2010-03-30 16:56:50 -07:00
|
|
|
/*
|
|
|
|
|
* Copyright © 2010 Intel Corporation
|
|
|
|
|
*
|
|
|
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
|
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
|
|
|
* to deal in the Software without restriction, including without limitation
|
|
|
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
|
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
|
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
|
|
|
*
|
|
|
|
|
* The above copyright notice and this permission notice (including the next
|
|
|
|
|
* paragraph) shall be included in all copies or substantial portions of the
|
|
|
|
|
* Software.
|
|
|
|
|
*
|
|
|
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
|
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
|
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
|
|
|
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
|
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
|
|
|
|
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
|
|
|
|
|
* DEALINGS IN THE SOFTWARE.
|
|
|
|
|
*/
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* \file ir_constant_expression.cpp
|
|
|
|
|
* Evaluate and process constant valued expressions
|
|
|
|
|
*
|
|
|
|
|
* In GLSL, constant valued expressions are used in several places. These
|
|
|
|
|
* must be processed and evaluated very early in the compilation process.
|
|
|
|
|
*
|
|
|
|
|
* * Sizes of arrays
|
|
|
|
|
* * Initializers for uniforms
|
|
|
|
|
* * Initializers for \c const variables
|
|
|
|
|
*/
|
|
|
|
|
|
2010-05-12 14:42:21 -07:00
|
|
|
#include <math.h>
|
2010-08-23 17:51:42 +08:00
|
|
|
#include "main/core.h" /* for MAX2, MIN2, CLAMP */
|
mesa: Replace _mesa_round_to_even() with _mesa_roundeven().
Eric's initial patch adding constant expression evaluation for
ir_unop_round_even used nearbyint. The open-coded _mesa_round_to_even
implementation came about without much explanation after a reviewer
asked whether nearbyint depended on the application not modifying the
rounding mode. Of course (as Eric commented) we rely on the application
not changing the rounding mode from its default (round-to-nearest) in
many other places, including the IROUND function used by
_mesa_round_to_even!
Worse, IROUND() is implemented using the trunc(x + 0.5) trick which
fails for x = nextafterf(0.5, 0.0).
Still worse, _mesa_round_to_even unexpectedly returns an int. I suspect
that could cause problems when rounding large integral values not
representable as an int in ir_constant_expression.cpp's
ir_unop_round_even evaluation. Its use of _mesa_round_to_even is clearly
broken for doubles (as noted during review).
The constant expression evaluation code for the packing built-in
functions also mistakenly assumed that _mesa_round_to_even returned a
float, as can be seen by the cast through a signed integer type to an
unsigned (since negative float -> unsigned conversions are undefined).
rint() and nearbyint() implement the round-half-to-even behavior we want
when the rounding mode is set to the default round-to-nearest. The only
difference between them is that nearbyint() raises the inexact
exception.
This patch implements _mesa_roundeven{f,}, a function similar to the
roundeven function added by a yet unimplemented technical specification
(ISO/IEC TS 18661-1:2014), with a small difference in behavior -- we
don't bother raising the inexact exception, which I don't think we care
about anyway.
At least recent Intel CPUs can quickly change a subset of the bits in
the x87 floating-point control register, but the exception mask bits are
not included. rint() does not need to change these bits, but nearbyint()
does (twice: save old, set new, and restore old) in order to raise the
inexact exception, which would incur some penalty.
Reviewed-by: Carl Worth <cworth@cworth.org>
2015-03-10 17:55:21 -07:00
|
|
|
#include "util/rounding.h" /* for _mesa_roundeven */
|
2015-10-10 13:26:03 -04:00
|
|
|
#include "util/half_float.h"
|
2010-03-30 16:56:50 -07:00
|
|
|
#include "ir.h"
|
2010-03-31 16:25:12 -10:00
|
|
|
#include "glsl_types.h"
|
2012-05-02 23:11:38 +02:00
|
|
|
#include "program/hash_table.h"
|
2010-03-30 16:56:50 -07:00
|
|
|
|
2010-07-21 20:09:21 -07:00
|
|
|
static float
|
2015-02-05 11:53:10 +02:00
|
|
|
dot_f(ir_constant *op0, ir_constant *op1)
|
2010-07-21 20:09:21 -07:00
|
|
|
{
|
|
|
|
|
assert(op0->type->is_float() && op1->type->is_float());
|
|
|
|
|
|
|
|
|
|
float result = 0;
|
|
|
|
|
for (unsigned c = 0; c < op0->type->components(); c++)
|
|
|
|
|
result += op0->value.f[c] * op1->value.f[c];
|
|
|
|
|
|
|
|
|
|
return result;
|
|
|
|
|
}
|
|
|
|
|
|
2015-02-05 11:53:10 +02:00
|
|
|
static double
|
|
|
|
|
dot_d(ir_constant *op0, ir_constant *op1)
|
|
|
|
|
{
|
|
|
|
|
assert(op0->type->is_double() && op1->type->is_double());
|
|
|
|
|
|
|
|
|
|
double result = 0;
|
|
|
|
|
for (unsigned c = 0; c < op0->type->components(); c++)
|
|
|
|
|
result += op0->value.d[c] * op1->value.d[c];
|
|
|
|
|
|
|
|
|
|
return result;
|
|
|
|
|
}
|
|
|
|
|
|
2012-05-08 20:40:35 +02:00
|
|
|
/* This method is the only one supported by gcc. Unions in particular
|
|
|
|
|
* are iffy, and read-through-converted-pointer is killed by strict
|
|
|
|
|
* aliasing. OTOH, the compiler sees through the memcpy, so the
|
|
|
|
|
* resulting asm is reasonable.
|
|
|
|
|
*/
|
|
|
|
|
static float
|
|
|
|
|
bitcast_u2f(unsigned int u)
|
|
|
|
|
{
|
|
|
|
|
assert(sizeof(float) == sizeof(unsigned int));
|
|
|
|
|
float f;
|
|
|
|
|
memcpy(&f, &u, sizeof(f));
|
|
|
|
|
return f;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
static unsigned int
|
|
|
|
|
bitcast_f2u(float f)
|
|
|
|
|
{
|
|
|
|
|
assert(sizeof(float) == sizeof(unsigned int));
|
|
|
|
|
unsigned int u;
|
|
|
|
|
memcpy(&u, &f, sizeof(f));
|
|
|
|
|
return u;
|
|
|
|
|
}
|
|
|
|
|
|
2013-01-21 14:53:26 -08:00
|
|
|
/**
|
|
|
|
|
* Evaluate one component of a floating-point 4x8 unpacking function.
|
|
|
|
|
*/
|
|
|
|
|
typedef uint8_t
|
|
|
|
|
(*pack_1x8_func_t)(float);
|
|
|
|
|
|
2012-11-19 11:14:24 -08:00
|
|
|
/**
|
|
|
|
|
* Evaluate one component of a floating-point 2x16 unpacking function.
|
|
|
|
|
*/
|
|
|
|
|
typedef uint16_t
|
|
|
|
|
(*pack_1x16_func_t)(float);
|
|
|
|
|
|
2013-01-21 14:53:26 -08:00
|
|
|
/**
|
|
|
|
|
* Evaluate one component of a floating-point 4x8 unpacking function.
|
|
|
|
|
*/
|
|
|
|
|
typedef float
|
|
|
|
|
(*unpack_1x8_func_t)(uint8_t);
|
|
|
|
|
|
2012-11-19 11:14:24 -08:00
|
|
|
/**
|
|
|
|
|
* Evaluate one component of a floating-point 2x16 unpacking function.
|
|
|
|
|
*/
|
|
|
|
|
typedef float
|
|
|
|
|
(*unpack_1x16_func_t)(uint16_t);
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* Evaluate a 2x16 floating-point packing function.
|
|
|
|
|
*/
|
|
|
|
|
static uint32_t
|
|
|
|
|
pack_2x16(pack_1x16_func_t pack_1x16,
|
|
|
|
|
float x, float y)
|
|
|
|
|
{
|
|
|
|
|
/* From section 8.4 of the GLSL ES 3.00 spec:
|
|
|
|
|
*
|
|
|
|
|
* packSnorm2x16
|
|
|
|
|
* -------------
|
|
|
|
|
* The first component of the vector will be written to the least
|
|
|
|
|
* significant bits of the output; the last component will be written to
|
|
|
|
|
* the most significant bits.
|
|
|
|
|
*
|
|
|
|
|
* The specifications for the other packing functions contain similar
|
|
|
|
|
* language.
|
|
|
|
|
*/
|
|
|
|
|
uint32_t u = 0;
|
|
|
|
|
u |= ((uint32_t) pack_1x16(x) << 0);
|
|
|
|
|
u |= ((uint32_t) pack_1x16(y) << 16);
|
|
|
|
|
return u;
|
|
|
|
|
}
|
|
|
|
|
|
2013-01-21 14:53:26 -08:00
|
|
|
/**
|
|
|
|
|
* Evaluate a 4x8 floating-point packing function.
|
|
|
|
|
*/
|
|
|
|
|
static uint32_t
|
|
|
|
|
pack_4x8(pack_1x8_func_t pack_1x8,
|
|
|
|
|
float x, float y, float z, float w)
|
|
|
|
|
{
|
|
|
|
|
/* From section 8.4 of the GLSL 4.30 spec:
|
|
|
|
|
*
|
|
|
|
|
* packSnorm4x8
|
|
|
|
|
* ------------
|
|
|
|
|
* The first component of the vector will be written to the least
|
|
|
|
|
* significant bits of the output; the last component will be written to
|
|
|
|
|
* the most significant bits.
|
|
|
|
|
*
|
|
|
|
|
* The specifications for the other packing functions contain similar
|
|
|
|
|
* language.
|
|
|
|
|
*/
|
|
|
|
|
uint32_t u = 0;
|
|
|
|
|
u |= ((uint32_t) pack_1x8(x) << 0);
|
|
|
|
|
u |= ((uint32_t) pack_1x8(y) << 8);
|
|
|
|
|
u |= ((uint32_t) pack_1x8(z) << 16);
|
|
|
|
|
u |= ((uint32_t) pack_1x8(w) << 24);
|
|
|
|
|
return u;
|
|
|
|
|
}
|
|
|
|
|
|
2012-11-19 11:14:24 -08:00
|
|
|
/**
|
|
|
|
|
* Evaluate a 2x16 floating-point unpacking function.
|
|
|
|
|
*/
|
|
|
|
|
static void
|
|
|
|
|
unpack_2x16(unpack_1x16_func_t unpack_1x16,
|
|
|
|
|
uint32_t u,
|
|
|
|
|
float *x, float *y)
|
|
|
|
|
{
|
|
|
|
|
/* From section 8.4 of the GLSL ES 3.00 spec:
|
|
|
|
|
*
|
|
|
|
|
* unpackSnorm2x16
|
|
|
|
|
* ---------------
|
|
|
|
|
* The first component of the returned vector will be extracted from
|
|
|
|
|
* the least significant bits of the input; the last component will be
|
|
|
|
|
* extracted from the most significant bits.
|
|
|
|
|
*
|
|
|
|
|
* The specifications for the other unpacking functions contain similar
|
|
|
|
|
* language.
|
|
|
|
|
*/
|
|
|
|
|
*x = unpack_1x16((uint16_t) (u & 0xffff));
|
|
|
|
|
*y = unpack_1x16((uint16_t) (u >> 16));
|
|
|
|
|
}
|
|
|
|
|
|
2013-01-21 14:53:26 -08:00
|
|
|
/**
|
|
|
|
|
* Evaluate a 4x8 floating-point unpacking function.
|
|
|
|
|
*/
|
|
|
|
|
static void
|
|
|
|
|
unpack_4x8(unpack_1x8_func_t unpack_1x8, uint32_t u,
|
|
|
|
|
float *x, float *y, float *z, float *w)
|
|
|
|
|
{
|
|
|
|
|
/* From section 8.4 of the GLSL 4.30 spec:
|
|
|
|
|
*
|
|
|
|
|
* unpackSnorm4x8
|
|
|
|
|
* --------------
|
|
|
|
|
* The first component of the returned vector will be extracted from
|
|
|
|
|
* the least significant bits of the input; the last component will be
|
|
|
|
|
* extracted from the most significant bits.
|
|
|
|
|
*
|
|
|
|
|
* The specifications for the other unpacking functions contain similar
|
|
|
|
|
* language.
|
|
|
|
|
*/
|
|
|
|
|
*x = unpack_1x8((uint8_t) (u & 0xff));
|
|
|
|
|
*y = unpack_1x8((uint8_t) (u >> 8));
|
|
|
|
|
*z = unpack_1x8((uint8_t) (u >> 16));
|
|
|
|
|
*w = unpack_1x8((uint8_t) (u >> 24));
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* Evaluate one component of packSnorm4x8.
|
|
|
|
|
*/
|
|
|
|
|
static uint8_t
|
|
|
|
|
pack_snorm_1x8(float x)
|
|
|
|
|
{
|
|
|
|
|
/* From section 8.4 of the GLSL 4.30 spec:
|
|
|
|
|
*
|
|
|
|
|
* packSnorm4x8
|
|
|
|
|
* ------------
|
|
|
|
|
* The conversion for component c of v to fixed point is done as
|
|
|
|
|
* follows:
|
|
|
|
|
*
|
|
|
|
|
* packSnorm4x8: round(clamp(c, -1, +1) * 127.0)
|
|
|
|
|
*/
|
2015-06-25 21:43:30 -07:00
|
|
|
return (uint8_t)
|
|
|
|
|
_mesa_lroundevenf(CLAMP(x, -1.0f, +1.0f) * 127.0f);
|
2013-01-21 14:53:26 -08:00
|
|
|
}
|
|
|
|
|
|
2012-11-19 11:14:24 -08:00
|
|
|
/**
|
|
|
|
|
* Evaluate one component of packSnorm2x16.
|
|
|
|
|
*/
|
|
|
|
|
static uint16_t
|
|
|
|
|
pack_snorm_1x16(float x)
|
|
|
|
|
{
|
|
|
|
|
/* From section 8.4 of the GLSL ES 3.00 spec:
|
|
|
|
|
*
|
|
|
|
|
* packSnorm2x16
|
|
|
|
|
* -------------
|
|
|
|
|
* The conversion for component c of v to fixed point is done as
|
|
|
|
|
* follows:
|
|
|
|
|
*
|
|
|
|
|
* packSnorm2x16: round(clamp(c, -1, +1) * 32767.0)
|
|
|
|
|
*/
|
2015-06-25 21:43:30 -07:00
|
|
|
return (uint16_t)
|
|
|
|
|
_mesa_lroundevenf(CLAMP(x, -1.0f, +1.0f) * 32767.0f);
|
2012-11-19 11:14:24 -08:00
|
|
|
}
|
|
|
|
|
|
2013-01-21 14:53:26 -08:00
|
|
|
/**
|
|
|
|
|
* Evaluate one component of unpackSnorm4x8.
|
|
|
|
|
*/
|
|
|
|
|
static float
|
|
|
|
|
unpack_snorm_1x8(uint8_t u)
|
|
|
|
|
{
|
|
|
|
|
/* From section 8.4 of the GLSL 4.30 spec:
|
|
|
|
|
*
|
|
|
|
|
* unpackSnorm4x8
|
|
|
|
|
* --------------
|
|
|
|
|
* The conversion for unpacked fixed-point value f to floating point is
|
|
|
|
|
* done as follows:
|
|
|
|
|
*
|
|
|
|
|
* unpackSnorm4x8: clamp(f / 127.0, -1, +1)
|
|
|
|
|
*/
|
|
|
|
|
return CLAMP((int8_t) u / 127.0f, -1.0f, +1.0f);
|
|
|
|
|
}
|
|
|
|
|
|
2012-11-19 11:14:24 -08:00
|
|
|
/**
|
|
|
|
|
* Evaluate one component of unpackSnorm2x16.
|
|
|
|
|
*/
|
|
|
|
|
static float
|
|
|
|
|
unpack_snorm_1x16(uint16_t u)
|
|
|
|
|
{
|
|
|
|
|
/* From section 8.4 of the GLSL ES 3.00 spec:
|
|
|
|
|
*
|
|
|
|
|
* unpackSnorm2x16
|
|
|
|
|
* ---------------
|
|
|
|
|
* The conversion for unpacked fixed-point value f to floating point is
|
|
|
|
|
* done as follows:
|
|
|
|
|
*
|
|
|
|
|
* unpackSnorm2x16: clamp(f / 32767.0, -1, +1)
|
|
|
|
|
*/
|
|
|
|
|
return CLAMP((int16_t) u / 32767.0f, -1.0f, +1.0f);
|
|
|
|
|
}
|
|
|
|
|
|
2013-01-21 14:53:26 -08:00
|
|
|
/**
|
|
|
|
|
* Evaluate one component packUnorm4x8.
|
|
|
|
|
*/
|
|
|
|
|
static uint8_t
|
|
|
|
|
pack_unorm_1x8(float x)
|
|
|
|
|
{
|
|
|
|
|
/* From section 8.4 of the GLSL 4.30 spec:
|
|
|
|
|
*
|
|
|
|
|
* packUnorm4x8
|
|
|
|
|
* ------------
|
|
|
|
|
* The conversion for component c of v to fixed point is done as
|
|
|
|
|
* follows:
|
|
|
|
|
*
|
|
|
|
|
* packUnorm4x8: round(clamp(c, 0, +1) * 255.0)
|
|
|
|
|
*/
|
mesa: Replace _mesa_round_to_even() with _mesa_roundeven().
Eric's initial patch adding constant expression evaluation for
ir_unop_round_even used nearbyint. The open-coded _mesa_round_to_even
implementation came about without much explanation after a reviewer
asked whether nearbyint depended on the application not modifying the
rounding mode. Of course (as Eric commented) we rely on the application
not changing the rounding mode from its default (round-to-nearest) in
many other places, including the IROUND function used by
_mesa_round_to_even!
Worse, IROUND() is implemented using the trunc(x + 0.5) trick which
fails for x = nextafterf(0.5, 0.0).
Still worse, _mesa_round_to_even unexpectedly returns an int. I suspect
that could cause problems when rounding large integral values not
representable as an int in ir_constant_expression.cpp's
ir_unop_round_even evaluation. Its use of _mesa_round_to_even is clearly
broken for doubles (as noted during review).
The constant expression evaluation code for the packing built-in
functions also mistakenly assumed that _mesa_round_to_even returned a
float, as can be seen by the cast through a signed integer type to an
unsigned (since negative float -> unsigned conversions are undefined).
rint() and nearbyint() implement the round-half-to-even behavior we want
when the rounding mode is set to the default round-to-nearest. The only
difference between them is that nearbyint() raises the inexact
exception.
This patch implements _mesa_roundeven{f,}, a function similar to the
roundeven function added by a yet unimplemented technical specification
(ISO/IEC TS 18661-1:2014), with a small difference in behavior -- we
don't bother raising the inexact exception, which I don't think we care
about anyway.
At least recent Intel CPUs can quickly change a subset of the bits in
the x87 floating-point control register, but the exception mask bits are
not included. rint() does not need to change these bits, but nearbyint()
does (twice: save old, set new, and restore old) in order to raise the
inexact exception, which would incur some penalty.
Reviewed-by: Carl Worth <cworth@cworth.org>
2015-03-10 17:55:21 -07:00
|
|
|
return (uint8_t) (int) _mesa_roundevenf(CLAMP(x, 0.0f, 1.0f) * 255.0f);
|
2013-01-21 14:53:26 -08:00
|
|
|
}
|
|
|
|
|
|
2012-11-19 11:14:24 -08:00
|
|
|
/**
|
|
|
|
|
* Evaluate one component packUnorm2x16.
|
|
|
|
|
*/
|
|
|
|
|
static uint16_t
|
|
|
|
|
pack_unorm_1x16(float x)
|
|
|
|
|
{
|
|
|
|
|
/* From section 8.4 of the GLSL ES 3.00 spec:
|
|
|
|
|
*
|
|
|
|
|
* packUnorm2x16
|
|
|
|
|
* -------------
|
|
|
|
|
* The conversion for component c of v to fixed point is done as
|
|
|
|
|
* follows:
|
|
|
|
|
*
|
|
|
|
|
* packUnorm2x16: round(clamp(c, 0, +1) * 65535.0)
|
|
|
|
|
*/
|
mesa: Replace _mesa_round_to_even() with _mesa_roundeven().
Eric's initial patch adding constant expression evaluation for
ir_unop_round_even used nearbyint. The open-coded _mesa_round_to_even
implementation came about without much explanation after a reviewer
asked whether nearbyint depended on the application not modifying the
rounding mode. Of course (as Eric commented) we rely on the application
not changing the rounding mode from its default (round-to-nearest) in
many other places, including the IROUND function used by
_mesa_round_to_even!
Worse, IROUND() is implemented using the trunc(x + 0.5) trick which
fails for x = nextafterf(0.5, 0.0).
Still worse, _mesa_round_to_even unexpectedly returns an int. I suspect
that could cause problems when rounding large integral values not
representable as an int in ir_constant_expression.cpp's
ir_unop_round_even evaluation. Its use of _mesa_round_to_even is clearly
broken for doubles (as noted during review).
The constant expression evaluation code for the packing built-in
functions also mistakenly assumed that _mesa_round_to_even returned a
float, as can be seen by the cast through a signed integer type to an
unsigned (since negative float -> unsigned conversions are undefined).
rint() and nearbyint() implement the round-half-to-even behavior we want
when the rounding mode is set to the default round-to-nearest. The only
difference between them is that nearbyint() raises the inexact
exception.
This patch implements _mesa_roundeven{f,}, a function similar to the
roundeven function added by a yet unimplemented technical specification
(ISO/IEC TS 18661-1:2014), with a small difference in behavior -- we
don't bother raising the inexact exception, which I don't think we care
about anyway.
At least recent Intel CPUs can quickly change a subset of the bits in
the x87 floating-point control register, but the exception mask bits are
not included. rint() does not need to change these bits, but nearbyint()
does (twice: save old, set new, and restore old) in order to raise the
inexact exception, which would incur some penalty.
Reviewed-by: Carl Worth <cworth@cworth.org>
2015-03-10 17:55:21 -07:00
|
|
|
return (uint16_t) (int)
|
|
|
|
|
_mesa_roundevenf(CLAMP(x, 0.0f, 1.0f) * 65535.0f);
|
2012-11-19 11:14:24 -08:00
|
|
|
}
|
|
|
|
|
|
2013-01-21 14:53:26 -08:00
|
|
|
/**
|
|
|
|
|
* Evaluate one component of unpackUnorm4x8.
|
|
|
|
|
*/
|
|
|
|
|
static float
|
|
|
|
|
unpack_unorm_1x8(uint8_t u)
|
|
|
|
|
{
|
|
|
|
|
/* From section 8.4 of the GLSL 4.30 spec:
|
|
|
|
|
*
|
|
|
|
|
* unpackUnorm4x8
|
|
|
|
|
* --------------
|
|
|
|
|
* The conversion for unpacked fixed-point value f to floating point is
|
|
|
|
|
* done as follows:
|
|
|
|
|
*
|
|
|
|
|
* unpackUnorm4x8: f / 255.0
|
|
|
|
|
*/
|
|
|
|
|
return (float) u / 255.0f;
|
|
|
|
|
}
|
|
|
|
|
|
2012-11-19 11:14:24 -08:00
|
|
|
/**
|
|
|
|
|
* Evaluate one component of unpackUnorm2x16.
|
|
|
|
|
*/
|
|
|
|
|
static float
|
|
|
|
|
unpack_unorm_1x16(uint16_t u)
|
|
|
|
|
{
|
|
|
|
|
/* From section 8.4 of the GLSL ES 3.00 spec:
|
|
|
|
|
*
|
|
|
|
|
* unpackUnorm2x16
|
|
|
|
|
* ---------------
|
|
|
|
|
* The conversion for unpacked fixed-point value f to floating point is
|
|
|
|
|
* done as follows:
|
|
|
|
|
*
|
|
|
|
|
* unpackUnorm2x16: f / 65535.0
|
|
|
|
|
*/
|
|
|
|
|
return (float) u / 65535.0f;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* Evaluate one component of packHalf2x16.
|
|
|
|
|
*/
|
|
|
|
|
static uint16_t
|
|
|
|
|
pack_half_1x16(float x)
|
|
|
|
|
{
|
|
|
|
|
return _mesa_float_to_half(x);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* Evaluate one component of unpackHalf2x16.
|
|
|
|
|
*/
|
|
|
|
|
static float
|
|
|
|
|
unpack_half_1x16(uint16_t u)
|
|
|
|
|
{
|
|
|
|
|
return _mesa_half_to_float(u);
|
|
|
|
|
}
|
|
|
|
|
|
2014-03-12 14:24:03 -07:00
|
|
|
/**
|
|
|
|
|
* Get the constant that is ultimately referenced by an r-value, in a constant
|
|
|
|
|
* expression evaluation context.
|
|
|
|
|
*
|
|
|
|
|
* The offset is used when the reference is to a specific column of a matrix.
|
|
|
|
|
*/
|
2014-03-12 14:38:42 -07:00
|
|
|
static bool
|
|
|
|
|
constant_referenced(const ir_dereference *deref,
|
|
|
|
|
struct hash_table *variable_context,
|
|
|
|
|
ir_constant *&store, int &offset)
|
|
|
|
|
{
|
2014-03-12 14:55:31 -07:00
|
|
|
store = NULL;
|
|
|
|
|
offset = 0;
|
|
|
|
|
|
|
|
|
|
if (variable_context == NULL)
|
|
|
|
|
return false;
|
|
|
|
|
|
2014-03-12 14:38:42 -07:00
|
|
|
switch (deref->ir_type) {
|
2014-03-12 15:10:59 -07:00
|
|
|
case ir_type_dereference_array: {
|
|
|
|
|
const ir_dereference_array *const da =
|
|
|
|
|
(const ir_dereference_array *) deref;
|
|
|
|
|
|
2014-03-12 15:30:59 -07:00
|
|
|
ir_constant *const index_c =
|
2014-03-12 15:10:59 -07:00
|
|
|
da->array_index->constant_expression_value(variable_context);
|
|
|
|
|
|
|
|
|
|
if (!index_c || !index_c->type->is_scalar() || !index_c->type->is_integer())
|
|
|
|
|
break;
|
|
|
|
|
|
2014-03-12 15:30:59 -07:00
|
|
|
const int index = index_c->type->base_type == GLSL_TYPE_INT ?
|
2014-03-12 15:10:59 -07:00
|
|
|
index_c->get_int_component(0) :
|
|
|
|
|
index_c->get_uint_component(0);
|
|
|
|
|
|
|
|
|
|
ir_constant *substore;
|
|
|
|
|
int suboffset;
|
|
|
|
|
|
2014-03-12 15:30:59 -07:00
|
|
|
const ir_dereference *const deref = da->array->as_dereference();
|
2014-03-12 15:10:59 -07:00
|
|
|
if (!deref)
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
if (!constant_referenced(deref, variable_context, substore, suboffset))
|
|
|
|
|
break;
|
|
|
|
|
|
2014-03-12 15:30:59 -07:00
|
|
|
const glsl_type *const vt = da->array->type;
|
2014-03-12 15:10:59 -07:00
|
|
|
if (vt->is_array()) {
|
|
|
|
|
store = substore->get_array_element(index);
|
|
|
|
|
offset = 0;
|
2014-03-12 15:30:59 -07:00
|
|
|
} else if (vt->is_matrix()) {
|
2014-03-12 15:10:59 -07:00
|
|
|
store = substore;
|
|
|
|
|
offset = index * vt->vector_elements;
|
2014-03-12 15:30:59 -07:00
|
|
|
} else if (vt->is_vector()) {
|
2014-03-12 15:10:59 -07:00
|
|
|
store = substore;
|
|
|
|
|
offset = suboffset + index;
|
|
|
|
|
}
|
|
|
|
|
|
2014-03-12 14:38:42 -07:00
|
|
|
break;
|
2014-03-12 15:10:59 -07:00
|
|
|
}
|
2014-03-12 14:38:42 -07:00
|
|
|
|
2014-03-12 15:01:12 -07:00
|
|
|
case ir_type_dereference_record: {
|
|
|
|
|
const ir_dereference_record *const dr =
|
|
|
|
|
(const ir_dereference_record *) deref;
|
|
|
|
|
|
|
|
|
|
const ir_dereference *const deref = dr->record->as_dereference();
|
|
|
|
|
if (!deref)
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
ir_constant *substore;
|
|
|
|
|
int suboffset;
|
|
|
|
|
|
|
|
|
|
if (!constant_referenced(deref, variable_context, substore, suboffset))
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
/* Since we're dropping it on the floor...
|
|
|
|
|
*/
|
|
|
|
|
assert(suboffset == 0);
|
|
|
|
|
|
|
|
|
|
store = substore->get_record_field(dr->field);
|
2014-03-12 14:38:42 -07:00
|
|
|
break;
|
2014-03-12 15:01:12 -07:00
|
|
|
}
|
2014-03-12 14:38:42 -07:00
|
|
|
|
2014-03-12 14:55:31 -07:00
|
|
|
case ir_type_dereference_variable: {
|
|
|
|
|
const ir_dereference_variable *const dv =
|
|
|
|
|
(const ir_dereference_variable *) deref;
|
|
|
|
|
|
|
|
|
|
store = (ir_constant *) hash_table_find(variable_context, dv->var);
|
2014-03-12 14:38:42 -07:00
|
|
|
break;
|
2014-03-12 14:55:31 -07:00
|
|
|
}
|
2014-03-12 14:38:42 -07:00
|
|
|
|
|
|
|
|
default:
|
|
|
|
|
assert(!"Should not get here.");
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
return store != NULL;
|
|
|
|
|
}
|
|
|
|
|
|
2014-03-12 14:24:03 -07:00
|
|
|
|
2011-09-22 15:04:56 -07:00
|
|
|
ir_constant *
|
2014-03-12 15:32:48 -07:00
|
|
|
ir_rvalue::constant_expression_value(struct hash_table *)
|
2011-09-22 15:04:56 -07:00
|
|
|
{
|
|
|
|
|
assert(this->type->is_error());
|
|
|
|
|
return NULL;
|
|
|
|
|
}
|
|
|
|
|
|
2010-03-30 16:56:50 -07:00
|
|
|
ir_constant *
|
2012-05-02 23:11:38 +02:00
|
|
|
ir_expression::constant_expression_value(struct hash_table *variable_context)
|
2010-03-30 16:56:50 -07:00
|
|
|
{
|
2010-11-08 17:30:13 -08:00
|
|
|
if (this->type->is_error())
|
|
|
|
|
return NULL;
|
|
|
|
|
|
2015-02-28 09:11:23 -07:00
|
|
|
ir_constant *op[ARRAY_SIZE(this->operands)] = { NULL, };
|
2010-06-11 16:08:47 -07:00
|
|
|
ir_constant_data data;
|
2010-04-01 18:25:11 -10:00
|
|
|
|
2010-07-05 22:33:35 -07:00
|
|
|
memset(&data, 0, sizeof(data));
|
|
|
|
|
|
2010-07-15 10:20:51 -07:00
|
|
|
for (unsigned operand = 0; operand < this->get_num_operands(); operand++) {
|
2012-05-02 23:11:38 +02:00
|
|
|
op[operand] = this->operands[operand]->constant_expression_value(variable_context);
|
2010-04-01 18:25:11 -10:00
|
|
|
if (!op[operand])
|
2010-07-15 10:09:09 -07:00
|
|
|
return NULL;
|
2010-04-01 18:07:08 -10:00
|
|
|
}
|
2010-03-31 16:25:12 -10:00
|
|
|
|
2010-07-06 02:39:57 -07:00
|
|
|
if (op[1] != NULL)
|
2013-03-06 11:05:14 -08:00
|
|
|
switch (this->operation) {
|
|
|
|
|
case ir_binop_lshift:
|
|
|
|
|
case ir_binop_rshift:
|
2013-08-22 13:31:18 -07:00
|
|
|
case ir_binop_ldexp:
|
2013-11-10 19:13:54 +13:00
|
|
|
case ir_binop_interpolate_at_offset:
|
|
|
|
|
case ir_binop_interpolate_at_sample:
|
2013-03-06 11:05:14 -08:00
|
|
|
case ir_binop_vector_extract:
|
2013-08-19 10:45:46 -07:00
|
|
|
case ir_triop_csel:
|
2013-03-06 11:05:14 -08:00
|
|
|
case ir_triop_bitfield_extract:
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
default:
|
|
|
|
|
assert(op[0]->type->base_type == op[1]->type->base_type);
|
|
|
|
|
break;
|
|
|
|
|
}
|
2010-07-06 02:39:57 -07:00
|
|
|
|
2010-07-06 02:48:16 -07:00
|
|
|
bool op0_scalar = op[0]->type->is_scalar();
|
|
|
|
|
bool op1_scalar = op[1] != NULL && op[1]->type->is_scalar();
|
|
|
|
|
|
|
|
|
|
/* When iterating over a vector or matrix's components, we want to increase
|
|
|
|
|
* the loop counter. However, for scalars, we want to stay at 0.
|
|
|
|
|
*/
|
2010-07-07 12:08:23 -07:00
|
|
|
unsigned c0_inc = op0_scalar ? 0 : 1;
|
|
|
|
|
unsigned c1_inc = op1_scalar ? 0 : 1;
|
2010-07-07 09:07:09 -07:00
|
|
|
unsigned components;
|
|
|
|
|
if (op1_scalar || !op[1]) {
|
|
|
|
|
components = op[0]->type->components();
|
|
|
|
|
} else {
|
|
|
|
|
components = op[1]->type->components();
|
|
|
|
|
}
|
2010-07-06 02:48:16 -07:00
|
|
|
|
2011-01-21 14:32:31 -08:00
|
|
|
void *ctx = ralloc_parent(this);
|
2010-07-20 03:08:32 -07:00
|
|
|
|
|
|
|
|
/* Handle array operations here, rather than below. */
|
|
|
|
|
if (op[0]->type->is_array()) {
|
|
|
|
|
assert(op[1] != NULL && op[1]->type->is_array());
|
|
|
|
|
switch (this->operation) {
|
2010-09-08 01:31:39 +02:00
|
|
|
case ir_binop_all_equal:
|
2010-07-20 03:08:32 -07:00
|
|
|
return new(ctx) ir_constant(op[0]->has_value(op[1]));
|
2010-09-08 01:31:39 +02:00
|
|
|
case ir_binop_any_nequal:
|
2010-07-20 03:08:32 -07:00
|
|
|
return new(ctx) ir_constant(!op[0]->has_value(op[1]));
|
|
|
|
|
default:
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
return NULL;
|
|
|
|
|
}
|
|
|
|
|
|
2010-07-15 10:20:51 -07:00
|
|
|
switch (this->operation) {
|
2010-10-08 17:28:34 -07:00
|
|
|
case ir_unop_bit_not:
|
|
|
|
|
switch (op[0]->type->base_type) {
|
|
|
|
|
case GLSL_TYPE_INT:
|
|
|
|
|
for (unsigned c = 0; c < components; c++)
|
|
|
|
|
data.i[c] = ~ op[0]->value.i[c];
|
|
|
|
|
break;
|
|
|
|
|
case GLSL_TYPE_UINT:
|
|
|
|
|
for (unsigned c = 0; c < components; c++)
|
|
|
|
|
data.u[c] = ~ op[0]->value.u[c];
|
|
|
|
|
break;
|
|
|
|
|
default:
|
|
|
|
|
assert(0);
|
|
|
|
|
}
|
|
|
|
|
break;
|
|
|
|
|
|
2010-03-31 21:09:02 -10:00
|
|
|
case ir_unop_logic_not:
|
2010-06-11 16:23:52 -07:00
|
|
|
assert(op[0]->type->base_type == GLSL_TYPE_BOOL);
|
2010-07-15 10:20:51 -07:00
|
|
|
for (unsigned c = 0; c < op[0]->type->components(); c++)
|
2010-06-11 16:08:47 -07:00
|
|
|
data.b[c] = !op[0]->value.b[c];
|
2010-03-31 21:09:02 -10:00
|
|
|
break;
|
2010-04-06 10:53:57 -07:00
|
|
|
|
|
|
|
|
case ir_unop_f2i:
|
|
|
|
|
assert(op[0]->type->base_type == GLSL_TYPE_FLOAT);
|
2010-07-15 10:20:51 -07:00
|
|
|
for (unsigned c = 0; c < op[0]->type->components(); c++) {
|
2010-11-15 18:48:43 -07:00
|
|
|
data.i[c] = (int) op[0]->value.f[c];
|
2010-04-06 10:53:57 -07:00
|
|
|
}
|
|
|
|
|
break;
|
2012-06-13 15:48:56 -07:00
|
|
|
case ir_unop_f2u:
|
|
|
|
|
assert(op[0]->type->base_type == GLSL_TYPE_FLOAT);
|
|
|
|
|
for (unsigned c = 0; c < op[0]->type->components(); c++) {
|
|
|
|
|
data.i[c] = (unsigned) op[0]->value.f[c];
|
|
|
|
|
}
|
|
|
|
|
break;
|
2010-04-06 10:53:57 -07:00
|
|
|
case ir_unop_i2f:
|
2010-07-20 13:01:56 -07:00
|
|
|
assert(op[0]->type->base_type == GLSL_TYPE_INT);
|
2010-07-15 10:20:51 -07:00
|
|
|
for (unsigned c = 0; c < op[0]->type->components(); c++) {
|
2010-11-15 18:48:43 -07:00
|
|
|
data.f[c] = (float) op[0]->value.i[c];
|
2010-07-20 13:01:56 -07:00
|
|
|
}
|
|
|
|
|
break;
|
|
|
|
|
case ir_unop_u2f:
|
|
|
|
|
assert(op[0]->type->base_type == GLSL_TYPE_UINT);
|
|
|
|
|
for (unsigned c = 0; c < op[0]->type->components(); c++) {
|
2010-11-15 18:48:43 -07:00
|
|
|
data.f[c] = (float) op[0]->value.u[c];
|
2010-04-06 10:53:57 -07:00
|
|
|
}
|
|
|
|
|
break;
|
2010-06-07 15:10:14 -07:00
|
|
|
case ir_unop_b2f:
|
|
|
|
|
assert(op[0]->type->base_type == GLSL_TYPE_BOOL);
|
2010-07-15 10:20:51 -07:00
|
|
|
for (unsigned c = 0; c < op[0]->type->components(); c++) {
|
2010-11-15 18:48:43 -07:00
|
|
|
data.f[c] = op[0]->value.b[c] ? 1.0F : 0.0F;
|
2010-06-07 15:10:14 -07:00
|
|
|
}
|
|
|
|
|
break;
|
|
|
|
|
case ir_unop_f2b:
|
|
|
|
|
assert(op[0]->type->base_type == GLSL_TYPE_FLOAT);
|
2010-07-15 10:20:51 -07:00
|
|
|
for (unsigned c = 0; c < op[0]->type->components(); c++) {
|
2010-11-15 18:48:43 -07:00
|
|
|
data.b[c] = op[0]->value.f[c] != 0.0F ? true : false;
|
2010-06-07 15:10:14 -07:00
|
|
|
}
|
|
|
|
|
break;
|
2010-06-11 13:46:30 -07:00
|
|
|
case ir_unop_b2i:
|
|
|
|
|
assert(op[0]->type->base_type == GLSL_TYPE_BOOL);
|
2010-07-15 10:20:51 -07:00
|
|
|
for (unsigned c = 0; c < op[0]->type->components(); c++) {
|
2010-06-11 16:08:47 -07:00
|
|
|
data.u[c] = op[0]->value.b[c] ? 1 : 0;
|
2010-06-11 13:46:30 -07:00
|
|
|
}
|
|
|
|
|
break;
|
|
|
|
|
case ir_unop_i2b:
|
|
|
|
|
assert(op[0]->type->is_integer());
|
2010-07-15 10:20:51 -07:00
|
|
|
for (unsigned c = 0; c < op[0]->type->components(); c++) {
|
2010-11-15 18:48:43 -07:00
|
|
|
data.b[c] = op[0]->value.u[c] ? true : false;
|
2010-06-11 13:46:30 -07:00
|
|
|
}
|
|
|
|
|
break;
|
2011-06-14 23:34:11 -07:00
|
|
|
case ir_unop_u2i:
|
|
|
|
|
assert(op[0]->type->base_type == GLSL_TYPE_UINT);
|
|
|
|
|
for (unsigned c = 0; c < op[0]->type->components(); c++) {
|
|
|
|
|
data.i[c] = op[0]->value.u[c];
|
|
|
|
|
}
|
|
|
|
|
break;
|
|
|
|
|
case ir_unop_i2u:
|
|
|
|
|
assert(op[0]->type->base_type == GLSL_TYPE_INT);
|
|
|
|
|
for (unsigned c = 0; c < op[0]->type->components(); c++) {
|
|
|
|
|
data.u[c] = op[0]->value.i[c];
|
|
|
|
|
}
|
|
|
|
|
break;
|
2012-05-08 20:40:35 +02:00
|
|
|
case ir_unop_bitcast_i2f:
|
|
|
|
|
assert(op[0]->type->base_type == GLSL_TYPE_INT);
|
|
|
|
|
for (unsigned c = 0; c < op[0]->type->components(); c++) {
|
|
|
|
|
data.f[c] = bitcast_u2f(op[0]->value.i[c]);
|
|
|
|
|
}
|
|
|
|
|
break;
|
|
|
|
|
case ir_unop_bitcast_f2i:
|
|
|
|
|
assert(op[0]->type->base_type == GLSL_TYPE_FLOAT);
|
|
|
|
|
for (unsigned c = 0; c < op[0]->type->components(); c++) {
|
|
|
|
|
data.i[c] = bitcast_f2u(op[0]->value.f[c]);
|
|
|
|
|
}
|
|
|
|
|
break;
|
|
|
|
|
case ir_unop_bitcast_u2f:
|
|
|
|
|
assert(op[0]->type->base_type == GLSL_TYPE_UINT);
|
|
|
|
|
for (unsigned c = 0; c < op[0]->type->components(); c++) {
|
|
|
|
|
data.f[c] = bitcast_u2f(op[0]->value.u[c]);
|
|
|
|
|
}
|
|
|
|
|
break;
|
|
|
|
|
case ir_unop_bitcast_f2u:
|
|
|
|
|
assert(op[0]->type->base_type == GLSL_TYPE_FLOAT);
|
|
|
|
|
for (unsigned c = 0; c < op[0]->type->components(); c++) {
|
|
|
|
|
data.u[c] = bitcast_f2u(op[0]->value.f[c]);
|
|
|
|
|
}
|
|
|
|
|
break;
|
2015-02-05 11:53:10 +02:00
|
|
|
case ir_unop_d2f:
|
|
|
|
|
assert(op[0]->type->base_type == GLSL_TYPE_DOUBLE);
|
|
|
|
|
for (unsigned c = 0; c < op[0]->type->components(); c++) {
|
|
|
|
|
data.f[c] = op[0]->value.d[c];
|
|
|
|
|
}
|
|
|
|
|
break;
|
|
|
|
|
case ir_unop_f2d:
|
2010-07-08 23:21:36 -07:00
|
|
|
assert(op[0]->type->base_type == GLSL_TYPE_FLOAT);
|
2010-07-15 10:20:51 -07:00
|
|
|
for (unsigned c = 0; c < op[0]->type->components(); c++) {
|
2015-02-05 11:53:10 +02:00
|
|
|
data.d[c] = op[0]->value.f[c];
|
|
|
|
|
}
|
|
|
|
|
break;
|
|
|
|
|
case ir_unop_d2i:
|
|
|
|
|
assert(op[0]->type->base_type == GLSL_TYPE_DOUBLE);
|
|
|
|
|
for (unsigned c = 0; c < op[0]->type->components(); c++) {
|
|
|
|
|
data.i[c] = op[0]->value.d[c];
|
|
|
|
|
}
|
|
|
|
|
break;
|
|
|
|
|
case ir_unop_i2d:
|
|
|
|
|
assert(op[0]->type->base_type == GLSL_TYPE_INT);
|
|
|
|
|
for (unsigned c = 0; c < op[0]->type->components(); c++) {
|
|
|
|
|
data.d[c] = op[0]->value.i[c];
|
|
|
|
|
}
|
|
|
|
|
break;
|
|
|
|
|
case ir_unop_d2u:
|
|
|
|
|
assert(op[0]->type->base_type == GLSL_TYPE_DOUBLE);
|
|
|
|
|
for (unsigned c = 0; c < op[0]->type->components(); c++) {
|
|
|
|
|
data.u[c] = op[0]->value.d[c];
|
|
|
|
|
}
|
|
|
|
|
break;
|
|
|
|
|
case ir_unop_u2d:
|
|
|
|
|
assert(op[0]->type->base_type == GLSL_TYPE_UINT);
|
|
|
|
|
for (unsigned c = 0; c < op[0]->type->components(); c++) {
|
|
|
|
|
data.d[c] = op[0]->value.u[c];
|
|
|
|
|
}
|
|
|
|
|
break;
|
|
|
|
|
case ir_unop_d2b:
|
|
|
|
|
assert(op[0]->type->base_type == GLSL_TYPE_DOUBLE);
|
|
|
|
|
for (unsigned c = 0; c < op[0]->type->components(); c++) {
|
|
|
|
|
data.b[c] = op[0]->value.d[c] != 0.0;
|
|
|
|
|
}
|
|
|
|
|
break;
|
|
|
|
|
case ir_unop_trunc:
|
|
|
|
|
for (unsigned c = 0; c < op[0]->type->components(); c++) {
|
|
|
|
|
if (op[0]->type->base_type == GLSL_TYPE_DOUBLE)
|
|
|
|
|
data.d[c] = trunc(op[0]->value.d[c]);
|
|
|
|
|
else
|
|
|
|
|
data.f[c] = truncf(op[0]->value.f[c]);
|
2010-07-08 23:21:36 -07:00
|
|
|
}
|
|
|
|
|
break;
|
|
|
|
|
|
2011-09-27 14:54:10 -07:00
|
|
|
case ir_unop_round_even:
|
|
|
|
|
for (unsigned c = 0; c < op[0]->type->components(); c++) {
|
2015-02-05 11:53:10 +02:00
|
|
|
if (op[0]->type->base_type == GLSL_TYPE_DOUBLE)
|
mesa: Replace _mesa_round_to_even() with _mesa_roundeven().
Eric's initial patch adding constant expression evaluation for
ir_unop_round_even used nearbyint. The open-coded _mesa_round_to_even
implementation came about without much explanation after a reviewer
asked whether nearbyint depended on the application not modifying the
rounding mode. Of course (as Eric commented) we rely on the application
not changing the rounding mode from its default (round-to-nearest) in
many other places, including the IROUND function used by
_mesa_round_to_even!
Worse, IROUND() is implemented using the trunc(x + 0.5) trick which
fails for x = nextafterf(0.5, 0.0).
Still worse, _mesa_round_to_even unexpectedly returns an int. I suspect
that could cause problems when rounding large integral values not
representable as an int in ir_constant_expression.cpp's
ir_unop_round_even evaluation. Its use of _mesa_round_to_even is clearly
broken for doubles (as noted during review).
The constant expression evaluation code for the packing built-in
functions also mistakenly assumed that _mesa_round_to_even returned a
float, as can be seen by the cast through a signed integer type to an
unsigned (since negative float -> unsigned conversions are undefined).
rint() and nearbyint() implement the round-half-to-even behavior we want
when the rounding mode is set to the default round-to-nearest. The only
difference between them is that nearbyint() raises the inexact
exception.
This patch implements _mesa_roundeven{f,}, a function similar to the
roundeven function added by a yet unimplemented technical specification
(ISO/IEC TS 18661-1:2014), with a small difference in behavior -- we
don't bother raising the inexact exception, which I don't think we care
about anyway.
At least recent Intel CPUs can quickly change a subset of the bits in
the x87 floating-point control register, but the exception mask bits are
not included. rint() does not need to change these bits, but nearbyint()
does (twice: save old, set new, and restore old) in order to raise the
inexact exception, which would incur some penalty.
Reviewed-by: Carl Worth <cworth@cworth.org>
2015-03-10 17:55:21 -07:00
|
|
|
data.d[c] = _mesa_roundeven(op[0]->value.d[c]);
|
2015-02-05 11:53:10 +02:00
|
|
|
else
|
mesa: Replace _mesa_round_to_even() with _mesa_roundeven().
Eric's initial patch adding constant expression evaluation for
ir_unop_round_even used nearbyint. The open-coded _mesa_round_to_even
implementation came about without much explanation after a reviewer
asked whether nearbyint depended on the application not modifying the
rounding mode. Of course (as Eric commented) we rely on the application
not changing the rounding mode from its default (round-to-nearest) in
many other places, including the IROUND function used by
_mesa_round_to_even!
Worse, IROUND() is implemented using the trunc(x + 0.5) trick which
fails for x = nextafterf(0.5, 0.0).
Still worse, _mesa_round_to_even unexpectedly returns an int. I suspect
that could cause problems when rounding large integral values not
representable as an int in ir_constant_expression.cpp's
ir_unop_round_even evaluation. Its use of _mesa_round_to_even is clearly
broken for doubles (as noted during review).
The constant expression evaluation code for the packing built-in
functions also mistakenly assumed that _mesa_round_to_even returned a
float, as can be seen by the cast through a signed integer type to an
unsigned (since negative float -> unsigned conversions are undefined).
rint() and nearbyint() implement the round-half-to-even behavior we want
when the rounding mode is set to the default round-to-nearest. The only
difference between them is that nearbyint() raises the inexact
exception.
This patch implements _mesa_roundeven{f,}, a function similar to the
roundeven function added by a yet unimplemented technical specification
(ISO/IEC TS 18661-1:2014), with a small difference in behavior -- we
don't bother raising the inexact exception, which I don't think we care
about anyway.
At least recent Intel CPUs can quickly change a subset of the bits in
the x87 floating-point control register, but the exception mask bits are
not included. rint() does not need to change these bits, but nearbyint()
does (twice: save old, set new, and restore old) in order to raise the
inexact exception, which would incur some penalty.
Reviewed-by: Carl Worth <cworth@cworth.org>
2015-03-10 17:55:21 -07:00
|
|
|
data.f[c] = _mesa_roundevenf(op[0]->value.f[c]);
|
2011-09-27 14:54:10 -07:00
|
|
|
}
|
|
|
|
|
break;
|
|
|
|
|
|
2010-07-08 23:22:36 -07:00
|
|
|
case ir_unop_ceil:
|
2010-07-15 10:20:51 -07:00
|
|
|
for (unsigned c = 0; c < op[0]->type->components(); c++) {
|
2015-02-05 11:53:10 +02:00
|
|
|
if (op[0]->type->base_type == GLSL_TYPE_DOUBLE)
|
|
|
|
|
data.d[c] = ceil(op[0]->value.d[c]);
|
|
|
|
|
else
|
|
|
|
|
data.f[c] = ceilf(op[0]->value.f[c]);
|
2010-07-08 23:22:36 -07:00
|
|
|
}
|
|
|
|
|
break;
|
|
|
|
|
|
2010-07-08 23:23:23 -07:00
|
|
|
case ir_unop_floor:
|
2010-07-15 10:20:51 -07:00
|
|
|
for (unsigned c = 0; c < op[0]->type->components(); c++) {
|
2015-02-05 11:53:10 +02:00
|
|
|
if (op[0]->type->base_type == GLSL_TYPE_DOUBLE)
|
|
|
|
|
data.d[c] = floor(op[0]->value.d[c]);
|
|
|
|
|
else
|
|
|
|
|
data.f[c] = floorf(op[0]->value.f[c]);
|
2010-07-08 23:23:23 -07:00
|
|
|
}
|
|
|
|
|
break;
|
|
|
|
|
|
2010-07-01 10:37:11 -07:00
|
|
|
case ir_unop_fract:
|
2010-07-15 10:20:51 -07:00
|
|
|
for (unsigned c = 0; c < op[0]->type->components(); c++) {
|
|
|
|
|
switch (this->type->base_type) {
|
2010-07-01 10:37:11 -07:00
|
|
|
case GLSL_TYPE_UINT:
|
|
|
|
|
data.u[c] = 0;
|
|
|
|
|
break;
|
|
|
|
|
case GLSL_TYPE_INT:
|
|
|
|
|
data.i[c] = 0;
|
|
|
|
|
break;
|
|
|
|
|
case GLSL_TYPE_FLOAT:
|
|
|
|
|
data.f[c] = op[0]->value.f[c] - floor(op[0]->value.f[c]);
|
|
|
|
|
break;
|
2015-02-05 11:53:10 +02:00
|
|
|
case GLSL_TYPE_DOUBLE:
|
|
|
|
|
data.d[c] = op[0]->value.d[c] - floor(op[0]->value.d[c]);
|
|
|
|
|
break;
|
2010-07-01 10:37:11 -07:00
|
|
|
default:
|
|
|
|
|
assert(0);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
break;
|
|
|
|
|
|
2010-07-08 23:28:50 -07:00
|
|
|
case ir_unop_sin:
|
|
|
|
|
assert(op[0]->type->base_type == GLSL_TYPE_FLOAT);
|
2010-07-15 10:20:51 -07:00
|
|
|
for (unsigned c = 0; c < op[0]->type->components(); c++) {
|
2010-07-08 23:28:50 -07:00
|
|
|
data.f[c] = sinf(op[0]->value.f[c]);
|
|
|
|
|
}
|
|
|
|
|
break;
|
|
|
|
|
|
2010-07-08 23:29:37 -07:00
|
|
|
case ir_unop_cos:
|
|
|
|
|
assert(op[0]->type->base_type == GLSL_TYPE_FLOAT);
|
2010-07-15 10:20:51 -07:00
|
|
|
for (unsigned c = 0; c < op[0]->type->components(); c++) {
|
2010-07-08 23:29:37 -07:00
|
|
|
data.f[c] = cosf(op[0]->value.f[c]);
|
|
|
|
|
}
|
|
|
|
|
break;
|
|
|
|
|
|
2010-05-12 14:42:21 -07:00
|
|
|
case ir_unop_neg:
|
2010-07-15 10:20:51 -07:00
|
|
|
for (unsigned c = 0; c < op[0]->type->components(); c++) {
|
|
|
|
|
switch (this->type->base_type) {
|
2010-05-12 14:42:21 -07:00
|
|
|
case GLSL_TYPE_UINT:
|
2010-11-15 18:48:43 -07:00
|
|
|
data.u[c] = -((int) op[0]->value.u[c]);
|
2010-05-12 14:42:21 -07:00
|
|
|
break;
|
|
|
|
|
case GLSL_TYPE_INT:
|
2010-06-11 16:08:47 -07:00
|
|
|
data.i[c] = -op[0]->value.i[c];
|
2010-05-12 14:42:21 -07:00
|
|
|
break;
|
|
|
|
|
case GLSL_TYPE_FLOAT:
|
2010-06-11 16:08:47 -07:00
|
|
|
data.f[c] = -op[0]->value.f[c];
|
2010-05-12 14:42:21 -07:00
|
|
|
break;
|
2015-02-05 11:53:10 +02:00
|
|
|
case GLSL_TYPE_DOUBLE:
|
|
|
|
|
data.d[c] = -op[0]->value.d[c];
|
|
|
|
|
break;
|
2010-05-12 14:42:21 -07:00
|
|
|
default:
|
|
|
|
|
assert(0);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
case ir_unop_abs:
|
2010-07-15 10:20:51 -07:00
|
|
|
for (unsigned c = 0; c < op[0]->type->components(); c++) {
|
|
|
|
|
switch (this->type->base_type) {
|
2010-05-12 14:42:21 -07:00
|
|
|
case GLSL_TYPE_UINT:
|
2010-06-11 16:08:47 -07:00
|
|
|
data.u[c] = op[0]->value.u[c];
|
2010-05-12 14:42:21 -07:00
|
|
|
break;
|
|
|
|
|
case GLSL_TYPE_INT:
|
2010-06-11 16:08:47 -07:00
|
|
|
data.i[c] = op[0]->value.i[c];
|
|
|
|
|
if (data.i[c] < 0)
|
|
|
|
|
data.i[c] = -data.i[c];
|
2010-05-12 14:42:21 -07:00
|
|
|
break;
|
|
|
|
|
case GLSL_TYPE_FLOAT:
|
2010-06-11 16:08:47 -07:00
|
|
|
data.f[c] = fabs(op[0]->value.f[c]);
|
2010-05-12 14:42:21 -07:00
|
|
|
break;
|
2015-02-05 11:53:10 +02:00
|
|
|
case GLSL_TYPE_DOUBLE:
|
|
|
|
|
data.d[c] = fabs(op[0]->value.d[c]);
|
|
|
|
|
break;
|
2010-05-12 14:42:21 -07:00
|
|
|
default:
|
|
|
|
|
assert(0);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
break;
|
|
|
|
|
|
2010-07-08 23:11:14 -07:00
|
|
|
case ir_unop_sign:
|
2010-07-15 10:20:51 -07:00
|
|
|
for (unsigned c = 0; c < op[0]->type->components(); c++) {
|
|
|
|
|
switch (this->type->base_type) {
|
2010-07-08 23:11:14 -07:00
|
|
|
case GLSL_TYPE_UINT:
|
|
|
|
|
data.u[c] = op[0]->value.i[c] > 0;
|
|
|
|
|
break;
|
|
|
|
|
case GLSL_TYPE_INT:
|
|
|
|
|
data.i[c] = (op[0]->value.i[c] > 0) - (op[0]->value.i[c] < 0);
|
|
|
|
|
break;
|
|
|
|
|
case GLSL_TYPE_FLOAT:
|
|
|
|
|
data.f[c] = float((op[0]->value.f[c] > 0)-(op[0]->value.f[c] < 0));
|
|
|
|
|
break;
|
2015-02-05 11:53:10 +02:00
|
|
|
case GLSL_TYPE_DOUBLE:
|
|
|
|
|
data.d[c] = double((op[0]->value.d[c] > 0)-(op[0]->value.d[c] < 0));
|
|
|
|
|
break;
|
2010-07-08 23:11:14 -07:00
|
|
|
default:
|
|
|
|
|
assert(0);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
break;
|
|
|
|
|
|
2010-05-12 14:42:21 -07:00
|
|
|
case ir_unop_rcp:
|
2010-07-15 10:20:51 -07:00
|
|
|
for (unsigned c = 0; c < op[0]->type->components(); c++) {
|
|
|
|
|
switch (this->type->base_type) {
|
2010-05-12 14:42:21 -07:00
|
|
|
case GLSL_TYPE_UINT:
|
2011-02-14 11:16:42 -08:00
|
|
|
if (op[0]->value.u[c] != 0.0)
|
|
|
|
|
data.u[c] = 1 / op[0]->value.u[c];
|
2010-05-12 14:42:21 -07:00
|
|
|
break;
|
|
|
|
|
case GLSL_TYPE_INT:
|
2011-02-14 11:16:42 -08:00
|
|
|
if (op[0]->value.i[c] != 0.0)
|
|
|
|
|
data.i[c] = 1 / op[0]->value.i[c];
|
2010-05-12 14:42:21 -07:00
|
|
|
break;
|
|
|
|
|
case GLSL_TYPE_FLOAT:
|
2011-02-14 11:16:42 -08:00
|
|
|
if (op[0]->value.f[c] != 0.0)
|
|
|
|
|
data.f[c] = 1.0F / op[0]->value.f[c];
|
2010-05-12 14:42:21 -07:00
|
|
|
break;
|
2015-02-05 11:53:10 +02:00
|
|
|
case GLSL_TYPE_DOUBLE:
|
|
|
|
|
if (op[0]->value.d[c] != 0.0)
|
|
|
|
|
data.d[c] = 1.0 / op[0]->value.d[c];
|
|
|
|
|
break;
|
2010-05-12 14:42:21 -07:00
|
|
|
default:
|
|
|
|
|
assert(0);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
case ir_unop_rsq:
|
2010-07-15 10:20:51 -07:00
|
|
|
for (unsigned c = 0; c < op[0]->type->components(); c++) {
|
2015-02-05 11:53:10 +02:00
|
|
|
if (op[0]->type->base_type == GLSL_TYPE_DOUBLE)
|
|
|
|
|
data.d[c] = 1.0 / sqrt(op[0]->value.d[c]);
|
|
|
|
|
else
|
|
|
|
|
data.f[c] = 1.0F / sqrtf(op[0]->value.f[c]);
|
2010-05-12 14:42:21 -07:00
|
|
|
}
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
case ir_unop_sqrt:
|
2010-07-15 10:20:51 -07:00
|
|
|
for (unsigned c = 0; c < op[0]->type->components(); c++) {
|
2015-02-05 11:53:10 +02:00
|
|
|
if (op[0]->type->base_type == GLSL_TYPE_DOUBLE)
|
|
|
|
|
data.d[c] = sqrt(op[0]->value.d[c]);
|
|
|
|
|
else
|
|
|
|
|
data.f[c] = sqrtf(op[0]->value.f[c]);
|
2010-05-12 14:42:21 -07:00
|
|
|
}
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
case ir_unop_exp:
|
|
|
|
|
assert(op[0]->type->base_type == GLSL_TYPE_FLOAT);
|
2010-07-15 10:20:51 -07:00
|
|
|
for (unsigned c = 0; c < op[0]->type->components(); c++) {
|
2010-06-11 16:08:47 -07:00
|
|
|
data.f[c] = expf(op[0]->value.f[c]);
|
2010-05-12 14:42:21 -07:00
|
|
|
}
|
|
|
|
|
break;
|
|
|
|
|
|
2010-07-08 23:14:32 -07:00
|
|
|
case ir_unop_exp2:
|
|
|
|
|
assert(op[0]->type->base_type == GLSL_TYPE_FLOAT);
|
2010-07-15 10:20:51 -07:00
|
|
|
for (unsigned c = 0; c < op[0]->type->components(); c++) {
|
2010-07-08 23:14:32 -07:00
|
|
|
data.f[c] = exp2f(op[0]->value.f[c]);
|
|
|
|
|
}
|
|
|
|
|
break;
|
|
|
|
|
|
2010-05-12 14:42:21 -07:00
|
|
|
case ir_unop_log:
|
|
|
|
|
assert(op[0]->type->base_type == GLSL_TYPE_FLOAT);
|
2010-07-15 10:20:51 -07:00
|
|
|
for (unsigned c = 0; c < op[0]->type->components(); c++) {
|
2010-06-11 16:08:47 -07:00
|
|
|
data.f[c] = logf(op[0]->value.f[c]);
|
2010-05-12 14:42:21 -07:00
|
|
|
}
|
|
|
|
|
break;
|
|
|
|
|
|
2010-07-08 23:18:09 -07:00
|
|
|
case ir_unop_log2:
|
|
|
|
|
assert(op[0]->type->base_type == GLSL_TYPE_FLOAT);
|
2010-07-15 10:20:51 -07:00
|
|
|
for (unsigned c = 0; c < op[0]->type->components(); c++) {
|
2010-07-08 23:18:09 -07:00
|
|
|
data.f[c] = log2f(op[0]->value.f[c]);
|
|
|
|
|
}
|
|
|
|
|
break;
|
|
|
|
|
|
2010-06-09 15:22:35 -07:00
|
|
|
case ir_unop_dFdx:
|
2014-08-13 23:33:04 -04:00
|
|
|
case ir_unop_dFdx_coarse:
|
|
|
|
|
case ir_unop_dFdx_fine:
|
2010-06-09 15:22:35 -07:00
|
|
|
case ir_unop_dFdy:
|
2014-08-13 23:33:04 -04:00
|
|
|
case ir_unop_dFdy_coarse:
|
|
|
|
|
case ir_unop_dFdy_fine:
|
2010-06-09 15:22:35 -07:00
|
|
|
assert(op[0]->type->base_type == GLSL_TYPE_FLOAT);
|
2010-07-15 10:20:51 -07:00
|
|
|
for (unsigned c = 0; c < op[0]->type->components(); c++) {
|
2010-06-11 16:08:47 -07:00
|
|
|
data.f[c] = 0.0;
|
2010-06-09 15:22:35 -07:00
|
|
|
}
|
|
|
|
|
break;
|
|
|
|
|
|
2012-11-19 11:14:24 -08:00
|
|
|
case ir_unop_pack_snorm_2x16:
|
|
|
|
|
assert(op[0]->type == glsl_type::vec2_type);
|
|
|
|
|
data.u[0] = pack_2x16(pack_snorm_1x16,
|
|
|
|
|
op[0]->value.f[0],
|
|
|
|
|
op[0]->value.f[1]);
|
|
|
|
|
break;
|
2013-01-21 14:53:26 -08:00
|
|
|
case ir_unop_pack_snorm_4x8:
|
|
|
|
|
assert(op[0]->type == glsl_type::vec4_type);
|
|
|
|
|
data.u[0] = pack_4x8(pack_snorm_1x8,
|
|
|
|
|
op[0]->value.f[0],
|
|
|
|
|
op[0]->value.f[1],
|
|
|
|
|
op[0]->value.f[2],
|
|
|
|
|
op[0]->value.f[3]);
|
|
|
|
|
break;
|
2012-11-19 11:14:24 -08:00
|
|
|
case ir_unop_unpack_snorm_2x16:
|
|
|
|
|
assert(op[0]->type == glsl_type::uint_type);
|
|
|
|
|
unpack_2x16(unpack_snorm_1x16,
|
|
|
|
|
op[0]->value.u[0],
|
|
|
|
|
&data.f[0], &data.f[1]);
|
|
|
|
|
break;
|
2013-01-21 14:53:26 -08:00
|
|
|
case ir_unop_unpack_snorm_4x8:
|
|
|
|
|
assert(op[0]->type == glsl_type::uint_type);
|
|
|
|
|
unpack_4x8(unpack_snorm_1x8,
|
|
|
|
|
op[0]->value.u[0],
|
|
|
|
|
&data.f[0], &data.f[1], &data.f[2], &data.f[3]);
|
|
|
|
|
break;
|
2012-11-19 11:14:24 -08:00
|
|
|
case ir_unop_pack_unorm_2x16:
|
|
|
|
|
assert(op[0]->type == glsl_type::vec2_type);
|
|
|
|
|
data.u[0] = pack_2x16(pack_unorm_1x16,
|
|
|
|
|
op[0]->value.f[0],
|
|
|
|
|
op[0]->value.f[1]);
|
|
|
|
|
break;
|
2013-01-21 14:53:26 -08:00
|
|
|
case ir_unop_pack_unorm_4x8:
|
|
|
|
|
assert(op[0]->type == glsl_type::vec4_type);
|
|
|
|
|
data.u[0] = pack_4x8(pack_unorm_1x8,
|
|
|
|
|
op[0]->value.f[0],
|
|
|
|
|
op[0]->value.f[1],
|
|
|
|
|
op[0]->value.f[2],
|
|
|
|
|
op[0]->value.f[3]);
|
|
|
|
|
break;
|
2012-11-19 11:14:24 -08:00
|
|
|
case ir_unop_unpack_unorm_2x16:
|
|
|
|
|
assert(op[0]->type == glsl_type::uint_type);
|
|
|
|
|
unpack_2x16(unpack_unorm_1x16,
|
|
|
|
|
op[0]->value.u[0],
|
|
|
|
|
&data.f[0], &data.f[1]);
|
|
|
|
|
break;
|
2013-01-21 14:53:26 -08:00
|
|
|
case ir_unop_unpack_unorm_4x8:
|
|
|
|
|
assert(op[0]->type == glsl_type::uint_type);
|
|
|
|
|
unpack_4x8(unpack_unorm_1x8,
|
|
|
|
|
op[0]->value.u[0],
|
|
|
|
|
&data.f[0], &data.f[1], &data.f[2], &data.f[3]);
|
|
|
|
|
break;
|
2012-11-19 11:14:24 -08:00
|
|
|
case ir_unop_pack_half_2x16:
|
|
|
|
|
assert(op[0]->type == glsl_type::vec2_type);
|
|
|
|
|
data.u[0] = pack_2x16(pack_half_1x16,
|
|
|
|
|
op[0]->value.f[0],
|
|
|
|
|
op[0]->value.f[1]);
|
|
|
|
|
break;
|
|
|
|
|
case ir_unop_unpack_half_2x16:
|
|
|
|
|
assert(op[0]->type == glsl_type::uint_type);
|
|
|
|
|
unpack_2x16(unpack_half_1x16,
|
|
|
|
|
op[0]->value.u[0],
|
|
|
|
|
&data.f[0], &data.f[1]);
|
|
|
|
|
break;
|
2010-07-08 23:35:09 -07:00
|
|
|
case ir_binop_pow:
|
|
|
|
|
assert(op[0]->type->base_type == GLSL_TYPE_FLOAT);
|
2010-07-15 10:20:51 -07:00
|
|
|
for (unsigned c = 0; c < op[0]->type->components(); c++) {
|
2010-07-08 23:35:09 -07:00
|
|
|
data.f[c] = powf(op[0]->value.f[c], op[1]->value.f[c]);
|
|
|
|
|
}
|
|
|
|
|
break;
|
|
|
|
|
|
2010-07-05 21:15:32 -07:00
|
|
|
case ir_binop_dot:
|
2015-02-05 11:53:10 +02:00
|
|
|
if (op[0]->type->base_type == GLSL_TYPE_DOUBLE)
|
|
|
|
|
data.d[0] = dot_d(op[0], op[1]);
|
|
|
|
|
else
|
|
|
|
|
data.f[0] = dot_f(op[0], op[1]);
|
2010-07-09 11:53:56 -07:00
|
|
|
break;
|
2010-07-21 20:09:21 -07:00
|
|
|
|
2010-07-09 11:53:56 -07:00
|
|
|
case ir_binop_min:
|
|
|
|
|
assert(op[0]->type == op[1]->type || op0_scalar || op1_scalar);
|
|
|
|
|
for (unsigned c = 0, c0 = 0, c1 = 0;
|
|
|
|
|
c < components;
|
|
|
|
|
c0 += c0_inc, c1 += c1_inc, c++) {
|
|
|
|
|
|
2010-07-15 10:20:51 -07:00
|
|
|
switch (op[0]->type->base_type) {
|
2010-07-09 11:53:56 -07:00
|
|
|
case GLSL_TYPE_UINT:
|
2010-07-21 21:56:13 -07:00
|
|
|
data.u[c] = MIN2(op[0]->value.u[c0], op[1]->value.u[c1]);
|
2010-07-09 11:53:56 -07:00
|
|
|
break;
|
|
|
|
|
case GLSL_TYPE_INT:
|
2010-07-21 21:56:13 -07:00
|
|
|
data.i[c] = MIN2(op[0]->value.i[c0], op[1]->value.i[c1]);
|
2010-07-09 11:53:56 -07:00
|
|
|
break;
|
|
|
|
|
case GLSL_TYPE_FLOAT:
|
2010-07-21 21:56:13 -07:00
|
|
|
data.f[c] = MIN2(op[0]->value.f[c0], op[1]->value.f[c1]);
|
2010-07-09 11:53:56 -07:00
|
|
|
break;
|
2015-02-05 11:53:10 +02:00
|
|
|
case GLSL_TYPE_DOUBLE:
|
|
|
|
|
data.d[c] = MIN2(op[0]->value.d[c0], op[1]->value.d[c1]);
|
|
|
|
|
break;
|
2010-07-09 11:53:56 -07:00
|
|
|
default:
|
|
|
|
|
assert(0);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
break;
|
|
|
|
|
case ir_binop_max:
|
|
|
|
|
assert(op[0]->type == op[1]->type || op0_scalar || op1_scalar);
|
|
|
|
|
for (unsigned c = 0, c0 = 0, c1 = 0;
|
|
|
|
|
c < components;
|
|
|
|
|
c0 += c0_inc, c1 += c1_inc, c++) {
|
|
|
|
|
|
2010-07-15 10:20:51 -07:00
|
|
|
switch (op[0]->type->base_type) {
|
2010-07-09 11:53:56 -07:00
|
|
|
case GLSL_TYPE_UINT:
|
2010-07-21 21:56:13 -07:00
|
|
|
data.u[c] = MAX2(op[0]->value.u[c0], op[1]->value.u[c1]);
|
2010-07-09 11:53:56 -07:00
|
|
|
break;
|
|
|
|
|
case GLSL_TYPE_INT:
|
2010-07-21 21:56:13 -07:00
|
|
|
data.i[c] = MAX2(op[0]->value.i[c0], op[1]->value.i[c1]);
|
2010-07-09 11:53:56 -07:00
|
|
|
break;
|
|
|
|
|
case GLSL_TYPE_FLOAT:
|
2010-07-21 21:56:13 -07:00
|
|
|
data.f[c] = MAX2(op[0]->value.f[c0], op[1]->value.f[c1]);
|
2010-07-09 11:53:56 -07:00
|
|
|
break;
|
2015-02-05 11:53:10 +02:00
|
|
|
case GLSL_TYPE_DOUBLE:
|
|
|
|
|
data.d[c] = MAX2(op[0]->value.d[c0], op[1]->value.d[c1]);
|
|
|
|
|
break;
|
2010-07-09 11:53:56 -07:00
|
|
|
default:
|
|
|
|
|
assert(0);
|
|
|
|
|
}
|
|
|
|
|
}
|
2010-07-13 15:37:57 -07:00
|
|
|
break;
|
2010-07-09 11:53:56 -07:00
|
|
|
|
2010-04-01 18:35:42 -10:00
|
|
|
case ir_binop_add:
|
2010-07-06 02:48:16 -07:00
|
|
|
assert(op[0]->type == op[1]->type || op0_scalar || op1_scalar);
|
|
|
|
|
for (unsigned c = 0, c0 = 0, c1 = 0;
|
|
|
|
|
c < components;
|
|
|
|
|
c0 += c0_inc, c1 += c1_inc, c++) {
|
|
|
|
|
|
2010-07-15 10:20:51 -07:00
|
|
|
switch (op[0]->type->base_type) {
|
2010-07-06 02:48:16 -07:00
|
|
|
case GLSL_TYPE_UINT:
|
|
|
|
|
data.u[c] = op[0]->value.u[c0] + op[1]->value.u[c1];
|
|
|
|
|
break;
|
|
|
|
|
case GLSL_TYPE_INT:
|
|
|
|
|
data.i[c] = op[0]->value.i[c0] + op[1]->value.i[c1];
|
|
|
|
|
break;
|
|
|
|
|
case GLSL_TYPE_FLOAT:
|
|
|
|
|
data.f[c] = op[0]->value.f[c0] + op[1]->value.f[c1];
|
|
|
|
|
break;
|
2015-02-05 11:53:10 +02:00
|
|
|
case GLSL_TYPE_DOUBLE:
|
|
|
|
|
data.d[c] = op[0]->value.d[c0] + op[1]->value.d[c1];
|
|
|
|
|
break;
|
2010-07-06 02:48:16 -07:00
|
|
|
default:
|
|
|
|
|
assert(0);
|
2010-04-01 18:35:42 -10:00
|
|
|
}
|
2010-07-06 02:48:16 -07:00
|
|
|
}
|
2010-06-11 16:23:52 -07:00
|
|
|
|
2010-04-01 18:35:42 -10:00
|
|
|
break;
|
|
|
|
|
case ir_binop_sub:
|
2010-07-06 02:53:29 -07:00
|
|
|
assert(op[0]->type == op[1]->type || op0_scalar || op1_scalar);
|
|
|
|
|
for (unsigned c = 0, c0 = 0, c1 = 0;
|
|
|
|
|
c < components;
|
|
|
|
|
c0 += c0_inc, c1 += c1_inc, c++) {
|
|
|
|
|
|
2010-07-15 10:20:51 -07:00
|
|
|
switch (op[0]->type->base_type) {
|
2010-07-06 02:53:29 -07:00
|
|
|
case GLSL_TYPE_UINT:
|
|
|
|
|
data.u[c] = op[0]->value.u[c0] - op[1]->value.u[c1];
|
|
|
|
|
break;
|
|
|
|
|
case GLSL_TYPE_INT:
|
|
|
|
|
data.i[c] = op[0]->value.i[c0] - op[1]->value.i[c1];
|
|
|
|
|
break;
|
|
|
|
|
case GLSL_TYPE_FLOAT:
|
|
|
|
|
data.f[c] = op[0]->value.f[c0] - op[1]->value.f[c1];
|
|
|
|
|
break;
|
2015-02-05 11:53:10 +02:00
|
|
|
case GLSL_TYPE_DOUBLE:
|
|
|
|
|
data.d[c] = op[0]->value.d[c0] - op[1]->value.d[c1];
|
|
|
|
|
break;
|
2010-07-06 02:53:29 -07:00
|
|
|
default:
|
|
|
|
|
assert(0);
|
2010-04-01 18:35:42 -10:00
|
|
|
}
|
2010-07-06 02:53:29 -07:00
|
|
|
}
|
2010-06-11 16:23:52 -07:00
|
|
|
|
2010-04-01 18:35:42 -10:00
|
|
|
break;
|
2010-03-31 16:25:12 -10:00
|
|
|
case ir_binop_mul:
|
2010-07-05 23:19:56 -07:00
|
|
|
/* Check for equal types, or unequal types involving scalars */
|
2010-07-06 03:01:15 -07:00
|
|
|
if ((op[0]->type == op[1]->type && !op[0]->type->is_matrix())
|
|
|
|
|
|| op0_scalar || op1_scalar) {
|
|
|
|
|
for (unsigned c = 0, c0 = 0, c1 = 0;
|
|
|
|
|
c < components;
|
|
|
|
|
c0 += c0_inc, c1 += c1_inc, c++) {
|
|
|
|
|
|
2010-07-15 10:20:51 -07:00
|
|
|
switch (op[0]->type->base_type) {
|
2010-04-01 18:25:11 -10:00
|
|
|
case GLSL_TYPE_UINT:
|
2010-07-06 03:01:15 -07:00
|
|
|
data.u[c] = op[0]->value.u[c0] * op[1]->value.u[c1];
|
2010-04-01 18:25:11 -10:00
|
|
|
break;
|
|
|
|
|
case GLSL_TYPE_INT:
|
2010-07-06 03:01:15 -07:00
|
|
|
data.i[c] = op[0]->value.i[c0] * op[1]->value.i[c1];
|
2010-04-01 18:25:11 -10:00
|
|
|
break;
|
|
|
|
|
case GLSL_TYPE_FLOAT:
|
2010-07-06 03:01:15 -07:00
|
|
|
data.f[c] = op[0]->value.f[c0] * op[1]->value.f[c1];
|
2010-04-01 18:25:11 -10:00
|
|
|
break;
|
2015-02-05 11:53:10 +02:00
|
|
|
case GLSL_TYPE_DOUBLE:
|
|
|
|
|
data.d[c] = op[0]->value.d[c0] * op[1]->value.d[c1];
|
|
|
|
|
break;
|
2010-04-01 18:25:11 -10:00
|
|
|
default:
|
|
|
|
|
assert(0);
|
|
|
|
|
}
|
2010-03-31 16:25:12 -10:00
|
|
|
}
|
2010-07-05 23:19:56 -07:00
|
|
|
} else {
|
|
|
|
|
assert(op[0]->type->is_matrix() || op[1]->type->is_matrix());
|
|
|
|
|
|
|
|
|
|
/* Multiply an N-by-M matrix with an M-by-P matrix. Since either
|
|
|
|
|
* matrix can be a GLSL vector, either N or P can be 1.
|
|
|
|
|
*
|
|
|
|
|
* For vec*mat, the vector is treated as a row vector. This
|
|
|
|
|
* means the vector is a 1-row x M-column matrix.
|
|
|
|
|
*
|
|
|
|
|
* For mat*vec, the vector is treated as a column vector. Since
|
|
|
|
|
* matrix_columns is 1 for vectors, this just works.
|
|
|
|
|
*/
|
|
|
|
|
const unsigned n = op[0]->type->is_vector()
|
|
|
|
|
? 1 : op[0]->type->vector_elements;
|
|
|
|
|
const unsigned m = op[1]->type->vector_elements;
|
|
|
|
|
const unsigned p = op[1]->type->matrix_columns;
|
|
|
|
|
for (unsigned j = 0; j < p; j++) {
|
|
|
|
|
for (unsigned i = 0; i < n; i++) {
|
|
|
|
|
for (unsigned k = 0; k < m; k++) {
|
2015-02-05 11:53:10 +02:00
|
|
|
if (op[0]->type->base_type == GLSL_TYPE_DOUBLE)
|
|
|
|
|
data.d[i+n*j] += op[0]->value.d[i+n*k]*op[1]->value.d[k+m*j];
|
|
|
|
|
else
|
|
|
|
|
data.f[i+n*j] += op[0]->value.f[i+n*k]*op[1]->value.f[k+m*j];
|
2010-07-05 23:19:56 -07:00
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
2010-06-11 16:23:52 -07:00
|
|
|
|
2010-03-31 16:25:12 -10:00
|
|
|
break;
|
2010-04-01 18:35:42 -10:00
|
|
|
case ir_binop_div:
|
2011-02-01 10:14:28 -08:00
|
|
|
/* FINISHME: Emit warning when division-by-zero is detected. */
|
2010-07-06 02:56:36 -07:00
|
|
|
assert(op[0]->type == op[1]->type || op0_scalar || op1_scalar);
|
|
|
|
|
for (unsigned c = 0, c0 = 0, c1 = 0;
|
|
|
|
|
c < components;
|
|
|
|
|
c0 += c0_inc, c1 += c1_inc, c++) {
|
|
|
|
|
|
2010-07-15 10:20:51 -07:00
|
|
|
switch (op[0]->type->base_type) {
|
2010-07-06 02:56:36 -07:00
|
|
|
case GLSL_TYPE_UINT:
|
2011-02-14 13:22:39 -08:00
|
|
|
if (op[1]->value.u[c1] == 0) {
|
|
|
|
|
data.u[c] = 0;
|
|
|
|
|
} else {
|
|
|
|
|
data.u[c] = op[0]->value.u[c0] / op[1]->value.u[c1];
|
|
|
|
|
}
|
2010-07-06 02:56:36 -07:00
|
|
|
break;
|
|
|
|
|
case GLSL_TYPE_INT:
|
2011-02-14 13:22:39 -08:00
|
|
|
if (op[1]->value.i[c1] == 0) {
|
|
|
|
|
data.i[c] = 0;
|
|
|
|
|
} else {
|
|
|
|
|
data.i[c] = op[0]->value.i[c0] / op[1]->value.i[c1];
|
|
|
|
|
}
|
2010-07-06 02:56:36 -07:00
|
|
|
break;
|
|
|
|
|
case GLSL_TYPE_FLOAT:
|
|
|
|
|
data.f[c] = op[0]->value.f[c0] / op[1]->value.f[c1];
|
|
|
|
|
break;
|
2015-02-05 11:53:10 +02:00
|
|
|
case GLSL_TYPE_DOUBLE:
|
|
|
|
|
data.d[c] = op[0]->value.d[c0] / op[1]->value.d[c1];
|
|
|
|
|
break;
|
2010-07-06 02:56:36 -07:00
|
|
|
default:
|
|
|
|
|
assert(0);
|
2010-04-01 18:35:42 -10:00
|
|
|
}
|
2010-07-06 02:56:36 -07:00
|
|
|
}
|
2010-06-11 16:23:52 -07:00
|
|
|
|
2010-04-01 18:35:42 -10:00
|
|
|
break;
|
2010-07-14 11:28:40 -07:00
|
|
|
case ir_binop_mod:
|
2011-02-01 10:14:28 -08:00
|
|
|
/* FINISHME: Emit warning when division-by-zero is detected. */
|
2010-07-14 11:28:40 -07:00
|
|
|
assert(op[0]->type == op[1]->type || op0_scalar || op1_scalar);
|
|
|
|
|
for (unsigned c = 0, c0 = 0, c1 = 0;
|
|
|
|
|
c < components;
|
|
|
|
|
c0 += c0_inc, c1 += c1_inc, c++) {
|
|
|
|
|
|
2010-07-15 10:20:51 -07:00
|
|
|
switch (op[0]->type->base_type) {
|
2010-07-14 11:28:40 -07:00
|
|
|
case GLSL_TYPE_UINT:
|
2011-02-14 13:22:39 -08:00
|
|
|
if (op[1]->value.u[c1] == 0) {
|
|
|
|
|
data.u[c] = 0;
|
|
|
|
|
} else {
|
|
|
|
|
data.u[c] = op[0]->value.u[c0] % op[1]->value.u[c1];
|
|
|
|
|
}
|
2010-07-14 11:28:40 -07:00
|
|
|
break;
|
|
|
|
|
case GLSL_TYPE_INT:
|
2011-02-14 13:22:39 -08:00
|
|
|
if (op[1]->value.i[c1] == 0) {
|
|
|
|
|
data.i[c] = 0;
|
|
|
|
|
} else {
|
|
|
|
|
data.i[c] = op[0]->value.i[c0] % op[1]->value.i[c1];
|
|
|
|
|
}
|
2010-07-14 11:28:40 -07:00
|
|
|
break;
|
|
|
|
|
case GLSL_TYPE_FLOAT:
|
|
|
|
|
/* We don't use fmod because it rounds toward zero; GLSL specifies
|
|
|
|
|
* the use of floor.
|
|
|
|
|
*/
|
2010-07-22 17:44:34 -07:00
|
|
|
data.f[c] = op[0]->value.f[c0] - op[1]->value.f[c1]
|
2010-07-14 11:28:40 -07:00
|
|
|
* floorf(op[0]->value.f[c0] / op[1]->value.f[c1]);
|
|
|
|
|
break;
|
2015-02-05 11:53:10 +02:00
|
|
|
case GLSL_TYPE_DOUBLE:
|
|
|
|
|
/* We don't use fmod because it rounds toward zero; GLSL specifies
|
|
|
|
|
* the use of floor.
|
|
|
|
|
*/
|
|
|
|
|
data.d[c] = op[0]->value.d[c0] - op[1]->value.d[c1]
|
|
|
|
|
* floor(op[0]->value.d[c0] / op[1]->value.d[c1]);
|
|
|
|
|
break;
|
2010-07-14 11:28:40 -07:00
|
|
|
default:
|
|
|
|
|
assert(0);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
break;
|
|
|
|
|
|
2010-03-31 16:25:12 -10:00
|
|
|
case ir_binop_logic_and:
|
2010-06-11 16:23:52 -07:00
|
|
|
assert(op[0]->type->base_type == GLSL_TYPE_BOOL);
|
2010-07-15 10:20:51 -07:00
|
|
|
for (unsigned c = 0; c < op[0]->type->components(); c++)
|
2010-06-11 16:08:47 -07:00
|
|
|
data.b[c] = op[0]->value.b[c] && op[1]->value.b[c];
|
2010-03-31 16:25:12 -10:00
|
|
|
break;
|
2010-04-01 18:35:42 -10:00
|
|
|
case ir_binop_logic_xor:
|
2010-06-11 16:23:52 -07:00
|
|
|
assert(op[0]->type->base_type == GLSL_TYPE_BOOL);
|
2010-07-15 10:20:51 -07:00
|
|
|
for (unsigned c = 0; c < op[0]->type->components(); c++)
|
2010-06-11 16:08:47 -07:00
|
|
|
data.b[c] = op[0]->value.b[c] ^ op[1]->value.b[c];
|
2010-04-01 18:35:42 -10:00
|
|
|
break;
|
2010-03-31 16:25:12 -10:00
|
|
|
case ir_binop_logic_or:
|
2010-06-11 16:23:52 -07:00
|
|
|
assert(op[0]->type->base_type == GLSL_TYPE_BOOL);
|
2010-07-15 10:20:51 -07:00
|
|
|
for (unsigned c = 0; c < op[0]->type->components(); c++)
|
2010-06-11 16:08:47 -07:00
|
|
|
data.b[c] = op[0]->value.b[c] || op[1]->value.b[c];
|
2010-03-31 16:25:12 -10:00
|
|
|
break;
|
2010-04-06 09:55:45 -07:00
|
|
|
|
|
|
|
|
case ir_binop_less:
|
glsl: Fix constant expression handling for <, >, <=, >= on vectors.
ir_binop_less, ir_binop_greater, ir_binop_lequal, and ir_binop_gequal
are defined to work on vectors as well as scalars, as long as the two
operands have the same type.
This is evident from both ir_validate.cpp and our use of these opcodes
in the GLSL lessThan, greaterThan, lessThanEqual, greaterThanEqual
built-in functions.
Found by code inspection. Not known to fix any bugs. Presumably, our
tests for the built-in comparison functions must pass because C.E.
handling is done on the ir_call of "greaterThan" rather than the inlined
opcode. The C.E. handling of the built-in function calls is correct.
NOTE: This is a candidate for the 7.9 branch.
2010-11-17 10:40:28 -08:00
|
|
|
assert(op[0]->type == op[1]->type);
|
|
|
|
|
for (unsigned c = 0; c < op[0]->type->components(); c++) {
|
|
|
|
|
switch (op[0]->type->base_type) {
|
|
|
|
|
case GLSL_TYPE_UINT:
|
2012-05-08 12:04:45 -07:00
|
|
|
data.b[c] = op[0]->value.u[c] < op[1]->value.u[c];
|
glsl: Fix constant expression handling for <, >, <=, >= on vectors.
ir_binop_less, ir_binop_greater, ir_binop_lequal, and ir_binop_gequal
are defined to work on vectors as well as scalars, as long as the two
operands have the same type.
This is evident from both ir_validate.cpp and our use of these opcodes
in the GLSL lessThan, greaterThan, lessThanEqual, greaterThanEqual
built-in functions.
Found by code inspection. Not known to fix any bugs. Presumably, our
tests for the built-in comparison functions must pass because C.E.
handling is done on the ir_call of "greaterThan" rather than the inlined
opcode. The C.E. handling of the built-in function calls is correct.
NOTE: This is a candidate for the 7.9 branch.
2010-11-17 10:40:28 -08:00
|
|
|
break;
|
|
|
|
|
case GLSL_TYPE_INT:
|
2012-05-08 12:04:45 -07:00
|
|
|
data.b[c] = op[0]->value.i[c] < op[1]->value.i[c];
|
glsl: Fix constant expression handling for <, >, <=, >= on vectors.
ir_binop_less, ir_binop_greater, ir_binop_lequal, and ir_binop_gequal
are defined to work on vectors as well as scalars, as long as the two
operands have the same type.
This is evident from both ir_validate.cpp and our use of these opcodes
in the GLSL lessThan, greaterThan, lessThanEqual, greaterThanEqual
built-in functions.
Found by code inspection. Not known to fix any bugs. Presumably, our
tests for the built-in comparison functions must pass because C.E.
handling is done on the ir_call of "greaterThan" rather than the inlined
opcode. The C.E. handling of the built-in function calls is correct.
NOTE: This is a candidate for the 7.9 branch.
2010-11-17 10:40:28 -08:00
|
|
|
break;
|
|
|
|
|
case GLSL_TYPE_FLOAT:
|
2012-05-08 12:04:45 -07:00
|
|
|
data.b[c] = op[0]->value.f[c] < op[1]->value.f[c];
|
glsl: Fix constant expression handling for <, >, <=, >= on vectors.
ir_binop_less, ir_binop_greater, ir_binop_lequal, and ir_binop_gequal
are defined to work on vectors as well as scalars, as long as the two
operands have the same type.
This is evident from both ir_validate.cpp and our use of these opcodes
in the GLSL lessThan, greaterThan, lessThanEqual, greaterThanEqual
built-in functions.
Found by code inspection. Not known to fix any bugs. Presumably, our
tests for the built-in comparison functions must pass because C.E.
handling is done on the ir_call of "greaterThan" rather than the inlined
opcode. The C.E. handling of the built-in function calls is correct.
NOTE: This is a candidate for the 7.9 branch.
2010-11-17 10:40:28 -08:00
|
|
|
break;
|
2015-02-05 11:53:10 +02:00
|
|
|
case GLSL_TYPE_DOUBLE:
|
|
|
|
|
data.b[c] = op[0]->value.d[c] < op[1]->value.d[c];
|
|
|
|
|
break;
|
glsl: Fix constant expression handling for <, >, <=, >= on vectors.
ir_binop_less, ir_binop_greater, ir_binop_lequal, and ir_binop_gequal
are defined to work on vectors as well as scalars, as long as the two
operands have the same type.
This is evident from both ir_validate.cpp and our use of these opcodes
in the GLSL lessThan, greaterThan, lessThanEqual, greaterThanEqual
built-in functions.
Found by code inspection. Not known to fix any bugs. Presumably, our
tests for the built-in comparison functions must pass because C.E.
handling is done on the ir_call of "greaterThan" rather than the inlined
opcode. The C.E. handling of the built-in function calls is correct.
NOTE: This is a candidate for the 7.9 branch.
2010-11-17 10:40:28 -08:00
|
|
|
default:
|
|
|
|
|
assert(0);
|
|
|
|
|
}
|
2010-04-06 09:55:45 -07:00
|
|
|
}
|
|
|
|
|
break;
|
|
|
|
|
case ir_binop_greater:
|
glsl: Fix constant expression handling for <, >, <=, >= on vectors.
ir_binop_less, ir_binop_greater, ir_binop_lequal, and ir_binop_gequal
are defined to work on vectors as well as scalars, as long as the two
operands have the same type.
This is evident from both ir_validate.cpp and our use of these opcodes
in the GLSL lessThan, greaterThan, lessThanEqual, greaterThanEqual
built-in functions.
Found by code inspection. Not known to fix any bugs. Presumably, our
tests for the built-in comparison functions must pass because C.E.
handling is done on the ir_call of "greaterThan" rather than the inlined
opcode. The C.E. handling of the built-in function calls is correct.
NOTE: This is a candidate for the 7.9 branch.
2010-11-17 10:40:28 -08:00
|
|
|
assert(op[0]->type == op[1]->type);
|
|
|
|
|
for (unsigned c = 0; c < op[0]->type->components(); c++) {
|
|
|
|
|
switch (op[0]->type->base_type) {
|
|
|
|
|
case GLSL_TYPE_UINT:
|
|
|
|
|
data.b[c] = op[0]->value.u[c] > op[1]->value.u[c];
|
|
|
|
|
break;
|
|
|
|
|
case GLSL_TYPE_INT:
|
|
|
|
|
data.b[c] = op[0]->value.i[c] > op[1]->value.i[c];
|
|
|
|
|
break;
|
|
|
|
|
case GLSL_TYPE_FLOAT:
|
|
|
|
|
data.b[c] = op[0]->value.f[c] > op[1]->value.f[c];
|
|
|
|
|
break;
|
2015-02-05 11:53:10 +02:00
|
|
|
case GLSL_TYPE_DOUBLE:
|
|
|
|
|
data.b[c] = op[0]->value.d[c] > op[1]->value.d[c];
|
|
|
|
|
break;
|
glsl: Fix constant expression handling for <, >, <=, >= on vectors.
ir_binop_less, ir_binop_greater, ir_binop_lequal, and ir_binop_gequal
are defined to work on vectors as well as scalars, as long as the two
operands have the same type.
This is evident from both ir_validate.cpp and our use of these opcodes
in the GLSL lessThan, greaterThan, lessThanEqual, greaterThanEqual
built-in functions.
Found by code inspection. Not known to fix any bugs. Presumably, our
tests for the built-in comparison functions must pass because C.E.
handling is done on the ir_call of "greaterThan" rather than the inlined
opcode. The C.E. handling of the built-in function calls is correct.
NOTE: This is a candidate for the 7.9 branch.
2010-11-17 10:40:28 -08:00
|
|
|
default:
|
|
|
|
|
assert(0);
|
|
|
|
|
}
|
2010-04-06 09:55:45 -07:00
|
|
|
}
|
|
|
|
|
break;
|
|
|
|
|
case ir_binop_lequal:
|
glsl: Fix constant expression handling for <, >, <=, >= on vectors.
ir_binop_less, ir_binop_greater, ir_binop_lequal, and ir_binop_gequal
are defined to work on vectors as well as scalars, as long as the two
operands have the same type.
This is evident from both ir_validate.cpp and our use of these opcodes
in the GLSL lessThan, greaterThan, lessThanEqual, greaterThanEqual
built-in functions.
Found by code inspection. Not known to fix any bugs. Presumably, our
tests for the built-in comparison functions must pass because C.E.
handling is done on the ir_call of "greaterThan" rather than the inlined
opcode. The C.E. handling of the built-in function calls is correct.
NOTE: This is a candidate for the 7.9 branch.
2010-11-17 10:40:28 -08:00
|
|
|
assert(op[0]->type == op[1]->type);
|
|
|
|
|
for (unsigned c = 0; c < op[0]->type->components(); c++) {
|
|
|
|
|
switch (op[0]->type->base_type) {
|
|
|
|
|
case GLSL_TYPE_UINT:
|
2012-05-08 12:04:45 -07:00
|
|
|
data.b[c] = op[0]->value.u[c] <= op[1]->value.u[c];
|
glsl: Fix constant expression handling for <, >, <=, >= on vectors.
ir_binop_less, ir_binop_greater, ir_binop_lequal, and ir_binop_gequal
are defined to work on vectors as well as scalars, as long as the two
operands have the same type.
This is evident from both ir_validate.cpp and our use of these opcodes
in the GLSL lessThan, greaterThan, lessThanEqual, greaterThanEqual
built-in functions.
Found by code inspection. Not known to fix any bugs. Presumably, our
tests for the built-in comparison functions must pass because C.E.
handling is done on the ir_call of "greaterThan" rather than the inlined
opcode. The C.E. handling of the built-in function calls is correct.
NOTE: This is a candidate for the 7.9 branch.
2010-11-17 10:40:28 -08:00
|
|
|
break;
|
|
|
|
|
case GLSL_TYPE_INT:
|
2012-05-08 12:04:45 -07:00
|
|
|
data.b[c] = op[0]->value.i[c] <= op[1]->value.i[c];
|
glsl: Fix constant expression handling for <, >, <=, >= on vectors.
ir_binop_less, ir_binop_greater, ir_binop_lequal, and ir_binop_gequal
are defined to work on vectors as well as scalars, as long as the two
operands have the same type.
This is evident from both ir_validate.cpp and our use of these opcodes
in the GLSL lessThan, greaterThan, lessThanEqual, greaterThanEqual
built-in functions.
Found by code inspection. Not known to fix any bugs. Presumably, our
tests for the built-in comparison functions must pass because C.E.
handling is done on the ir_call of "greaterThan" rather than the inlined
opcode. The C.E. handling of the built-in function calls is correct.
NOTE: This is a candidate for the 7.9 branch.
2010-11-17 10:40:28 -08:00
|
|
|
break;
|
|
|
|
|
case GLSL_TYPE_FLOAT:
|
2012-05-08 12:04:45 -07:00
|
|
|
data.b[c] = op[0]->value.f[c] <= op[1]->value.f[c];
|
glsl: Fix constant expression handling for <, >, <=, >= on vectors.
ir_binop_less, ir_binop_greater, ir_binop_lequal, and ir_binop_gequal
are defined to work on vectors as well as scalars, as long as the two
operands have the same type.
This is evident from both ir_validate.cpp and our use of these opcodes
in the GLSL lessThan, greaterThan, lessThanEqual, greaterThanEqual
built-in functions.
Found by code inspection. Not known to fix any bugs. Presumably, our
tests for the built-in comparison functions must pass because C.E.
handling is done on the ir_call of "greaterThan" rather than the inlined
opcode. The C.E. handling of the built-in function calls is correct.
NOTE: This is a candidate for the 7.9 branch.
2010-11-17 10:40:28 -08:00
|
|
|
break;
|
2015-02-05 11:53:10 +02:00
|
|
|
case GLSL_TYPE_DOUBLE:
|
|
|
|
|
data.b[c] = op[0]->value.d[c] <= op[1]->value.d[c];
|
|
|
|
|
break;
|
glsl: Fix constant expression handling for <, >, <=, >= on vectors.
ir_binop_less, ir_binop_greater, ir_binop_lequal, and ir_binop_gequal
are defined to work on vectors as well as scalars, as long as the two
operands have the same type.
This is evident from both ir_validate.cpp and our use of these opcodes
in the GLSL lessThan, greaterThan, lessThanEqual, greaterThanEqual
built-in functions.
Found by code inspection. Not known to fix any bugs. Presumably, our
tests for the built-in comparison functions must pass because C.E.
handling is done on the ir_call of "greaterThan" rather than the inlined
opcode. The C.E. handling of the built-in function calls is correct.
NOTE: This is a candidate for the 7.9 branch.
2010-11-17 10:40:28 -08:00
|
|
|
default:
|
|
|
|
|
assert(0);
|
|
|
|
|
}
|
2010-04-06 09:55:45 -07:00
|
|
|
}
|
|
|
|
|
break;
|
|
|
|
|
case ir_binop_gequal:
|
glsl: Fix constant expression handling for <, >, <=, >= on vectors.
ir_binop_less, ir_binop_greater, ir_binop_lequal, and ir_binop_gequal
are defined to work on vectors as well as scalars, as long as the two
operands have the same type.
This is evident from both ir_validate.cpp and our use of these opcodes
in the GLSL lessThan, greaterThan, lessThanEqual, greaterThanEqual
built-in functions.
Found by code inspection. Not known to fix any bugs. Presumably, our
tests for the built-in comparison functions must pass because C.E.
handling is done on the ir_call of "greaterThan" rather than the inlined
opcode. The C.E. handling of the built-in function calls is correct.
NOTE: This is a candidate for the 7.9 branch.
2010-11-17 10:40:28 -08:00
|
|
|
assert(op[0]->type == op[1]->type);
|
|
|
|
|
for (unsigned c = 0; c < op[0]->type->components(); c++) {
|
|
|
|
|
switch (op[0]->type->base_type) {
|
|
|
|
|
case GLSL_TYPE_UINT:
|
2012-05-08 12:04:45 -07:00
|
|
|
data.b[c] = op[0]->value.u[c] >= op[1]->value.u[c];
|
glsl: Fix constant expression handling for <, >, <=, >= on vectors.
ir_binop_less, ir_binop_greater, ir_binop_lequal, and ir_binop_gequal
are defined to work on vectors as well as scalars, as long as the two
operands have the same type.
This is evident from both ir_validate.cpp and our use of these opcodes
in the GLSL lessThan, greaterThan, lessThanEqual, greaterThanEqual
built-in functions.
Found by code inspection. Not known to fix any bugs. Presumably, our
tests for the built-in comparison functions must pass because C.E.
handling is done on the ir_call of "greaterThan" rather than the inlined
opcode. The C.E. handling of the built-in function calls is correct.
NOTE: This is a candidate for the 7.9 branch.
2010-11-17 10:40:28 -08:00
|
|
|
break;
|
|
|
|
|
case GLSL_TYPE_INT:
|
2012-05-08 12:04:45 -07:00
|
|
|
data.b[c] = op[0]->value.i[c] >= op[1]->value.i[c];
|
glsl: Fix constant expression handling for <, >, <=, >= on vectors.
ir_binop_less, ir_binop_greater, ir_binop_lequal, and ir_binop_gequal
are defined to work on vectors as well as scalars, as long as the two
operands have the same type.
This is evident from both ir_validate.cpp and our use of these opcodes
in the GLSL lessThan, greaterThan, lessThanEqual, greaterThanEqual
built-in functions.
Found by code inspection. Not known to fix any bugs. Presumably, our
tests for the built-in comparison functions must pass because C.E.
handling is done on the ir_call of "greaterThan" rather than the inlined
opcode. The C.E. handling of the built-in function calls is correct.
NOTE: This is a candidate for the 7.9 branch.
2010-11-17 10:40:28 -08:00
|
|
|
break;
|
|
|
|
|
case GLSL_TYPE_FLOAT:
|
2012-05-08 12:04:45 -07:00
|
|
|
data.b[c] = op[0]->value.f[c] >= op[1]->value.f[c];
|
glsl: Fix constant expression handling for <, >, <=, >= on vectors.
ir_binop_less, ir_binop_greater, ir_binop_lequal, and ir_binop_gequal
are defined to work on vectors as well as scalars, as long as the two
operands have the same type.
This is evident from both ir_validate.cpp and our use of these opcodes
in the GLSL lessThan, greaterThan, lessThanEqual, greaterThanEqual
built-in functions.
Found by code inspection. Not known to fix any bugs. Presumably, our
tests for the built-in comparison functions must pass because C.E.
handling is done on the ir_call of "greaterThan" rather than the inlined
opcode. The C.E. handling of the built-in function calls is correct.
NOTE: This is a candidate for the 7.9 branch.
2010-11-17 10:40:28 -08:00
|
|
|
break;
|
2015-02-05 11:53:10 +02:00
|
|
|
case GLSL_TYPE_DOUBLE:
|
|
|
|
|
data.b[c] = op[0]->value.d[c] >= op[1]->value.d[c];
|
|
|
|
|
break;
|
glsl: Fix constant expression handling for <, >, <=, >= on vectors.
ir_binop_less, ir_binop_greater, ir_binop_lequal, and ir_binop_gequal
are defined to work on vectors as well as scalars, as long as the two
operands have the same type.
This is evident from both ir_validate.cpp and our use of these opcodes
in the GLSL lessThan, greaterThan, lessThanEqual, greaterThanEqual
built-in functions.
Found by code inspection. Not known to fix any bugs. Presumably, our
tests for the built-in comparison functions must pass because C.E.
handling is done on the ir_call of "greaterThan" rather than the inlined
opcode. The C.E. handling of the built-in function calls is correct.
NOTE: This is a candidate for the 7.9 branch.
2010-11-17 10:40:28 -08:00
|
|
|
default:
|
|
|
|
|
assert(0);
|
|
|
|
|
}
|
2010-04-06 09:55:45 -07:00
|
|
|
}
|
|
|
|
|
break;
|
2010-04-06 10:02:27 -07:00
|
|
|
case ir_binop_equal:
|
2010-09-19 04:51:07 +02:00
|
|
|
assert(op[0]->type == op[1]->type);
|
|
|
|
|
for (unsigned c = 0; c < components; c++) {
|
|
|
|
|
switch (op[0]->type->base_type) {
|
|
|
|
|
case GLSL_TYPE_UINT:
|
|
|
|
|
data.b[c] = op[0]->value.u[c] == op[1]->value.u[c];
|
|
|
|
|
break;
|
|
|
|
|
case GLSL_TYPE_INT:
|
|
|
|
|
data.b[c] = op[0]->value.i[c] == op[1]->value.i[c];
|
|
|
|
|
break;
|
|
|
|
|
case GLSL_TYPE_FLOAT:
|
|
|
|
|
data.b[c] = op[0]->value.f[c] == op[1]->value.f[c];
|
|
|
|
|
break;
|
2011-11-09 00:58:21 -08:00
|
|
|
case GLSL_TYPE_BOOL:
|
|
|
|
|
data.b[c] = op[0]->value.b[c] == op[1]->value.b[c];
|
|
|
|
|
break;
|
2015-02-05 11:53:10 +02:00
|
|
|
case GLSL_TYPE_DOUBLE:
|
|
|
|
|
data.b[c] = op[0]->value.d[c] == op[1]->value.d[c];
|
|
|
|
|
break;
|
2010-09-19 04:51:07 +02:00
|
|
|
default:
|
|
|
|
|
assert(0);
|
|
|
|
|
}
|
2010-09-08 01:31:39 +02:00
|
|
|
}
|
2010-04-06 10:02:27 -07:00
|
|
|
break;
|
|
|
|
|
case ir_binop_nequal:
|
2011-10-06 11:28:42 -07:00
|
|
|
assert(op[0]->type == op[1]->type);
|
2010-09-19 04:51:07 +02:00
|
|
|
for (unsigned c = 0; c < components; c++) {
|
|
|
|
|
switch (op[0]->type->base_type) {
|
|
|
|
|
case GLSL_TYPE_UINT:
|
|
|
|
|
data.b[c] = op[0]->value.u[c] != op[1]->value.u[c];
|
|
|
|
|
break;
|
|
|
|
|
case GLSL_TYPE_INT:
|
|
|
|
|
data.b[c] = op[0]->value.i[c] != op[1]->value.i[c];
|
|
|
|
|
break;
|
|
|
|
|
case GLSL_TYPE_FLOAT:
|
|
|
|
|
data.b[c] = op[0]->value.f[c] != op[1]->value.f[c];
|
|
|
|
|
break;
|
2011-11-09 00:58:21 -08:00
|
|
|
case GLSL_TYPE_BOOL:
|
|
|
|
|
data.b[c] = op[0]->value.b[c] != op[1]->value.b[c];
|
|
|
|
|
break;
|
2015-02-05 11:53:10 +02:00
|
|
|
case GLSL_TYPE_DOUBLE:
|
|
|
|
|
data.b[c] = op[0]->value.d[c] != op[1]->value.d[c];
|
|
|
|
|
break;
|
2010-09-19 04:51:07 +02:00
|
|
|
default:
|
|
|
|
|
assert(0);
|
|
|
|
|
}
|
2010-09-08 01:31:39 +02:00
|
|
|
}
|
|
|
|
|
break;
|
|
|
|
|
case ir_binop_all_equal:
|
|
|
|
|
data.b[0] = op[0]->has_value(op[1]);
|
|
|
|
|
break;
|
|
|
|
|
case ir_binop_any_nequal:
|
2010-07-20 03:01:54 -07:00
|
|
|
data.b[0] = !op[0]->has_value(op[1]);
|
2010-04-06 10:02:27 -07:00
|
|
|
break;
|
|
|
|
|
|
2010-10-09 20:56:14 -07:00
|
|
|
case ir_binop_lshift:
|
|
|
|
|
for (unsigned c = 0, c0 = 0, c1 = 0;
|
|
|
|
|
c < components;
|
|
|
|
|
c0 += c0_inc, c1 += c1_inc, c++) {
|
|
|
|
|
|
|
|
|
|
if (op[0]->type->base_type == GLSL_TYPE_INT &&
|
|
|
|
|
op[1]->type->base_type == GLSL_TYPE_INT) {
|
|
|
|
|
data.i[c] = op[0]->value.i[c0] << op[1]->value.i[c1];
|
|
|
|
|
|
|
|
|
|
} else if (op[0]->type->base_type == GLSL_TYPE_INT &&
|
|
|
|
|
op[1]->type->base_type == GLSL_TYPE_UINT) {
|
|
|
|
|
data.i[c] = op[0]->value.i[c0] << op[1]->value.u[c1];
|
|
|
|
|
|
|
|
|
|
} else if (op[0]->type->base_type == GLSL_TYPE_UINT &&
|
|
|
|
|
op[1]->type->base_type == GLSL_TYPE_INT) {
|
|
|
|
|
data.u[c] = op[0]->value.u[c0] << op[1]->value.i[c1];
|
|
|
|
|
|
|
|
|
|
} else if (op[0]->type->base_type == GLSL_TYPE_UINT &&
|
|
|
|
|
op[1]->type->base_type == GLSL_TYPE_UINT) {
|
|
|
|
|
data.u[c] = op[0]->value.u[c0] << op[1]->value.u[c1];
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
case ir_binop_rshift:
|
|
|
|
|
for (unsigned c = 0, c0 = 0, c1 = 0;
|
|
|
|
|
c < components;
|
|
|
|
|
c0 += c0_inc, c1 += c1_inc, c++) {
|
|
|
|
|
|
|
|
|
|
if (op[0]->type->base_type == GLSL_TYPE_INT &&
|
|
|
|
|
op[1]->type->base_type == GLSL_TYPE_INT) {
|
|
|
|
|
data.i[c] = op[0]->value.i[c0] >> op[1]->value.i[c1];
|
|
|
|
|
|
|
|
|
|
} else if (op[0]->type->base_type == GLSL_TYPE_INT &&
|
|
|
|
|
op[1]->type->base_type == GLSL_TYPE_UINT) {
|
|
|
|
|
data.i[c] = op[0]->value.i[c0] >> op[1]->value.u[c1];
|
|
|
|
|
|
|
|
|
|
} else if (op[0]->type->base_type == GLSL_TYPE_UINT &&
|
|
|
|
|
op[1]->type->base_type == GLSL_TYPE_INT) {
|
|
|
|
|
data.u[c] = op[0]->value.u[c0] >> op[1]->value.i[c1];
|
|
|
|
|
|
|
|
|
|
} else if (op[0]->type->base_type == GLSL_TYPE_UINT &&
|
|
|
|
|
op[1]->type->base_type == GLSL_TYPE_UINT) {
|
|
|
|
|
data.u[c] = op[0]->value.u[c0] >> op[1]->value.u[c1];
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
break;
|
|
|
|
|
|
2010-10-09 21:27:41 -07:00
|
|
|
case ir_binop_bit_and:
|
|
|
|
|
for (unsigned c = 0, c0 = 0, c1 = 0;
|
|
|
|
|
c < components;
|
|
|
|
|
c0 += c0_inc, c1 += c1_inc, c++) {
|
|
|
|
|
|
|
|
|
|
switch (op[0]->type->base_type) {
|
|
|
|
|
case GLSL_TYPE_INT:
|
|
|
|
|
data.i[c] = op[0]->value.i[c0] & op[1]->value.i[c1];
|
|
|
|
|
break;
|
|
|
|
|
case GLSL_TYPE_UINT:
|
|
|
|
|
data.u[c] = op[0]->value.u[c0] & op[1]->value.u[c1];
|
|
|
|
|
break;
|
|
|
|
|
default:
|
|
|
|
|
assert(0);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
case ir_binop_bit_or:
|
|
|
|
|
for (unsigned c = 0, c0 = 0, c1 = 0;
|
|
|
|
|
c < components;
|
|
|
|
|
c0 += c0_inc, c1 += c1_inc, c++) {
|
|
|
|
|
|
|
|
|
|
switch (op[0]->type->base_type) {
|
|
|
|
|
case GLSL_TYPE_INT:
|
|
|
|
|
data.i[c] = op[0]->value.i[c0] | op[1]->value.i[c1];
|
|
|
|
|
break;
|
|
|
|
|
case GLSL_TYPE_UINT:
|
|
|
|
|
data.u[c] = op[0]->value.u[c0] | op[1]->value.u[c1];
|
|
|
|
|
break;
|
|
|
|
|
default:
|
|
|
|
|
assert(0);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
break;
|
|
|
|
|
|
2013-03-06 11:05:14 -08:00
|
|
|
case ir_binop_vector_extract: {
|
|
|
|
|
const int c = CLAMP(op[1]->value.i[0], 0,
|
|
|
|
|
(int) op[0]->type->vector_elements - 1);
|
|
|
|
|
|
|
|
|
|
switch (op[0]->type->base_type) {
|
|
|
|
|
case GLSL_TYPE_UINT:
|
|
|
|
|
data.u[0] = op[0]->value.u[c];
|
|
|
|
|
break;
|
|
|
|
|
case GLSL_TYPE_INT:
|
|
|
|
|
data.i[0] = op[0]->value.i[c];
|
|
|
|
|
break;
|
|
|
|
|
case GLSL_TYPE_FLOAT:
|
|
|
|
|
data.f[0] = op[0]->value.f[c];
|
|
|
|
|
break;
|
2015-02-05 11:53:10 +02:00
|
|
|
case GLSL_TYPE_DOUBLE:
|
|
|
|
|
data.d[0] = op[0]->value.d[c];
|
|
|
|
|
break;
|
2013-03-06 11:05:14 -08:00
|
|
|
case GLSL_TYPE_BOOL:
|
|
|
|
|
data.b[0] = op[0]->value.b[c];
|
|
|
|
|
break;
|
|
|
|
|
default:
|
|
|
|
|
assert(0);
|
|
|
|
|
}
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
|
2010-10-09 21:27:41 -07:00
|
|
|
case ir_binop_bit_xor:
|
|
|
|
|
for (unsigned c = 0, c0 = 0, c1 = 0;
|
|
|
|
|
c < components;
|
|
|
|
|
c0 += c0_inc, c1 += c1_inc, c++) {
|
|
|
|
|
|
|
|
|
|
switch (op[0]->type->base_type) {
|
|
|
|
|
case GLSL_TYPE_INT:
|
|
|
|
|
data.i[c] = op[0]->value.i[c0] ^ op[1]->value.i[c1];
|
|
|
|
|
break;
|
|
|
|
|
case GLSL_TYPE_UINT:
|
|
|
|
|
data.u[c] = op[0]->value.u[c0] ^ op[1]->value.u[c1];
|
|
|
|
|
break;
|
|
|
|
|
default:
|
|
|
|
|
assert(0);
|
|
|
|
|
}
|
|
|
|
|
}
|
2010-11-16 12:01:42 -08:00
|
|
|
break;
|
|
|
|
|
|
2013-04-21 12:33:59 -07:00
|
|
|
case ir_unop_bitfield_reverse:
|
|
|
|
|
/* http://graphics.stanford.edu/~seander/bithacks.html#BitReverseObvious */
|
|
|
|
|
for (unsigned c = 0; c < components; c++) {
|
|
|
|
|
unsigned int v = op[0]->value.u[c]; // input bits to be reversed
|
|
|
|
|
unsigned int r = v; // r will be reversed bits of v; first get LSB of v
|
|
|
|
|
int s = sizeof(v) * CHAR_BIT - 1; // extra shift needed at end
|
|
|
|
|
|
|
|
|
|
for (v >>= 1; v; v >>= 1) {
|
|
|
|
|
r <<= 1;
|
|
|
|
|
r |= v & 1;
|
|
|
|
|
s--;
|
|
|
|
|
}
|
|
|
|
|
r <<= s; // shift when v's highest bits are zero
|
|
|
|
|
|
|
|
|
|
data.u[c] = r;
|
|
|
|
|
}
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
case ir_unop_bit_count:
|
|
|
|
|
for (unsigned c = 0; c < components; c++) {
|
|
|
|
|
unsigned count = 0;
|
|
|
|
|
unsigned v = op[0]->value.u[c];
|
|
|
|
|
|
|
|
|
|
for (; v; count++) {
|
|
|
|
|
v &= v - 1;
|
|
|
|
|
}
|
|
|
|
|
data.u[c] = count;
|
|
|
|
|
}
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
case ir_unop_find_msb:
|
|
|
|
|
for (unsigned c = 0; c < components; c++) {
|
|
|
|
|
int v = op[0]->value.i[c];
|
|
|
|
|
|
|
|
|
|
if (v == 0 || (op[0]->type->base_type == GLSL_TYPE_INT && v == -1))
|
|
|
|
|
data.i[c] = -1;
|
|
|
|
|
else {
|
|
|
|
|
int count = 0;
|
|
|
|
|
int top_bit = op[0]->type->base_type == GLSL_TYPE_UINT
|
|
|
|
|
? 0 : v & (1 << 31);
|
|
|
|
|
|
|
|
|
|
while (((v & (1 << 31)) == top_bit) && count != 32) {
|
|
|
|
|
count++;
|
|
|
|
|
v <<= 1;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
data.i[c] = 31 - count;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
case ir_unop_find_lsb:
|
|
|
|
|
for (unsigned c = 0; c < components; c++) {
|
|
|
|
|
if (op[0]->value.i[c] == 0)
|
|
|
|
|
data.i[c] = -1;
|
|
|
|
|
else {
|
|
|
|
|
unsigned pos = 0;
|
|
|
|
|
unsigned v = op[0]->value.u[c];
|
|
|
|
|
|
|
|
|
|
for (; !(v & 1); v >>= 1) {
|
|
|
|
|
pos++;
|
|
|
|
|
}
|
|
|
|
|
data.u[c] = pos;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
break;
|
|
|
|
|
|
2014-06-12 13:53:40 -07:00
|
|
|
case ir_unop_saturate:
|
|
|
|
|
for (unsigned c = 0; c < components; c++) {
|
|
|
|
|
data.f[c] = CLAMP(op[0]->value.f[c], 0.0f, 1.0f);
|
|
|
|
|
}
|
|
|
|
|
break;
|
2015-02-05 11:53:10 +02:00
|
|
|
case ir_unop_pack_double_2x32: {
|
|
|
|
|
/* XXX needs to be checked on big-endian */
|
|
|
|
|
uint64_t temp;
|
|
|
|
|
temp = (uint64_t)op[0]->value.u[0] | ((uint64_t)op[0]->value.u[1] << 32);
|
|
|
|
|
data.d[0] = *(double *)&temp;
|
|
|
|
|
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
case ir_unop_unpack_double_2x32:
|
|
|
|
|
/* XXX needs to be checked on big-endian */
|
|
|
|
|
data.u[0] = *(uint32_t *)&op[0]->value.d[0];
|
|
|
|
|
data.u[1] = *((uint32_t *)&op[0]->value.d[0] + 1);
|
|
|
|
|
break;
|
2014-06-12 13:53:40 -07:00
|
|
|
|
2013-04-21 12:33:59 -07:00
|
|
|
case ir_triop_bitfield_extract: {
|
|
|
|
|
for (unsigned c = 0; c < components; c++) {
|
glsl, nir: Make ir_triop_bitfield_extract a vectorized operation.
We would like to be able to combine
result.x = bitfieldExtract(src0.x, src1.x, src2.x);
result.y = bitfieldExtract(src0.y, src1.y, src2.y);
result.z = bitfieldExtract(src0.z, src1.z, src2.z);
result.w = bitfieldExtract(src0.w, src1.w, src2.w);
into a single ivec4 bitfieldInsert operation. This should be possible
with most drivers.
This patch changes the offset and bits parameters from scalar ints
to ivecN or uvecN. The type of all three operands will be the same,
for simplicity.
Signed-off-by: Kenneth Graunke <kenneth@whitecape.org>
Reviewed-by: Matt Turner <mattst88@gmail.com>
Reviewed-by: Ilia Mirkin <imirkin@alum.mit.edu>
2016-01-07 16:01:51 -08:00
|
|
|
int offset = op[1]->value.i[c];
|
|
|
|
|
int bits = op[2]->value.i[c];
|
|
|
|
|
|
2013-04-21 12:33:59 -07:00
|
|
|
if (bits == 0)
|
|
|
|
|
data.u[c] = 0;
|
|
|
|
|
else if (offset < 0 || bits < 0)
|
|
|
|
|
data.u[c] = 0; /* Undefined, per spec. */
|
|
|
|
|
else if (offset + bits > 32)
|
|
|
|
|
data.u[c] = 0; /* Undefined, per spec. */
|
|
|
|
|
else {
|
|
|
|
|
if (op[0]->type->base_type == GLSL_TYPE_INT) {
|
|
|
|
|
/* int so that the right shift will sign-extend. */
|
|
|
|
|
int value = op[0]->value.i[c];
|
|
|
|
|
value <<= 32 - bits - offset;
|
|
|
|
|
value >>= 32 - bits;
|
|
|
|
|
data.i[c] = value;
|
|
|
|
|
} else {
|
|
|
|
|
unsigned value = op[0]->value.u[c];
|
|
|
|
|
value <<= 32 - bits - offset;
|
|
|
|
|
value >>= 32 - bits;
|
|
|
|
|
data.u[c] = value;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
|
2013-08-22 13:31:18 -07:00
|
|
|
case ir_binop_ldexp:
|
|
|
|
|
for (unsigned c = 0; c < components; c++) {
|
2015-02-05 11:53:10 +02:00
|
|
|
if (op[0]->type->base_type == GLSL_TYPE_DOUBLE) {
|
|
|
|
|
data.d[c] = ldexp(op[0]->value.d[c], op[1]->value.i[c]);
|
|
|
|
|
/* Flush subnormal values to zero. */
|
|
|
|
|
if (!isnormal(data.d[c]))
|
|
|
|
|
data.d[c] = copysign(0.0, op[0]->value.d[c]);
|
|
|
|
|
} else {
|
2015-07-15 21:29:21 -07:00
|
|
|
data.f[c] = ldexpf(op[0]->value.f[c], op[1]->value.i[c]);
|
2015-02-05 11:53:10 +02:00
|
|
|
/* Flush subnormal values to zero. */
|
|
|
|
|
if (!isnormal(data.f[c]))
|
2015-07-15 21:29:21 -07:00
|
|
|
data.f[c] = copysignf(0.0f, op[0]->value.f[c]);
|
2015-02-05 11:53:10 +02:00
|
|
|
}
|
2013-08-22 13:31:18 -07:00
|
|
|
}
|
|
|
|
|
break;
|
|
|
|
|
|
2013-04-23 17:19:06 -07:00
|
|
|
case ir_triop_fma:
|
2015-02-05 11:53:10 +02:00
|
|
|
assert(op[0]->type->base_type == GLSL_TYPE_FLOAT ||
|
|
|
|
|
op[0]->type->base_type == GLSL_TYPE_DOUBLE);
|
|
|
|
|
assert(op[1]->type->base_type == GLSL_TYPE_FLOAT ||
|
|
|
|
|
op[1]->type->base_type == GLSL_TYPE_DOUBLE);
|
|
|
|
|
assert(op[2]->type->base_type == GLSL_TYPE_FLOAT ||
|
|
|
|
|
op[2]->type->base_type == GLSL_TYPE_DOUBLE);
|
2013-04-23 17:19:06 -07:00
|
|
|
|
|
|
|
|
for (unsigned c = 0; c < components; c++) {
|
2015-02-05 11:53:10 +02:00
|
|
|
if (op[0]->type->base_type == GLSL_TYPE_DOUBLE)
|
|
|
|
|
data.d[c] = op[0]->value.d[c] * op[1]->value.d[c]
|
|
|
|
|
+ op[2]->value.d[c];
|
|
|
|
|
else
|
|
|
|
|
data.f[c] = op[0]->value.f[c] * op[1]->value.f[c]
|
|
|
|
|
+ op[2]->value.f[c];
|
2013-04-23 17:19:06 -07:00
|
|
|
}
|
|
|
|
|
break;
|
|
|
|
|
|
2012-12-01 23:49:26 -08:00
|
|
|
case ir_triop_lrp: {
|
2015-02-05 11:53:10 +02:00
|
|
|
assert(op[0]->type->base_type == GLSL_TYPE_FLOAT ||
|
|
|
|
|
op[0]->type->base_type == GLSL_TYPE_DOUBLE);
|
|
|
|
|
assert(op[1]->type->base_type == GLSL_TYPE_FLOAT ||
|
|
|
|
|
op[1]->type->base_type == GLSL_TYPE_DOUBLE);
|
|
|
|
|
assert(op[2]->type->base_type == GLSL_TYPE_FLOAT ||
|
|
|
|
|
op[2]->type->base_type == GLSL_TYPE_DOUBLE);
|
2012-12-01 23:49:26 -08:00
|
|
|
|
|
|
|
|
unsigned c2_inc = op[2]->type->is_scalar() ? 0 : 1;
|
|
|
|
|
for (unsigned c = 0, c2 = 0; c < components; c2 += c2_inc, c++) {
|
2015-02-05 11:53:10 +02:00
|
|
|
if (op[0]->type->base_type == GLSL_TYPE_DOUBLE)
|
|
|
|
|
data.d[c] = op[0]->value.d[c] * (1.0 - op[2]->value.d[c2]) +
|
|
|
|
|
(op[1]->value.d[c] * op[2]->value.d[c2]);
|
|
|
|
|
else
|
|
|
|
|
data.f[c] = op[0]->value.f[c] * (1.0f - op[2]->value.f[c2]) +
|
|
|
|
|
(op[1]->value.f[c] * op[2]->value.f[c2]);
|
2012-12-01 23:49:26 -08:00
|
|
|
}
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
|
2013-08-19 10:45:46 -07:00
|
|
|
case ir_triop_csel:
|
|
|
|
|
for (unsigned c = 0; c < components; c++) {
|
2015-02-05 11:53:10 +02:00
|
|
|
if (op[1]->type->base_type == GLSL_TYPE_DOUBLE)
|
|
|
|
|
data.d[c] = op[0]->value.b[c] ? op[1]->value.d[c]
|
|
|
|
|
: op[2]->value.d[c];
|
|
|
|
|
else
|
|
|
|
|
data.u[c] = op[0]->value.b[c] ? op[1]->value.u[c]
|
2013-08-19 10:45:46 -07:00
|
|
|
: op[2]->value.u[c];
|
|
|
|
|
}
|
|
|
|
|
break;
|
|
|
|
|
|
2013-03-12 12:42:51 -07:00
|
|
|
case ir_triop_vector_insert: {
|
|
|
|
|
const unsigned idx = op[2]->value.u[0];
|
|
|
|
|
|
|
|
|
|
memcpy(&data, &op[0]->value, sizeof(data));
|
|
|
|
|
|
|
|
|
|
switch (this->type->base_type) {
|
|
|
|
|
case GLSL_TYPE_INT:
|
|
|
|
|
data.i[idx] = op[1]->value.i[0];
|
|
|
|
|
break;
|
|
|
|
|
case GLSL_TYPE_UINT:
|
|
|
|
|
data.u[idx] = op[1]->value.u[0];
|
|
|
|
|
break;
|
|
|
|
|
case GLSL_TYPE_FLOAT:
|
|
|
|
|
data.f[idx] = op[1]->value.f[0];
|
|
|
|
|
break;
|
|
|
|
|
case GLSL_TYPE_BOOL:
|
|
|
|
|
data.b[idx] = op[1]->value.b[0];
|
|
|
|
|
break;
|
2015-02-05 11:53:10 +02:00
|
|
|
case GLSL_TYPE_DOUBLE:
|
|
|
|
|
data.d[idx] = op[1]->value.d[0];
|
|
|
|
|
break;
|
2013-03-12 12:42:51 -07:00
|
|
|
default:
|
|
|
|
|
assert(!"Should not get here.");
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
|
2013-04-21 12:33:59 -07:00
|
|
|
case ir_quadop_bitfield_insert: {
|
|
|
|
|
for (unsigned c = 0; c < components; c++) {
|
glsl, nir: Make ir_quadop_bitfield_insert a vectorized operation.
We would like to be able to combine
result.x = bitfieldInsert(src0.x, src1.x, src2.x, src3.x);
result.y = bitfieldInsert(src0.y, src1.y, src2.y, src3.y);
result.z = bitfieldInsert(src0.z, src1.z, src2.z, src3.z);
result.w = bitfieldInsert(src0.w, src1.w, src2.w, src3.w);
into a single ivec4 bitfieldInsert operation. This should be possible
with most drivers.
This patch changes the offset and bits parameters from scalar ints
to ivecN or uvecN. The type of all four operands will be the same,
for simplicity.
Signed-off-by: Kenneth Graunke <kenneth@whitecape.org>
Reviewed-by: Matt Turner <mattst88@gmail.com>
Reviewed-by: Ilia Mirkin <imirkin@alum.mit.edu>
2016-01-05 04:01:11 -08:00
|
|
|
int offset = op[2]->value.i[c];
|
|
|
|
|
int bits = op[3]->value.i[c];
|
|
|
|
|
|
2013-04-21 12:33:59 -07:00
|
|
|
if (bits == 0)
|
|
|
|
|
data.u[c] = op[0]->value.u[c];
|
|
|
|
|
else if (offset < 0 || bits < 0)
|
|
|
|
|
data.u[c] = 0; /* Undefined, per spec. */
|
|
|
|
|
else if (offset + bits > 32)
|
|
|
|
|
data.u[c] = 0; /* Undefined, per spec. */
|
|
|
|
|
else {
|
|
|
|
|
unsigned insert_mask = ((1 << bits) - 1) << offset;
|
|
|
|
|
|
|
|
|
|
unsigned insert = op[1]->value.u[c];
|
|
|
|
|
insert <<= offset;
|
|
|
|
|
insert &= insert_mask;
|
|
|
|
|
|
|
|
|
|
unsigned base = op[0]->value.u[c];
|
|
|
|
|
base &= ~insert_mask;
|
|
|
|
|
|
|
|
|
|
data.u[c] = base | insert;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
|
2010-11-16 12:01:42 -08:00
|
|
|
case ir_quadop_vector:
|
|
|
|
|
for (unsigned c = 0; c < this->type->vector_elements; c++) {
|
|
|
|
|
switch (this->type->base_type) {
|
|
|
|
|
case GLSL_TYPE_INT:
|
|
|
|
|
data.i[c] = op[c]->value.i[0];
|
|
|
|
|
break;
|
|
|
|
|
case GLSL_TYPE_UINT:
|
|
|
|
|
data.u[c] = op[c]->value.u[0];
|
|
|
|
|
break;
|
|
|
|
|
case GLSL_TYPE_FLOAT:
|
|
|
|
|
data.f[c] = op[c]->value.f[0];
|
|
|
|
|
break;
|
2015-02-05 11:53:10 +02:00
|
|
|
case GLSL_TYPE_DOUBLE:
|
|
|
|
|
data.d[c] = op[c]->value.d[0];
|
|
|
|
|
break;
|
2010-11-16 12:01:42 -08:00
|
|
|
default:
|
|
|
|
|
assert(0);
|
|
|
|
|
}
|
|
|
|
|
}
|
2010-10-09 21:27:41 -07:00
|
|
|
break;
|
|
|
|
|
|
2010-03-31 16:25:12 -10:00
|
|
|
default:
|
2010-06-11 16:23:52 -07:00
|
|
|
/* FINISHME: Should handle all expression types. */
|
2010-07-15 10:09:09 -07:00
|
|
|
return NULL;
|
2010-03-31 16:25:12 -10:00
|
|
|
}
|
2010-04-01 18:25:11 -10:00
|
|
|
|
2010-07-15 10:20:51 -07:00
|
|
|
return new(ctx) ir_constant(this->type, &data);
|
2010-03-30 16:56:50 -07:00
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
2010-07-15 10:09:09 -07:00
|
|
|
ir_constant *
|
2014-03-12 15:32:48 -07:00
|
|
|
ir_texture::constant_expression_value(struct hash_table *)
|
2010-05-26 17:42:03 -07:00
|
|
|
{
|
2010-07-15 10:09:09 -07:00
|
|
|
/* texture lookups aren't constant expressions */
|
|
|
|
|
return NULL;
|
2010-05-26 17:42:03 -07:00
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
2010-07-15 10:09:09 -07:00
|
|
|
ir_constant *
|
2012-05-02 23:11:38 +02:00
|
|
|
ir_swizzle::constant_expression_value(struct hash_table *variable_context)
|
2010-03-30 16:56:50 -07:00
|
|
|
{
|
2012-05-02 23:11:38 +02:00
|
|
|
ir_constant *v = this->val->constant_expression_value(variable_context);
|
2010-06-11 12:30:28 -07:00
|
|
|
|
|
|
|
|
if (v != NULL) {
|
2010-08-29 12:19:57 -07:00
|
|
|
ir_constant_data data = { { 0 } };
|
2010-06-11 12:30:28 -07:00
|
|
|
|
|
|
|
|
const unsigned swiz_idx[4] = {
|
2010-07-15 10:20:51 -07:00
|
|
|
this->mask.x, this->mask.y, this->mask.z, this->mask.w
|
2010-06-11 12:30:28 -07:00
|
|
|
};
|
|
|
|
|
|
2010-07-15 10:20:51 -07:00
|
|
|
for (unsigned i = 0; i < this->mask.num_components; i++) {
|
2010-06-11 12:30:28 -07:00
|
|
|
switch (v->type->base_type) {
|
|
|
|
|
case GLSL_TYPE_UINT:
|
|
|
|
|
case GLSL_TYPE_INT: data.u[i] = v->value.u[swiz_idx[i]]; break;
|
|
|
|
|
case GLSL_TYPE_FLOAT: data.f[i] = v->value.f[swiz_idx[i]]; break;
|
|
|
|
|
case GLSL_TYPE_BOOL: data.b[i] = v->value.b[swiz_idx[i]]; break;
|
2015-02-05 11:53:10 +02:00
|
|
|
case GLSL_TYPE_DOUBLE:data.d[i] = v->value.d[swiz_idx[i]]; break;
|
2010-06-11 12:30:28 -07:00
|
|
|
default: assert(!"Should not get here."); break;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
2011-01-21 14:32:31 -08:00
|
|
|
void *ctx = ralloc_parent(this);
|
2010-07-15 10:20:51 -07:00
|
|
|
return new(ctx) ir_constant(this->type, &data);
|
2010-06-11 12:30:28 -07:00
|
|
|
}
|
2010-07-15 10:09:09 -07:00
|
|
|
return NULL;
|
2010-03-30 16:56:50 -07:00
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
2010-07-15 10:09:09 -07:00
|
|
|
ir_constant *
|
2012-05-02 23:11:38 +02:00
|
|
|
ir_dereference_variable::constant_expression_value(struct hash_table *variable_context)
|
2010-03-30 16:56:50 -07:00
|
|
|
{
|
2015-07-14 23:30:27 +10:00
|
|
|
assert(var);
|
2010-07-27 12:10:50 -07:00
|
|
|
|
2012-05-02 23:11:38 +02:00
|
|
|
/* Give priority to the context hashtable, if it exists */
|
|
|
|
|
if (variable_context) {
|
|
|
|
|
ir_constant *value = (ir_constant *)hash_table_find(variable_context, var);
|
|
|
|
|
if(value)
|
|
|
|
|
return value;
|
|
|
|
|
}
|
|
|
|
|
|
2010-08-02 15:31:28 -07:00
|
|
|
/* The constant_value of a uniform variable is its initializer,
|
|
|
|
|
* not the lifetime constant value of the uniform.
|
|
|
|
|
*/
|
2013-12-12 13:51:01 +02:00
|
|
|
if (var->data.mode == ir_var_uniform)
|
2010-08-02 15:31:28 -07:00
|
|
|
return NULL;
|
|
|
|
|
|
2010-08-04 12:34:56 -07:00
|
|
|
if (!var->constant_value)
|
|
|
|
|
return NULL;
|
|
|
|
|
|
2011-01-21 14:32:31 -08:00
|
|
|
return var->constant_value->clone(ralloc_parent(var), NULL);
|
2010-05-19 13:20:12 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
2010-07-15 10:09:09 -07:00
|
|
|
ir_constant *
|
2012-05-02 23:11:38 +02:00
|
|
|
ir_dereference_array::constant_expression_value(struct hash_table *variable_context)
|
2010-05-19 13:20:12 +02:00
|
|
|
{
|
2012-05-02 23:11:38 +02:00
|
|
|
ir_constant *array = this->array->constant_expression_value(variable_context);
|
|
|
|
|
ir_constant *idx = this->array_index->constant_expression_value(variable_context);
|
2010-06-11 12:20:12 -07:00
|
|
|
|
|
|
|
|
if ((array != NULL) && (idx != NULL)) {
|
2011-01-21 14:32:31 -08:00
|
|
|
void *ctx = ralloc_parent(this);
|
2010-06-11 12:20:12 -07:00
|
|
|
if (array->type->is_matrix()) {
|
|
|
|
|
/* Array access of a matrix results in a vector.
|
|
|
|
|
*/
|
|
|
|
|
const unsigned column = idx->value.u[0];
|
|
|
|
|
|
|
|
|
|
const glsl_type *const column_type = array->type->column_type();
|
|
|
|
|
|
|
|
|
|
/* Offset in the constant matrix to the first element of the column
|
|
|
|
|
* to be extracted.
|
|
|
|
|
*/
|
|
|
|
|
const unsigned mat_idx = column * column_type->vector_elements;
|
|
|
|
|
|
2010-10-13 14:21:08 -07:00
|
|
|
ir_constant_data data = { { 0 } };
|
2010-06-11 12:20:12 -07:00
|
|
|
|
|
|
|
|
switch (column_type->base_type) {
|
|
|
|
|
case GLSL_TYPE_UINT:
|
|
|
|
|
case GLSL_TYPE_INT:
|
|
|
|
|
for (unsigned i = 0; i < column_type->vector_elements; i++)
|
|
|
|
|
data.u[i] = array->value.u[mat_idx + i];
|
|
|
|
|
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
case GLSL_TYPE_FLOAT:
|
|
|
|
|
for (unsigned i = 0; i < column_type->vector_elements; i++)
|
|
|
|
|
data.f[i] = array->value.f[mat_idx + i];
|
|
|
|
|
|
|
|
|
|
break;
|
|
|
|
|
|
2015-02-05 11:53:10 +02:00
|
|
|
case GLSL_TYPE_DOUBLE:
|
|
|
|
|
for (unsigned i = 0; i < column_type->vector_elements; i++)
|
|
|
|
|
data.d[i] = array->value.d[mat_idx + i];
|
|
|
|
|
|
|
|
|
|
break;
|
|
|
|
|
|
2010-06-11 12:20:12 -07:00
|
|
|
default:
|
|
|
|
|
assert(!"Should not get here.");
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
|
2010-07-15 10:09:09 -07:00
|
|
|
return new(ctx) ir_constant(column_type, &data);
|
2010-06-11 12:20:12 -07:00
|
|
|
} else if (array->type->is_vector()) {
|
|
|
|
|
const unsigned component = idx->value.u[0];
|
|
|
|
|
|
2010-07-15 10:09:09 -07:00
|
|
|
return new(ctx) ir_constant(array, component);
|
2010-06-11 12:20:12 -07:00
|
|
|
} else {
|
2010-07-20 01:31:29 -07:00
|
|
|
const unsigned index = idx->value.u[0];
|
2010-08-04 12:34:56 -07:00
|
|
|
return array->get_array_element(index)->clone(ctx, NULL);
|
2010-06-11 12:20:12 -07:00
|
|
|
}
|
|
|
|
|
}
|
2010-07-15 10:09:09 -07:00
|
|
|
return NULL;
|
2010-05-19 13:20:12 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
2010-07-15 10:09:09 -07:00
|
|
|
ir_constant *
|
2014-03-12 15:32:48 -07:00
|
|
|
ir_dereference_record::constant_expression_value(struct hash_table *)
|
2010-05-19 13:20:12 +02:00
|
|
|
{
|
2010-07-15 10:20:51 -07:00
|
|
|
ir_constant *v = this->record->constant_expression_value();
|
2010-06-09 17:30:19 -07:00
|
|
|
|
2010-07-15 10:20:51 -07:00
|
|
|
return (v != NULL) ? v->get_record_field(this->field) : NULL;
|
2010-03-30 16:56:50 -07:00
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
2010-07-15 10:09:09 -07:00
|
|
|
ir_constant *
|
2014-03-12 15:32:48 -07:00
|
|
|
ir_assignment::constant_expression_value(struct hash_table *)
|
2010-06-30 10:47:34 -07:00
|
|
|
{
|
2010-07-15 10:09:09 -07:00
|
|
|
/* FINISHME: Handle CEs involving assignment (return RHS) */
|
|
|
|
|
return NULL;
|
2010-06-30 10:47:34 -07:00
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
2010-07-15 10:09:09 -07:00
|
|
|
ir_constant *
|
2014-03-12 15:32:48 -07:00
|
|
|
ir_constant::constant_expression_value(struct hash_table *)
|
2010-03-30 16:56:50 -07:00
|
|
|
{
|
2010-07-15 10:09:09 -07:00
|
|
|
return this;
|
2010-03-30 16:56:50 -07:00
|
|
|
}
|
2010-04-05 16:16:07 -07:00
|
|
|
|
|
|
|
|
|
2010-07-15 10:09:09 -07:00
|
|
|
ir_constant *
|
2012-05-02 23:11:38 +02:00
|
|
|
ir_call::constant_expression_value(struct hash_table *variable_context)
|
2010-04-05 16:16:07 -07:00
|
|
|
{
|
2012-05-02 23:11:38 +02:00
|
|
|
return this->callee->constant_expression_value(&this->actual_parameters, variable_context);
|
2011-09-20 00:14:05 -07:00
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
2012-05-02 23:11:42 +02:00
|
|
|
bool ir_function_signature::constant_expression_evaluate_expression_list(const struct exec_list &body,
|
|
|
|
|
struct hash_table *variable_context,
|
|
|
|
|
ir_constant **result)
|
|
|
|
|
{
|
2014-06-24 21:34:05 -07:00
|
|
|
foreach_in_list(ir_instruction, inst, &body) {
|
2012-05-02 23:11:42 +02:00
|
|
|
switch(inst->ir_type) {
|
|
|
|
|
|
|
|
|
|
/* (declare () type symbol) */
|
|
|
|
|
case ir_type_variable: {
|
|
|
|
|
ir_variable *var = inst->as_variable();
|
|
|
|
|
hash_table_insert(variable_context, ir_constant::zero(this, var->type), var);
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* (assign [condition] (write-mask) (ref) (value)) */
|
|
|
|
|
case ir_type_assignment: {
|
|
|
|
|
ir_assignment *asg = inst->as_assignment();
|
|
|
|
|
if (asg->condition) {
|
|
|
|
|
ir_constant *cond = asg->condition->constant_expression_value(variable_context);
|
|
|
|
|
if (!cond)
|
|
|
|
|
return false;
|
|
|
|
|
if (!cond->get_bool_component(0))
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
ir_constant *store = NULL;
|
|
|
|
|
int offset = 0;
|
|
|
|
|
|
2014-03-12 14:38:42 -07:00
|
|
|
if (!constant_referenced(asg->lhs, variable_context, store, offset))
|
2012-05-02 23:11:42 +02:00
|
|
|
return false;
|
|
|
|
|
|
|
|
|
|
ir_constant *value = asg->rhs->constant_expression_value(variable_context);
|
|
|
|
|
|
|
|
|
|
if (!value)
|
|
|
|
|
return false;
|
|
|
|
|
|
|
|
|
|
store->copy_masked_offset(value, offset, asg->write_mask);
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* (return (expression)) */
|
|
|
|
|
case ir_type_return:
|
|
|
|
|
assert (result);
|
|
|
|
|
*result = inst->as_return()->value->constant_expression_value(variable_context);
|
|
|
|
|
return *result != NULL;
|
|
|
|
|
|
|
|
|
|
/* (call name (ref) (params))*/
|
|
|
|
|
case ir_type_call: {
|
|
|
|
|
ir_call *call = inst->as_call();
|
|
|
|
|
|
|
|
|
|
/* Just say no to void functions in constant expressions. We
|
|
|
|
|
* don't need them at that point.
|
|
|
|
|
*/
|
|
|
|
|
|
|
|
|
|
if (!call->return_deref)
|
|
|
|
|
return false;
|
|
|
|
|
|
|
|
|
|
ir_constant *store = NULL;
|
|
|
|
|
int offset = 0;
|
|
|
|
|
|
2014-03-12 14:38:42 -07:00
|
|
|
if (!constant_referenced(call->return_deref, variable_context,
|
|
|
|
|
store, offset))
|
2012-05-02 23:11:42 +02:00
|
|
|
return false;
|
|
|
|
|
|
|
|
|
|
ir_constant *value = call->constant_expression_value(variable_context);
|
|
|
|
|
|
|
|
|
|
if(!value)
|
|
|
|
|
return false;
|
|
|
|
|
|
|
|
|
|
store->copy_offset(value, offset);
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* (if condition (then-instructions) (else-instructions)) */
|
|
|
|
|
case ir_type_if: {
|
|
|
|
|
ir_if *iif = inst->as_if();
|
|
|
|
|
|
|
|
|
|
ir_constant *cond = iif->condition->constant_expression_value(variable_context);
|
|
|
|
|
if (!cond || !cond->type->is_boolean())
|
|
|
|
|
return false;
|
|
|
|
|
|
|
|
|
|
exec_list &branch = cond->get_bool_component(0) ? iif->then_instructions : iif->else_instructions;
|
|
|
|
|
|
|
|
|
|
*result = NULL;
|
|
|
|
|
if (!constant_expression_evaluate_expression_list(branch, variable_context, result))
|
|
|
|
|
return false;
|
|
|
|
|
|
|
|
|
|
/* If there was a return in the branch chosen, drop out now. */
|
|
|
|
|
if (*result)
|
|
|
|
|
return true;
|
|
|
|
|
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Every other expression type, we drop out. */
|
|
|
|
|
default:
|
|
|
|
|
return false;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Reaching the end of the block is not an error condition */
|
|
|
|
|
if (result)
|
|
|
|
|
*result = NULL;
|
|
|
|
|
|
|
|
|
|
return true;
|
|
|
|
|
}
|
|
|
|
|
|
2011-09-20 00:14:05 -07:00
|
|
|
ir_constant *
|
2012-05-02 23:11:38 +02:00
|
|
|
ir_function_signature::constant_expression_value(exec_list *actual_parameters, struct hash_table *variable_context)
|
2011-09-20 00:14:05 -07:00
|
|
|
{
|
|
|
|
|
const glsl_type *type = this->return_type;
|
|
|
|
|
if (type == glsl_type::void_type)
|
|
|
|
|
return NULL;
|
|
|
|
|
|
2010-07-21 16:55:46 -07:00
|
|
|
/* From the GLSL 1.20 spec, page 23:
|
|
|
|
|
* "Function calls to user-defined functions (non-built-in functions)
|
|
|
|
|
* cannot be used to form constant expressions."
|
|
|
|
|
*/
|
2013-08-30 16:12:55 -07:00
|
|
|
if (!this->is_builtin())
|
2010-07-21 16:55:46 -07:00
|
|
|
return NULL;
|
|
|
|
|
|
2012-05-02 23:11:42 +02:00
|
|
|
/*
|
|
|
|
|
* Of the builtin functions, only the texture lookups and the noise
|
|
|
|
|
* ones must not be used in constant expressions. They all include
|
|
|
|
|
* specific opcodes so they don't need to be special-cased at this
|
|
|
|
|
* point.
|
|
|
|
|
*/
|
|
|
|
|
|
|
|
|
|
/* Initialize the table of dereferencable names with the function
|
|
|
|
|
* parameters. Verify their const-ness on the way.
|
|
|
|
|
*
|
|
|
|
|
* We expect the correctness of the number of parameters to have
|
|
|
|
|
* been checked earlier.
|
|
|
|
|
*/
|
|
|
|
|
hash_table *deref_hash = hash_table_ctor(8, hash_table_pointer_hash,
|
|
|
|
|
hash_table_pointer_compare);
|
|
|
|
|
|
|
|
|
|
/* If "origin" is non-NULL, then the function body is there. So we
|
|
|
|
|
* have to use the variable objects from the object with the body,
|
|
|
|
|
* but the parameter instanciation on the current object.
|
|
|
|
|
*/
|
|
|
|
|
const exec_node *parameter_info = origin ? origin->parameters.head : parameters.head;
|
2010-07-21 16:55:46 -07:00
|
|
|
|
2014-06-24 21:34:05 -07:00
|
|
|
foreach_in_list(ir_rvalue, n, actual_parameters) {
|
|
|
|
|
ir_constant *constant = n->constant_expression_value(variable_context);
|
2012-06-05 21:10:33 +02:00
|
|
|
if (constant == NULL) {
|
|
|
|
|
hash_table_dtor(deref_hash);
|
|
|
|
|
return NULL;
|
|
|
|
|
}
|
|
|
|
|
|
2010-07-21 16:55:46 -07:00
|
|
|
|
2012-05-02 23:11:42 +02:00
|
|
|
ir_variable *var = (ir_variable *)parameter_info;
|
|
|
|
|
hash_table_insert(deref_hash, constant, var);
|
2010-07-21 16:55:46 -07:00
|
|
|
|
2012-05-02 23:11:42 +02:00
|
|
|
parameter_info = parameter_info->next;
|
2010-07-21 16:55:46 -07:00
|
|
|
}
|
2010-04-05 16:28:15 -07:00
|
|
|
|
2012-05-02 23:11:42 +02:00
|
|
|
ir_constant *result = NULL;
|
2010-07-21 22:23:17 -07:00
|
|
|
|
2012-05-02 23:11:42 +02:00
|
|
|
/* Now run the builtin function until something non-constant
|
|
|
|
|
* happens or we get the result.
|
|
|
|
|
*/
|
|
|
|
|
if (constant_expression_evaluate_expression_list(origin ? origin->body : body, deref_hash, &result) && result)
|
|
|
|
|
result = result->clone(ralloc_parent(this), NULL);
|
2010-07-21 16:55:46 -07:00
|
|
|
|
2012-05-02 23:11:42 +02:00
|
|
|
hash_table_dtor(deref_hash);
|
2010-07-21 16:55:46 -07:00
|
|
|
|
2012-05-02 23:11:42 +02:00
|
|
|
return result;
|
2010-07-21 16:55:46 -07:00
|
|
|
}
|