mesa/src/mesa/drivers/dri/i965/brw_schedule_instructions.cpp

1541 lines
52 KiB
C++
Raw Normal View History

/*
* Copyright © 2010 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
* Authors:
* Eric Anholt <eric@anholt.net>
*
*/
#include "brw_fs.h"
#include "brw_vec4.h"
#include "brw_cfg.h"
#include "brw_shader.h"
#include "glsl/glsl_types.h"
#include "glsl/ir_optimization.h"
using namespace brw;
/** @file brw_fs_schedule_instructions.cpp
*
* List scheduling of FS instructions.
*
* The basic model of the list scheduler is to take a basic block,
* compute a DAG of the dependencies (RAW ordering with latency, WAW
* ordering with latency, WAR ordering), and make a list of the DAG heads.
* Heuristically pick a DAG head, then put all the children that are
* now DAG heads into the list of things to schedule.
*
* The heuristic is the important part. We're trying to be cheap,
* since actually computing the optimal scheduling is NP complete.
* What we do is track a "current clock". When we schedule a node, we
* update the earliest-unblocked clock time of its children, and
* increment the clock. Then, when trying to schedule, we just pick
* the earliest-unblocked instruction to schedule.
*
* Note that often there will be many things which could execute
* immediately, and there are a range of heuristic options to choose
* from in picking among those.
*/
static bool debug = false;
class instruction_scheduler;
class schedule_node : public exec_node
{
public:
schedule_node(backend_instruction *inst, instruction_scheduler *sched);
void set_latency_gen4();
void set_latency_gen7(bool is_haswell);
backend_instruction *inst;
schedule_node **children;
int *child_latency;
int child_count;
int parent_count;
int child_array_size;
int unblocked_time;
int latency;
/**
* Which iteration of pushing groups of children onto the candidates list
* this node was a part of.
*/
unsigned cand_generation;
/**
* This is the sum of the instruction's latency plus the maximum delay of
* its children, or just the issue_time if it's a leaf node.
*/
int delay;
};
void
schedule_node::set_latency_gen4()
{
int chans = 8;
int math_latency = 22;
switch (inst->opcode) {
case SHADER_OPCODE_RCP:
this->latency = 1 * chans * math_latency;
break;
case SHADER_OPCODE_RSQ:
this->latency = 2 * chans * math_latency;
break;
case SHADER_OPCODE_INT_QUOTIENT:
case SHADER_OPCODE_SQRT:
case SHADER_OPCODE_LOG2:
/* full precision log. partial is 2. */
this->latency = 3 * chans * math_latency;
break;
case SHADER_OPCODE_INT_REMAINDER:
case SHADER_OPCODE_EXP2:
/* full precision. partial is 3, same throughput. */
this->latency = 4 * chans * math_latency;
break;
case SHADER_OPCODE_POW:
this->latency = 8 * chans * math_latency;
break;
case SHADER_OPCODE_SIN:
case SHADER_OPCODE_COS:
/* minimum latency, max is 12 rounds. */
this->latency = 5 * chans * math_latency;
break;
default:
this->latency = 2;
break;
}
}
void
schedule_node::set_latency_gen7(bool is_haswell)
{
switch (inst->opcode) {
case BRW_OPCODE_MAD:
/* 2 cycles
* (since the last two src operands are in different register banks):
* mad(8) g4<1>F g2.2<4,4,1>F.x g2<4,4,1>F.x g3.1<4,4,1>F.x { align16 WE_normal 1Q };
*
* 3 cycles on IVB, 4 on HSW
* (since the last two src operands are in the same register bank):
* mad(8) g4<1>F g2.2<4,4,1>F.x g2<4,4,1>F.x g2.1<4,4,1>F.x { align16 WE_normal 1Q };
*
* 18 cycles on IVB, 16 on HSW
* (since the last two src operands are in different register banks):
* mad(8) g4<1>F g2.2<4,4,1>F.x g2<4,4,1>F.x g3.1<4,4,1>F.x { align16 WE_normal 1Q };
* mov(8) null g4<4,5,1>F { align16 WE_normal 1Q };
*
* 20 cycles on IVB, 18 on HSW
* (since the last two src operands are in the same register bank):
* mad(8) g4<1>F g2.2<4,4,1>F.x g2<4,4,1>F.x g2.1<4,4,1>F.x { align16 WE_normal 1Q };
* mov(8) null g4<4,4,1>F { align16 WE_normal 1Q };
*/
/* Our register allocator doesn't know about register banks, so use the
* higher latency.
*/
latency = is_haswell ? 16 : 18;
break;
case BRW_OPCODE_LRP:
/* 2 cycles
* (since the last two src operands are in different register banks):
* lrp(8) g4<1>F g2.2<4,4,1>F.x g2<4,4,1>F.x g3.1<4,4,1>F.x { align16 WE_normal 1Q };
*
* 3 cycles on IVB, 4 on HSW
* (since the last two src operands are in the same register bank):
* lrp(8) g4<1>F g2.2<4,4,1>F.x g2<4,4,1>F.x g2.1<4,4,1>F.x { align16 WE_normal 1Q };
*
* 16 cycles on IVB, 14 on HSW
* (since the last two src operands are in different register banks):
* lrp(8) g4<1>F g2.2<4,4,1>F.x g2<4,4,1>F.x g3.1<4,4,1>F.x { align16 WE_normal 1Q };
* mov(8) null g4<4,4,1>F { align16 WE_normal 1Q };
*
* 16 cycles
* (since the last two src operands are in the same register bank):
* lrp(8) g4<1>F g2.2<4,4,1>F.x g2<4,4,1>F.x g2.1<4,4,1>F.x { align16 WE_normal 1Q };
* mov(8) null g4<4,4,1>F { align16 WE_normal 1Q };
*/
/* Our register allocator doesn't know about register banks, so use the
* higher latency.
*/
latency = 14;
break;
case SHADER_OPCODE_RCP:
case SHADER_OPCODE_RSQ:
case SHADER_OPCODE_SQRT:
case SHADER_OPCODE_LOG2:
case SHADER_OPCODE_EXP2:
case SHADER_OPCODE_SIN:
case SHADER_OPCODE_COS:
/* 2 cycles:
* math inv(8) g4<1>F g2<0,1,0>F null { align1 WE_normal 1Q };
*
* 18 cycles:
* math inv(8) g4<1>F g2<0,1,0>F null { align1 WE_normal 1Q };
* mov(8) null g4<8,8,1>F { align1 WE_normal 1Q };
*
* Same for exp2, log2, rsq, sqrt, sin, cos.
*/
latency = is_haswell ? 14 : 16;
break;
case SHADER_OPCODE_POW:
/* 2 cycles:
* math pow(8) g4<1>F g2<0,1,0>F g2.1<0,1,0>F { align1 WE_normal 1Q };
*
* 26 cycles:
* math pow(8) g4<1>F g2<0,1,0>F g2.1<0,1,0>F { align1 WE_normal 1Q };
* mov(8) null g4<8,8,1>F { align1 WE_normal 1Q };
*/
latency = is_haswell ? 22 : 24;
break;
case SHADER_OPCODE_TEX:
case SHADER_OPCODE_TXD:
case SHADER_OPCODE_TXF:
case SHADER_OPCODE_TXL:
/* 18 cycles:
* mov(8) g115<1>F 0F { align1 WE_normal 1Q };
* mov(8) g114<1>F 0F { align1 WE_normal 1Q };
* send(8) g4<1>UW g114<8,8,1>F
* sampler (10, 0, 0, 1) mlen 2 rlen 4 { align1 WE_normal 1Q };
*
* 697 +/-49 cycles (min 610, n=26):
* mov(8) g115<1>F 0F { align1 WE_normal 1Q };
* mov(8) g114<1>F 0F { align1 WE_normal 1Q };
* send(8) g4<1>UW g114<8,8,1>F
* sampler (10, 0, 0, 1) mlen 2 rlen 4 { align1 WE_normal 1Q };
* mov(8) null g4<8,8,1>F { align1 WE_normal 1Q };
*
* So the latency on our first texture load of the batchbuffer takes
* ~700 cycles, since the caches are cold at that point.
*
* 840 +/- 92 cycles (min 720, n=25):
* mov(8) g115<1>F 0F { align1 WE_normal 1Q };
* mov(8) g114<1>F 0F { align1 WE_normal 1Q };
* send(8) g4<1>UW g114<8,8,1>F
* sampler (10, 0, 0, 1) mlen 2 rlen 4 { align1 WE_normal 1Q };
* mov(8) null g4<8,8,1>F { align1 WE_normal 1Q };
* send(8) g4<1>UW g114<8,8,1>F
* sampler (10, 0, 0, 1) mlen 2 rlen 4 { align1 WE_normal 1Q };
* mov(8) null g4<8,8,1>F { align1 WE_normal 1Q };
*
* On the second load, it takes just an extra ~140 cycles, and after
* accounting for the 14 cycles of the MOV's latency, that makes ~130.
*
* 683 +/- 49 cycles (min = 602, n=47):
* mov(8) g115<1>F 0F { align1 WE_normal 1Q };
* mov(8) g114<1>F 0F { align1 WE_normal 1Q };
* send(8) g4<1>UW g114<8,8,1>F
* sampler (10, 0, 0, 1) mlen 2 rlen 4 { align1 WE_normal 1Q };
* send(8) g50<1>UW g114<8,8,1>F
* sampler (10, 0, 0, 1) mlen 2 rlen 4 { align1 WE_normal 1Q };
* mov(8) null g4<8,8,1>F { align1 WE_normal 1Q };
*
* The unit appears to be pipelined, since this matches up with the
* cache-cold case, despite there being two loads here. If you replace
* the g4 in the MOV to null with g50, it's still 693 +/- 52 (n=39).
*
* So, take some number between the cache-hot 140 cycles and the
* cache-cold 700 cycles. No particular tuning was done on this.
*
* I haven't done significant testing of the non-TEX opcodes. TXL at
* least looked about the same as TEX.
*/
latency = 200;
break;
case SHADER_OPCODE_TXS:
/* Testing textureSize(sampler2D, 0), one load was 420 +/- 41
* cycles (n=15):
* mov(8) g114<1>UD 0D { align1 WE_normal 1Q };
* send(8) g6<1>UW g114<8,8,1>F
* sampler (10, 0, 10, 1) mlen 1 rlen 4 { align1 WE_normal 1Q };
* mov(16) g6<1>F g6<8,8,1>D { align1 WE_normal 1Q };
*
*
* Two loads was 535 +/- 30 cycles (n=19):
* mov(16) g114<1>UD 0D { align1 WE_normal 1H };
* send(16) g6<1>UW g114<8,8,1>F
* sampler (10, 0, 10, 2) mlen 2 rlen 8 { align1 WE_normal 1H };
* mov(16) g114<1>UD 0D { align1 WE_normal 1H };
* mov(16) g6<1>F g6<8,8,1>D { align1 WE_normal 1H };
* send(16) g8<1>UW g114<8,8,1>F
* sampler (10, 0, 10, 2) mlen 2 rlen 8 { align1 WE_normal 1H };
* mov(16) g8<1>F g8<8,8,1>D { align1 WE_normal 1H };
* add(16) g6<1>F g6<8,8,1>F g8<8,8,1>F { align1 WE_normal 1H };
*
* Since the only caches that should matter are just the
* instruction/state cache containing the surface state, assume that we
* always have hot caches.
*/
latency = 100;
break;
case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD:
case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
case VS_OPCODE_PULL_CONSTANT_LOAD:
/* testing using varying-index pull constants:
*
* 16 cycles:
* mov(8) g4<1>D g2.1<0,1,0>F { align1 WE_normal 1Q };
* send(8) g4<1>F g4<8,8,1>D
* data (9, 2, 3) mlen 1 rlen 1 { align1 WE_normal 1Q };
*
* ~480 cycles:
* mov(8) g4<1>D g2.1<0,1,0>F { align1 WE_normal 1Q };
* send(8) g4<1>F g4<8,8,1>D
* data (9, 2, 3) mlen 1 rlen 1 { align1 WE_normal 1Q };
* mov(8) null g4<8,8,1>F { align1 WE_normal 1Q };
*
* ~620 cycles:
* mov(8) g4<1>D g2.1<0,1,0>F { align1 WE_normal 1Q };
* send(8) g4<1>F g4<8,8,1>D
* data (9, 2, 3) mlen 1 rlen 1 { align1 WE_normal 1Q };
* mov(8) null g4<8,8,1>F { align1 WE_normal 1Q };
* send(8) g4<1>F g4<8,8,1>D
* data (9, 2, 3) mlen 1 rlen 1 { align1 WE_normal 1Q };
* mov(8) null g4<8,8,1>F { align1 WE_normal 1Q };
*
* So, if it's cache-hot, it's about 140. If it's cache cold, it's
* about 460. We expect to mostly be cache hot, so pick something more
* in that direction.
*/
latency = 200;
break;
case SHADER_OPCODE_GEN7_SCRATCH_READ:
/* Testing a load from offset 0, that had been previously written:
*
* send(8) g114<1>UW g0<8,8,1>F data (0, 0, 0) mlen 1 rlen 1 { align1 WE_normal 1Q };
* mov(8) null g114<8,8,1>F { align1 WE_normal 1Q };
*
* The cycles spent seemed to be grouped around 40-50 (as low as 38),
* then around 140. Presumably this is cache hit vs miss.
*/
latency = 50;
break;
case SHADER_OPCODE_UNTYPED_ATOMIC:
/* Test code:
* mov(8) g112<1>ud 0x00000000ud { align1 WE_all 1Q };
* mov(1) g112.7<1>ud g1.7<0,1,0>ud { align1 WE_all };
* mov(8) g113<1>ud 0x00000000ud { align1 WE_normal 1Q };
* send(8) g4<1>ud g112<8,8,1>ud
* data (38, 5, 6) mlen 2 rlen 1 { align1 WE_normal 1Q };
*
* Running it 100 times as fragment shader on a 128x128 quad
* gives an average latency of 13867 cycles per atomic op,
* standard deviation 3%. Note that this is a rather
* pessimistic estimate, the actual latency in cases with few
* collisions between threads and favorable pipelining has been
* seen to be reduced by a factor of 100.
*/
latency = 14000;
break;
case SHADER_OPCODE_UNTYPED_SURFACE_READ:
/* Test code:
* mov(8) g112<1>UD 0x00000000UD { align1 WE_all 1Q };
* mov(1) g112.7<1>UD g1.7<0,1,0>UD { align1 WE_all };
* mov(8) g113<1>UD 0x00000000UD { align1 WE_normal 1Q };
* send(8) g4<1>UD g112<8,8,1>UD
* data (38, 6, 5) mlen 2 rlen 1 { align1 WE_normal 1Q };
* .
* . [repeats 8 times]
* .
* mov(8) g112<1>UD 0x00000000UD { align1 WE_all 1Q };
* mov(1) g112.7<1>UD g1.7<0,1,0>UD { align1 WE_all };
* mov(8) g113<1>UD 0x00000000UD { align1 WE_normal 1Q };
* send(8) g4<1>UD g112<8,8,1>UD
* data (38, 6, 5) mlen 2 rlen 1 { align1 WE_normal 1Q };
*
* Running it 100 times as fragment shader on a 128x128 quad
* gives an average latency of 583 cycles per surface read,
* standard deviation 0.9%.
*/
latency = is_haswell ? 300 : 600;
break;
default:
/* 2 cycles:
* mul(8) g4<1>F g2<0,1,0>F 0.5F { align1 WE_normal 1Q };
*
* 16 cycles:
* mul(8) g4<1>F g2<0,1,0>F 0.5F { align1 WE_normal 1Q };
* mov(8) null g4<8,8,1>F { align1 WE_normal 1Q };
*/
latency = 14;
break;
}
}
class instruction_scheduler {
public:
instruction_scheduler(backend_visitor *v, int grf_count,
instruction_scheduler_mode mode)
{
this->bv = v;
this->mem_ctx = ralloc_context(NULL);
this->grf_count = grf_count;
this->instructions.make_empty();
this->instructions_to_schedule = 0;
this->post_reg_alloc = (mode == SCHEDULE_POST);
this->mode = mode;
this->time = 0;
if (!post_reg_alloc) {
this->remaining_grf_uses = rzalloc_array(mem_ctx, int, grf_count);
this->grf_active = rzalloc_array(mem_ctx, bool, grf_count);
} else {
this->remaining_grf_uses = NULL;
this->grf_active = NULL;
}
}
~instruction_scheduler()
{
ralloc_free(this->mem_ctx);
}
void add_barrier_deps(schedule_node *n);
void add_dep(schedule_node *before, schedule_node *after, int latency);
void add_dep(schedule_node *before, schedule_node *after);
void run(cfg_t *cfg);
void add_insts_from_block(bblock_t *block);
void compute_delay(schedule_node *node);
virtual void calculate_deps() = 0;
virtual schedule_node *choose_instruction_to_schedule() = 0;
/**
* Returns how many cycles it takes the instruction to issue.
*
* Instructions in gen hardware are handled one simd4 vector at a time,
* with 1 cycle per vector dispatched. Thus SIMD8 pixel shaders take 2
* cycles to dispatch and SIMD16 (compressed) instructions take 4.
*/
virtual int issue_time(backend_instruction *inst) = 0;
virtual void count_remaining_grf_uses(backend_instruction *inst) = 0;
virtual void update_register_pressure(backend_instruction *inst) = 0;
virtual int get_register_pressure_benefit(backend_instruction *inst) = 0;
void schedule_instructions(bblock_t *block);
void *mem_ctx;
bool post_reg_alloc;
int instructions_to_schedule;
int grf_count;
int time;
exec_list instructions;
backend_visitor *bv;
instruction_scheduler_mode mode;
/**
* Number of instructions left to schedule that reference each vgrf.
*
* Used so that we can prefer scheduling instructions that will end the
* live intervals of multiple variables, to reduce register pressure.
*/
int *remaining_grf_uses;
/**
* Tracks whether each VGRF has had an instruction scheduled that uses it.
*
* This is used to estimate whether scheduling a new instruction will
* increase register pressure.
*/
bool *grf_active;
};
class fs_instruction_scheduler : public instruction_scheduler
{
public:
fs_instruction_scheduler(fs_visitor *v, int grf_count,
instruction_scheduler_mode mode);
void calculate_deps();
bool is_compressed(fs_inst *inst);
schedule_node *choose_instruction_to_schedule();
int issue_time(backend_instruction *inst);
fs_visitor *v;
void count_remaining_grf_uses(backend_instruction *inst);
void update_register_pressure(backend_instruction *inst);
int get_register_pressure_benefit(backend_instruction *inst);
};
fs_instruction_scheduler::fs_instruction_scheduler(fs_visitor *v,
int grf_count,
instruction_scheduler_mode mode)
: instruction_scheduler(v, grf_count, mode),
v(v)
{
}
void
fs_instruction_scheduler::count_remaining_grf_uses(backend_instruction *be)
{
fs_inst *inst = (fs_inst *)be;
if (!remaining_grf_uses)
return;
if (inst->dst.file == GRF)
remaining_grf_uses[inst->dst.reg]++;
for (int i = 0; i < inst->sources; i++) {
if (inst->src[i].file != GRF)
continue;
remaining_grf_uses[inst->src[i].reg]++;
}
}
void
fs_instruction_scheduler::update_register_pressure(backend_instruction *be)
{
fs_inst *inst = (fs_inst *)be;
if (!remaining_grf_uses)
return;
if (inst->dst.file == GRF) {
remaining_grf_uses[inst->dst.reg]--;
grf_active[inst->dst.reg] = true;
}
for (int i = 0; i < inst->sources; i++) {
if (inst->src[i].file == GRF) {
remaining_grf_uses[inst->src[i].reg]--;
grf_active[inst->src[i].reg] = true;
}
}
}
int
fs_instruction_scheduler::get_register_pressure_benefit(backend_instruction *be)
{
fs_inst *inst = (fs_inst *)be;
int benefit = 0;
if (inst->dst.file == GRF) {
if (remaining_grf_uses[inst->dst.reg] == 1)
benefit += v->alloc.sizes[inst->dst.reg];
if (!grf_active[inst->dst.reg])
benefit -= v->alloc.sizes[inst->dst.reg];
}
for (int i = 0; i < inst->sources; i++) {
if (inst->src[i].file != GRF)
continue;
if (remaining_grf_uses[inst->src[i].reg] == 1)
benefit += v->alloc.sizes[inst->src[i].reg];
if (!grf_active[inst->src[i].reg])
benefit -= v->alloc.sizes[inst->src[i].reg];
}
return benefit;
}
class vec4_instruction_scheduler : public instruction_scheduler
{
public:
vec4_instruction_scheduler(vec4_visitor *v, int grf_count);
void calculate_deps();
schedule_node *choose_instruction_to_schedule();
int issue_time(backend_instruction *inst);
vec4_visitor *v;
void count_remaining_grf_uses(backend_instruction *inst);
void update_register_pressure(backend_instruction *inst);
int get_register_pressure_benefit(backend_instruction *inst);
};
vec4_instruction_scheduler::vec4_instruction_scheduler(vec4_visitor *v,
int grf_count)
: instruction_scheduler(v, grf_count, SCHEDULE_POST),
v(v)
{
}
void
vec4_instruction_scheduler::count_remaining_grf_uses(backend_instruction *be)
{
}
void
vec4_instruction_scheduler::update_register_pressure(backend_instruction *be)
{
}
int
vec4_instruction_scheduler::get_register_pressure_benefit(backend_instruction *be)
{
return 0;
}
schedule_node::schedule_node(backend_instruction *inst,
instruction_scheduler *sched)
{
struct brw_context *brw = sched->bv->brw;
this->inst = inst;
this->child_array_size = 0;
this->children = NULL;
this->child_latency = NULL;
this->child_count = 0;
this->parent_count = 0;
this->unblocked_time = 0;
this->cand_generation = 0;
this->delay = 0;
/* We can't measure Gen6 timings directly but expect them to be much
* closer to Gen7 than Gen4.
*/
if (!sched->post_reg_alloc)
this->latency = 1;
else if (brw->gen >= 6)
set_latency_gen7(brw->is_haswell);
else
set_latency_gen4();
}
void
instruction_scheduler::add_insts_from_block(bblock_t *block)
{
/* Removing the last instruction from a basic block removes the block as
* well, so put a NOP at the end to keep it alive.
*/
if (!block->end()->is_control_flow()) {
backend_instruction *nop = new(mem_ctx) backend_instruction();
nop->opcode = BRW_OPCODE_NOP;
block->end()->insert_after(block, nop);
}
foreach_inst_in_block_safe(backend_instruction, inst, block) {
if (inst->opcode == BRW_OPCODE_NOP || inst->is_control_flow())
continue;
schedule_node *n = new(mem_ctx) schedule_node(inst, this);
this->instructions_to_schedule++;
inst->remove(block);
instructions.push_tail(n);
}
}
/** Recursive computation of the delay member of a node. */
void
instruction_scheduler::compute_delay(schedule_node *n)
{
if (!n->child_count) {
n->delay = issue_time(n->inst);
} else {
for (int i = 0; i < n->child_count; i++) {
if (!n->children[i]->delay)
compute_delay(n->children[i]);
n->delay = MAX2(n->delay, n->latency + n->children[i]->delay);
}
}
}
/**
* Add a dependency between two instruction nodes.
*
* The @after node will be scheduled after @before. We will try to
* schedule it @latency cycles after @before, but no guarantees there.
*/
void
instruction_scheduler::add_dep(schedule_node *before, schedule_node *after,
int latency)
{
if (!before || !after)
return;
assert(before != after);
for (int i = 0; i < before->child_count; i++) {
if (before->children[i] == after) {
before->child_latency[i] = MAX2(before->child_latency[i], latency);
return;
}
}
if (before->child_array_size <= before->child_count) {
if (before->child_array_size < 16)
before->child_array_size = 16;
else
before->child_array_size *= 2;
before->children = reralloc(mem_ctx, before->children,
schedule_node *,
before->child_array_size);
before->child_latency = reralloc(mem_ctx, before->child_latency,
int, before->child_array_size);
}
before->children[before->child_count] = after;
before->child_latency[before->child_count] = latency;
before->child_count++;
after->parent_count++;
}
void
instruction_scheduler::add_dep(schedule_node *before, schedule_node *after)
{
if (!before)
return;
add_dep(before, after, before->latency);
}
/**
* Sometimes we really want this node to execute after everything that
* was before it and before everything that followed it. This adds
* the deps to do so.
*/
void
instruction_scheduler::add_barrier_deps(schedule_node *n)
{
schedule_node *prev = (schedule_node *)n->prev;
schedule_node *next = (schedule_node *)n->next;
if (prev) {
while (!prev->is_head_sentinel()) {
add_dep(prev, n, 0);
prev = (schedule_node *)prev->prev;
}
}
if (next) {
while (!next->is_tail_sentinel()) {
add_dep(n, next, 0);
next = (schedule_node *)next->next;
}
}
}
/* instruction scheduling needs to be aware of when an MRF write
* actually writes 2 MRFs.
*/
bool
fs_instruction_scheduler::is_compressed(fs_inst *inst)
{
return inst->exec_size == 16;
}
void
fs_instruction_scheduler::calculate_deps()
{
/* Pre-register-allocation, this tracks the last write per VGRF offset.
* After register allocation, reg_offsets are gone and we track individual
* GRF registers.
*/
schedule_node *last_grf_write[grf_count * 16];
schedule_node *last_mrf_write[BRW_MAX_MRF];
schedule_node *last_conditional_mod[2] = { NULL, NULL };
schedule_node *last_accumulator_write = NULL;
/* Fixed HW registers are assumed to be separate from the virtual
* GRFs, so they can be tracked separately. We don't really write
* to fixed GRFs much, so don't bother tracking them on a more
* granular level.
*/
schedule_node *last_fixed_grf_write = NULL;
int reg_width = v->dispatch_width / 8;
/* The last instruction always needs to still be the last
* instruction. Either it's flow control (IF, ELSE, ENDIF, DO,
* WHILE) and scheduling other things after it would disturb the
* basic block, or it's FB_WRITE and we should do a better job at
* dead code elimination anyway.
*/
schedule_node *last = (schedule_node *)instructions.get_tail();
add_barrier_deps(last);
memset(last_grf_write, 0, sizeof(last_grf_write));
memset(last_mrf_write, 0, sizeof(last_mrf_write));
/* top-to-bottom dependencies: RAW and WAW. */
foreach_in_list(schedule_node, n, &instructions) {
fs_inst *inst = (fs_inst *)n->inst;
if (inst->opcode == FS_OPCODE_PLACEHOLDER_HALT ||
inst->has_side_effects())
add_barrier_deps(n);
/* read-after-write deps. */
for (int i = 0; i < inst->sources; i++) {
if (inst->src[i].file == GRF) {
if (post_reg_alloc) {
for (int r = 0; r < inst->regs_read(i); r++)
add_dep(last_grf_write[inst->src[i].reg + r], n);
} else {
for (int r = 0; r < inst->regs_read(i); r++) {
add_dep(last_grf_write[inst->src[i].reg * 16 + inst->src[i].reg_offset + r], n);
}
}
} else if (inst->src[i].file == HW_REG &&
(inst->src[i].fixed_hw_reg.file ==
BRW_GENERAL_REGISTER_FILE)) {
if (post_reg_alloc) {
int size = reg_width;
if (inst->src[i].fixed_hw_reg.vstride == BRW_VERTICAL_STRIDE_0)
size = 1;
for (int r = 0; r < size; r++)
add_dep(last_grf_write[inst->src[i].fixed_hw_reg.nr + r], n);
} else {
add_dep(last_fixed_grf_write, n);
}
} else if (inst->src[i].is_accumulator()) {
add_dep(last_accumulator_write, n);
} else if (inst->src[i].file != BAD_FILE &&
inst->src[i].file != IMM &&
inst->src[i].file != UNIFORM &&
(inst->src[i].file != HW_REG ||
inst->src[i].fixed_hw_reg.file != IMM)) {
assert(inst->src[i].file != MRF);
add_barrier_deps(n);
}
}
i965/fs: Convert gen7 to using GRFs for texture messages. Looking at Lightsmark's shaders, the way we used MRFs (or in gen7's case, GRFs) was bad in a couple of ways. One was that it prevented compute-to-MRF for the common case of a texcoord that gets used exactly once, but where the texcoord setup all gets emitted before the texture calls (such as when it's a bare fragment shader input, which gets interpolated before processing main()). Another was that it introduced a bunch of dependencies that constrained scheduling, and forced waits for texture operations to be done before they are required. For example, we can now move the compute-to-MRF interpolation for the second texture send down after the first send. The downside is that this generally prevents remove_duplicate_mrf_writes() from doing anything, whereas previously it avoided work for the case of sampling from the same texcoord twice. However, I suspect that most of the win that originally justified that code was in avoiding the WAR stall on the first send, which this patch also avoids, rather than the small cost of the extra instruction. We see instruction count regressions in shaders in unigine, yofrankie, savage2, hon, and gstreamer. Improves GLB2.7 performance by 0.633628% +/- 0.491809% (n=121/125, avg of ~66fps, outliers below 61 dropped). Improves openarena performance by 1.01092% +/- 0.66897% (n=425). No significant difference on Lightsmark (n=44). v2: Squash in the fix for register unspilling for send-from-GRF, fixing a segfault in lightsmark. Reviewed-by: Kenneth Graunke <kenneth@whitecape.org> Acked-by: Matt Turner <mattst88@gmail.com>
2013-10-09 17:17:59 -07:00
if (inst->base_mrf != -1) {
for (int i = 0; i < inst->mlen; i++) {
/* It looks like the MRF regs are released in the send
* instruction once it's sent, not when the result comes
* back.
*/
add_dep(last_mrf_write[inst->base_mrf + i], n);
}
}
if (inst->reads_flag()) {
add_dep(last_conditional_mod[inst->flag_subreg], n);
}
if (inst->reads_accumulator_implicitly()) {
add_dep(last_accumulator_write, n);
}
/* write-after-write deps. */
if (inst->dst.file == GRF) {
if (post_reg_alloc) {
i965/fs_reg: Allocate double the number of vgrfs in SIMD16 mode This is actually the squash of a bunch of different changes. Individual commit titles follow: i965/fs: Always 2-align registers SIMD16 for gen <= 5 i965/fs: Use the register width when applying offsets This reworks both byte_offset() and offset() to be more intelligent. The byte_offset() function now supports offsets bigger than 32. The offset() function uses the byte_offset() function together with the register width and the type size to offset the register by the correct amount. i965/fs: Change regs_read to be in hardware registers i965/fs: Change regs_written to be actual hardware registers i965/fs: Properly handle register widths in LOAD_PAYLOAD The LOAD_PAYLOAD instruction is a bit special because it collects a bunch of registers (with possibly different widths) into a single payload block. Once the payload is constructed, it's treated as a single block of data and most of the information such as register widths doesn't matter anymore. In particular, the offset of any particular source register is the accumulation of the sizes of the previous source registers. i965/fs: Properly set writemasks in LOAD_PAYLOAD i965/fs: Handle register widths in demote_pull_constants i965/fs: Get rid of implicit register doubling in the allocator i965/fs: Reserve enough registers for PLN instructions i965/fs: Make sources and destinations interfere in 16-wide i965/fs: Properly handle register widths in CSE i965/fs: Properly handle register widths in register_coalesce i965/fs: Properly handle widths in copy propagation i965/fs: Properly handle register widths in VARYING_PULL_CONSTANT_LOAD i965/fs: Properly handle register widths and odd register sizes in spilling i965/fs: Don't waste a register on texture lookups for gen >= 7 Previously, we were waisting a register in SIMD16 mode because we could only allocate registers in pairs. Now that we can allocate and address odd-sized registers, let's get rid of this special-case. Signed-off-by: Jason Ekstrand <jason.ekstrand@intel.com> Reviewed-by: Matt Turner <mattst88@gmail.com>
2014-08-18 14:27:55 -07:00
for (int r = 0; r < inst->regs_written; r++) {
add_dep(last_grf_write[inst->dst.reg + r], n);
last_grf_write[inst->dst.reg + r] = n;
}
} else {
for (int r = 0; r < inst->regs_written; r++) {
add_dep(last_grf_write[inst->dst.reg * 16 + inst->dst.reg_offset + r], n);
last_grf_write[inst->dst.reg * 16 + inst->dst.reg_offset + r] = n;
}
}
} else if (inst->dst.file == MRF) {
int reg = inst->dst.reg & ~BRW_MRF_COMPR4;
add_dep(last_mrf_write[reg], n);
last_mrf_write[reg] = n;
if (is_compressed(inst)) {
if (inst->dst.reg & BRW_MRF_COMPR4)
reg += 4;
else
reg++;
add_dep(last_mrf_write[reg], n);
last_mrf_write[reg] = n;
}
} else if (inst->dst.file == HW_REG &&
inst->dst.fixed_hw_reg.file == BRW_GENERAL_REGISTER_FILE) {
if (post_reg_alloc) {
for (int r = 0; r < reg_width; r++)
last_grf_write[inst->dst.fixed_hw_reg.nr + r] = n;
} else {
last_fixed_grf_write = n;
}
} else if (inst->dst.is_accumulator()) {
add_dep(last_accumulator_write, n);
last_accumulator_write = n;
} else if (inst->dst.file != BAD_FILE &&
!inst->dst.is_null()) {
add_barrier_deps(n);
}
i965/fs: Convert gen7 to using GRFs for texture messages. Looking at Lightsmark's shaders, the way we used MRFs (or in gen7's case, GRFs) was bad in a couple of ways. One was that it prevented compute-to-MRF for the common case of a texcoord that gets used exactly once, but where the texcoord setup all gets emitted before the texture calls (such as when it's a bare fragment shader input, which gets interpolated before processing main()). Another was that it introduced a bunch of dependencies that constrained scheduling, and forced waits for texture operations to be done before they are required. For example, we can now move the compute-to-MRF interpolation for the second texture send down after the first send. The downside is that this generally prevents remove_duplicate_mrf_writes() from doing anything, whereas previously it avoided work for the case of sampling from the same texcoord twice. However, I suspect that most of the win that originally justified that code was in avoiding the WAR stall on the first send, which this patch also avoids, rather than the small cost of the extra instruction. We see instruction count regressions in shaders in unigine, yofrankie, savage2, hon, and gstreamer. Improves GLB2.7 performance by 0.633628% +/- 0.491809% (n=121/125, avg of ~66fps, outliers below 61 dropped). Improves openarena performance by 1.01092% +/- 0.66897% (n=425). No significant difference on Lightsmark (n=44). v2: Squash in the fix for register unspilling for send-from-GRF, fixing a segfault in lightsmark. Reviewed-by: Kenneth Graunke <kenneth@whitecape.org> Acked-by: Matt Turner <mattst88@gmail.com>
2013-10-09 17:17:59 -07:00
if (inst->mlen > 0 && inst->base_mrf != -1) {
for (int i = 0; i < v->implied_mrf_writes(inst); i++) {
add_dep(last_mrf_write[inst->base_mrf + i], n);
last_mrf_write[inst->base_mrf + i] = n;
}
}
if (inst->writes_flag()) {
add_dep(last_conditional_mod[inst->flag_subreg], n, 0);
last_conditional_mod[inst->flag_subreg] = n;
}
if (inst->writes_accumulator_implicitly(v->brw) &&
!inst->dst.is_accumulator()) {
add_dep(last_accumulator_write, n);
last_accumulator_write = n;
}
}
/* bottom-to-top dependencies: WAR */
memset(last_grf_write, 0, sizeof(last_grf_write));
memset(last_mrf_write, 0, sizeof(last_mrf_write));
memset(last_conditional_mod, 0, sizeof(last_conditional_mod));
last_accumulator_write = NULL;
last_fixed_grf_write = NULL;
exec_node *node;
exec_node *prev;
for (node = instructions.get_tail(), prev = node->prev;
!node->is_head_sentinel();
node = prev, prev = node->prev) {
schedule_node *n = (schedule_node *)node;
fs_inst *inst = (fs_inst *)n->inst;
/* write-after-read deps. */
for (int i = 0; i < inst->sources; i++) {
if (inst->src[i].file == GRF) {
if (post_reg_alloc) {
for (int r = 0; r < inst->regs_read(i); r++)
add_dep(n, last_grf_write[inst->src[i].reg + r]);
} else {
for (int r = 0; r < inst->regs_read(i); r++) {
add_dep(n, last_grf_write[inst->src[i].reg * 16 + inst->src[i].reg_offset + r]);
}
}
} else if (inst->src[i].file == HW_REG &&
(inst->src[i].fixed_hw_reg.file ==
BRW_GENERAL_REGISTER_FILE)) {
if (post_reg_alloc) {
int size = reg_width;
if (inst->src[i].fixed_hw_reg.vstride == BRW_VERTICAL_STRIDE_0)
size = 1;
for (int r = 0; r < size; r++)
add_dep(n, last_grf_write[inst->src[i].fixed_hw_reg.nr + r]);
} else {
add_dep(n, last_fixed_grf_write);
}
} else if (inst->src[i].is_accumulator()) {
add_dep(n, last_accumulator_write);
} else if (inst->src[i].file != BAD_FILE &&
inst->src[i].file != IMM &&
inst->src[i].file != UNIFORM &&
(inst->src[i].file != HW_REG ||
inst->src[i].fixed_hw_reg.file != IMM)) {
assert(inst->src[i].file != MRF);
add_barrier_deps(n);
}
}
i965/fs: Convert gen7 to using GRFs for texture messages. Looking at Lightsmark's shaders, the way we used MRFs (or in gen7's case, GRFs) was bad in a couple of ways. One was that it prevented compute-to-MRF for the common case of a texcoord that gets used exactly once, but where the texcoord setup all gets emitted before the texture calls (such as when it's a bare fragment shader input, which gets interpolated before processing main()). Another was that it introduced a bunch of dependencies that constrained scheduling, and forced waits for texture operations to be done before they are required. For example, we can now move the compute-to-MRF interpolation for the second texture send down after the first send. The downside is that this generally prevents remove_duplicate_mrf_writes() from doing anything, whereas previously it avoided work for the case of sampling from the same texcoord twice. However, I suspect that most of the win that originally justified that code was in avoiding the WAR stall on the first send, which this patch also avoids, rather than the small cost of the extra instruction. We see instruction count regressions in shaders in unigine, yofrankie, savage2, hon, and gstreamer. Improves GLB2.7 performance by 0.633628% +/- 0.491809% (n=121/125, avg of ~66fps, outliers below 61 dropped). Improves openarena performance by 1.01092% +/- 0.66897% (n=425). No significant difference on Lightsmark (n=44). v2: Squash in the fix for register unspilling for send-from-GRF, fixing a segfault in lightsmark. Reviewed-by: Kenneth Graunke <kenneth@whitecape.org> Acked-by: Matt Turner <mattst88@gmail.com>
2013-10-09 17:17:59 -07:00
if (inst->base_mrf != -1) {
for (int i = 0; i < inst->mlen; i++) {
/* It looks like the MRF regs are released in the send
* instruction once it's sent, not when the result comes
* back.
*/
add_dep(n, last_mrf_write[inst->base_mrf + i], 2);
}
}
if (inst->reads_flag()) {
add_dep(n, last_conditional_mod[inst->flag_subreg]);
}
if (inst->reads_accumulator_implicitly()) {
add_dep(n, last_accumulator_write);
}
/* Update the things this instruction wrote, so earlier reads
* can mark this as WAR dependency.
*/
if (inst->dst.file == GRF) {
if (post_reg_alloc) {
i965/fs_reg: Allocate double the number of vgrfs in SIMD16 mode This is actually the squash of a bunch of different changes. Individual commit titles follow: i965/fs: Always 2-align registers SIMD16 for gen <= 5 i965/fs: Use the register width when applying offsets This reworks both byte_offset() and offset() to be more intelligent. The byte_offset() function now supports offsets bigger than 32. The offset() function uses the byte_offset() function together with the register width and the type size to offset the register by the correct amount. i965/fs: Change regs_read to be in hardware registers i965/fs: Change regs_written to be actual hardware registers i965/fs: Properly handle register widths in LOAD_PAYLOAD The LOAD_PAYLOAD instruction is a bit special because it collects a bunch of registers (with possibly different widths) into a single payload block. Once the payload is constructed, it's treated as a single block of data and most of the information such as register widths doesn't matter anymore. In particular, the offset of any particular source register is the accumulation of the sizes of the previous source registers. i965/fs: Properly set writemasks in LOAD_PAYLOAD i965/fs: Handle register widths in demote_pull_constants i965/fs: Get rid of implicit register doubling in the allocator i965/fs: Reserve enough registers for PLN instructions i965/fs: Make sources and destinations interfere in 16-wide i965/fs: Properly handle register widths in CSE i965/fs: Properly handle register widths in register_coalesce i965/fs: Properly handle widths in copy propagation i965/fs: Properly handle register widths in VARYING_PULL_CONSTANT_LOAD i965/fs: Properly handle register widths and odd register sizes in spilling i965/fs: Don't waste a register on texture lookups for gen >= 7 Previously, we were waisting a register in SIMD16 mode because we could only allocate registers in pairs. Now that we can allocate and address odd-sized registers, let's get rid of this special-case. Signed-off-by: Jason Ekstrand <jason.ekstrand@intel.com> Reviewed-by: Matt Turner <mattst88@gmail.com>
2014-08-18 14:27:55 -07:00
for (int r = 0; r < inst->regs_written; r++)
last_grf_write[inst->dst.reg + r] = n;
} else {
for (int r = 0; r < inst->regs_written; r++) {
last_grf_write[inst->dst.reg * 16 + inst->dst.reg_offset + r] = n;
}
}
} else if (inst->dst.file == MRF) {
int reg = inst->dst.reg & ~BRW_MRF_COMPR4;
last_mrf_write[reg] = n;
if (is_compressed(inst)) {
if (inst->dst.reg & BRW_MRF_COMPR4)
reg += 4;
else
reg++;
last_mrf_write[reg] = n;
}
} else if (inst->dst.file == HW_REG &&
inst->dst.fixed_hw_reg.file == BRW_GENERAL_REGISTER_FILE) {
if (post_reg_alloc) {
for (int r = 0; r < reg_width; r++)
last_grf_write[inst->dst.fixed_hw_reg.nr + r] = n;
} else {
last_fixed_grf_write = n;
}
} else if (inst->dst.is_accumulator()) {
last_accumulator_write = n;
} else if (inst->dst.file != BAD_FILE &&
!inst->dst.is_null()) {
add_barrier_deps(n);
}
i965/fs: Convert gen7 to using GRFs for texture messages. Looking at Lightsmark's shaders, the way we used MRFs (or in gen7's case, GRFs) was bad in a couple of ways. One was that it prevented compute-to-MRF for the common case of a texcoord that gets used exactly once, but where the texcoord setup all gets emitted before the texture calls (such as when it's a bare fragment shader input, which gets interpolated before processing main()). Another was that it introduced a bunch of dependencies that constrained scheduling, and forced waits for texture operations to be done before they are required. For example, we can now move the compute-to-MRF interpolation for the second texture send down after the first send. The downside is that this generally prevents remove_duplicate_mrf_writes() from doing anything, whereas previously it avoided work for the case of sampling from the same texcoord twice. However, I suspect that most of the win that originally justified that code was in avoiding the WAR stall on the first send, which this patch also avoids, rather than the small cost of the extra instruction. We see instruction count regressions in shaders in unigine, yofrankie, savage2, hon, and gstreamer. Improves GLB2.7 performance by 0.633628% +/- 0.491809% (n=121/125, avg of ~66fps, outliers below 61 dropped). Improves openarena performance by 1.01092% +/- 0.66897% (n=425). No significant difference on Lightsmark (n=44). v2: Squash in the fix for register unspilling for send-from-GRF, fixing a segfault in lightsmark. Reviewed-by: Kenneth Graunke <kenneth@whitecape.org> Acked-by: Matt Turner <mattst88@gmail.com>
2013-10-09 17:17:59 -07:00
if (inst->mlen > 0 && inst->base_mrf != -1) {
for (int i = 0; i < v->implied_mrf_writes(inst); i++) {
last_mrf_write[inst->base_mrf + i] = n;
}
}
if (inst->writes_flag()) {
last_conditional_mod[inst->flag_subreg] = n;
}
if (inst->writes_accumulator_implicitly(v->brw)) {
last_accumulator_write = n;
}
}
}
void
vec4_instruction_scheduler::calculate_deps()
{
schedule_node *last_grf_write[grf_count];
schedule_node *last_mrf_write[BRW_MAX_MRF];
schedule_node *last_conditional_mod = NULL;
schedule_node *last_accumulator_write = NULL;
/* Fixed HW registers are assumed to be separate from the virtual
* GRFs, so they can be tracked separately. We don't really write
* to fixed GRFs much, so don't bother tracking them on a more
* granular level.
*/
schedule_node *last_fixed_grf_write = NULL;
/* The last instruction always needs to still be the last instruction.
* Either it's flow control (IF, ELSE, ENDIF, DO, WHILE) and scheduling
* other things after it would disturb the basic block, or it's the EOT
* URB_WRITE and we should do a better job at dead code eliminating
* anything that could have been scheduled after it.
*/
schedule_node *last = (schedule_node *)instructions.get_tail();
add_barrier_deps(last);
memset(last_grf_write, 0, sizeof(last_grf_write));
memset(last_mrf_write, 0, sizeof(last_mrf_write));
/* top-to-bottom dependencies: RAW and WAW. */
foreach_in_list(schedule_node, n, &instructions) {
vec4_instruction *inst = (vec4_instruction *)n->inst;
if (inst->has_side_effects())
add_barrier_deps(n);
/* read-after-write deps. */
for (int i = 0; i < 3; i++) {
if (inst->src[i].file == GRF) {
for (unsigned j = 0; j < inst->regs_read(i); ++j)
add_dep(last_grf_write[inst->src[i].reg + j], n);
} else if (inst->src[i].file == HW_REG &&
(inst->src[i].fixed_hw_reg.file ==
BRW_GENERAL_REGISTER_FILE)) {
add_dep(last_fixed_grf_write, n);
} else if (inst->src[i].is_accumulator()) {
assert(last_accumulator_write);
add_dep(last_accumulator_write, n);
} else if (inst->src[i].file != BAD_FILE &&
inst->src[i].file != IMM &&
inst->src[i].file != UNIFORM &&
(inst->src[i].file != HW_REG ||
inst->src[i].fixed_hw_reg.file != IMM)) {
/* No reads from MRF, and ATTR is already translated away */
assert(inst->src[i].file != MRF &&
inst->src[i].file != ATTR);
add_barrier_deps(n);
}
}
if (!inst->is_send_from_grf()) {
for (int i = 0; i < inst->mlen; i++) {
/* It looks like the MRF regs are released in the send
* instruction once it's sent, not when the result comes
* back.
*/
add_dep(last_mrf_write[inst->base_mrf + i], n);
}
}
if (inst->reads_flag()) {
assert(last_conditional_mod);
add_dep(last_conditional_mod, n);
}
if (inst->reads_accumulator_implicitly()) {
assert(last_accumulator_write);
add_dep(last_accumulator_write, n);
}
/* write-after-write deps. */
if (inst->dst.file == GRF) {
for (unsigned j = 0; j < inst->regs_written; ++j) {
add_dep(last_grf_write[inst->dst.reg + j], n);
last_grf_write[inst->dst.reg + j] = n;
}
} else if (inst->dst.file == MRF) {
add_dep(last_mrf_write[inst->dst.reg], n);
last_mrf_write[inst->dst.reg] = n;
} else if (inst->dst.file == HW_REG &&
inst->dst.fixed_hw_reg.file == BRW_GENERAL_REGISTER_FILE) {
last_fixed_grf_write = n;
} else if (inst->dst.is_accumulator()) {
add_dep(last_accumulator_write, n);
last_accumulator_write = n;
} else if (inst->dst.file != BAD_FILE &&
!inst->dst.is_null()) {
add_barrier_deps(n);
}
if (inst->mlen > 0 && !inst->is_send_from_grf()) {
for (int i = 0; i < v->implied_mrf_writes(inst); i++) {
add_dep(last_mrf_write[inst->base_mrf + i], n);
last_mrf_write[inst->base_mrf + i] = n;
}
}
if (inst->writes_flag()) {
add_dep(last_conditional_mod, n, 0);
last_conditional_mod = n;
}
if (inst->writes_accumulator_implicitly(v->brw) &&
!inst->dst.is_accumulator()) {
add_dep(last_accumulator_write, n);
last_accumulator_write = n;
}
}
/* bottom-to-top dependencies: WAR */
memset(last_grf_write, 0, sizeof(last_grf_write));
memset(last_mrf_write, 0, sizeof(last_mrf_write));
last_conditional_mod = NULL;
last_accumulator_write = NULL;
last_fixed_grf_write = NULL;
exec_node *node;
exec_node *prev;
for (node = instructions.get_tail(), prev = node->prev;
!node->is_head_sentinel();
node = prev, prev = node->prev) {
schedule_node *n = (schedule_node *)node;
vec4_instruction *inst = (vec4_instruction *)n->inst;
/* write-after-read deps. */
for (int i = 0; i < 3; i++) {
if (inst->src[i].file == GRF) {
for (unsigned j = 0; j < inst->regs_read(i); ++j)
add_dep(n, last_grf_write[inst->src[i].reg + j]);
} else if (inst->src[i].file == HW_REG &&
(inst->src[i].fixed_hw_reg.file ==
BRW_GENERAL_REGISTER_FILE)) {
add_dep(n, last_fixed_grf_write);
} else if (inst->src[i].is_accumulator()) {
add_dep(n, last_accumulator_write);
} else if (inst->src[i].file != BAD_FILE &&
inst->src[i].file != IMM &&
inst->src[i].file != UNIFORM &&
(inst->src[i].file != HW_REG ||
inst->src[i].fixed_hw_reg.file != IMM)) {
assert(inst->src[i].file != MRF &&
inst->src[i].file != ATTR);
add_barrier_deps(n);
}
}
if (!inst->is_send_from_grf()) {
for (int i = 0; i < inst->mlen; i++) {
/* It looks like the MRF regs are released in the send
* instruction once it's sent, not when the result comes
* back.
*/
add_dep(n, last_mrf_write[inst->base_mrf + i], 2);
}
}
if (inst->reads_flag()) {
add_dep(n, last_conditional_mod);
}
if (inst->reads_accumulator_implicitly()) {
add_dep(n, last_accumulator_write);
}
/* Update the things this instruction wrote, so earlier reads
* can mark this as WAR dependency.
*/
if (inst->dst.file == GRF) {
for (unsigned j = 0; j < inst->regs_written; ++j)
last_grf_write[inst->dst.reg + j] = n;
} else if (inst->dst.file == MRF) {
last_mrf_write[inst->dst.reg] = n;
} else if (inst->dst.file == HW_REG &&
inst->dst.fixed_hw_reg.file == BRW_GENERAL_REGISTER_FILE) {
last_fixed_grf_write = n;
} else if (inst->dst.is_accumulator()) {
last_accumulator_write = n;
} else if (inst->dst.file != BAD_FILE &&
!inst->dst.is_null()) {
add_barrier_deps(n);
}
if (inst->mlen > 0 && !inst->is_send_from_grf()) {
for (int i = 0; i < v->implied_mrf_writes(inst); i++) {
last_mrf_write[inst->base_mrf + i] = n;
}
}
if (inst->writes_flag()) {
last_conditional_mod = n;
}
if (inst->writes_accumulator_implicitly(v->brw)) {
last_accumulator_write = n;
}
}
}
schedule_node *
fs_instruction_scheduler::choose_instruction_to_schedule()
{
struct brw_context *brw = v->brw;
schedule_node *chosen = NULL;
if (mode == SCHEDULE_PRE || mode == SCHEDULE_POST) {
int chosen_time = 0;
/* Of the instructions ready to execute or the closest to
* being ready, choose the oldest one.
*/
foreach_in_list(schedule_node, n, &instructions) {
if (!chosen || n->unblocked_time < chosen_time) {
chosen = n;
chosen_time = n->unblocked_time;
}
}
} else {
/* Before register allocation, we don't care about the latencies of
* instructions. All we care about is reducing live intervals of
* variables so that we can avoid register spilling, or get SIMD16
* shaders which naturally do a better job of hiding instruction
* latency.
*/
foreach_in_list(schedule_node, n, &instructions) {
fs_inst *inst = (fs_inst *)n->inst;
if (!chosen) {
chosen = n;
continue;
}
/* Most important: If we can definitely reduce register pressure, do
* so immediately.
*/
int register_pressure_benefit = get_register_pressure_benefit(n->inst);
int chosen_register_pressure_benefit =
get_register_pressure_benefit(chosen->inst);
if (register_pressure_benefit > 0 &&
register_pressure_benefit > chosen_register_pressure_benefit) {
chosen = n;
continue;
} else if (chosen_register_pressure_benefit > 0 &&
(register_pressure_benefit <
chosen_register_pressure_benefit)) {
continue;
}
if (mode == SCHEDULE_PRE_LIFO) {
/* Prefer instructions that recently became available for
* scheduling. These are the things that are most likely to
* (eventually) make a variable dead and reduce register pressure.
* Typical register pressure estimates don't work for us because
* most of our pressure comes from texturing, where no single
* instruction to schedule will make a vec4 value dead.
*/
if (n->cand_generation > chosen->cand_generation) {
chosen = n;
continue;
} else if (n->cand_generation < chosen->cand_generation) {
continue;
}
/* On MRF-using chips, prefer non-SEND instructions. If we don't
* do this, then because we prefer instructions that just became
* candidates, we'll end up in a pattern of scheduling a SEND,
* then the MRFs for the next SEND, then the next SEND, then the
* MRFs, etc., without ever consuming the results of a send.
*/
if (brw->gen < 7) {
fs_inst *chosen_inst = (fs_inst *)chosen->inst;
/* We use regs_written > 1 as our test for the kind of send
* instruction to avoid -- only sends generate many regs, and a
* single-result send is probably actually reducing register
* pressure.
*/
i965/fs_reg: Allocate double the number of vgrfs in SIMD16 mode This is actually the squash of a bunch of different changes. Individual commit titles follow: i965/fs: Always 2-align registers SIMD16 for gen <= 5 i965/fs: Use the register width when applying offsets This reworks both byte_offset() and offset() to be more intelligent. The byte_offset() function now supports offsets bigger than 32. The offset() function uses the byte_offset() function together with the register width and the type size to offset the register by the correct amount. i965/fs: Change regs_read to be in hardware registers i965/fs: Change regs_written to be actual hardware registers i965/fs: Properly handle register widths in LOAD_PAYLOAD The LOAD_PAYLOAD instruction is a bit special because it collects a bunch of registers (with possibly different widths) into a single payload block. Once the payload is constructed, it's treated as a single block of data and most of the information such as register widths doesn't matter anymore. In particular, the offset of any particular source register is the accumulation of the sizes of the previous source registers. i965/fs: Properly set writemasks in LOAD_PAYLOAD i965/fs: Handle register widths in demote_pull_constants i965/fs: Get rid of implicit register doubling in the allocator i965/fs: Reserve enough registers for PLN instructions i965/fs: Make sources and destinations interfere in 16-wide i965/fs: Properly handle register widths in CSE i965/fs: Properly handle register widths in register_coalesce i965/fs: Properly handle widths in copy propagation i965/fs: Properly handle register widths in VARYING_PULL_CONSTANT_LOAD i965/fs: Properly handle register widths and odd register sizes in spilling i965/fs: Don't waste a register on texture lookups for gen >= 7 Previously, we were waisting a register in SIMD16 mode because we could only allocate registers in pairs. Now that we can allocate and address odd-sized registers, let's get rid of this special-case. Signed-off-by: Jason Ekstrand <jason.ekstrand@intel.com> Reviewed-by: Matt Turner <mattst88@gmail.com>
2014-08-18 14:27:55 -07:00
if (inst->regs_written <= inst->dst.width / 8 &&
chosen_inst->regs_written > chosen_inst->dst.width / 8) {
chosen = n;
continue;
} else if (inst->regs_written > chosen_inst->regs_written) {
continue;
}
}
}
/* For instructions pushed on the cands list at the same time, prefer
* the one with the highest delay to the end of the program. This is
* most likely to have its values able to be consumed first (such as
* for a large tree of lowered ubo loads, which appear reversed in
* the instruction stream with respect to when they can be consumed).
*/
if (n->delay > chosen->delay) {
chosen = n;
continue;
} else if (n->delay < chosen->delay) {
continue;
}
/* If all other metrics are equal, we prefer the first instruction in
* the list (program execution).
*/
}
}
return chosen;
}
schedule_node *
vec4_instruction_scheduler::choose_instruction_to_schedule()
{
schedule_node *chosen = NULL;
int chosen_time = 0;
/* Of the instructions ready to execute or the closest to being ready,
* choose the oldest one.
*/
foreach_in_list(schedule_node, n, &instructions) {
if (!chosen || n->unblocked_time < chosen_time) {
chosen = n;
chosen_time = n->unblocked_time;
}
}
return chosen;
}
int
fs_instruction_scheduler::issue_time(backend_instruction *inst)
{
if (is_compressed((fs_inst *)inst))
return 4;
else
return 2;
}
int
vec4_instruction_scheduler::issue_time(backend_instruction *inst)
{
/* We always execute as two vec4s in parallel. */
return 2;
}
void
instruction_scheduler::schedule_instructions(bblock_t *block)
{
struct brw_context *brw = bv->brw;
backend_instruction *inst = block->end();
time = 0;
/* Remove non-DAG heads from the list. */
foreach_in_list_safe(schedule_node, n, &instructions) {
if (n->parent_count != 0)
n->remove();
}
unsigned cand_generation = 1;
while (!instructions.is_empty()) {
schedule_node *chosen = choose_instruction_to_schedule();
/* Schedule this instruction. */
assert(chosen);
chosen->remove();
inst->insert_before(block, chosen->inst);
instructions_to_schedule--;
update_register_pressure(chosen->inst);
/* Update the clock for how soon an instruction could start after the
* chosen one.
*/
time += issue_time(chosen->inst);
/* If we expected a delay for scheduling, then bump the clock to reflect
* that as well. In reality, the hardware will switch to another
* hyperthread and may not return to dispatching our thread for a while
* even after we're unblocked.
*/
time = MAX2(time, chosen->unblocked_time);
if (debug) {
fprintf(stderr, "clock %4d, scheduled: ", time);
bv->dump_instruction(chosen->inst);
}
/* Now that we've scheduled a new instruction, some of its
* children can be promoted to the list of instructions ready to
* be scheduled. Update the children's unblocked time for this
* DAG edge as we do so.
*/
for (int i = chosen->child_count - 1; i >= 0; i--) {
schedule_node *child = chosen->children[i];
child->unblocked_time = MAX2(child->unblocked_time,
time + chosen->child_latency[i]);
if (debug) {
fprintf(stderr, "\tchild %d, %d parents: ", i, child->parent_count);
bv->dump_instruction(child->inst);
}
child->cand_generation = cand_generation;
child->parent_count--;
if (child->parent_count == 0) {
if (debug) {
fprintf(stderr, "\t\tnow available\n");
}
instructions.push_head(child);
}
}
cand_generation++;
/* Shared resource: the mathbox. There's one mathbox per EU on Gen6+
* but it's more limited pre-gen6, so if we send something off to it then
* the next math instruction isn't going to make progress until the first
* is done.
*/
if (brw->gen < 6 && chosen->inst->is_math()) {
foreach_in_list(schedule_node, n, &instructions) {
if (n->inst->is_math())
n->unblocked_time = MAX2(n->unblocked_time,
time + chosen->latency);
}
}
}
if (block->end()->opcode == BRW_OPCODE_NOP)
block->end()->remove(block);
assert(instructions_to_schedule == 0);
}
void
instruction_scheduler::run(cfg_t *cfg)
{
if (debug) {
fprintf(stderr, "\nInstructions before scheduling (reg_alloc %d)\n",
post_reg_alloc);
bv->dump_instructions();
}
/* Populate the remaining GRF uses array to improve the pre-regalloc
* scheduling.
*/
if (remaining_grf_uses) {
foreach_block_and_inst(block, backend_instruction, inst, cfg) {
count_remaining_grf_uses(inst);
}
}
foreach_block(block, cfg) {
if (block->end_ip - block->start_ip <= 1)
continue;
add_insts_from_block(block);
calculate_deps();
foreach_in_list(schedule_node, n, &instructions) {
compute_delay(n);
}
schedule_instructions(block);
}
if (debug) {
fprintf(stderr, "\nInstructions after scheduling (reg_alloc %d)\n",
post_reg_alloc);
bv->dump_instructions();
}
}
void
fs_visitor::schedule_instructions(instruction_scheduler_mode mode)
{
int grf_count;
if (mode == SCHEDULE_POST)
grf_count = grf_used;
else
grf_count = alloc.count;
fs_instruction_scheduler sched(this, grf_count, mode);
sched.run(cfg);
if (unlikely(debug_enabled) && mode == SCHEDULE_POST) {
fprintf(stderr, "%s%d estimated execution time: %d cycles\n",
stage_abbrev, dispatch_width, sched.time);
}
invalidate_live_intervals();
}
void
vec4_visitor::opt_schedule_instructions()
{
vec4_instruction_scheduler sched(this, prog_data->total_grf);
sched.run(cfg);
if (unlikely(debug_enabled)) {
fprintf(stderr, "%s estimated execution time: %d cycles\n",
stage_abbrev, sched.time);
}
invalidate_live_intervals();
}