0, 0)->opcode);
EXPECT_EQ(BRW_CONDITIONAL_NONE, instruction(block0, 0)->conditional_mod);
EXPECT_EQ(SHADER_OPCODE_TEX, instruction(block0, 1)->opcode);
EXPECT_EQ(BRW_CONDITIONAL_NONE, instruction(block0, 0)->conditional_mod);
EXPECT_EQ(BRW_OPCODE_CMP, instruction(block0, 2)->opcode);
EXPECT_EQ(BRW_CONDITIONAL_GE, instruction(block0, 2)->conditional_mod);
}
TEST_F(cmod_propagation_test, intervening_flag_read_same_value)
{
const fs_builder &bld = v->bld;
fs_reg dest0 = v->vgrf(glsl_type::float_type);
fs_reg dest1 = v->vgrf(glsl_type::float_type);
fs_reg src0 = v->vgrf(glsl_type::float_type);
fs_reg src1 = v->vgrf(glsl_type::float_type);
fs_reg src2 = v->vgrf(glsl_type::float_type);
fs_reg zero(brw_imm_f(0.0f));
set_condmod(BRW_CONDITIONAL_GE, bld.ADD(dest0, src0, src1));
set_predicate(BRW_PREDICATE_NORMAL, bld.SEL(dest1, src2, zero));
bld.CMP(bld.null_reg_f(), dest0, zero, BRW_CONDITIONAL_GE);
/* = Before =
*
* 0: add.ge.f0(8) dest0 src0 src1
* 1: (+f0) sel(8) dest1 src2 0.0f
* 2: cmp.ge.f0(8) null dest0 0.0f
*
* = After =
* 0: add.ge.f0(8) dest0 src0 src1
* 1: (+f0) sel(8) dest1 src2 0.0f
*/
v->calculate_cfg();
bblock_t *block0 = v->cfg->blocks[0];
EXPECT_EQ(0, block0->start_ip);
EXPECT_EQ(2, block0->end_ip);
EXPECT_TRUE(cmod_propagation(v));
EXPECT_EQ(0, block0->start_ip);
EXPECT_EQ(1, block0->end_ip);
EXPECT_EQ(BRW_OPCODE_ADD, instruction(block0, 0)->opcode);
EXPECT_EQ(BRW_CONDITIONAL_GE, instruction(block0, 0)->conditional_mod);
EXPECT_EQ(BRW_OPCODE_SEL, instruction(block0, 1)->opcode);
EXPECT_EQ(BRW_PREDICATE_NORMAL, instruction(block0, 1)->predicate);
}
TEST_F(cmod_propagation_test, negate)
{
const fs_builder &bld = v->bld;
fs_reg dest = v->vgrf(glsl_type::float_type);
fs_reg src0 = v->vgrf(glsl_type::float_type);
fs_reg src1 = v->vgrf(glsl_type::float_type);
fs_reg zero(brw_imm_f(0.0f));
bld.ADD(dest, src0, src1);
dest.negate = true;
bld.CMP(bld.null_reg_f(), dest, zero, BRW_CONDITIONAL_GE);
/* = Before =
*
* 0: add(8) dest src0 src1
* 1: cmp.ge.f0(8) null -dest 0.0f
*
* = After =
* 0: add.le.f0(8) dest src0 src1
*/
v->calculate_cfg();
bblock_t *block0 = v->cfg->blocks[0];
EXPECT_EQ(0, block0->start_ip);
EXPECT_EQ(1, block0->end_ip);
EXPECT_TRUE(cmod_propagation(v));
EXPECT_EQ(0, block0->start_ip);
EXPECT_EQ(0, block0->end_ip);
EXPECT_EQ(BRW_OPCODE_ADD, instruction(block0, 0)->opcode);
EXPECT_EQ(BRW_CONDITIONAL_LE, instruction(block0, 0)->conditional_mod);
}
TEST_F(cmod_propagation_test, movnz)
{
const fs_builder &bld = v->bld;
fs_reg dest = v->vgrf(glsl_type::float_type);
fs_reg src0 = v->vgrf(glsl_type::float_type);
fs_reg src1 = v->vgrf(glsl_type::float_type);
bld.CMP(dest, src0, src1, BRW_CONDITIONAL_GE);
set_condmod(BRW_CONDITIONAL_NZ,
bld.MOV(bld.null_reg_f(), dest));
/* = Before =
*
* 0: cmp.ge.f0(8) dest src0 src1
* 1: mov.nz.f0(8) null dest
*
* = After =
* 0: cmp.ge.f0(8) dest src0 src1
*/
v->calculate_cfg();
bblock_t *block0 = v->cfg->blocks[0];
EXPECT_EQ(0, block0->start_ip);
EXPECT_EQ(1, block0->end_ip);
EXPECT_TRUE(cmod_propagation(v));
EXPECT_EQ(0, block0->start_ip);
EXPECT_EQ(0, block0->end_ip);
EXPECT_EQ(BRW_OPCODE_CMP, instruction(block0, 0)->opcode);
EXPECT_EQ(BRW_CONDITIONAL_GE, instruction(block0, 0)->conditional_mod);
}
TEST_F(cmod_propagation_test, different_types_cmod_with_zero)
{
const fs_builder &bld = v->bld;
fs_reg dest = v->vgrf(glsl_type::int_type);
fs_reg src0 = v->vgrf(glsl_type::int_type);
fs_reg src1 = v->vgrf(glsl_type::int_type);
fs_reg zero(brw_imm_f(0.0f));
bld.ADD(dest, src0, src1);
bld.CMP(bld.null_reg_f(), retype(dest, BRW_REGISTER_TYPE_F), zero,
BRW_CONDITIONAL_GE);
/* = Before =
*
* 0: add(8) dest:D src0:D src1:D
* 1: cmp.ge.f0(8) null:F dest:F 0.0f
*
* = After =
* (no changes)
*/
v->calculate_cfg();
bblock_t *block0 = v->cfg->blocks[0];
EXPECT_EQ(0, block0->start_ip);
EXPECT_EQ(1, block0->end_ip);
EXPECT_FALSE(cmod_propagation(v));
EXPECT_EQ(0, block0->start_ip);
EXPECT_EQ(1, block0->end_ip);
EXPECT_EQ(BRW_OPCODE_ADD, instruction(block0, 0)->opcode);
EXPECT_EQ(BRW_OPCODE_CMP, instruction(block0, 1)->opcode);
EXPECT_EQ(BRW_CONDITIONAL_GE, instruction(block0, 1)->conditional_mod);
}
i965/fs: Handle CMP.nz ... 0 and AND.nz ... 1 similarly in cmod propagation Espically on platforms that do not natively generate 0u and ~0u for Boolean results, we generate a lot of sequences where a CMP is followed by an AND with 1. emit_bool_to_cond_code does this, for example. On ILK, this results in a sequence like: add(8) g3<1>F g8<8,8,1>F -g4<0,1,0>F cmp.l.f0(8) g3<1>D g3<8,8,1>F 0F and.nz.f0(8) null g3<8,8,1>D 1D (+f0) iff(8) Jump: 6 The AND.nz is obviously redundant. By propagating the cmod, we can instead generate add.l.f0(8) null g8<8,8,1>F -g4<0,1,0>F (+f0) iff(8) Jump: 6 Existing code already handles the propagation from the CMP to the ADD. Shader-db results: GM45 (0x2A42): total instructions in shared programs: 3550829 -> 3550788 (-0.00%) instructions in affected programs: 10028 -> 9987 (-0.41%) helped: 24 Iron Lake (0x0046): total instructions in shared programs: 4993146 -> 4993105 (-0.00%) instructions in affected programs: 9675 -> 9634 (-0.42%) helped: 24 Ivy Bridge (0x0166): total instructions in shared programs: 6291870 -> 6291794 (-0.00%) instructions in affected programs: 17914 -> 17838 (-0.42%) helped: 48 Haswell (0x0426): total instructions in shared programs: 5779256 -> 5779180 (-0.00%) instructions in affected programs: 16694 -> 16618 (-0.46%) helped: 48 Broadwell (0x162E): total instructions in shared programs: 6823088 -> 6823014 (-0.00%) instructions in affected programs: 15824 -> 15750 (-0.47%) helped: 46 No chage on Sandy Bridge or on any platform when NIR is used. v2: Add unit tests suggested by Matt. Remove spurious writes_flag() check on scan_inst when scan_inst is known to be BRW_OPCODE_CMP (also suggested by Matt). v3: Fix some comments and remove some explicit int() casts in fs_reg constructors in the unit tests. Both suggested by Matt. Signed-off-by: Ian Romanick <ian.d.romanick@intel.com> Reviewed-by: Matt Turner <mattst88@gmail.com>
2015-02-03 21:12:28 +02:00
TEST_F(cmod_propagation_test, andnz_one)
{
const fs_builder &bld = v->bld;
i965/fs: Handle CMP.nz ... 0 and AND.nz ... 1 similarly in cmod propagation Espically on platforms that do not natively generate 0u and ~0u for Boolean results, we generate a lot of sequences where a CMP is followed by an AND with 1. emit_bool_to_cond_code does this, for example. On ILK, this results in a sequence like: add(8) g3<1>F g8<8,8,1>F -g4<0,1,0>F cmp.l.f0(8) g3<1>D g3<8,8,1>F 0F and.nz.f0(8) null g3<8,8,1>D 1D (+f0) iff(8) Jump: 6 The AND.nz is obviously redundant. By propagating the cmod, we can instead generate add.l.f0(8) null g8<8,8,1>F -g4<0,1,0>F (+f0) iff(8) Jump: 6 Existing code already handles the propagation from the CMP to the ADD. Shader-db results: GM45 (0x2A42): total instructions in shared programs: 3550829 -> 3550788 (-0.00%) instructions in affected programs: 10028 -> 9987 (-0.41%) helped: 24 Iron Lake (0x0046): total instructions in shared programs: 4993146 -> 4993105 (-0.00%) instructions in affected programs: 9675 -> 9634 (-0.42%) helped: 24 Ivy Bridge (0x0166): total instructions in shared programs: 6291870 -> 6291794 (-0.00%) instructions in affected programs: 17914 -> 17838 (-0.42%) helped: 48 Haswell (0x0426): total instructions in shared programs: 5779256 -> 5779180 (-0.00%) instructions in affected programs: 16694 -> 16618 (-0.46%) helped: 48 Broadwell (0x162E): total instructions in shared programs: 6823088 -> 6823014 (-0.00%) instructions in affected programs: 15824 -> 15750 (-0.47%) helped: 46 No chage on Sandy Bridge or on any platform when NIR is used. v2: Add unit tests suggested by Matt. Remove spurious writes_flag() check on scan_inst when scan_inst is known to be BRW_OPCODE_CMP (also suggested by Matt). v3: Fix some comments and remove some explicit int() casts in fs_reg constructors in the unit tests. Both suggested by Matt. Signed-off-by: Ian Romanick <ian.d.romanick@intel.com> Reviewed-by: Matt Turner <mattst88@gmail.com>
2015-02-03 21:12:28 +02:00
fs_reg dest = v->vgrf(glsl_type::int_type);
fs_reg src0 = v->vgrf(glsl_type::float_type);
fs_reg zero(brw_imm_f(0.0f));
fs_reg one(brw_imm_d(1));
i965/fs: Handle CMP.nz ... 0 and AND.nz ... 1 similarly in cmod propagation Espically on platforms that do not natively generate 0u and ~0u for Boolean results, we generate a lot of sequences where a CMP is followed by an AND with 1. emit_bool_to_cond_code does this, for example. On ILK, this results in a sequence like: add(8) g3<1>F g8<8,8,1>F -g4<0,1,0>F cmp.l.f0(8) g3<1>D g3<8,8,1>F 0F and.nz.f0(8) null g3<8,8,1>D 1D (+f0) iff(8) Jump: 6 The AND.nz is obviously redundant. By propagating the cmod, we can instead generate add.l.f0(8) null g8<8,8,1>F -g4<0,1,0>F (+f0) iff(8) Jump: 6 Existing code already handles the propagation from the CMP to the ADD. Shader-db results: GM45 (0x2A42): total instructions in shared programs: 3550829 -> 3550788 (-0.00%) instructions in affected programs: 10028 -> 9987 (-0.41%) helped: 24 Iron Lake (0x0046): total instructions in shared programs: 4993146 -> 4993105 (-0.00%) instructions in affected programs: 9675 -> 9634 (-0.42%) helped: 24 Ivy Bridge (0x0166): total instructions in shared programs: 6291870 -> 6291794 (-0.00%) instructions in affected programs: 17914 -> 17838 (-0.42%) helped: 48 Haswell (0x0426): total instructions in shared programs: 5779256 -> 5779180 (-0.00%) instructions in affected programs: 16694 -> 16618 (-0.46%) helped: 48 Broadwell (0x162E): total instructions in shared programs: 6823088 -> 6823014 (-0.00%) instructions in affected programs: 15824 -> 15750 (-0.47%) helped: 46 No chage on Sandy Bridge or on any platform when NIR is used. v2: Add unit tests suggested by Matt. Remove spurious writes_flag() check on scan_inst when scan_inst is known to be BRW_OPCODE_CMP (also suggested by Matt). v3: Fix some comments and remove some explicit int() casts in fs_reg constructors in the unit tests. Both suggested by Matt. Signed-off-by: Ian Romanick <ian.d.romanick@intel.com> Reviewed-by: Matt Turner <mattst88@gmail.com>
2015-02-03 21:12:28 +02:00
bld.CMP(retype(dest, BRW_REGISTER_TYPE_F), src0, zero, BRW_CONDITIONAL_L);
set_condmod(BRW_CONDITIONAL_NZ,
bld.AND(bld.null_reg_d(), dest, one));
i965/fs: Handle CMP.nz ... 0 and AND.nz ... 1 similarly in cmod propagation Espically on platforms that do not natively generate 0u and ~0u for Boolean results, we generate a lot of sequences where a CMP is followed by an AND with 1. emit_bool_to_cond_code does this, for example. On ILK, this results in a sequence like: add(8) g3<1>F g8<8,8,1>F -g4<0,1,0>F cmp.l.f0(8) g3<1>D g3<8,8,1>F 0F and.nz.f0(8) null g3<8,8,1>D 1D (+f0) iff(8) Jump: 6 The AND.nz is obviously redundant. By propagating the cmod, we can instead generate add.l.f0(8) null g8<8,8,1>F -g4<0,1,0>F (+f0) iff(8) Jump: 6 Existing code already handles the propagation from the CMP to the ADD. Shader-db results: GM45 (0x2A42): total instructions in shared programs: 3550829 -> 3550788 (-0.00%) instructions in affected programs: 10028 -> 9987 (-0.41%) helped: 24 Iron Lake (0x0046): total instructions in shared programs: 4993146 -> 4993105 (-0.00%) instructions in affected programs: 9675 -> 9634 (-0.42%) helped: 24 Ivy Bridge (0x0166): total instructions in shared programs: 6291870 -> 6291794 (-0.00%) instructions in affected programs: 17914 -> 17838 (-0.42%) helped: 48 Haswell (0x0426): total instructions in shared programs: 5779256 -> 5779180 (-0.00%) instructions in affected programs: 16694 -> 16618 (-0.46%) helped: 48 Broadwell (0x162E): total instructions in shared programs: 6823088 -> 6823014 (-0.00%) instructions in affected programs: 15824 -> 15750 (-0.47%) helped: 46 No chage on Sandy Bridge or on any platform when NIR is used. v2: Add unit tests suggested by Matt. Remove spurious writes_flag() check on scan_inst when scan_inst is known to be BRW_OPCODE_CMP (also suggested by Matt). v3: Fix some comments and remove some explicit int() casts in fs_reg constructors in the unit tests. Both suggested by Matt. Signed-off-by: Ian Romanick <ian.d.romanick@intel.com> Reviewed-by: Matt Turner <mattst88@gmail.com>
2015-02-03 21:12:28 +02:00
/* = Before =
* 0: cmp.l.f0(8) dest:F src0:F 0F
* 1: and.nz.f0(8) null:D dest:D 1D
*
* = After =
* 0: cmp.l.f0(8) dest:F src0:F 0F
*/
v->calculate_cfg();
bblock_t *block0 = v->cfg->blocks[0];
EXPECT_EQ(0, block0->start_ip);
EXPECT_EQ(1, block0->end_ip);
EXPECT_TRUE(cmod_propagation(v));
EXPECT_EQ(0, block0->start_ip);
EXPECT_EQ(0, block0->end_ip);
EXPECT_EQ(BRW_OPCODE_CMP, instruction(block0, 0)->opcode);
EXPECT_EQ(BRW_CONDITIONAL_L, instruction(block0, 0)->conditional_mod);
EXPECT_TRUE(retype(dest, BRW_REGISTER_TYPE_F)
.equals(instruction(block0, 0)->dst));
}
TEST_F(cmod_propagation_test, andnz_non_one)
{
const fs_builder &bld = v->bld;
i965/fs: Handle CMP.nz ... 0 and AND.nz ... 1 similarly in cmod propagation Espically on platforms that do not natively generate 0u and ~0u for Boolean results, we generate a lot of sequences where a CMP is followed by an AND with 1. emit_bool_to_cond_code does this, for example. On ILK, this results in a sequence like: add(8) g3<1>F g8<8,8,1>F -g4<0,1,0>F cmp.l.f0(8) g3<1>D g3<8,8,1>F 0F and.nz.f0(8) null g3<8,8,1>D 1D (+f0) iff(8) Jump: 6 The AND.nz is obviously redundant. By propagating the cmod, we can instead generate add.l.f0(8) null g8<8,8,1>F -g4<0,1,0>F (+f0) iff(8) Jump: 6 Existing code already handles the propagation from the CMP to the ADD. Shader-db results: GM45 (0x2A42): total instructions in shared programs: 3550829 -> 3550788 (-0.00%) instructions in affected programs: 10028 -> 9987 (-0.41%) helped: 24 Iron Lake (0x0046): total instructions in shared programs: 4993146 -> 4993105 (-0.00%) instructions in affected programs: 9675 -> 9634 (-0.42%) helped: 24 Ivy Bridge (0x0166): total instructions in shared programs: 6291870 -> 6291794 (-0.00%) instructions in affected programs: 17914 -> 17838 (-0.42%) helped: 48 Haswell (0x0426): total instructions in shared programs: 5779256 -> 5779180 (-0.00%) instructions in affected programs: 16694 -> 16618 (-0.46%) helped: 48 Broadwell (0x162E): total instructions in shared programs: 6823088 -> 6823014 (-0.00%) instructions in affected programs: 15824 -> 15750 (-0.47%) helped: 46 No chage on Sandy Bridge or on any platform when NIR is used. v2: Add unit tests suggested by Matt. Remove spurious writes_flag() check on scan_inst when scan_inst is known to be BRW_OPCODE_CMP (also suggested by Matt). v3: Fix some comments and remove some explicit int() casts in fs_reg constructors in the unit tests. Both suggested by Matt. Signed-off-by: Ian Romanick <ian.d.romanick@intel.com> Reviewed-by: Matt Turner <mattst88@gmail.com>
2015-02-03 21:12:28 +02:00
fs_reg dest = v->vgrf(glsl_type::int_type);
fs_reg src0 = v->vgrf(glsl_type::float_type);
fs_reg zero(brw_imm_f(0.0f));
fs_reg nonone(brw_imm_d(38));
i965/fs: Handle CMP.nz ... 0 and AND.nz ... 1 similarly in cmod propagation Espically on platforms that do not natively generate 0u and ~0u for Boolean results, we generate a lot of sequences where a CMP is followed by an AND with 1. emit_bool_to_cond_code does this, for example. On ILK, this results in a sequence like: add(8) g3<1>F g8<8,8,1>F -g4<0,1,0>F cmp.l.f0(8) g3<1>D g3<8,8,1>F 0F and.nz.f0(8) null g3<8,8,1>D 1D (+f0) iff(8) Jump: 6 The AND.nz is obviously redundant. By propagating the cmod, we can instead generate add.l.f0(8) null g8<8,8,1>F -g4<0,1,0>F (+f0) iff(8) Jump: 6 Existing code already handles the propagation from the CMP to the ADD. Shader-db results: GM45 (0x2A42): total instructions in shared programs: 3550829 -> 3550788 (-0.00%) instructions in affected programs: 10028 -> 9987 (-0.41%) helped: 24 Iron Lake (0x0046): total instructions in shared programs: 4993146 -> 4993105 (-0.00%) instructions in affected programs: 9675 -> 9634 (-0.42%) helped: 24 Ivy Bridge (0x0166): total instructions in shared programs: 6291870 -> 6291794 (-0.00%) instructions in affected programs: 17914 -> 17838 (-0.42%) helped: 48 Haswell (0x0426): total instructions in shared programs: 5779256 -> 5779180 (-0.00%) instructions in affected programs: 16694 -> 16618 (-0.46%) helped: 48 Broadwell (0x162E): total instructions in shared programs: 6823088 -> 6823014 (-0.00%) instructions in affected programs: 15824 -> 15750 (-0.47%) helped: 46 No chage on Sandy Bridge or on any platform when NIR is used. v2: Add unit tests suggested by Matt. Remove spurious writes_flag() check on scan_inst when scan_inst is known to be BRW_OPCODE_CMP (also suggested by Matt). v3: Fix some comments and remove some explicit int() casts in fs_reg constructors in the unit tests. Both suggested by Matt. Signed-off-by: Ian Romanick <ian.d.romanick@intel.com> Reviewed-by: Matt Turner <mattst88@gmail.com>
2015-02-03 21:12:28 +02:00
bld.CMP(retype(dest, BRW_REGISTER_TYPE_F), src0, zero, BRW_CONDITIONAL_L);
set_condmod(BRW_CONDITIONAL_NZ,
bld.AND(bld.null_reg_d(), dest, nonone));
i965/fs: Handle CMP.nz ... 0 and AND.nz ... 1 similarly in cmod propagation Espically on platforms that do not natively generate 0u and ~0u for Boolean results, we generate a lot of sequences where a CMP is followed by an AND with 1. emit_bool_to_cond_code does this, for example. On ILK, this results in a sequence like: add(8) g3<1>F g8<8,8,1>F -g4<0,1,0>F cmp.l.f0(8) g3<1>D g3<8,8,1>F 0F and.nz.f0(8) null g3<8,8,1>D 1D (+f0) iff(8) Jump: 6 The AND.nz is obviously redundant. By propagating the cmod, we can instead generate add.l.f0(8) null g8<8,8,1>F -g4<0,1,0>F (+f0) iff(8) Jump: 6 Existing code already handles the propagation from the CMP to the ADD. Shader-db results: GM45 (0x2A42): total instructions in shared programs: 3550829 -> 3550788 (-0.00%) instructions in affected programs: 10028 -> 9987 (-0.41%) helped: 24 Iron Lake (0x0046): total instructions in shared programs: 4993146 -> 4993105 (-0.00%) instructions in affected programs: 9675 -> 9634 (-0.42%) helped: 24 Ivy Bridge (0x0166): total instructions in shared programs: 6291870 -> 6291794 (-0.00%) instructions in affected programs: 17914 -> 17838 (-0.42%) helped: 48 Haswell (0x0426): total instructions in shared programs: 5779256 -> 5779180 (-0.00%) instructions in affected programs: 16694 -> 16618 (-0.46%) helped: 48 Broadwell (0x162E): total instructions in shared programs: 6823088 -> 6823014 (-0.00%) instructions in affected programs: 15824 -> 15750 (-0.47%) helped: 46 No chage on Sandy Bridge or on any platform when NIR is used. v2: Add unit tests suggested by Matt. Remove spurious writes_flag() check on scan_inst when scan_inst is known to be BRW_OPCODE_CMP (also suggested by Matt). v3: Fix some comments and remove some explicit int() casts in fs_reg constructors in the unit tests. Both suggested by Matt. Signed-off-by: Ian Romanick <ian.d.romanick@intel.com> Reviewed-by: Matt Turner <mattst88@gmail.com>
2015-02-03 21:12:28 +02:00
/* = Before =
* 0: cmp.l.f0(8) dest:F src0:F 0F
* 1: and.nz.f0(8) null:D dest:D 38D
*
* = After =
* (no changes)
*/
v->calculate_cfg();
bblock_t *block0 = v->cfg->blocks[0];
EXPECT_EQ(0, block0->start_ip);
EXPECT_EQ(1, block0->end_ip);
EXPECT_FALSE(cmod_propagation(v));
EXPECT_EQ(0, block0->start_ip);
EXPECT_EQ(1, block0->end_ip);
EXPECT_EQ(BRW_OPCODE_CMP, instruction(block0, 0)->opcode);
EXPECT_EQ(BRW_CONDITIONAL_L, instruction(block0, 0)->conditional_mod);
EXPECT_EQ(BRW_OPCODE_AND, instruction(block0, 1)->opcode);
EXPECT_EQ(BRW_CONDITIONAL_NZ, instruction(block0, 1)->conditional_mod);
}
intel/compiler: fix cmod propagation optimisations Knowing following: - CMP writes to flag register the result of applying cmod to the `src0 - src1`. After that it stores the same value to dst. Other instructions first store their result to dst, and then store cmod(dst) to the flag register. - inst is either CMP or MOV - inst->dst is null - inst->src[0] overlaps with scan_inst->dst - inst->src[1] is zero - scan_inst wrote to a flag register There can be three possible paths: - scan_inst is CMP: Considering that src0 is either 0x0 (false), or 0xffffffff (true), and src1 is 0x0: - If inst's cmod is NZ, we can always remove scan_inst: NZ is invariant for false and true. This holds even if src0 is NaN: .nz is the only cmod, that returns true for NaN. - .g is invariant if src0 has a UD type - .l is invariant if src0 has a D type - scan_inst and inst have the same cmod: If scan_inst is anything than CMP, it already wrote the appropriate value to the flag register. - else: We can change cmod of scan_inst to that of inst, and remove inst. It is valid as long as we make sure that no instruction uses the flag register between scan_inst and inst. Nine new cmod_propagation unit tests: - cmp_cmpnz - cmp_cmpg - plnnz_cmpnz - plnnz_cmpz (*) - plnnz_sel_cmpz - cmp_cmpg_D - cmp_cmpg_UD (*) - cmp_cmpl_D (*) - cmp_cmpl_UD (*) this would fail without changes to brw_fs_cmod_propagation. This fixes optimisation that used to be illegal (see issue #2154) = Before = 0: linterp.z.f0.0(8) vgrf0:F, g2:F, attr0<0>:F 1: cmp.nz.f0.0(8) null:F, vgrf0:F, 0f = After = 0: linterp.z.f0.0(8) vgrf0:F, g2:F, attr0<0>:F Now it is optimised as such (note change of cmod in line 0): = Before = 0: linterp.z.f0.0(8) vgrf0:F, g2:F, attr0<0>:F 1: cmp.nz.f0.0(8) null:F, vgrf0:F, 0f = After = 0: linterp.nz.f0.0(8) vgrf0:F, g2:F, attr0<0>:F No shaderdb changes Closes: https://gitlab.freedesktop.org/mesa/mesa/issues/2154 Signed-off-by: Yevhenii Kolesnikov <yevhenii.kolesnikov@globallogic.com> Reviewed-by: Matt Turner <mattst88@gmail.com> Tested-by: Marge Bot <https://gitlab.freedesktop.org/mesa/mesa/-/merge_requests/3348> Part-of: <https://gitlab.freedesktop.org/mesa/mesa/-/merge_requests/3348>
2020-01-03 16:37:00 +02:00
TEST_F(cmod_propagation_test, cmp_cmpnz)
{
const fs_builder &bld = v->bld;
fs_reg dst0 = v->vgrf(glsl_type::float_type);
fs_reg src0 = v->vgrf(glsl_type::float_type);
fs_reg zero(brw_imm_f(0));
bld.CMP(dst0, src0, zero, BRW_CONDITIONAL_NZ);
bld.CMP(bld.null_reg_f(), dst0, zero, BRW_CONDITIONAL_NZ);
/* = Before =
* 0: cmp.nz.f0.0(8) vgrf0:F, vgrf1:F, 0f
* 1: cmp.nz.f0.0(8) null:F, vgrf0:F, 0f
*
* = After =
* 0: cmp.nz.f0.0(8) vgrf0:F, vgrf1:F, 0f
*/
v->calculate_cfg();
bblock_t *block0 = v->cfg->blocks[0];
EXPECT_TRUE(cmod_propagation(v));
EXPECT_EQ(0, block0->start_ip);
EXPECT_EQ(0, block0->end_ip);
EXPECT_EQ(BRW_OPCODE_CMP, instruction(block0, 0)->opcode);
EXPECT_EQ(BRW_CONDITIONAL_NZ, instruction(block0, 0)->conditional_mod);
}
TEST_F(cmod_propagation_test, cmp_cmpg)
{
const fs_builder &bld = v->bld;
fs_reg dst0 = v->vgrf(glsl_type::float_type);
fs_reg src0 = v->vgrf(glsl_type::float_type);
fs_reg zero(brw_imm_f(0));
bld.CMP(dst0, src0, zero, BRW_CONDITIONAL_NZ);
bld.CMP(bld.null_reg_f(), dst0, zero, BRW_CONDITIONAL_G);
/* = Before =
* 0: cmp.nz.f0.0(8) vgrf0:F, vgrf1:F, 0f
* 1: cmp.g.f0.0(8) null:F, vgrf0:F, 0f
*
* = After =
* (no changes)
*/
v->calculate_cfg();
bblock_t *block0 = v->cfg->blocks[0];
EXPECT_FALSE(cmod_propagation(v));
EXPECT_EQ(0, block0->start_ip);
EXPECT_EQ(1, block0->end_ip);
EXPECT_EQ(BRW_OPCODE_CMP, instruction(block0, 0)->opcode);
EXPECT_EQ(BRW_CONDITIONAL_NZ, instruction(block0, 0)->conditional_mod);
EXPECT_EQ(BRW_OPCODE_CMP, instruction(block0, 1)->opcode);
EXPECT_EQ(BRW_CONDITIONAL_G, instruction(block0, 1)->conditional_mod);
}
TEST_F(cmod_propagation_test, plnnz_cmpnz)
{
const fs_builder &bld = v->bld;
fs_reg dst0 = v->vgrf(glsl_type::float_type);
fs_reg src0 = v->vgrf(glsl_type::float_type);
fs_reg zero(brw_imm_f(0));
set_condmod(BRW_CONDITIONAL_NZ, bld.PLN(dst0, src0, zero));
bld.CMP(bld.null_reg_f(), dst0, zero, BRW_CONDITIONAL_NZ);
/* = Before =
* 0: pln.nz.f0.0(8) vgrf0:F, vgrf1:F, 0f
* 1: cmp.nz.f0.0(8) null:F, vgrf0:F, 0f
*
* = After =
* 0: pln.nz.f0.0(8) vgrf0:F, vgrf1:F, 0f
*/
v->calculate_cfg();
bblock_t *block0 = v->cfg->blocks[0];
EXPECT_TRUE(cmod_propagation(v));
EXPECT_EQ(0, block0->start_ip);
EXPECT_EQ(0, block0->end_ip);
EXPECT_EQ(BRW_OPCODE_PLN, instruction(block0, 0)->opcode);
EXPECT_EQ(BRW_CONDITIONAL_NZ, instruction(block0, 0)->conditional_mod);
}
TEST_F(cmod_propagation_test, plnnz_cmpz)
{
const fs_builder &bld = v->bld;
fs_reg dst0 = v->vgrf(glsl_type::float_type);
fs_reg src0 = v->vgrf(glsl_type::float_type);
fs_reg zero(brw_imm_f(0));
set_condmod(BRW_CONDITIONAL_NZ, bld.PLN(dst0, src0, zero));
bld.CMP(bld.null_reg_f(), dst0, zero, BRW_CONDITIONAL_Z);
/* = Before =
* 0: pln.nz.f0.0(8) vgrf0:F, vgrf1:F, 0f
* 1: cmp.z.f0.0(8) null:F, vgrf0:F, 0f
*
* = After =
* 0: pln.z.f0.0(8) vgrf0:F, vgrf1:F, 0f
*/
v->calculate_cfg();
bblock_t *block0 = v->cfg->blocks[0];
EXPECT_TRUE(cmod_propagation(v));
EXPECT_EQ(0, block0->start_ip);
EXPECT_EQ(0, block0->end_ip);
EXPECT_EQ(BRW_OPCODE_PLN, instruction(block0, 0)->opcode);
EXPECT_EQ(BRW_CONDITIONAL_Z, instruction(block0, 0)->conditional_mod);
}
TEST_F(cmod_propagation_test, plnnz_sel_cmpz)
{
const fs_builder &bld = v->bld;
fs_reg dst0 = v->vgrf(glsl_type::float_type);
fs_reg dst1 = v->vgrf(glsl_type::float_type);
fs_reg src0 = v->vgrf(glsl_type::float_type);
fs_reg zero(brw_imm_f(0));
set_condmod(BRW_CONDITIONAL_NZ, bld.PLN(dst0, src0, zero));
set_predicate(BRW_PREDICATE_NORMAL, bld.SEL(dst1, src0, zero));
bld.CMP(bld.null_reg_f(), dst0, zero, BRW_CONDITIONAL_Z);
/* = Before =
* 0: pln.nz.f0.0(8) vgrf0:F, vgrf2:F, 0f
* 1: (+f0.0) sel(8) vgrf1:F, vgrf2:F, 0f
* 2: cmp.z.f0.0(8) null:F, vgrf0:F, 0f
*
* = After =
* (no changes)
*/
v->calculate_cfg();
bblock_t *block0 = v->cfg->blocks[0];
EXPECT_FALSE(cmod_propagation(v));
EXPECT_EQ(0, block0->start_ip);
EXPECT_EQ(2, block0->end_ip);
EXPECT_EQ(BRW_OPCODE_PLN, instruction(block0, 0)->opcode);
EXPECT_EQ(BRW_CONDITIONAL_NZ, instruction(block0, 0)->conditional_mod);
EXPECT_EQ(BRW_OPCODE_SEL, instruction(block0, 1)->opcode);
EXPECT_EQ(BRW_PREDICATE_NORMAL, instruction(block0, 1)->predicate);
EXPECT_EQ(BRW_OPCODE_CMP, instruction(block0, 2)->opcode);
EXPECT_EQ(BRW_CONDITIONAL_Z, instruction(block0, 2)->conditional_mod);
}
TEST_F(cmod_propagation_test, cmp_cmpg_D)
{
const fs_builder &bld = v->bld;
fs_reg dst0 = v->vgrf(glsl_type::int_type);
fs_reg src0 = v->vgrf(glsl_type::int_type);
fs_reg zero(brw_imm_d(0));
fs_reg one(brw_imm_d(1));
bld.CMP(dst0, src0, zero, BRW_CONDITIONAL_NZ);
bld.CMP(bld.null_reg_d(), dst0, zero, BRW_CONDITIONAL_G);
/* = Before =
* 0: cmp.nz.f0.0(8) vgrf0:D, vgrf1:D, 0d
* 1: cmp.g.f0.0(8) null:D, vgrf0:D, 0d
*
* = After =
* (no changes)
*/
v->calculate_cfg();
bblock_t *block0 = v->cfg->blocks[0];
EXPECT_FALSE(cmod_propagation(v));
EXPECT_EQ(0, block0->start_ip);
EXPECT_EQ(1, block0->end_ip);
EXPECT_EQ(BRW_OPCODE_CMP, instruction(block0, 0)->opcode);
EXPECT_EQ(BRW_CONDITIONAL_NZ, instruction(block0, 0)->conditional_mod);
EXPECT_EQ(BRW_OPCODE_CMP, instruction(block0, 1)->opcode);
EXPECT_EQ(BRW_CONDITIONAL_G, instruction(block0, 1)->conditional_mod);
}
TEST_F(cmod_propagation_test, cmp_cmpg_UD)
{
const fs_builder &bld = v->bld;
fs_reg dst0 = v->vgrf(glsl_type::uint_type);
fs_reg src0 = v->vgrf(glsl_type::uint_type);
fs_reg zero(brw_imm_ud(0));
bld.CMP(dst0, src0, zero, BRW_CONDITIONAL_NZ);
bld.CMP(bld.null_reg_ud(), dst0, zero, BRW_CONDITIONAL_G);
/* = Before =
* 0: cmp.nz.f0.0(8) vgrf0:UD, vgrf1:UD, 0u
* 1: cmp.g.f0.0(8) null:UD, vgrf0:UD, 0u
*
* = After =
* 0: cmp.nz.f0.0(8) vgrf0:UD, vgrf1:UD, 0u
*/
v->calculate_cfg();
bblock_t *block0 = v->cfg->blocks[0];
EXPECT_TRUE(cmod_propagation(v));
EXPECT_EQ(0, block0->start_ip);
EXPECT_EQ(0, block0->end_ip);
EXPECT_EQ(BRW_OPCODE_CMP, instruction(block0, 0)->opcode);
EXPECT_EQ(BRW_CONDITIONAL_NZ, instruction(block0, 0)->conditional_mod);
}
TEST_F(cmod_propagation_test, cmp_cmpl_D)
{
const fs_builder &bld = v->bld;
fs_reg dst0 = v->vgrf(glsl_type::int_type);
fs_reg src0 = v->vgrf(glsl_type::int_type);
fs_reg zero(brw_imm_d(0));
bld.CMP(dst0, src0, zero, BRW_CONDITIONAL_NZ);
bld.CMP(bld.null_reg_d(), dst0, zero, BRW_CONDITIONAL_L);
/* = Before =
* 0: cmp.nz.f0.0(8) vgrf0:D, vgrf1:D, 0d
* 1: cmp.l.f0.0(8) null:D, vgrf0:D, 0d
*
* = After =
* 0: cmp.nz.f0.0(8) vgrf0:D, vgrf1:D, 0d
*/
v->calculate_cfg();
bblock_t *block0 = v->cfg->blocks[0];
EXPECT_TRUE(cmod_propagation(v));
EXPECT_EQ(0, block0->start_ip);
EXPECT_EQ(0, block0->end_ip);
EXPECT_EQ(BRW_OPCODE_CMP, instruction(block0, 0)->opcode);
EXPECT_EQ(BRW_CONDITIONAL_NZ, instruction(block0, 0)->conditional_mod);
}
TEST_F(cmod_propagation_test, cmp_cmpl_UD)
{
const fs_builder &bld = v->bld;
fs_reg dst0 = v->vgrf(glsl_type::uint_type);
fs_reg src0 = v->vgrf(glsl_type::uint_type);
fs_reg zero(brw_imm_ud(0));
bld.CMP(dst0, src0, zero, BRW_CONDITIONAL_NZ);
bld.CMP(bld.null_reg_ud(), dst0, zero, BRW_CONDITIONAL_L);
/* = Before =
* 0: cmp.nz.f0.0(8) vgrf0:UD, vgrf1:UD, 0u
* 1: cmp.l.f0.0(8) null:UD, vgrf0:UD, 0u
*
* = After =
* (no changes)
*/
v->calculate_cfg();
bblock_t *block0 = v->cfg->blocks[0];
EXPECT_FALSE(cmod_propagation(v));
EXPECT_EQ(0, block0->start_ip);
EXPECT_EQ(1, block0->end_ip);
EXPECT_EQ(BRW_OPCODE_CMP, instruction(block0, 0)->opcode);
EXPECT_EQ(BRW_CONDITIONAL_NZ, instruction(block0, 0)->conditional_mod);
EXPECT_EQ(BRW_OPCODE_CMP, instruction(block0, 1)->opcode);
EXPECT_EQ(BRW_CONDITIONAL_L, instruction(block0, 1)->conditional_mod);
}
i965/fs: Handle CMP.nz ... 0 and AND.nz ... 1 similarly in cmod propagation Espically on platforms that do not natively generate 0u and ~0u for Boolean results, we generate a lot of sequences where a CMP is followed by an AND with 1. emit_bool_to_cond_code does this, for example. On ILK, this results in a sequence like: add(8) g3<1>F g8<8,8,1>F -g4<0,1,0>F cmp.l.f0(8) g3<1>D g3<8,8,1>F 0F and.nz.f0(8) null g3<8,8,1>D 1D (+f0) iff(8) Jump: 6 The AND.nz is obviously redundant. By propagating the cmod, we can instead generate add.l.f0(8) null g8<8,8,1>F -g4<0,1,0>F (+f0) iff(8) Jump: 6 Existing code already handles the propagation from the CMP to the ADD. Shader-db results: GM45 (0x2A42): total instructions in shared programs: 3550829 -> 3550788 (-0.00%) instructions in affected programs: 10028 -> 9987 (-0.41%) helped: 24 Iron Lake (0x0046): total instructions in shared programs: 4993146 -> 4993105 (-0.00%) instructions in affected programs: 9675 -> 9634 (-0.42%) helped: 24 Ivy Bridge (0x0166): total instructions in shared programs: 6291870 -> 6291794 (-0.00%) instructions in affected programs: 17914 -> 17838 (-0.42%) helped: 48 Haswell (0x0426): total instructions in shared programs: 5779256 -> 5779180 (-0.00%) instructions in affected programs: 16694 -> 16618 (-0.46%) helped: 48 Broadwell (0x162E): total instructions in shared programs: 6823088 -> 6823014 (-0.00%) instructions in affected programs: 15824 -> 15750 (-0.47%) helped: 46 No chage on Sandy Bridge or on any platform when NIR is used. v2: Add unit tests suggested by Matt. Remove spurious writes_flag() check on scan_inst when scan_inst is known to be BRW_OPCODE_CMP (also suggested by Matt). v3: Fix some comments and remove some explicit int() casts in fs_reg constructors in the unit tests. Both suggested by Matt. Signed-off-by: Ian Romanick <ian.d.romanick@intel.com> Reviewed-by: Matt Turner <mattst88@gmail.com>
2015-02-03 21:12:28 +02:00
TEST_F(cmod_propagation_test, andz_one)
{
const fs_builder &bld = v->bld;
i965/fs: Handle CMP.nz ... 0 and AND.nz ... 1 similarly in cmod propagation Espically on platforms that do not natively generate 0u and ~0u for Boolean results, we generate a lot of sequences where a CMP is followed by an AND with 1. emit_bool_to_cond_code does this, for example. On ILK, this results in a sequence like: add(8) g3<1>F g8<8,8,1>F -g4<0,1,0>F cmp.l.f0(8) g3<1>D g3<8,8,1>F 0F and.nz.f0(8) null g3<8,8,1>D 1D (+f0) iff(8) Jump: 6 The AND.nz is obviously redundant. By propagating the cmod, we can instead generate add.l.f0(8) null g8<8,8,1>F -g4<0,1,0>F (+f0) iff(8) Jump: 6 Existing code already handles the propagation from the CMP to the ADD. Shader-db results: GM45 (0x2A42): total instructions in shared programs: 3550829 -> 3550788 (-0.00%) instructions in affected programs: 10028 -> 9987 (-0.41%) helped: 24 Iron Lake (0x0046): total instructions in shared programs: 4993146 -> 4993105 (-0.00%) instructions in affected programs: 9675 -> 9634 (-0.42%) helped: 24 Ivy Bridge (0x0166): total instructions in shared programs: 6291870 -> 6291794 (-0.00%) instructions in affected programs: 17914 -> 17838 (-0.42%) helped: 48 Haswell (0x0426): total instructions in shared programs: 5779256 -> 5779180 (-0.00%) instructions in affected programs: 16694 -> 16618 (-0.46%) helped: 48 Broadwell (0x162E): total instructions in shared programs: 6823088 -> 6823014 (-0.00%) instructions in affected programs: 15824 -> 15750 (-0.47%) helped: 46 No chage on Sandy Bridge or on any platform when NIR is used. v2: Add unit tests suggested by Matt. Remove spurious writes_flag() check on scan_inst when scan_inst is known to be BRW_OPCODE_CMP (also suggested by Matt). v3: Fix some comments and remove some explicit int() casts in fs_reg constructors in the unit tests. Both suggested by Matt. Signed-off-by: Ian Romanick <ian.d.romanick@intel.com> Reviewed-by: Matt Turner <mattst88@gmail.com>
2015-02-03 21:12:28 +02:00
fs_reg dest = v->vgrf(glsl_type::int_type);
fs_reg src0 = v->vgrf(glsl_type::float_type);
fs_reg zero(brw_imm_f(0.0f));
fs_reg one(brw_imm_d(1));
i965/fs: Handle CMP.nz ... 0 and AND.nz ... 1 similarly in cmod propagation Espically on platforms that do not natively generate 0u and ~0u for Boolean results, we generate a lot of sequences where a CMP is followed by an AND with 1. emit_bool_to_cond_code does this, for example. On ILK, this results in a sequence like: add(8) g3<1>F g8<8,8,1>F -g4<0,1,0>F cmp.l.f0(8) g3<1>D g3<8,8,1>F 0F and.nz.f0(8) null g3<8,8,1>D 1D (+f0) iff(8) Jump: 6 The AND.nz is obviously redundant. By propagating the cmod, we can instead generate add.l.f0(8) null g8<8,8,1>F -g4<0,1,0>F (+f0) iff(8) Jump: 6 Existing code already handles the propagation from the CMP to the ADD. Shader-db results: GM45 (0x2A42): total instructions in shared programs: 3550829 -> 3550788 (-0.00%) instructions in affected programs: 10028 -> 9987 (-0.41%) helped: 24 Iron Lake (0x0046): total instructions in shared programs: 4993146 -> 4993105 (-0.00%) instructions in affected programs: 9675 -> 9634 (-0.42%) helped: 24 Ivy Bridge (0x0166): total instructions in shared programs: 6291870 -> 6291794 (-0.00%) instructions in affected programs: 17914 -> 17838 (-0.42%) helped: 48 Haswell (0x0426): total instructions in shared programs: 5779256 -> 5779180 (-0.00%) instructions in affected programs: 16694 -> 16618 (-0.46%) helped: 48 Broadwell (0x162E): total instructions in shared programs: 6823088 -> 6823014 (-0.00%) instructions in affected programs: 15824 -> 15750 (-0.47%) helped: 46 No chage on Sandy Bridge or on any platform when NIR is used. v2: Add unit tests suggested by Matt. Remove spurious writes_flag() check on scan_inst when scan_inst is known to be BRW_OPCODE_CMP (also suggested by Matt). v3: Fix some comments and remove some explicit int() casts in fs_reg constructors in the unit tests. Both suggested by Matt. Signed-off-by: Ian Romanick <ian.d.romanick@intel.com> Reviewed-by: Matt Turner <mattst88@gmail.com>
2015-02-03 21:12:28 +02:00
bld.CMP(retype(dest, BRW_REGISTER_TYPE_F), src0, zero, BRW_CONDITIONAL_L);
set_condmod(BRW_CONDITIONAL_Z,
bld.AND(bld.null_reg_d(), dest, one));
i965/fs: Handle CMP.nz ... 0 and AND.nz ... 1 similarly in cmod propagation Espically on platforms that do not natively generate 0u and ~0u for Boolean results, we generate a lot of sequences where a CMP is followed by an AND with 1. emit_bool_to_cond_code does this, for example. On ILK, this results in a sequence like: add(8) g3<1>F g8<8,8,1>F -g4<0,1,0>F cmp.l.f0(8) g3<1>D g3<8,8,1>F 0F and.nz.f0(8) null g3<8,8,1>D 1D (+f0) iff(8) Jump: 6 The AND.nz is obviously redundant. By propagating the cmod, we can instead generate add.l.f0(8) null g8<8,8,1>F -g4<0,1,0>F (+f0) iff(8) Jump: 6 Existing code already handles the propagation from the CMP to the ADD. Shader-db results: GM45 (0x2A42): total instructions in shared programs: 3550829 -> 3550788 (-0.00%) instructions in affected programs: 10028 -> 9987 (-0.41%) helped: 24 Iron Lake (0x0046): total instructions in shared programs: 4993146 -> 4993105 (-0.00%) instructions in affected programs: 9675 -> 9634 (-0.42%) helped: 24 Ivy Bridge (0x0166): total instructions in shared programs: 6291870 -> 6291794 (-0.00%) instructions in affected programs: 17914 -> 17838 (-0.42%) helped: 48 Haswell (0x0426): total instructions in shared programs: 5779256 -> 5779180 (-0.00%) instructions in affected programs: 16694 -> 16618 (-0.46%) helped: 48 Broadwell (0x162E): total instructions in shared programs: 6823088 -> 6823014 (-0.00%) instructions in affected programs: 15824 -> 15750 (-0.47%) helped: 46 No chage on Sandy Bridge or on any platform when NIR is used. v2: Add unit tests suggested by Matt. Remove spurious writes_flag() check on scan_inst when scan_inst is known to be BRW_OPCODE_CMP (also suggested by Matt). v3: Fix some comments and remove some explicit int() casts in fs_reg constructors in the unit tests. Both suggested by Matt. Signed-off-by: Ian Romanick <ian.d.romanick@intel.com> Reviewed-by: Matt Turner <mattst88@gmail.com>
2015-02-03 21:12:28 +02:00
/* = Before =
* 0: cmp.l.f0(8) dest:F src0:F 0F
* 1: and.z.f0(8) null:D dest:D 1D
*
* = After =
* (no changes)
*/
v->calculate_cfg();
bblock_t *block0 = v->cfg->blocks[0];
EXPECT_EQ(0, block0->start_ip);
EXPECT_EQ(1, block0->end_ip);
EXPECT_FALSE(cmod_propagation(v));
EXPECT_EQ(0, block0->start_ip);
EXPECT_EQ(1, block0->end_ip);
EXPECT_EQ(BRW_OPCODE_CMP, instruction(block0, 0)->opcode);
EXPECT_EQ(BRW_CONDITIONAL_L, instruction(block0, 0)->conditional_mod);
EXPECT_EQ(BRW_OPCODE_AND, instruction(block0, 1)->opcode);
EXPECT_EQ(BRW_CONDITIONAL_EQ, instruction(block0, 1)->conditional_mod);
}
i965/fs: Propagate conditional modifiers from compares to adds The math inside the add and the cmp in this instruction sequence is the same. We can utilize this to eliminate the compare. add(8) g5<1>F g2<8,8,1>F g64.5<0,1,0>F { align1 1Q compacted }; cmp.z.f0(8) null<1>F g2<8,8,1>F -g64.5<0,1,0>F { align1 1Q switch }; (-f0) sel(8) g8<1>F (abs)g5<8,8,1>F 3e-37F { align1 1Q }; This is reduced to: add.z.f0(8) g5<1>F g2<8,8,1>F g64.5<0,1,0>F { align1 1Q compacted }; (-f0) sel(8) g8<1>F (abs)g5<8,8,1>F 3e-37F { align1 1Q }; This optimization pass could do even better. The nature of converting vectorized code from the GLSL front end to scalar code in NIR results in sequences like: add(8) g7<1>F g4<8,8,1>F g64.5<0,1,0>F { align1 1Q compacted }; add(8) g6<1>F g3<8,8,1>F g64.5<0,1,0>F { align1 1Q compacted }; add(8) g5<1>F g2<8,8,1>F g64.5<0,1,0>F { align1 1Q compacted }; cmp.z.f0(8) null<1>F g2<8,8,1>F -g64.5<0,1,0>F { align1 1Q switch }; (-f0) sel(8) g8<1>F (abs)g5<8,8,1>F 3e-37F { align1 1Q }; cmp.z.f0(8) null<1>F g3<8,8,1>F -g64.5<0,1,0>F { align1 1Q switch }; (-f0) sel(8) g10<1>F (abs)g6<8,8,1>F 3e-37F { align1 1Q }; cmp.z.f0(8) null<1>F g4<8,8,1>F -g64.5<0,1,0>F { align1 1Q switch }; (-f0) sel(8) g12<1>F (abs)g7<8,8,1>F 3e-37F { align1 1Q }; In this sequence, only the first cmp.z is removed. With different scheduling, all 3 could get removed. Skylake total instructions in shared programs: 14407009 -> 14400173 (-0.05%) instructions in affected programs: 1307274 -> 1300438 (-0.52%) helped: 4880 HURT: 0 helped stats (abs) min: 1 max: 33 x̄: 1.40 x̃: 1 helped stats (rel) min: 0.03% max: 8.70% x̄: 0.70% x̃: 0.52% 95% mean confidence interval for instructions value: -1.45 -1.35 95% mean confidence interval for instructions %-change: -0.72% -0.69% Instructions are helped. total cycles in shared programs: 532943169 -> 532923528 (<.01%) cycles in affected programs: 14065798 -> 14046157 (-0.14%) helped: 2703 HURT: 339 helped stats (abs) min: 1 max: 1062 x̄: 12.27 x̃: 2 helped stats (rel) min: <.01% max: 28.72% x̄: 0.38% x̃: 0.21% HURT stats (abs) min: 1 max: 739 x̄: 39.86 x̃: 12 HURT stats (rel) min: 0.02% max: 27.69% x̄: 1.38% x̃: 0.41% 95% mean confidence interval for cycles value: -8.66 -4.26 95% mean confidence interval for cycles %-change: -0.24% -0.14% Cycles are helped. LOST: 0 GAINED: 1 Broadwell total instructions in shared programs: 14719636 -> 14712949 (-0.05%) instructions in affected programs: 1288188 -> 1281501 (-0.52%) helped: 4845 HURT: 0 helped stats (abs) min: 1 max: 33 x̄: 1.38 x̃: 1 helped stats (rel) min: 0.03% max: 8.00% x̄: 0.70% x̃: 0.52% 95% mean confidence interval for instructions value: -1.43 -1.33 95% mean confidence interval for instructions %-change: -0.72% -0.68% Instructions are helped. total cycles in shared programs: 559599253 -> 559581699 (<.01%) cycles in affected programs: 13315565 -> 13298011 (-0.13%) helped: 2600 HURT: 269 helped stats (abs) min: 1 max: 2128 x̄: 12.24 x̃: 2 helped stats (rel) min: <.01% max: 23.95% x̄: 0.41% x̃: 0.20% HURT stats (abs) min: 1 max: 790 x̄: 53.07 x̃: 20 HURT stats (rel) min: 0.02% max: 15.96% x̄: 1.55% x̃: 0.75% 95% mean confidence interval for cycles value: -8.47 -3.77 95% mean confidence interval for cycles %-change: -0.27% -0.18% Cycles are helped. LOST: 0 GAINED: 8 Haswell total instructions in shared programs: 12978609 -> 12973483 (-0.04%) instructions in affected programs: 932921 -> 927795 (-0.55%) helped: 3480 HURT: 0 helped stats (abs) min: 1 max: 33 x̄: 1.47 x̃: 1 helped stats (rel) min: 0.03% max: 7.84% x̄: 0.78% x̃: 0.58% 95% mean confidence interval for instructions value: -1.53 -1.42 95% mean confidence interval for instructions %-change: -0.80% -0.75% Instructions are helped. total cycles in shared programs: 410270788 -> 410250531 (<.01%) cycles in affected programs: 10986161 -> 10965904 (-0.18%) helped: 2087 HURT: 254 helped stats (abs) min: 1 max: 2672 x̄: 14.63 x̃: 4 helped stats (rel) min: <.01% max: 39.61% x̄: 0.42% x̃: 0.21% HURT stats (abs) min: 1 max: 519 x̄: 40.49 x̃: 16 HURT stats (rel) min: 0.01% max: 12.83% x̄: 1.20% x̃: 0.47% 95% mean confidence interval for cycles value: -12.82 -4.49 95% mean confidence interval for cycles %-change: -0.31% -0.18% Cycles are helped. LOST: 0 GAINED: 5 Ivy Bridge total instructions in shared programs: 11686082 -> 11681548 (-0.04%) instructions in affected programs: 937696 -> 933162 (-0.48%) helped: 3150 HURT: 0 helped stats (abs) min: 1 max: 33 x̄: 1.44 x̃: 1 helped stats (rel) min: 0.03% max: 7.84% x̄: 0.69% x̃: 0.49% 95% mean confidence interval for instructions value: -1.49 -1.38 95% mean confidence interval for instructions %-change: -0.71% -0.67% Instructions are helped. total cycles in shared programs: 257514962 -> 257492471 (<.01%) cycles in affected programs: 11524149 -> 11501658 (-0.20%) helped: 1970 HURT: 239 helped stats (abs) min: 1 max: 3525 x̄: 17.48 x̃: 3 helped stats (rel) min: <.01% max: 49.60% x̄: 0.46% x̃: 0.17% HURT stats (abs) min: 1 max: 1358 x̄: 50.00 x̃: 15 HURT stats (rel) min: 0.02% max: 59.88% x̄: 1.84% x̃: 0.65% 95% mean confidence interval for cycles value: -17.01 -3.35 95% mean confidence interval for cycles %-change: -0.33% -0.08% Cycles are helped. LOST: 9 GAINED: 1 Sandy Bridge total instructions in shared programs: 10432841 -> 10429893 (-0.03%) instructions in affected programs: 685071 -> 682123 (-0.43%) helped: 2453 HURT: 0 helped stats (abs) min: 1 max: 9 x̄: 1.20 x̃: 1 helped stats (rel) min: 0.02% max: 7.55% x̄: 0.64% x̃: 0.46% 95% mean confidence interval for instructions value: -1.23 -1.17 95% mean confidence interval for instructions %-change: -0.67% -0.62% Instructions are helped. total cycles in shared programs: 146133660 -> 146134195 (<.01%) cycles in affected programs: 3991634 -> 3992169 (0.01%) helped: 1237 HURT: 153 helped stats (abs) min: 1 max: 2853 x̄: 6.93 x̃: 2 helped stats (rel) min: <.01% max: 29.00% x̄: 0.24% x̃: 0.14% HURT stats (abs) min: 1 max: 1740 x̄: 59.56 x̃: 12 HURT stats (rel) min: 0.03% max: 78.98% x̄: 1.96% x̃: 0.42% 95% mean confidence interval for cycles value: -5.13 5.90 95% mean confidence interval for cycles %-change: -0.17% 0.16% Inconclusive result (value mean confidence interval includes 0). LOST: 0 GAINED: 1 GM45 and Iron Lake had similar results (GM45 shown): total instructions in shared programs: 4800332 -> 4798380 (-0.04%) instructions in affected programs: 565995 -> 564043 (-0.34%) helped: 1451 HURT: 0 helped stats (abs) min: 1 max: 20 x̄: 1.35 x̃: 1 helped stats (rel) min: 0.05% max: 5.26% x̄: 0.47% x̃: 0.31% 95% mean confidence interval for instructions value: -1.40 -1.29 95% mean confidence interval for instructions %-change: -0.50% -0.45% Instructions are helped. total cycles in shared programs: 122032318 -> 122027798 (<.01%) cycles in affected programs: 8334868 -> 8330348 (-0.05%) helped: 1029 HURT: 1 helped stats (abs) min: 2 max: 40 x̄: 4.43 x̃: 2 helped stats (rel) min: <.01% max: 1.83% x̄: 0.09% x̃: 0.04% HURT stats (abs) min: 38 max: 38 x̄: 38.00 x̃: 38 HURT stats (rel) min: 0.25% max: 0.25% x̄: 0.25% x̃: 0.25% 95% mean confidence interval for cycles value: -4.70 -4.08 95% mean confidence interval for cycles %-change: -0.09% -0.08% Cycles are helped. Signed-off-by: Ian Romanick <ian.d.romanick@intel.com> Reviewed-by: Alejandro Piñeiro <apinheiro@igalia.com> Reviewed-by: Matt Turner <mattst88@gmail.com>
2018-03-09 13:45:01 -08:00
TEST_F(cmod_propagation_test, add_not_merge_with_compare)
{
const fs_builder &bld = v->bld;
fs_reg dest = v->vgrf(glsl_type::float_type);
fs_reg src0 = v->vgrf(glsl_type::float_type);
fs_reg src1 = v->vgrf(glsl_type::float_type);
bld.ADD(dest, src0, src1);
bld.CMP(bld.null_reg_f(), src0, src1, BRW_CONDITIONAL_L);
/* The addition and the implicit subtraction in the compare do not compute
* related values.
*
* = Before =
* 0: add(8) dest:F src0:F src1:F
* 1: cmp.l.f0(8) null:F src0:F src1:F
*
* = After =
* (no changes)
*/
v->calculate_cfg();
bblock_t *block0 = v->cfg->blocks[0];
EXPECT_EQ(0, block0->start_ip);
EXPECT_EQ(1, block0->end_ip);
EXPECT_FALSE(cmod_propagation(v));
EXPECT_EQ(0, block0->start_ip);
EXPECT_EQ(1, block0->end_ip);
EXPECT_EQ(BRW_OPCODE_ADD, instruction(block0, 0)->opcode);
EXPECT_EQ(BRW_CONDITIONAL_NONE, instruction(block0, 0)->conditional_mod);
EXPECT_EQ(BRW_OPCODE_CMP, instruction(block0, 1)->opcode);
EXPECT_EQ(BRW_CONDITIONAL_L, instruction(block0, 1)->conditional_mod);
}
TEST_F(cmod_propagation_test, subtract_merge_with_compare)
{
const fs_builder &bld = v->bld;
fs_reg dest = v->vgrf(glsl_type::float_type);
fs_reg src0 = v->vgrf(glsl_type::float_type);
fs_reg src1 = v->vgrf(glsl_type::float_type);
bld.ADD(dest, src0, negate(src1));
bld.CMP(bld.null_reg_f(), src0, src1, BRW_CONDITIONAL_L);
/* = Before =
* 0: add(8) dest:F src0:F -src1:F
* 1: cmp.l.f0(8) null:F src0:F src1:F
*
* = After =
* 0: add.l.f0(8) dest:F src0:F -src1:F
*/
v->calculate_cfg();
bblock_t *block0 = v->cfg->blocks[0];
EXPECT_EQ(0, block0->start_ip);
EXPECT_EQ(1, block0->end_ip);
EXPECT_TRUE(cmod_propagation(v));
EXPECT_EQ(0, block0->start_ip);
EXPECT_EQ(0, block0->end_ip);
EXPECT_EQ(BRW_OPCODE_ADD, instruction(block0, 0)->opcode);
EXPECT_EQ(BRW_CONDITIONAL_L, instruction(block0, 0)->conditional_mod);
}
TEST_F(cmod_propagation_test, subtract_immediate_merge_with_compare)
{
const fs_builder &bld = v->bld;
fs_reg dest = v->vgrf(glsl_type::float_type);
fs_reg src0 = v->vgrf(glsl_type::float_type);
fs_reg one(brw_imm_f(1.0f));
fs_reg negative_one(brw_imm_f(-1.0f));
bld.ADD(dest, src0, negative_one);
bld.CMP(bld.null_reg_f(), src0, one, BRW_CONDITIONAL_NZ);
/* = Before =
* 0: add(8) dest:F src0:F -1.0f
* 1: cmp.nz.f0(8) null:F src0:F 1.0f
*
* = After =
* 0: add.nz.f0(8) dest:F src0:F -1.0f
*/
v->calculate_cfg();
bblock_t *block0 = v->cfg->blocks[0];
EXPECT_EQ(0, block0->start_ip);
EXPECT_EQ(1, block0->end_ip);
EXPECT_TRUE(cmod_propagation(v));
EXPECT_EQ(0, block0->start_ip);
EXPECT_EQ(0, block0->end_ip);
EXPECT_EQ(BRW_OPCODE_ADD, instruction(block0, 0)->opcode);
EXPECT_EQ(BRW_CONDITIONAL_NZ, instruction(block0, 0)->conditional_mod);
}
TEST_F(cmod_propagation_test, subtract_merge_with_compare_intervening_add)
{
const fs_builder &bld = v->bld;
fs_reg dest0 = v->vgrf(glsl_type::float_type);
fs_reg dest1 = v->vgrf(glsl_type::float_type);
fs_reg src0 = v->vgrf(glsl_type::float_type);
fs_reg src1 = v->vgrf(glsl_type::float_type);
bld.ADD(dest0, src0, negate(src1));
bld.ADD(dest1, src0, src1);
bld.CMP(bld.null_reg_f(), src0, src1, BRW_CONDITIONAL_L);
/* = Before =
* 0: add(8) dest0:F src0:F -src1:F
* 1: add(8) dest1:F src0:F src1:F
* 2: cmp.l.f0(8) null:F src0:F src1:F
*
* = After =
* 0: add.l.f0(8) dest0:F src0:F -src1:F
* 1: add(8) dest1:F src0:F src1:F
*/
v->calculate_cfg();
bblock_t *block0 = v->cfg->blocks[0];
EXPECT_EQ(0, block0->start_ip);
EXPECT_EQ(2, block0->end_ip);
EXPECT_TRUE(cmod_propagation(v));
EXPECT_EQ(0, block0->start_ip);
EXPECT_EQ(1, block0->end_ip);
EXPECT_EQ(BRW_OPCODE_ADD, instruction(block0, 0)->opcode);
EXPECT_EQ(BRW_CONDITIONAL_L, instruction(block0, 0)->conditional_mod);
EXPECT_EQ(BRW_OPCODE_ADD, instruction(block0, 1)->opcode);
EXPECT_EQ(BRW_CONDITIONAL_NONE, instruction(block0, 1)->conditional_mod);
}
TEST_F(cmod_propagation_test, subtract_not_merge_with_compare_intervening_partial_write)
{
const fs_builder &bld = v->bld;
fs_reg dest0 = v->vgrf(glsl_type::float_type);
fs_reg dest1 = v->vgrf(glsl_type::float_type);
fs_reg src0 = v->vgrf(glsl_type::float_type);
fs_reg src1 = v->vgrf(glsl_type::float_type);
bld.ADD(dest0, src0, negate(src1));
set_predicate(BRW_PREDICATE_NORMAL, bld.ADD(dest1, src0, negate(src1)));
bld.CMP(bld.null_reg_f(), src0, src1, BRW_CONDITIONAL_L);
/* = Before =
* 0: add(8) dest0:F src0:F -src1:F
* 1: (+f0) add(8) dest1:F src0:F -src1:F
* 2: cmp.l.f0(8) null:F src0:F src1:F
*
* = After =
* (no changes)
*/
v->calculate_cfg();
bblock_t *block0 = v->cfg->blocks[0];
EXPECT_EQ(0, block0->start_ip);
EXPECT_EQ(2, block0->end_ip);
EXPECT_FALSE(cmod_propagation(v));
EXPECT_EQ(0, block0->start_ip);
EXPECT_EQ(2, block0->end_ip);
EXPECT_EQ(BRW_OPCODE_ADD, instruction(block0, 0)->opcode);
EXPECT_EQ(BRW_CONDITIONAL_NONE, instruction(block0, 0)->conditional_mod);
EXPECT_EQ(BRW_OPCODE_ADD, instruction(block0, 1)->opcode);
EXPECT_EQ(BRW_CONDITIONAL_NONE, instruction(block0, 1)->conditional_mod);
EXPECT_EQ(BRW_OPCODE_CMP, instruction(block0, 2)->opcode);
EXPECT_EQ(BRW_CONDITIONAL_L, instruction(block0, 2)->conditional_mod);
}
TEST_F(cmod_propagation_test, subtract_not_merge_with_compare_intervening_add)
{
const fs_builder &bld = v->bld;
fs_reg dest0 = v->vgrf(glsl_type::float_type);
fs_reg dest1 = v->vgrf(glsl_type::float_type);
fs_reg src0 = v->vgrf(glsl_type::float_type);
fs_reg src1 = v->vgrf(glsl_type::float_type);
bld.ADD(dest0, src0, negate(src1));
set_condmod(BRW_CONDITIONAL_EQ, bld.ADD(dest1, src0, src1));
bld.CMP(bld.null_reg_f(), src0, src1, BRW_CONDITIONAL_L);
/* = Before =
* 0: add(8) dest0:F src0:F -src1:F
* 1: add.z.f0(8) dest1:F src0:F src1:F
* 2: cmp.l.f0(8) null:F src0:F src1:F
*
* = After =
* (no changes)
*/
v->calculate_cfg();
bblock_t *block0 = v->cfg->blocks[0];
EXPECT_EQ(0, block0->start_ip);
EXPECT_EQ(2, block0->end_ip);
EXPECT_FALSE(cmod_propagation(v));
EXPECT_EQ(0, block0->start_ip);
EXPECT_EQ(2, block0->end_ip);
EXPECT_EQ(BRW_OPCODE_ADD, instruction(block0, 0)->opcode);
EXPECT_EQ(BRW_CONDITIONAL_NONE, instruction(block0, 0)->conditional_mod);
EXPECT_EQ(BRW_OPCODE_ADD, instruction(block0, 1)->opcode);
EXPECT_EQ(BRW_CONDITIONAL_EQ, instruction(block0, 1)->conditional_mod);
EXPECT_EQ(BRW_OPCODE_CMP, instruction(block0, 2)->opcode);
EXPECT_EQ(BRW_CONDITIONAL_L, instruction(block0, 2)->conditional_mod);
}
TEST_F(cmod_propagation_test, add_merge_with_compare)
{
const fs_builder &bld = v->bld;
fs_reg dest = v->vgrf(glsl_type::float_type);
fs_reg src0 = v->vgrf(glsl_type::float_type);
fs_reg src1 = v->vgrf(glsl_type::float_type);
bld.ADD(dest, src0, src1);
bld.CMP(bld.null_reg_f(), src0, negate(src1), BRW_CONDITIONAL_L);
/* = Before =
* 0: add(8) dest:F src0:F src1:F
* 1: cmp.l.f0(8) null:F src0:F -src1:F
*
* = After =
* 0: add.l.f0(8) dest:F src0:F src1:F
*/
v->calculate_cfg();
bblock_t *block0 = v->cfg->blocks[0];
EXPECT_EQ(0, block0->start_ip);
EXPECT_EQ(1, block0->end_ip);
EXPECT_TRUE(cmod_propagation(v));
EXPECT_EQ(0, block0->start_ip);
EXPECT_EQ(0, block0->end_ip);
EXPECT_EQ(BRW_OPCODE_ADD, instruction(block0, 0)->opcode);
EXPECT_EQ(BRW_CONDITIONAL_L, instruction(block0, 0)->conditional_mod);
}
TEST_F(cmod_propagation_test, negative_subtract_merge_with_compare)
{
const fs_builder &bld = v->bld;
fs_reg dest = v->vgrf(glsl_type::float_type);
fs_reg src0 = v->vgrf(glsl_type::float_type);
fs_reg src1 = v->vgrf(glsl_type::float_type);
bld.ADD(dest, src1, negate(src0));
bld.CMP(bld.null_reg_f(), src0, src1, BRW_CONDITIONAL_L);
/* The result of the subtract is the negatiion of the result of the
* implicit subtract in the compare, so the condition must change.
*
* = Before =
* 0: add(8) dest:F src1:F -src0:F
* 1: cmp.l.f0(8) null:F src0:F src1:F
*
* = After =
* 0: add.g.f0(8) dest:F src0:F -src1:F
*/
v->calculate_cfg();
bblock_t *block0 = v->cfg->blocks[0];
EXPECT_EQ(0, block0->start_ip);
EXPECT_EQ(1, block0->end_ip);
EXPECT_TRUE(cmod_propagation(v));
EXPECT_EQ(0, block0->start_ip);
EXPECT_EQ(0, block0->end_ip);
EXPECT_EQ(BRW_OPCODE_ADD, instruction(block0, 0)->opcode);
EXPECT_EQ(BRW_CONDITIONAL_G, instruction(block0, 0)->conditional_mod);
}
TEST_F(cmod_propagation_test, subtract_delete_compare)
{
const fs_builder &bld = v->bld;
fs_reg dest = v->vgrf(glsl_type::float_type);
fs_reg dest1 = v->vgrf(glsl_type::float_type);
fs_reg src0 = v->vgrf(glsl_type::float_type);
fs_reg src1 = v->vgrf(glsl_type::float_type);
fs_reg src2 = v->vgrf(glsl_type::float_type);
set_condmod(BRW_CONDITIONAL_L, bld.ADD(dest, src0, negate(src1)));
set_predicate(BRW_PREDICATE_NORMAL, bld.MOV(dest1, src2));
bld.CMP(bld.null_reg_f(), src0, src1, BRW_CONDITIONAL_L);
/* = Before =
* 0: add.l.f0(8) dest0:F src0:F -src1:F
* 1: (+f0) mov(0) dest1:F src2:F
* 2: cmp.l.f0(8) null:F src0:F src1:F
*
* = After =
* 0: add.l.f0(8) dest:F src0:F -src1:F
* 1: (+f0) mov(0) dest1:F src2:F
*/
v->calculate_cfg();
bblock_t *block0 = v->cfg->blocks[0];
EXPECT_EQ(0, block0->start_ip);
EXPECT_EQ(2, block0->end_ip);
EXPECT_TRUE(cmod_propagation(v));
EXPECT_EQ(0, block0->start_ip);
EXPECT_EQ(1, block0->end_ip);
EXPECT_EQ(BRW_OPCODE_ADD, instruction(block0, 0)->opcode);
EXPECT_EQ(BRW_CONDITIONAL_L, instruction(block0, 0)->conditional_mod);
EXPECT_EQ(BRW_OPCODE_MOV, instruction(block0, 1)->opcode);
EXPECT_EQ(BRW_PREDICATE_NORMAL, instruction(block0, 1)->predicate);
}
TEST_F(cmod_propagation_test, subtract_delete_compare_other_flag)
{
/* This test is the same as subtract_delete_compare but it explicitly used
* flag f0.1 for the subtraction and the comparison.
*/
const fs_builder &bld = v->bld;
fs_reg dest = v->vgrf(glsl_type::float_type);
fs_reg dest1 = v->vgrf(glsl_type::float_type);
fs_reg src0 = v->vgrf(glsl_type::float_type);
fs_reg src1 = v->vgrf(glsl_type::float_type);
fs_reg src2 = v->vgrf(glsl_type::float_type);
set_condmod(BRW_CONDITIONAL_L, bld.ADD(dest, src0, negate(src1)))
->flag_subreg = 1;
set_predicate(BRW_PREDICATE_NORMAL, bld.MOV(dest1, src2));
bld.CMP(bld.null_reg_f(), src0, src1, BRW_CONDITIONAL_L)
->flag_subreg = 1;
/* = Before =
* 0: add.l.f0.1(8) dest0:F src0:F -src1:F
* 1: (+f0) mov(0) dest1:F src2:F
* 2: cmp.l.f0.1(8) null:F src0:F src1:F
*
* = After =
* 0: add.l.f0.1(8) dest:F src0:F -src1:F
* 1: (+f0) mov(0) dest1:F src2:F
*/
v->calculate_cfg();
bblock_t *block0 = v->cfg->blocks[0];
EXPECT_EQ(0, block0->start_ip);
EXPECT_EQ(2, block0->end_ip);
EXPECT_TRUE(cmod_propagation(v));
EXPECT_EQ(0, block0->start_ip);
EXPECT_EQ(1, block0->end_ip);
EXPECT_EQ(BRW_OPCODE_ADD, instruction(block0, 0)->opcode);
EXPECT_EQ(BRW_CONDITIONAL_L, instruction(block0, 0)->conditional_mod);
EXPECT_EQ(1, instruction(block0, 0)->flag_subreg);
EXPECT_EQ(BRW_OPCODE_MOV, instruction(block0, 1)->opcode);
EXPECT_EQ(BRW_PREDICATE_NORMAL, instruction(block0, 1)->predicate);
}
TEST_F(cmod_propagation_test, subtract_to_mismatch_flag)
{
const fs_builder &bld = v->bld;
fs_reg dest = v->vgrf(glsl_type::float_type);
fs_reg src0 = v->vgrf(glsl_type::float_type);
fs_reg src1 = v->vgrf(glsl_type::float_type);
set_condmod(BRW_CONDITIONAL_L, bld.ADD(dest, src0, negate(src1)));
bld.CMP(bld.null_reg_f(), src0, src1, BRW_CONDITIONAL_L)
->flag_subreg = 1;
/* = Before =
* 0: add.l.f0(8) dest0:F src0:F -src1:F
* 1: cmp.l.f0.1(8) null:F src0:F src1:F
*
* = After =
* No changes
*/
v->calculate_cfg();
bblock_t *block0 = v->cfg->blocks[0];
EXPECT_EQ(0, block0->start_ip);
EXPECT_EQ(1, block0->end_ip);
EXPECT_FALSE(cmod_propagation(v));
EXPECT_EQ(0, block0->start_ip);
EXPECT_EQ(1, block0->end_ip);
EXPECT_EQ(BRW_OPCODE_ADD, instruction(block0, 0)->opcode);
EXPECT_EQ(BRW_CONDITIONAL_L, instruction(block0, 0)->conditional_mod);
EXPECT_EQ(0, instruction(block0, 0)->flag_subreg);
EXPECT_EQ(BRW_OPCODE_CMP, instruction(block0, 1)->opcode);
EXPECT_EQ(BRW_CONDITIONAL_L, instruction(block0, 1)->conditional_mod);
EXPECT_EQ(1, instruction(block0, 1)->flag_subreg);
}
TEST_F(cmod_propagation_test,
subtract_merge_with_compare_intervening_mismatch_flag_write)
{
const fs_builder &bld = v->bld;
fs_reg dest0 = v->vgrf(glsl_type::float_type);
fs_reg src0 = v->vgrf(glsl_type::float_type);
fs_reg src1 = v->vgrf(glsl_type::float_type);
bld.ADD(dest0, src0, negate(src1));
bld.CMP(bld.null_reg_f(), src0, src1, BRW_CONDITIONAL_L)
->flag_subreg = 1;
bld.CMP(bld.null_reg_f(), src0, src1, BRW_CONDITIONAL_L);
/* = Before =
* 0: add(8) dest0:F src0:F -src1:F
* 1: cmp.l.f0.1(8) null:F src0:F src1:F
* 2: cmp.l.f0(8) null:F src0:F src1:F
*
* = After =
* 0: add.l.f0(8) dest0:F src0:F -src1:F
* 1: cmp.l.f0.1(8) null:F src0:F src1:F
*
* NOTE: Another perfectly valid after sequence would be:
*
* 0: add.f0.1(8) dest0:F src0:F -src1:F
* 1: cmp.l.f0(8) null:F src0:F src1:F
*
* However, the optimization pass starts at the end of the basic block.
* Because of this, the cmp.l.f0 will always be chosen. If the pass
* changes its strategy, this test will also need to change.
*/
v->calculate_cfg();
bblock_t *block0 = v->cfg->blocks[0];
EXPECT_EQ(0, block0->start_ip);
EXPECT_EQ(2, block0->end_ip);
EXPECT_TRUE(cmod_propagation(v));
EXPECT_EQ(0, block0->start_ip);
EXPECT_EQ(1, block0->end_ip);
EXPECT_EQ(BRW_OPCODE_ADD, instruction(block0, 0)->opcode);
EXPECT_EQ(BRW_CONDITIONAL_L, instruction(block0, 0)->conditional_mod);
EXPECT_EQ(0, instruction(block0, 0)->flag_subreg);
EXPECT_EQ(BRW_OPCODE_CMP, instruction(block0, 1)->opcode);
EXPECT_EQ(BRW_CONDITIONAL_L, instruction(block0, 1)->conditional_mod);
EXPECT_EQ(1, instruction(block0, 1)->flag_subreg);
}
TEST_F(cmod_propagation_test,
subtract_merge_with_compare_intervening_mismatch_flag_read)
{
const fs_builder &bld = v->bld;
fs_reg dest0 = v->vgrf(glsl_type::float_type);
fs_reg dest1 = v->vgrf(glsl_type::float_type);
fs_reg src0 = v->vgrf(glsl_type::float_type);
fs_reg src1 = v->vgrf(glsl_type::float_type);
fs_reg src2 = v->vgrf(glsl_type::float_type);
fs_reg zero(brw_imm_f(0.0f));
bld.ADD(dest0, src0, negate(src1));
set_predicate(BRW_PREDICATE_NORMAL, bld.SEL(dest1, src2, zero))
->flag_subreg = 1;
bld.CMP(bld.null_reg_f(), src0, src1, BRW_CONDITIONAL_L);
/* = Before =
* 0: add(8) dest0:F src0:F -src1:F
* 1: (+f0.1) sel(8) dest1 src2 0.0f
* 2: cmp.l.f0(8) null:F src0:F src1:F
*
* = After =
* 0: add.l.f0(8) dest0:F src0:F -src1:F
* 1: (+f0.1) sel(8) dest1 src2 0.0f
*/
v->calculate_cfg();
bblock_t *block0 = v->cfg->blocks[0];
EXPECT_EQ(0, block0->start_ip);
EXPECT_EQ(2, block0->end_ip);
EXPECT_TRUE(cmod_propagation(v));
EXPECT_EQ(0, block0->start_ip);
EXPECT_EQ(1, block0->end_ip);
EXPECT_EQ(BRW_OPCODE_ADD, instruction(block0, 0)->opcode);
EXPECT_EQ(BRW_CONDITIONAL_L, instruction(block0, 0)->conditional_mod);
EXPECT_EQ(0, instruction(block0, 0)->flag_subreg);
EXPECT_EQ(BRW_OPCODE_SEL, instruction(block0, 1)->opcode);
EXPECT_EQ(BRW_PREDICATE_NORMAL, instruction(block0, 1)->predicate);
EXPECT_EQ(1, instruction(block0, 1)->flag_subreg);
}
i965/fs: Propagate conditional modifiers from compares to adds The math inside the add and the cmp in this instruction sequence is the same. We can utilize this to eliminate the compare. add(8) g5<1>F g2<8,8,1>F g64.5<0,1,0>F { align1 1Q compacted }; cmp.z.f0(8) null<1>F g2<8,8,1>F -g64.5<0,1,0>F { align1 1Q switch }; (-f0) sel(8) g8<1>F (abs)g5<8,8,1>F 3e-37F { align1 1Q }; This is reduced to: add.z.f0(8) g5<1>F g2<8,8,1>F g64.5<0,1,0>F { align1 1Q compacted }; (-f0) sel(8) g8<1>F (abs)g5<8,8,1>F 3e-37F { align1 1Q }; This optimization pass could do even better. The nature of converting vectorized code from the GLSL front end to scalar code in NIR results in sequences like: add(8) g7<1>F g4<8,8,1>F g64.5<0,1,0>F { align1 1Q compacted }; add(8) g6<1>F g3<8,8,1>F g64.5<0,1,0>F { align1 1Q compacted }; add(8) g5<1>F g2<8,8,1>F g64.5<0,1,0>F { align1 1Q compacted }; cmp.z.f0(8) null<1>F g2<8,8,1>F -g64.5<0,1,0>F { align1 1Q switch }; (-f0) sel(8) g8<1>F (abs)g5<8,8,1>F 3e-37F { align1 1Q }; cmp.z.f0(8) null<1>F g3<8,8,1>F -g64.5<0,1,0>F { align1 1Q switch }; (-f0) sel(8) g10<1>F (abs)g6<8,8,1>F 3e-37F { align1 1Q }; cmp.z.f0(8) null<1>F g4<8,8,1>F -g64.5<0,1,0>F { align1 1Q switch }; (-f0) sel(8) g12<1>F (abs)g7<8,8,1>F 3e-37F { align1 1Q }; In this sequence, only the first cmp.z is removed. With different scheduling, all 3 could get removed. Skylake total instructions in shared programs: 14407009 -> 14400173 (-0.05%) instructions in affected programs: 1307274 -> 1300438 (-0.52%) helped: 4880 HURT: 0 helped stats (abs) min: 1 max: 33 x̄: 1.40 x̃: 1 helped stats (rel) min: 0.03% max: 8.70% x̄: 0.70% x̃: 0.52% 95% mean confidence interval for instructions value: -1.45 -1.35 95% mean confidence interval for instructions %-change: -0.72% -0.69% Instructions are helped. total cycles in shared programs: 532943169 -> 532923528 (<.01%) cycles in affected programs: 14065798 -> 14046157 (-0.14%) helped: 2703 HURT: 339 helped stats (abs) min: 1 max: 1062 x̄: 12.27 x̃: 2 helped stats (rel) min: <.01% max: 28.72% x̄: 0.38% x̃: 0.21% HURT stats (abs) min: 1 max: 739 x̄: 39.86 x̃: 12 HURT stats (rel) min: 0.02% max: 27.69% x̄: 1.38% x̃: 0.41% 95% mean confidence interval for cycles value: -8.66 -4.26 95% mean confidence interval for cycles %-change: -0.24% -0.14% Cycles are helped. LOST: 0 GAINED: 1 Broadwell total instructions in shared programs: 14719636 -> 14712949 (-0.05%) instructions in affected programs: 1288188 -> 1281501 (-0.52%) helped: 4845 HURT: 0 helped stats (abs) min: 1 max: 33 x̄: 1.38 x̃: 1 helped stats (rel) min: 0.03% max: 8.00% x̄: 0.70% x̃: 0.52% 95% mean confidence interval for instructions value: -1.43 -1.33 95% mean confidence interval for instructions %-change: -0.72% -0.68% Instructions are helped. total cycles in shared programs: 559599253 -> 559581699 (<.01%) cycles in affected programs: 13315565 -> 13298011 (-0.13%) helped: 2600 HURT: 269 helped stats (abs) min: 1 max: 2128 x̄: 12.24 x̃: 2 helped stats (rel) min: <.01% max: 23.95% x̄: 0.41% x̃: 0.20% HURT stats (abs) min: 1 max: 790 x̄: 53.07 x̃: 20 HURT stats (rel) min: 0.02% max: 15.96% x̄: 1.55% x̃: 0.75% 95% mean confidence interval for cycles value: -8.47 -3.77 95% mean confidence interval for cycles %-change: -0.27% -0.18% Cycles are helped. LOST: 0 GAINED: 8 Haswell total instructions in shared programs: 12978609 -> 12973483 (-0.04%) instructions in affected programs: 932921 -> 927795 (-0.55%) helped: 3480 HURT: 0 helped stats (abs) min: 1 max: 33 x̄: 1.47 x̃: 1 helped stats (rel) min: 0.03% max: 7.84% x̄: 0.78% x̃: 0.58% 95% mean confidence interval for instructions value: -1.53 -1.42 95% mean confidence interval for instructions %-change: -0.80% -0.75% Instructions are helped. total cycles in shared programs: 410270788 -> 410250531 (<.01%) cycles in affected programs: 10986161 -> 10965904 (-0.18%) helped: 2087 HURT: 254 helped stats (abs) min: 1 max: 2672 x̄: 14.63 x̃: 4 helped stats (rel) min: <.01% max: 39.61% x̄: 0.42% x̃: 0.21% HURT stats (abs) min: 1 max: 519 x̄: 40.49 x̃: 16 HURT stats (rel) min: 0.01% max: 12.83% x̄: 1.20% x̃: 0.47% 95% mean confidence interval for cycles value: -12.82 -4.49 95% mean confidence interval for cycles %-change: -0.31% -0.18% Cycles are helped. LOST: 0 GAINED: 5 Ivy Bridge total instructions in shared programs: 11686082 -> 11681548 (-0.04%) instructions in affected programs: 937696 -> 933162 (-0.48%) helped: 3150 HURT: 0 helped stats (abs) min: 1 max: 33 x̄: 1.44 x̃: 1 helped stats (rel) min: 0.03% max: 7.84% x̄: 0.69% x̃: 0.49% 95% mean confidence interval for instructions value: -1.49 -1.38 95% mean confidence interval for instructions %-change: -0.71% -0.67% Instructions are helped. total cycles in shared programs: 257514962 -> 257492471 (<.01%) cycles in affected programs: 11524149 -> 11501658 (-0.20%) helped: 1970 HURT: 239 helped stats (abs) min: 1 max: 3525 x̄: 17.48 x̃: 3 helped stats (rel) min: <.01% max: 49.60% x̄: 0.46% x̃: 0.17% HURT stats (abs) min: 1 max: 1358 x̄: 50.00 x̃: 15 HURT stats (rel) min: 0.02% max: 59.88% x̄: 1.84% x̃: 0.65% 95% mean confidence interval for cycles value: -17.01 -3.35 95% mean confidence interval for cycles %-change: -0.33% -0.08% Cycles are helped. LOST: 9 GAINED: 1 Sandy Bridge total instructions in shared programs: 10432841 -> 10429893 (-0.03%) instructions in affected programs: 685071 -> 682123 (-0.43%) helped: 2453 HURT: 0 helped stats (abs) min: 1 max: 9 x̄: 1.20 x̃: 1 helped stats (rel) min: 0.02% max: 7.55% x̄: 0.64% x̃: 0.46% 95% mean confidence interval for instructions value: -1.23 -1.17 95% mean confidence interval for instructions %-change: -0.67% -0.62% Instructions are helped. total cycles in shared programs: 146133660 -> 146134195 (<.01%) cycles in affected programs: 3991634 -> 3992169 (0.01%) helped: 1237 HURT: 153 helped stats (abs) min: 1 max: 2853 x̄: 6.93 x̃: 2 helped stats (rel) min: <.01% max: 29.00% x̄: 0.24% x̃: 0.14% HURT stats (abs) min: 1 max: 1740 x̄: 59.56 x̃: 12 HURT stats (rel) min: 0.03% max: 78.98% x̄: 1.96% x̃: 0.42% 95% mean confidence interval for cycles value: -5.13 5.90 95% mean confidence interval for cycles %-change: -0.17% 0.16% Inconclusive result (value mean confidence interval includes 0). LOST: 0 GAINED: 1 GM45 and Iron Lake had similar results (GM45 shown): total instructions in shared programs: 4800332 -> 4798380 (-0.04%) instructions in affected programs: 565995 -> 564043 (-0.34%) helped: 1451 HURT: 0 helped stats (abs) min: 1 max: 20 x̄: 1.35 x̃: 1 helped stats (rel) min: 0.05% max: 5.26% x̄: 0.47% x̃: 0.31% 95% mean confidence interval for instructions value: -1.40 -1.29 95% mean confidence interval for instructions %-change: -0.50% -0.45% Instructions are helped. total cycles in shared programs: 122032318 -> 122027798 (<.01%) cycles in affected programs: 8334868 -> 8330348 (-0.05%) helped: 1029 HURT: 1 helped stats (abs) min: 2 max: 40 x̄: 4.43 x̃: 2 helped stats (rel) min: <.01% max: 1.83% x̄: 0.09% x̃: 0.04% HURT stats (abs) min: 38 max: 38 x̄: 38.00 x̃: 38 HURT stats (rel) min: 0.25% max: 0.25% x̄: 0.25% x̃: 0.25% 95% mean confidence interval for cycles value: -4.70 -4.08 95% mean confidence interval for cycles %-change: -0.09% -0.08% Cycles are helped. Signed-off-by: Ian Romanick <ian.d.romanick@intel.com> Reviewed-by: Alejandro Piñeiro <apinheiro@igalia.com> Reviewed-by: Matt Turner <mattst88@gmail.com>
2018-03-09 13:45:01 -08:00
TEST_F(cmod_propagation_test, subtract_delete_compare_derp)
{
const fs_builder &bld = v->bld;
fs_reg dest0 = v->vgrf(glsl_type::float_type);
fs_reg dest1 = v->vgrf(glsl_type::float_type);
fs_reg src0 = v->vgrf(glsl_type::float_type);
fs_reg src1 = v->vgrf(glsl_type::float_type);
set_condmod(BRW_CONDITIONAL_L, bld.ADD(dest0, src0, negate(src1)));
set_predicate(BRW_PREDICATE_NORMAL, bld.ADD(dest1, negate(src0), src1));
bld.CMP(bld.null_reg_f(), src0, src1, BRW_CONDITIONAL_L);
/* = Before =
* 0: add.l.f0(8) dest0:F src0:F -src1:F
* 1: (+f0) add(0) dest1:F -src0:F src1:F
* 2: cmp.l.f0(8) null:F src0:F src1:F
*
* = After =
* 0: add.l.f0(8) dest0:F src0:F -src1:F
* 1: (+f0) add(0) dest1:F -src0:F src1:F
*/
v->calculate_cfg();
bblock_t *block0 = v->cfg->blocks[0];
EXPECT_EQ(0, block0->start_ip);
EXPECT_EQ(2, block0->end_ip);
EXPECT_TRUE(cmod_propagation(v));
EXPECT_EQ(0, block0->start_ip);
EXPECT_EQ(1, block0->end_ip);
EXPECT_EQ(BRW_OPCODE_ADD, instruction(block0, 0)->opcode);
EXPECT_EQ(BRW_CONDITIONAL_L, instruction(block0, 0)->conditional_mod);
EXPECT_EQ(BRW_OPCODE_ADD, instruction(block0, 1)->opcode);
EXPECT_EQ(BRW_PREDICATE_NORMAL, instruction(block0, 1)->predicate);
}
TEST_F(cmod_propagation_test, signed_unsigned_comparison_mismatch)
{
const fs_builder &bld = v->bld;
fs_reg dest0 = v->vgrf(glsl_type::int_type);
fs_reg src0 = v->vgrf(glsl_type::int_type);
src0.type = BRW_REGISTER_TYPE_W;
bld.ASR(dest0, negate(src0), brw_imm_d(15));
bld.CMP(bld.null_reg_ud(), retype(dest0, BRW_REGISTER_TYPE_UD),
brw_imm_ud(0u), BRW_CONDITIONAL_LE);
/* = Before =
* 0: asr(8) dest:D -src0:W 15D
* 1: cmp.le.f0(8) null:UD dest:UD 0UD
*
* = After =
* (no changes)
*/
v->calculate_cfg();
bblock_t *block0 = v->cfg->blocks[0];
EXPECT_EQ(0, block0->start_ip);
EXPECT_EQ(1, block0->end_ip);
EXPECT_FALSE(cmod_propagation(v));
EXPECT_EQ(0, block0->start_ip);
EXPECT_EQ(1, block0->end_ip);
EXPECT_EQ(BRW_OPCODE_ASR, instruction(block0, 0)->opcode);
EXPECT_EQ(BRW_OPCODE_CMP, instruction(block0, 1)->opcode);
EXPECT_EQ(BRW_CONDITIONAL_LE, instruction(block0, 1)->conditional_mod);
}
void
cmod_propagation_test::test_positive_float_saturate_prop(enum brw_conditional_mod before,
enum brw_conditional_mod after,
enum opcode op)
{
const fs_builder &bld = v->bld;
fs_reg dest = v->vgrf(glsl_type::float_type);
fs_reg src0 = v->vgrf(glsl_type::float_type);
fs_reg src1 = v->vgrf(glsl_type::float_type);
fs_reg zero(brw_imm_f(0.0f));
bld.ADD(dest, src0, src1)->saturate = true;
assert(op == BRW_OPCODE_CMP || op == BRW_OPCODE_MOV);
if (op == BRW_OPCODE_CMP)
bld.CMP(bld.null_reg_f(), dest, zero, before);
else
bld.MOV(bld.null_reg_f(), dest)->conditional_mod = before;
v->calculate_cfg();
bblock_t *block0 = v->cfg->blocks[0];
EXPECT_EQ(0, block0->start_ip);
EXPECT_EQ(1, block0->end_ip);
EXPECT_TRUE(cmod_propagation(v));
EXPECT_EQ(0, block0->start_ip);
EXPECT_EQ(0, block0->end_ip);
EXPECT_EQ(BRW_OPCODE_ADD, instruction(block0, 0)->opcode);
EXPECT_TRUE(instruction(block0, 0)->saturate);
EXPECT_EQ(after, instruction(block0, 0)->conditional_mod);
}
void
cmod_propagation_test::test_negative_float_saturate_prop(enum brw_conditional_mod before,
enum opcode op)
{
const fs_builder &bld = v->bld;
fs_reg dest = v->vgrf(glsl_type::float_type);
fs_reg src0 = v->vgrf(glsl_type::float_type);
fs_reg src1 = v->vgrf(glsl_type::float_type);
fs_reg zero(brw_imm_f(0.0f));
bld.ADD(dest, src0, src1)->saturate = true;
assert(op == BRW_OPCODE_CMP || op == BRW_OPCODE_MOV);
if (op == BRW_OPCODE_CMP)
bld.CMP(bld.null_reg_f(), dest, zero, before);
else
bld.MOV(bld.null_reg_f(), dest)->conditional_mod = before;
v->calculate_cfg();
bblock_t *block0 = v->cfg->blocks[0];
EXPECT_EQ(0, block0->start_ip);
EXPECT_EQ(1, block0->end_ip);
EXPECT_FALSE(cmod_propagation(v));
EXPECT_EQ(0, block0->start_ip);
EXPECT_EQ(1, block0->end_ip);
EXPECT_EQ(BRW_OPCODE_ADD, instruction(block0, 0)->opcode);
EXPECT_TRUE(instruction(block0, 0)->saturate);
EXPECT_EQ(BRW_CONDITIONAL_NONE, instruction(block0, 0)->conditional_mod);
EXPECT_EQ(op, instruction(block0, 1)->opcode);
EXPECT_FALSE(instruction(block0, 1)->saturate);
EXPECT_EQ(before, instruction(block0, 1)->conditional_mod);
}
void
cmod_propagation_test::test_negative_int_saturate_prop(enum brw_conditional_mod before,
enum opcode op)
{
const fs_builder &bld = v->bld;
fs_reg dest = v->vgrf(glsl_type::int_type);
fs_reg src0 = v->vgrf(glsl_type::int_type);
fs_reg src1 = v->vgrf(glsl_type::int_type);
fs_reg zero(brw_imm_d(0));
bld.ADD(dest, src0, src1)->saturate = true;
assert(op == BRW_OPCODE_CMP || op == BRW_OPCODE_MOV);
if (op == BRW_OPCODE_CMP)
bld.CMP(bld.null_reg_d(), dest, zero, before);
else
bld.MOV(bld.null_reg_d(), dest)->conditional_mod = before;
v->calculate_cfg();
bblock_t *block0 = v->cfg->blocks[0];
EXPECT_EQ(0, block0->start_ip);
EXPECT_EQ(1, block0->end_ip);
EXPECT_FALSE(cmod_propagation(v));
EXPECT_EQ(0, block0->start_ip);
EXPECT_EQ(1, block0->end_ip);
EXPECT_EQ(BRW_OPCODE_ADD, instruction(block0, 0)->opcode);
EXPECT_TRUE(instruction(block0, 0)->saturate);
EXPECT_EQ(BRW_CONDITIONAL_NONE, instruction(block0, 0)->conditional_mod);
EXPECT_EQ(op, instruction(block0, 1)->opcode);
EXPECT_FALSE(instruction(block0, 1)->saturate);
EXPECT_EQ(before, instruction(block0, 1)->conditional_mod);
}
TEST_F(cmod_propagation_test, float_saturate_nz_cmp)
{
/* With the saturate modifier, the comparison happens before clamping to
* [0, 1]. (sat(x) != 0) == (x > 0).
*
* = Before =
*
* 0: add.sat(8) dest src0 src1
* 1: cmp.nz.f0(8) null dest 0.0f
*
* = After =
* 0: add.sat.g.f0(8) dest src0 src1
*/
test_positive_float_saturate_prop(BRW_CONDITIONAL_NZ, BRW_CONDITIONAL_G,
BRW_OPCODE_CMP);
}
TEST_F(cmod_propagation_test, float_saturate_nz_mov)
{
/* With the saturate modifier, the comparison happens before clamping to
* [0, 1]. (sat(x) != 0) == (x > 0).
*
* = Before =
*
* 0: add.sat(8) dest src0 src1
* 1: mov.nz.f0(8) null dest
*
* = After =
* 0: add.sat.g.f0(8) dest src0 src1
*/
test_positive_float_saturate_prop(BRW_CONDITIONAL_NZ, BRW_CONDITIONAL_G,
BRW_OPCODE_MOV);
}
TEST_F(cmod_propagation_test, float_saturate_z_cmp)
{
/* With the saturate modifier, the comparison happens before clamping to
* [0, 1]. (sat(x) == 0) == (x <= 0).
*
* = Before =
*
* 0: add.sat(8) dest src0 src1
* 1: cmp.z.f0(8) null dest 0.0f
*
* = After =
* 0: add.sat.le.f0(8) dest src0 src1
*/
test_positive_float_saturate_prop(BRW_CONDITIONAL_Z, BRW_CONDITIONAL_LE,
BRW_OPCODE_CMP);
}
TEST_F(cmod_propagation_test, float_saturate_z_mov)
{
/* With the saturate modifier, the comparison happens before clamping to
* [0, 1]. (sat(x) == 0) == (x <= 0).
*
* = Before =
*
* 0: add.sat(8) dest src0 src1
* 1: mov.z.f0(8) null dest
*
* = After =
* 0: add.sat.le.f0(8) dest src0 src1
*/
#if 1
/* cmod propagation bails on every MOV except MOV.NZ. */
test_negative_float_saturate_prop(BRW_CONDITIONAL_Z, BRW_OPCODE_MOV);
#else
test_positive_float_saturate_prop(BRW_CONDITIONAL_Z, BRW_CONDITIONAL_LE,
BRW_OPCODE_MOV);
#endif
}
TEST_F(cmod_propagation_test, float_saturate_g_cmp)
{
/* With the saturate modifier, the comparison happens before clamping to
* [0, 1]. (sat(x) > 0) == (x > 0).
*
* = Before =
*
* 0: add.sat(8) dest src0 src1
* 1: cmp.g.f0(8) null dest 0.0f
*
* = After =
* 0: add.sat.g.f0(8) dest src0 src1
*/
test_positive_float_saturate_prop(BRW_CONDITIONAL_G, BRW_CONDITIONAL_G,
BRW_OPCODE_CMP);
}
TEST_F(cmod_propagation_test, float_saturate_g_mov)
{
/* With the saturate modifier, the comparison happens before clamping to
* [0, 1]. (sat(x) > 0) == (x > 0).
*
* = Before =
*
* 0: add.sat(8) dest src0 src1
* 1: mov.g.f0(8) null dest
*
* = After =
* 0: add.sat.g.f0(8) dest src0 src1
*/
#if 1
/* cmod propagation bails on every MOV except MOV.NZ. */
test_negative_float_saturate_prop(BRW_CONDITIONAL_G, BRW_OPCODE_MOV);
#else
test_positive_float_saturate_prop(BRW_CONDITIONAL_G, BRW_CONDITIONAL_G,
BRW_OPCODE_MOV);
#endif
}
TEST_F(cmod_propagation_test, float_saturate_le_cmp)
{
/* With the saturate modifier, the comparison happens before clamping to
* [0, 1]. (sat(x) <= 0) == (x <= 0).
*
* = Before =
*
* 0: add.sat(8) dest src0 src1
* 1: cmp.le.f0(8) null dest 0.0f
*
* = After =
* 0: add.sat.le.f0(8) dest src0 src1
*/
test_positive_float_saturate_prop(BRW_CONDITIONAL_LE, BRW_CONDITIONAL_LE,
BRW_OPCODE_CMP);
}
TEST_F(cmod_propagation_test, float_saturate_le_mov)
{
/* With the saturate modifier, the comparison happens before clamping to
* [0, 1]. (sat(x) <= 0) == (x <= 0).
*
* = Before =
*
* 0: add.sat(8) dest src0 src1
* 1: mov.le.f0(8) null dest
*
* = After =
* 0: add.sat.le.f0(8) dest src0 src1
*/
#if 1
/* cmod propagation bails on every MOV except MOV.NZ. */
test_negative_float_saturate_prop(BRW_CONDITIONAL_LE, BRW_OPCODE_MOV);
#else
test_positive_float_saturate_prop(BRW_CONDITIONAL_LE, BRW_CONDITIONAL_LE,
BRW_OPCODE_MOV);
#endif
}
TEST_F(cmod_propagation_test, float_saturate_l_cmp)
{
/* With the saturate modifier, the comparison happens before clamping to
* [0, 1]. There is no before / after equivalence for (sat(x) < 0).
*
* = Before =
*
* 0: add.sat(8) dest src0 src1
* 1: cmp.l.f0(8) null dest 0.0f
*
* = After =
* No change
*/
test_negative_float_saturate_prop(BRW_CONDITIONAL_L, BRW_OPCODE_CMP);
}
#if 0
TEST_F(cmod_propagation_test, float_saturate_l_mov)
{
/* With the saturate modifier, the comparison happens before clamping to
* [0, 1]. There is no before / after equivalence for (sat(x) < 0).
*
* = Before =
*
* 0: add.sat(8) dest src0 src1
* 1: mov.l.f0(8) null dest 0.0f
*
* = After =
* No change
*/
test_negative_float_saturate_prop(BRW_CONDITIONAL_L, BRW_OPCODE_MOV);
}
#endif
TEST_F(cmod_propagation_test, float_saturate_ge_cmp)
{
/* With the saturate modifier, the comparison happens before clamping to
* [0, 1]. There is no before / after equivalence for (sat(x) >= 0).
*
* = Before =
*
* 0: add.sat(8) dest src0 src1
* 1: cmp.ge.f0(8) null dest 0.0f
*
* = After =
* No change
*/
test_negative_float_saturate_prop(BRW_CONDITIONAL_GE, BRW_OPCODE_CMP);
}
TEST_F(cmod_propagation_test, float_saturate_ge_mov)
{
/* With the saturate modifier, the comparison happens before clamping to
* [0, 1]. There is no before / after equivalence for (sat(x) >= 0).
*
* = Before =
*
* 0: add.sat(8) dest src0 src1
* 1: mov.ge.f0(8) null dest 0.0f
*
* = After =
* No change
*/
test_negative_float_saturate_prop(BRW_CONDITIONAL_GE, BRW_OPCODE_MOV);
}
TEST_F(cmod_propagation_test, int_saturate_nz_cmp)
{
/* = Before =
*
* 0: add.sat(8) dest src0 src1
* 1: cmp.nz.f0(8) null dest 0
*
* = After =
* No change.
*/
test_negative_int_saturate_prop(BRW_CONDITIONAL_NZ, BRW_OPCODE_CMP);
}
TEST_F(cmod_propagation_test, int_saturate_nz_mov)
{
/* = Before =
*
* 0: add.sat(8) dest src0 src1
* 1: mov.nz.f0(8) null dest
*
* = After =
* No change.
*/
test_negative_int_saturate_prop(BRW_CONDITIONAL_NZ, BRW_OPCODE_MOV);
}
TEST_F(cmod_propagation_test, int_saturate_z_cmp)
{
/* = Before =
*
* 0: add.sat(8) dest src0 src1
* 1: cmp.z.f0(8) null dest 0
*
* = After =
* No change.
*/
test_negative_int_saturate_prop(BRW_CONDITIONAL_Z, BRW_OPCODE_CMP);
}
TEST_F(cmod_propagation_test, int_saturate_z_mov)
{
/* With the saturate modifier, the comparison happens before clamping to
* [0, 1]. (sat(x) == 0) == (x <= 0).
*
* = Before =
*
* 0: add.sat(8) dest src0 src1
* 1: mov.z.f0(8) null dest
*
* = After =
* No change.
*/
test_negative_int_saturate_prop(BRW_CONDITIONAL_Z, BRW_OPCODE_MOV);
}
TEST_F(cmod_propagation_test, int_saturate_g_cmp)
{
/* = Before =
*
* 0: add.sat(8) dest src0 src1
* 1: cmp.g.f0(8) null dest 0
*
* = After =
* No change.
*/
test_negative_int_saturate_prop(BRW_CONDITIONAL_G, BRW_OPCODE_CMP);
}
TEST_F(cmod_propagation_test, int_saturate_g_mov)
{
/* = Before =
*
* 0: add.sat(8) dest src0 src1
* 1: mov.g.f0(8) null dest
*
* = After =
* No change.
*/
test_negative_int_saturate_prop(BRW_CONDITIONAL_G, BRW_OPCODE_MOV);
}
TEST_F(cmod_propagation_test, int_saturate_le_cmp)
{
/* = Before =
*
* 0: add.sat(8) dest src0 src1
* 1: cmp.le.f0(8) null dest 0
*
* = After =
* No change.
*/
test_negative_int_saturate_prop(BRW_CONDITIONAL_LE, BRW_OPCODE_CMP);
}
TEST_F(cmod_propagation_test, int_saturate_le_mov)
{
/* = Before =
*
* 0: add.sat(8) dest src0 src1
* 1: mov.le.f0(8) null dest
*
* = After =
* No change.
*/
test_negative_int_saturate_prop(BRW_CONDITIONAL_LE, BRW_OPCODE_MOV);
}
TEST_F(cmod_propagation_test, int_saturate_l_cmp)
{
/* = Before =
*
* 0: add.sat(8) dest src0 src1
* 1: cmp.l.f0(8) null dest 0
*
* = After =
* No change
*/
test_negative_int_saturate_prop(BRW_CONDITIONAL_L, BRW_OPCODE_CMP);
}
TEST_F(cmod_propagation_test, int_saturate_l_mov)
{
/* = Before =
*
* 0: add.sat(8) dest src0 src1
* 1: mov.l.f0(8) null dest 0
*
* = After =
* No change
*/
test_negative_int_saturate_prop(BRW_CONDITIONAL_L, BRW_OPCODE_MOV);
}
TEST_F(cmod_propagation_test, int_saturate_ge_cmp)
{
/* = Before =
*
* 0: add.sat(8) dest src0 src1
* 1: cmp.ge.f0(8) null dest 0
*
* = After =
* No change
*/
test_negative_int_saturate_prop(BRW_CONDITIONAL_GE, BRW_OPCODE_CMP);
}
TEST_F(cmod_propagation_test, int_saturate_ge_mov)
{
/* = Before =
*
* 0: add.sat(8) dest src0 src1
* 1: mov.ge.f0(8) null dest
*
* = After =
* No change
*/
test_negative_int_saturate_prop(BRW_CONDITIONAL_GE, BRW_OPCODE_MOV);
}
TEST_F(cmod_propagation_test, not_to_or)
{
/* Exercise propagation of conditional modifier from a NOT instruction to
* another ALU instruction as performed by cmod_propagate_not.
*/
const fs_builder &bld = v->bld;
fs_reg dest = v->vgrf(glsl_type::uint_type);
fs_reg src0 = v->vgrf(glsl_type::uint_type);
fs_reg src1 = v->vgrf(glsl_type::uint_type);
bld.OR(dest, src0, src1);
set_condmod(BRW_CONDITIONAL_NZ, bld.NOT(bld.null_reg_ud(), dest));
/* = Before =
*
* 0: or(8) dest src0 src1
* 1: not.nz.f0(8) null dest
*
* = After =
* 0: or.z.f0(8) dest src0 src1
*/
v->calculate_cfg();
bblock_t *block0 = v->cfg->blocks[0];
EXPECT_EQ(0, block0->start_ip);
EXPECT_EQ(1, block0->end_ip);
EXPECT_TRUE(cmod_propagation(v));
EXPECT_EQ(0, block0->start_ip);
EXPECT_EQ(0, block0->end_ip);
EXPECT_EQ(BRW_OPCODE_OR, instruction(block0, 0)->opcode);
EXPECT_EQ(BRW_CONDITIONAL_Z, instruction(block0, 0)->conditional_mod);
}
TEST_F(cmod_propagation_test, not_to_and)
{
/* Exercise propagation of conditional modifier from a NOT instruction to
* another ALU instruction as performed by cmod_propagate_not.
*/
const fs_builder &bld = v->bld;
fs_reg dest = v->vgrf(glsl_type::uint_type);
fs_reg src0 = v->vgrf(glsl_type::uint_type);
fs_reg src1 = v->vgrf(glsl_type::uint_type);
bld.AND(dest, src0, src1);
set_condmod(BRW_CONDITIONAL_NZ, bld.NOT(bld.null_reg_ud(), dest));
/* = Before =
*
* 0: and(8) dest src0 src1
* 1: not.nz.f0(8) null dest
*
* = After =
* 0: and.z.f0(8) dest src0 src1
*/
v->calculate_cfg();
bblock_t *block0 = v->cfg->blocks[0];
EXPECT_EQ(0, block0->start_ip);
EXPECT_EQ(1, block0->end_ip);
EXPECT_TRUE(cmod_propagation(v));
EXPECT_EQ(0, block0->start_ip);
EXPECT_EQ(0, block0->end_ip);
EXPECT_EQ(BRW_OPCODE_AND, instruction(block0, 0)->opcode);
EXPECT_EQ(BRW_CONDITIONAL_Z, instruction(block0, 0)->conditional_mod);
}
TEST_F(cmod_propagation_test, not_to_uadd)
{
/* Exercise propagation of conditional modifier from a NOT instruction to
* another ALU instruction as performed by cmod_propagate_not.
*
* The optimization pass currently restricts to just OR and AND. It's
* possible that this is too restrictive, and the actual, necessary
* restriction is just the the destination type of the ALU instruction is
* the same as the source type of the NOT instruction.
*/
const fs_builder &bld = v->bld;
fs_reg dest = v->vgrf(glsl_type::uint_type);
fs_reg src0 = v->vgrf(glsl_type::uint_type);
fs_reg src1 = v->vgrf(glsl_type::uint_type);
bld.ADD(dest, src0, src1);
set_condmod(BRW_CONDITIONAL_NZ, bld.NOT(bld.null_reg_ud(), dest));
/* = Before =
*
* 0: add(8) dest src0 src1
* 1: not.nz.f0(8) null dest
*
* = After =
* No changes
*/
v->calculate_cfg();
bblock_t *block0 = v->cfg->blocks[0];
EXPECT_EQ(0, block0->start_ip);
EXPECT_EQ(1, block0->end_ip);
EXPECT_FALSE(cmod_propagation(v));
EXPECT_EQ(0, block0->start_ip);
EXPECT_EQ(1, block0->end_ip);
EXPECT_EQ(BRW_OPCODE_ADD, instruction(block0, 0)->opcode);
EXPECT_EQ(BRW_CONDITIONAL_NONE, instruction(block0, 0)->conditional_mod);
EXPECT_EQ(BRW_OPCODE_NOT, instruction(block0, 1)->opcode);
EXPECT_EQ(BRW_CONDITIONAL_NZ, instruction(block0, 1)->conditional_mod);
}
TEST_F(cmod_propagation_test, not_to_fadd_to_ud)
{
/* Exercise propagation of conditional modifier from a NOT instruction to
* another ALU instruction as performed by cmod_propagate_not.
*
* The optimization pass currently restricts to just OR and AND. It's
* possible that this is too restrictive, and the actual, necessary
* restriction is just the the destination type of the ALU instruction is
* the same as the source type of the NOT instruction.
*/
const fs_builder &bld = v->bld;
fs_reg dest = v->vgrf(glsl_type::uint_type);
fs_reg src0 = v->vgrf(glsl_type::float_type);
fs_reg src1 = v->vgrf(glsl_type::float_type);
bld.ADD(dest, src0, src1);
set_condmod(BRW_CONDITIONAL_NZ, bld.NOT(bld.null_reg_ud(), dest));
/* = Before =
*
* 0: add(8) dest.ud src0.f src1.f
* 1: not.nz.f0(8) null dest.ud
*
* = After =
* No changes
*/
v->calculate_cfg();
bblock_t *block0 = v->cfg->blocks[0];
EXPECT_EQ(0, block0->start_ip);
EXPECT_EQ(1, block0->end_ip);
EXPECT_FALSE(cmod_propagation(v));
EXPECT_EQ(0, block0->start_ip);
EXPECT_EQ(1, block0->end_ip);
EXPECT_EQ(BRW_OPCODE_ADD, instruction(block0, 0)->opcode);
EXPECT_EQ(BRW_CONDITIONAL_NONE, instruction(block0, 0)->conditional_mod);
EXPECT_EQ(BRW_OPCODE_NOT, instruction(block0, 1)->opcode);
EXPECT_EQ(BRW_CONDITIONAL_NZ, instruction(block0, 1)->conditional_mod);
}
TEST_F(cmod_propagation_test, not_to_fadd)
{
/* Exercise propagation of conditional modifier from a NOT instruction to
* another ALU instruction as performed by cmod_propagate_not.
*
* The optimization pass currently restricts to just OR and AND. It's
* possible that this is too restrictive, and the actual, necessary
* restriction is just the the destination type of the ALU instruction is
* the same as the source type of the NOT instruction.
*/
const fs_builder &bld = v->bld;
fs_reg dest = v->vgrf(glsl_type::float_type);
fs_reg src0 = v->vgrf(glsl_type::float_type);
fs_reg src1 = v->vgrf(glsl_type::float_type);
bld.ADD(dest, src0, src1);
set_condmod(BRW_CONDITIONAL_NZ,
bld.NOT(bld.null_reg_ud(),
retype(dest, BRW_REGISTER_TYPE_UD)));
/* = Before =
*
* 0: add(8) dest.f src0.f src1.f
* 1: not.nz.f0(8) null dest.ud
*
* = After =
* No changes
*/
v->calculate_cfg();
bblock_t *block0 = v->cfg->blocks[0];
EXPECT_EQ(0, block0->start_ip);
EXPECT_EQ(1, block0->end_ip);
EXPECT_FALSE(cmod_propagation(v));
EXPECT_EQ(0, block0->start_ip);
EXPECT_EQ(1, block0->end_ip);
EXPECT_EQ(BRW_OPCODE_ADD, instruction(block0, 0)->opcode);
EXPECT_EQ(BRW_CONDITIONAL_NONE, instruction(block0, 0)->conditional_mod);
EXPECT_EQ(BRW_OPCODE_NOT, instruction(block0, 1)->opcode);
EXPECT_EQ(BRW_CONDITIONAL_NZ, instruction(block0, 1)->conditional_mod);
}
TEST_F(cmod_propagation_test, not_to_or_intervening_flag_read_compatible_value)
{
/* Exercise propagation of conditional modifier from a NOT instruction to
* another ALU instruction as performed by cmod_propagate_not.
*/
const fs_builder &bld = v->bld;
fs_reg dest0 = v->vgrf(glsl_type::uint_type);
fs_reg dest1 = v->vgrf(glsl_type::float_type);
fs_reg src0 = v->vgrf(glsl_type::uint_type);
fs_reg src1 = v->vgrf(glsl_type::uint_type);
fs_reg src2 = v->vgrf(glsl_type::float_type);
fs_reg zero(brw_imm_f(0.0f));
set_condmod(BRW_CONDITIONAL_Z, bld.OR(dest0, src0, src1));
set_predicate(BRW_PREDICATE_NORMAL, bld.SEL(dest1, src2, zero));
set_condmod(BRW_CONDITIONAL_NZ, bld.NOT(bld.null_reg_ud(), dest0));
/* = Before =
*
* 0: or.z.f0(8) dest0 src0 src1
* 1: (+f0) sel(8) dest1 src2 0.0f
* 2: not.nz.f0(8) null dest0
*
* = After =
* 0: or.z.f0(8) dest0 src0 src1
* 1: (+f0) sel(8) dest1 src2 0.0f
*/
v->calculate_cfg();
bblock_t *block0 = v->cfg->blocks[0];
EXPECT_EQ(0, block0->start_ip);
EXPECT_EQ(2, block0->end_ip);
EXPECT_TRUE(cmod_propagation(v));
EXPECT_EQ(0, block0->start_ip);
EXPECT_EQ(1, block0->end_ip);
EXPECT_EQ(BRW_OPCODE_OR, instruction(block0, 0)->opcode);
EXPECT_EQ(BRW_CONDITIONAL_Z, instruction(block0, 0)->conditional_mod);
EXPECT_EQ(BRW_OPCODE_SEL, instruction(block0, 1)->opcode);
EXPECT_EQ(BRW_PREDICATE_NORMAL, instruction(block0, 1)->predicate);
}
TEST_F(cmod_propagation_test,
not_to_or_intervening_flag_read_compatible_value_mismatch_flag)
{
/* Exercise propagation of conditional modifier from a NOT instruction to
* another ALU instruction as performed by cmod_propagate_not.
*/
const fs_builder &bld = v->bld;
fs_reg dest0 = v->vgrf(glsl_type::uint_type);
fs_reg dest1 = v->vgrf(glsl_type::float_type);
fs_reg src0 = v->vgrf(glsl_type::uint_type);
fs_reg src1 = v->vgrf(glsl_type::uint_type);
fs_reg src2 = v->vgrf(glsl_type::float_type);
fs_reg zero(brw_imm_f(0.0f));
set_condmod(BRW_CONDITIONAL_Z, bld.OR(dest0, src0, src1))
->flag_subreg = 1;
set_predicate(BRW_PREDICATE_NORMAL, bld.SEL(dest1, src2, zero));
set_condmod(BRW_CONDITIONAL_NZ, bld.NOT(bld.null_reg_ud(), dest0));
/* = Before =
*
* 0: or.z.f0.1(8) dest0 src0 src1
* 1: (+f0) sel(8) dest1 src2 0.0f
* 2: not.nz.f0(8) null dest0
*
* = After =
* No changes
*/
v->calculate_cfg();
bblock_t *block0 = v->cfg->blocks[0];
EXPECT_EQ(0, block0->start_ip);
EXPECT_EQ(2, block0->end_ip);
EXPECT_FALSE(cmod_propagation(v));
EXPECT_EQ(0, block0->start_ip);
EXPECT_EQ(2, block0->end_ip);
EXPECT_EQ(BRW_OPCODE_OR, instruction(block0, 0)->opcode);
EXPECT_EQ(BRW_CONDITIONAL_Z, instruction(block0, 0)->conditional_mod);
EXPECT_EQ(1, instruction(block0, 0)->flag_subreg);
EXPECT_EQ(BRW_OPCODE_SEL, instruction(block0, 1)->opcode);
EXPECT_EQ(BRW_PREDICATE_NORMAL, instruction(block0, 1)->predicate);
EXPECT_EQ(BRW_OPCODE_NOT, instruction(block0, 2)->opcode);
EXPECT_EQ(BRW_CONDITIONAL_NZ, instruction(block0, 2)->conditional_mod);
EXPECT_EQ(0, instruction(block0, 2)->flag_subreg);
}
TEST_F(cmod_propagation_test, not_to_or_intervening_flag_read_incompatible_value)
{
/* Exercise propagation of conditional modifier from a NOT instruction to
* another ALU instruction as performed by cmod_propagate_not.
*/
const fs_builder &bld = v->bld;
fs_reg dest0 = v->vgrf(glsl_type::uint_type);
fs_reg dest1 = v->vgrf(glsl_type::float_type);
fs_reg src0 = v->vgrf(glsl_type::uint_type);
fs_reg src1 = v->vgrf(glsl_type::uint_type);
fs_reg src2 = v->vgrf(glsl_type::float_type);
fs_reg zero(brw_imm_f(0.0f));
set_condmod(BRW_CONDITIONAL_NZ, bld.OR(dest0, src0, src1));
set_predicate(BRW_PREDICATE_NORMAL, bld.SEL(dest1, src2, zero));
set_condmod(BRW_CONDITIONAL_NZ, bld.NOT(bld.null_reg_ud(), dest0));
/* = Before =
*
* 0: or.nz.f0(8) dest0 src0 src1
* 1: (+f0) sel(8) dest1 src2 0.0f
* 2: not.nz.f0(8) null dest0
*
* = After =
* No changes
*/
v->calculate_cfg();
bblock_t *block0 = v->cfg->blocks[0];
EXPECT_EQ(0, block0->start_ip);
EXPECT_EQ(2, block0->end_ip);
EXPECT_FALSE(cmod_propagation(v));
EXPECT_EQ(0, block0->start_ip);
EXPECT_EQ(2, block0->end_ip);
EXPECT_EQ(BRW_OPCODE_OR, instruction(block0, 0)->opcode);
EXPECT_EQ(BRW_CONDITIONAL_NZ, instruction(block0, 0)->conditional_mod);
EXPECT_EQ(BRW_OPCODE_SEL, instruction(block0, 1)->opcode);
EXPECT_EQ(BRW_PREDICATE_NORMAL, instruction(block0, 1)->predicate);
EXPECT_EQ(BRW_OPCODE_NOT, instruction(block0, 2)->opcode);
EXPECT_EQ(BRW_CONDITIONAL_NZ, instruction(block0, 2)->conditional_mod);
}
TEST_F(cmod_propagation_test, not_to_or_intervening_mismatch_flag_write)
{
/* Exercise propagation of conditional modifier from a NOT instruction to
* another ALU instruction as performed by cmod_propagate_not.
*/
const fs_builder &bld = v->bld;
fs_reg dest0 = v->vgrf(glsl_type::uint_type);
fs_reg dest1 = v->vgrf(glsl_type::uint_type);
fs_reg src0 = v->vgrf(glsl_type::uint_type);
fs_reg src1 = v->vgrf(glsl_type::uint_type);
bld.OR(dest0, src0, src1);
set_condmod(BRW_CONDITIONAL_Z, bld.OR(dest1, src0, src1))
->flag_subreg = 1;
set_condmod(BRW_CONDITIONAL_NZ, bld.NOT(bld.null_reg_ud(), dest0));
/* = Before =
*
* 0: or(8) dest0 src0 src1
* 1: or.z.f0.1(8) dest1 src0 src1
* 2: not.nz.f0(8) null dest0
*
* = After =
* 0: or.z.f0(8) dest0 src0 src1
* 1: or.z.f0.1(8) dest1 src0 src1
*/
v->calculate_cfg();
bblock_t *block0 = v->cfg->blocks[0];
EXPECT_EQ(0, block0->start_ip);
EXPECT_EQ(2, block0->end_ip);
EXPECT_TRUE(cmod_propagation(v));
EXPECT_EQ(0, block0->start_ip);
EXPECT_EQ(1, block0->end_ip);
EXPECT_EQ(BRW_OPCODE_OR, instruction(block0, 0)->opcode);
EXPECT_EQ(BRW_CONDITIONAL_Z, instruction(block0, 0)->conditional_mod);
EXPECT_EQ(0, instruction(block0, 0)->flag_subreg);
EXPECT_EQ(BRW_OPCODE_OR, instruction(block0, 1)->opcode);
EXPECT_EQ(BRW_CONDITIONAL_Z, instruction(block0, 1)->conditional_mod);
EXPECT_EQ(1, instruction(block0, 1)->flag_subreg);
}
TEST_F(cmod_propagation_test, not_to_or_intervening_mismatch_flag_read)
{
/* Exercise propagation of conditional modifier from a NOT instruction to
* another ALU instruction as performed by cmod_propagate_not.
*/
const fs_builder &bld = v->bld;
fs_reg dest0 = v->vgrf(glsl_type::uint_type);
fs_reg dest1 = v->vgrf(glsl_type::float_type);
fs_reg src0 = v->vgrf(glsl_type::uint_type);
fs_reg src1 = v->vgrf(glsl_type::uint_type);
fs_reg src2 = v->vgrf(glsl_type::float_type);
fs_reg zero(brw_imm_f(0.0f));
bld.OR(dest0, src0, src1);
set_predicate(BRW_PREDICATE_NORMAL, bld.SEL(dest1, src2, zero))
->flag_subreg = 1;
set_condmod(BRW_CONDITIONAL_NZ, bld.NOT(bld.null_reg_ud(), dest0));
/* = Before =
*
* 0: or(8) dest0 src0 src1
* 1: (+f0.1) sel(8) dest1 src2 0.0f
* 2: not.nz.f0(8) null dest0
*
* = After =
* 0: or.z.f0(8) dest0 src0 src1
* 1: (+f0.1) sel(8) dest1 src2 0.0f
*/
v->calculate_cfg();
bblock_t *block0 = v->cfg->blocks[0];
EXPECT_EQ(0, block0->start_ip);
EXPECT_EQ(2, block0->end_ip);
EXPECT_TRUE(cmod_propagation(v));
EXPECT_EQ(0, block0->start_ip);
EXPECT_EQ(1, block0->end_ip);
EXPECT_EQ(BRW_OPCODE_OR, instruction(block0, 0)->opcode);
EXPECT_EQ(BRW_CONDITIONAL_Z, instruction(block0, 0)->conditional_mod);
EXPECT_EQ(0, instruction(block0, 0)->flag_subreg);
EXPECT_EQ(BRW_OPCODE_SEL, instruction(block0, 1)->opcode);
EXPECT_EQ(BRW_PREDICATE_NORMAL, instruction(block0, 1)->predicate);
EXPECT_EQ(1, instruction(block0, 1)->flag_subreg);
}
TEST_F(cmod_propagation_test, cmp_to_add_float_e)
{
const fs_builder &bld = v->bld;
fs_reg dest = v->vgrf(glsl_type::float_type);
fs_reg src0 = v->vgrf(glsl_type::float_type);
fs_reg neg10(brw_imm_f(-10.0f));
fs_reg pos10(brw_imm_f(10.0f));
bld.ADD(dest, src0, neg10)->saturate = true;
bld.CMP(bld.null_reg_f(), src0, pos10, BRW_CONDITIONAL_EQ);
/* = Before =
* 0: add.sat(8) vgrf0:F, vgrf1:F, -10f
* 1: cmp.z.f0.0(8) null:F, vgrf1:F, 10f
*
* = After =
* (no changes)
*/
v->calculate_cfg();
bblock_t *block0 = v->cfg->blocks[0];
EXPECT_FALSE(cmod_propagation(v));
EXPECT_EQ(0, block0->start_ip);
EXPECT_EQ(1, block0->end_ip);
EXPECT_EQ(BRW_OPCODE_ADD, instruction(block0, 0)->opcode);
EXPECT_EQ(BRW_CONDITIONAL_NONE, instruction(block0, 0)->conditional_mod);
EXPECT_EQ(BRW_OPCODE_CMP, instruction(block0, 1)->opcode);
EXPECT_EQ(BRW_CONDITIONAL_EQ, instruction(block0, 1)->conditional_mod);
}
TEST_F(cmod_propagation_test, cmp_to_add_float_g)
{
const fs_builder &bld = v->bld;
fs_reg dest = v->vgrf(glsl_type::float_type);
fs_reg src0 = v->vgrf(glsl_type::float_type);
fs_reg neg10(brw_imm_f(-10.0f));
fs_reg pos10(brw_imm_f(10.0f));
bld.ADD(dest, src0, neg10)->saturate = true;
bld.CMP(bld.null_reg_f(), src0, pos10, BRW_CONDITIONAL_G);
/* = Before =
* 0: add.sat(8) vgrf0:F, vgrf1:F, -10f
* 1: cmp.g.f0.0(8) null:F, vgrf1:F, 10f
*
* = After =
* 0: add.sat.g.f0.0(8) vgrf0:F, vgrf1:F, -10f
*/
v->calculate_cfg();
bblock_t *block0 = v->cfg->blocks[0];
EXPECT_TRUE(cmod_propagation(v));
EXPECT_EQ(0, block0->start_ip);
EXPECT_EQ(0, block0->end_ip);
EXPECT_EQ(BRW_OPCODE_ADD, instruction(block0, 0)->opcode);
EXPECT_EQ(BRW_CONDITIONAL_G, instruction(block0, 0)->conditional_mod);
}
TEST_F(cmod_propagation_test, cmp_to_add_float_le)
{
const fs_builder &bld = v->bld;
fs_reg dest = v->vgrf(glsl_type::float_type);
fs_reg src0 = v->vgrf(glsl_type::float_type);
fs_reg neg10(brw_imm_f(-10.0f));
fs_reg pos10(brw_imm_f(10.0f));
bld.ADD(dest, src0, neg10)->saturate = true;
bld.CMP(bld.null_reg_f(), src0, pos10, BRW_CONDITIONAL_LE);
/* = Before =
* 0: add.sat(8) vgrf0:F, vgrf1:F, -10f
* 1: cmp.le.f0.0(8) null:F, vgrf1:F, 10f
*
* = After =
* 0: add.sat.le.f0.0(8) vgrf0:F, vgrf1:F, -10f
*/
v->calculate_cfg();
bblock_t *block0 = v->cfg->blocks[0];
EXPECT_TRUE(cmod_propagation(v));
EXPECT_EQ(0, block0->start_ip);
EXPECT_EQ(0, block0->end_ip);
EXPECT_EQ(BRW_OPCODE_ADD, instruction(block0, 0)->opcode);
EXPECT_EQ(BRW_CONDITIONAL_LE, instruction(block0, 0)->conditional_mod);
}