mesa/src/intel/compiler/brw_compiler.c

358 lines
13 KiB
C
Raw Normal View History

/*
* Copyright © 2015-2016 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include "brw_compiler.h"
#include "brw_eu.h"
#include "brw_nir.h"
#include "brw_private.h"
#include "dev/intel_debug.h"
#include "compiler/nir/nir.h"
#include "util/u_debug.h"
const struct nir_shader_compiler_options brw_scalar_nir_options = {
.avoid_ternary_with_two_constants = true,
.compact_arrays = true,
2024-02-14 12:38:40 +01:00
.discard_is_demote = true,
.divergence_analysis_options =
(nir_divergence_single_patch_per_tcs_subgroup |
nir_divergence_single_patch_per_tes_subgroup |
nir_divergence_shader_record_ptr_uniform),
.force_indirect_unrolling = nir_var_function_temp,
.has_bfe = true,
.has_bfi = true,
.has_bfm = true,
.has_pack_32_4x8 = true,
.has_uclz = true,
.lower_base_vertex = true,
.lower_bitfield_extract = true,
.lower_bitfield_insert = true,
.lower_device_index_to_zero = true,
.lower_fdiv = true,
.lower_fisnormal = true,
.lower_flrp16 = true,
.lower_flrp64 = true,
.lower_fmod = true,
.lower_hadd64 = true,
.lower_insert_byte = true,
.lower_insert_word = true,
.lower_isign = true,
.lower_ldexp = true,
.lower_pack_half_2x16 = true,
.lower_pack_snorm_2x16 = true,
.lower_pack_snorm_4x8 = true,
.lower_pack_unorm_2x16 = true,
.lower_pack_unorm_4x8 = true,
.lower_scmp = true,
.lower_to_scalar = true,
.lower_uadd_carry = true,
.lower_ufind_msb = true,
.lower_uniforms_to_ubo = true,
.lower_unpack_half_2x16 = true,
.lower_unpack_snorm_2x16 = true,
.lower_unpack_snorm_4x8 = true,
.lower_unpack_unorm_2x16 = true,
.lower_unpack_unorm_4x8 = true,
.lower_usub_borrow = true,
.max_unroll_iterations = 32,
.support_16bit_alu = true,
.vectorize_io = true,
.vectorize_tess_levels = true,
.vertex_id_zero_based = true,
.scalarize_ddx = true,
};
struct brw_compiler *
brw_compiler_create(void *mem_ctx, const struct intel_device_info *devinfo)
{
struct brw_compiler *compiler = rzalloc(mem_ctx, struct brw_compiler);
assert(devinfo->ver >= 9);
compiler->devinfo = devinfo;
brw_init_isa_info(&compiler->isa, devinfo);
brw_fs_alloc_reg_sets(compiler);
compiler->precise_trig = debug_get_bool_option("INTEL_PRECISE_TRIG", false);
compiler->use_tcs_multi_patch = devinfo->ver >= 12;
intel/compiler: Implement TCS 8_PATCH mode and INTEL_DEBUG=tcs8 Our tessellation control shaders can be dispatched in several modes. - SINGLE_PATCH (Gen7+) processes a single patch per thread, with each channel corresponding to a different patch vertex. PATCHLIST_N will launch (N / 8) threads. If N is less than 8, some channels will be disabled, leaving some untapped hardware capabilities. Conditionals based on gl_InvocationID are non-uniform, which means that they'll often have to execute both paths. However, if there are fewer than 8 vertices, all invocations will happen within a single thread, so barriers can become no-ops, which is nice. We also burn a maximum of 4 registers for ICP handles, so we can compile without regard for the value of N. It also works in all cases. - DUAL_PATCH mode processes up to two patches at a time, where the first four channels come from patch 1, and the second group of four come from patch 2. This tries to provide better EU utilization for small patches (N <= 4). It cannot be used in all cases. - 8_PATCH mode processes 8 patches at a time, with a thread launched per vertex in the patch. Each channel corresponds to the same vertex, but in each of the 8 patches. This utilizes all channels even for small patches. It also makes conditions on gl_InvocationID uniform, leading to proper jumps. Barriers, unfortunately, become real. Worse, for PATCHLIST_N, the thread payload burns N registers for ICP handles. This can burn up to 32 registers, or 1/4 of our register file, for URB handles. For Vulkan (and DX), we know the number of vertices at compile time, so we can limit the amount of waste. In GL, the patch dimension is dynamic state, so we either would have to waste all 32 (not reasonable) or guess (badly) and recompile. This is unfortunate. Because we can only spawn 16 thread instances, we can only use this mode for PATCHLIST_16 and smaller. The rest must use SINGLE_PATCH. This patch implements the new 8_PATCH TCS mode, but leaves us using SINGLE_PATCH by default. A new INTEL_DEBUG=tcs8 flag will switch to using 8_PATCH mode for testing and benchmarking purposes. We may want to consider using 8_PATCH mode in Vulkan in some cases. The data I've seen shows that 8_PATCH mode can be more efficient in some cases, but SINGLE_PATCH mode (the one we use today) is faster in other cases. Ultimately, the TES matters much more than the TCS for performance, so the decision may not matter much. Reviewed-by: Jason Ekstrand <jason@jlekstrand.net>
2019-05-03 14:57:54 -07:00
compiler->indirect_ubos_use_sampler = devinfo->ver < 12;
compiler->lower_dpas = devinfo->verx10 < 125 ||
intel_device_info_is_mtl(devinfo) ||
(intel_device_info_is_arl(devinfo) &&
devinfo->platform != INTEL_PLATFORM_ARL_H) ||
debug_get_bool_option("INTEL_LOWER_DPAS", false);
nir_lower_int64_options int64_options =
nir_lower_imul64 |
nir_lower_isign64 |
nir_lower_divmod64 |
nir_lower_imul_high64 |
nir_lower_find_lsb64 |
nir_lower_ufind_msb64 |
nir_lower_bit_count64 |
nir_lower_iadd3_64;
nir_lower_doubles_options fp64_options =
nir_lower_drcp |
nir_lower_dsqrt |
nir_lower_drsq |
nir_lower_dsign |
nir_lower_dtrunc |
nir_lower_dfloor |
nir_lower_dceil |
nir_lower_dfract |
nir_lower_dround_even |
nir_lower_dmod |
nir_lower_dsub |
nir_lower_ddiv;
if (!devinfo->has_64bit_float || INTEL_DEBUG(DEBUG_SOFT64))
fp64_options |= nir_lower_fp64_full_software;
if (!devinfo->has_64bit_int)
int64_options |= (nir_lower_int64_options)~0;
/* The Bspec's section titled "Instruction_multiply[DevBDW+]" claims that
* destination type can be Quadword and source type Doubleword for Gfx8 and
* Gfx9. So, lower 64 bit multiply instruction on rest of the platforms.
*/
if (devinfo->ver > 9)
int64_options |= nir_lower_imul_2x32_64;
if (devinfo->ver >= 20)
int64_options |= (nir_lower_icmp64 | nir_lower_minmax64 |
nir_lower_logic64 | nir_lower_ufind_msb64 |
nir_lower_bit_count64 |
nir_lower_bcsel64 |
nir_lower_extract64 | nir_lower_scan_reduce_bitwise64 |
nir_lower_scan_reduce_iadd64 | nir_lower_subgroup_shuffle64 |
nir_lower_iadd_sat64 | nir_lower_uadd_sat64);
/* We want the GLSL compiler to emit code that uses condition codes */
for (int i = 0; i < MESA_ALL_SHADER_STAGES; i++) {
struct nir_shader_compiler_options *nir_options =
rzalloc(compiler, struct nir_shader_compiler_options);
*nir_options = brw_scalar_nir_options;
int64_options |= nir_lower_usub_sat64;
/* Gfx11 loses LRP. */
nir_options->lower_flrp32 = devinfo->ver >= 11;
nir_options->lower_fpow = devinfo->ver >= 12;
nir_options->has_rotate16 = devinfo->ver >= 11;
nir_options->has_rotate32 = devinfo->ver >= 11;
intel/compiler: Enable has_iadd3 option on XeHP shader-db result is inconclusive but doesn't harm to include it for reference. Shader-db result on XeHPG: total instructions in shared programs: 1397405 -> 1397315 (<.01%) instructions in affected programs: 88252 -> 88162 (-0.10%) helped: 20 HURT: 7 helped stats (abs) min: 1 max: 18 x̄: 7.20 x̃: 7 helped stats (rel) min: 0.03% max: 2.20% x̄: 0.37% x̃: 0.23% HURT stats (abs) min: 4 max: 23 x̄: 7.71 x̃: 4 HURT stats (rel) min: 0.10% max: 0.68% x̄: 0.22% x̃: 0.11% 95% mean confidence interval for instructions value: -6.81 0.14 95% mean confidence interval for instructions %-change: -0.42% -0.02% Inconclusive result (value mean confidence interval includes 0). total cycles in shared programs: 119924219 -> 119931868 (<.01%) cycles in affected programs: 45029193 -> 45036842 (0.02%) helped: 11 HURT: 16 helped stats (abs) min: 15 max: 5490 x̄: 1655.73 x̃: 140 helped stats (rel) min: <.01% max: 0.35% x̄: 0.11% x̃: <.01% HURT stats (abs) min: 1 max: 2944 x̄: 1616.38 x̃: 1743 HURT stats (rel) min: <.01% max: 0.17% x̄: 0.09% x̃: 0.10% 95% mean confidence interval for cycles value: -606.11 1172.70 95% mean confidence interval for cycles %-change: -0.04% 0.07% Inconclusive result (value mean confidence interval includes 0). v2: - Include shader-db result (Jason) Signed-off-by: Sagar Ghuge <sagar.ghuge@intel.com> Reviewed-by: Jason Ekstrand <jason@jlekstrand.net> Part-of: <https://gitlab.freedesktop.org/mesa/mesa/-/merge_requests/11596>
2021-06-28 17:49:01 -07:00
nir_options->has_iadd3 = devinfo->verx10 >= 125;
nir_options->has_sdot_4x8 = devinfo->ver >= 12;
nir_options->has_udot_4x8 = devinfo->ver >= 12;
nir_options->has_sudot_4x8 = devinfo->ver >= 12;
nir_options->has_sdot_4x8_sat = devinfo->ver >= 12;
nir_options->has_udot_4x8_sat = devinfo->ver >= 12;
nir_options->has_sudot_4x8_sat = devinfo->ver >= 12;
nir_options->lower_int64_options = int64_options;
nir_options->lower_doubles_options = fp64_options;
nir_options->unify_interfaces = i < MESA_SHADER_FRAGMENT;
nir_options->force_indirect_unrolling |=
brw_nir_no_indirect_mask(compiler, i);
if (compiler->use_tcs_multi_patch) {
/* TCS MULTI_PATCH mode has multiple patches per subgroup */
nir_options->divergence_analysis_options &=
~nir_divergence_single_patch_per_tcs_subgroup;
}
if (devinfo->ver < 12)
nir_options->divergence_analysis_options |=
nir_divergence_single_prim_per_subgroup;
compiler->nir_options[i] = nir_options;
}
compiler->mesh.mue_header_packing =
(unsigned)debug_get_num_option("INTEL_MESH_HEADER_PACKING", 3);
compiler->mesh.mue_compaction =
debug_get_bool_option("INTEL_MESH_COMPACTION", true);
return compiler;
}
static void
insert_u64_bit(uint64_t *val, bool add)
{
*val = (*val << 1) | !!add;
}
uint64_t
brw_get_compiler_config_value(const struct brw_compiler *compiler)
{
uint64_t config = 0;
unsigned bits = 0;
insert_u64_bit(&config, compiler->precise_trig);
bits++;
insert_u64_bit(&config, compiler->lower_dpas);
bits++;
insert_u64_bit(&config, compiler->mesh.mue_compaction);
bits++;
uint64_t mask = DEBUG_DISK_CACHE_MASK;
bits += util_bitcount64(mask);
u_foreach_bit64(bit, mask)
insert_u64_bit(&config, INTEL_DEBUG(1ULL << bit));
mask = SIMD_DISK_CACHE_MASK;
bits += util_bitcount64(mask);
u_foreach_bit64(bit, mask)
insert_u64_bit(&config, (intel_simd & (1ULL << bit)) != 0);
mask = 3;
bits += util_bitcount64(mask);
u_foreach_bit64(bit, mask)
insert_u64_bit(&config, (compiler->mesh.mue_header_packing & (1ULL << bit)) != 0);
assert(bits <= util_bitcount64(UINT64_MAX));
return config;
}
void
brw_device_sha1(char *hex,
const struct intel_device_info *devinfo) {
struct mesa_sha1 ctx;
_mesa_sha1_init(&ctx);
brw_device_sha1_update(&ctx, devinfo);
unsigned char result[20];
_mesa_sha1_final(&ctx, result);
_mesa_sha1_format(hex, result);
}
unsigned
brw_prog_data_size(gl_shader_stage stage)
{
static const size_t stage_sizes[] = {
[MESA_SHADER_VERTEX] = sizeof(struct brw_vs_prog_data),
[MESA_SHADER_TESS_CTRL] = sizeof(struct brw_tcs_prog_data),
[MESA_SHADER_TESS_EVAL] = sizeof(struct brw_tes_prog_data),
[MESA_SHADER_GEOMETRY] = sizeof(struct brw_gs_prog_data),
[MESA_SHADER_FRAGMENT] = sizeof(struct brw_wm_prog_data),
[MESA_SHADER_COMPUTE] = sizeof(struct brw_cs_prog_data),
[MESA_SHADER_TASK] = sizeof(struct brw_task_prog_data),
[MESA_SHADER_MESH] = sizeof(struct brw_mesh_prog_data),
[MESA_SHADER_RAYGEN] = sizeof(struct brw_bs_prog_data),
[MESA_SHADER_ANY_HIT] = sizeof(struct brw_bs_prog_data),
[MESA_SHADER_CLOSEST_HIT] = sizeof(struct brw_bs_prog_data),
[MESA_SHADER_MISS] = sizeof(struct brw_bs_prog_data),
[MESA_SHADER_INTERSECTION] = sizeof(struct brw_bs_prog_data),
[MESA_SHADER_CALLABLE] = sizeof(struct brw_bs_prog_data),
[MESA_SHADER_KERNEL] = sizeof(struct brw_cs_prog_data),
};
assert((int)stage >= 0 && stage < ARRAY_SIZE(stage_sizes));
return stage_sizes[stage];
}
unsigned
brw_prog_key_size(gl_shader_stage stage)
{
static const size_t stage_sizes[] = {
[MESA_SHADER_VERTEX] = sizeof(struct brw_vs_prog_key),
[MESA_SHADER_TESS_CTRL] = sizeof(struct brw_tcs_prog_key),
[MESA_SHADER_TESS_EVAL] = sizeof(struct brw_tes_prog_key),
[MESA_SHADER_GEOMETRY] = sizeof(struct brw_gs_prog_key),
[MESA_SHADER_FRAGMENT] = sizeof(struct brw_wm_prog_key),
[MESA_SHADER_COMPUTE] = sizeof(struct brw_cs_prog_key),
[MESA_SHADER_TASK] = sizeof(struct brw_task_prog_key),
[MESA_SHADER_MESH] = sizeof(struct brw_mesh_prog_key),
[MESA_SHADER_RAYGEN] = sizeof(struct brw_bs_prog_key),
[MESA_SHADER_ANY_HIT] = sizeof(struct brw_bs_prog_key),
[MESA_SHADER_CLOSEST_HIT] = sizeof(struct brw_bs_prog_key),
[MESA_SHADER_MISS] = sizeof(struct brw_bs_prog_key),
[MESA_SHADER_INTERSECTION] = sizeof(struct brw_bs_prog_key),
[MESA_SHADER_CALLABLE] = sizeof(struct brw_bs_prog_key),
[MESA_SHADER_KERNEL] = sizeof(struct brw_cs_prog_key),
};
assert((int)stage >= 0 && stage < ARRAY_SIZE(stage_sizes));
return stage_sizes[stage];
}
void
brw_write_shader_relocs(const struct brw_isa_info *isa,
void *program,
const struct brw_stage_prog_data *prog_data,
struct brw_shader_reloc_value *values,
unsigned num_values)
{
for (unsigned i = 0; i < prog_data->num_relocs; i++) {
assert(prog_data->relocs[i].offset % 8 == 0);
void *dst = program + prog_data->relocs[i].offset;
for (unsigned j = 0; j < num_values; j++) {
if (prog_data->relocs[i].id == values[j].id) {
uint32_t value = values[j].value + prog_data->relocs[i].delta;
switch (prog_data->relocs[i].type) {
case BRW_SHADER_RELOC_TYPE_U32:
*(uint32_t *)dst = value;
break;
case BRW_SHADER_RELOC_TYPE_MOV_IMM:
brw_update_reloc_imm(isa, dst, value);
break;
default:
unreachable("Invalid relocation type");
}
break;
}
}
}
}
void
brw_stage_prog_data_add_printf(struct brw_stage_prog_data *prog_data,
void *mem_ctx,
const u_printf_info *print)
{
prog_data->printf_info_count++;
prog_data->printf_info = reralloc(mem_ctx, prog_data->printf_info,
u_printf_info,
prog_data->printf_info_count);
prog_data->printf_info[prog_data->printf_info_count - 1] = *print;
if (print->string_size > 0) {
prog_data->printf_info[prog_data->printf_info_count - 1].strings =
ralloc_size(mem_ctx, print->string_size);
memcpy(prog_data->printf_info[prog_data->printf_info_count - 1].strings,
print->strings, print->string_size);
}
if (print->num_args > 0) {
prog_data->printf_info[prog_data->printf_info_count - 1].arg_sizes =
ralloc_array(mem_ctx, __typeof__(*print->arg_sizes), print->num_args);
memcpy(prog_data->printf_info[prog_data->printf_info_count - 1].arg_sizes,
print->arg_sizes, sizeof(print->arg_sizes[0]) *print->num_args);
}
}