mesa/src/mesa/drivers/dri/i965/brw_fs_nir.cpp

1877 lines
61 KiB
C++
Raw Normal View History

/*
* Copyright © 2010 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include "glsl/ir.h"
#include "glsl/ir_optimization.h"
#include "glsl/nir/glsl_to_nir.h"
#include "main/shaderimage.h"
#include "program/prog_to_nir.h"
#include "brw_fs.h"
#include "brw_fs_surface_builder.h"
#include "brw_nir.h"
using namespace brw;
void
fs_visitor::emit_nir_code()
{
nir_shader *nir = prog->nir;
/* emit the arrays used for inputs and outputs - load/store intrinsics will
* be converted to reads/writes of these arrays
*/
nir_setup_inputs(nir);
nir_setup_outputs(nir);
nir_setup_uniforms(nir);
nir_emit_system_values(nir);
/* get the main function and emit it */
nir_foreach_overload(nir, overload) {
assert(strcmp(overload->function->name, "main") == 0);
assert(overload->impl);
nir_emit_impl(overload->impl);
}
}
void
fs_visitor::nir_setup_inputs(nir_shader *shader)
{
nir_inputs = bld.vgrf(BRW_REGISTER_TYPE_F, shader->num_inputs);
foreach_list_typed(nir_variable, var, node, &shader->inputs) {
enum brw_reg_type type = brw_type_for_base_type(var->type);
fs_reg input = offset(nir_inputs, bld, var->data.driver_location);
fs_reg reg;
switch (stage) {
case MESA_SHADER_VERTEX: {
/* Our ATTR file is indexed by VERT_ATTRIB_*, which is the value
* stored in nir_variable::location.
*
* However, NIR's load_input intrinsics use a different index - an
* offset into a single contiguous array containing all inputs.
* This index corresponds to the nir_variable::driver_location field.
*
* So, we need to copy from fs_reg(ATTR, var->location) to
* offset(nir_inputs, var->data.driver_location).
*/
const glsl_type *const t = var->type->without_array();
const unsigned components = t->components();
const unsigned cols = t->matrix_columns;
const unsigned elts = t->vector_elements;
unsigned array_length = var->type->is_array() ? var->type->length : 1;
for (unsigned i = 0; i < array_length; i++) {
for (unsigned j = 0; j < cols; j++) {
for (unsigned k = 0; k < elts; k++) {
bld.MOV(offset(retype(input, type), bld,
components * i + elts * j + k),
offset(fs_reg(ATTR, var->data.location + i, type),
bld, 4 * j + k));
}
}
}
break;
}
case MESA_SHADER_GEOMETRY:
case MESA_SHADER_COMPUTE:
case MESA_SHADER_TESS_CTRL:
case MESA_SHADER_TESS_EVAL:
unreachable("fs_visitor not used for these stages yet.");
break;
case MESA_SHADER_FRAGMENT:
if (var->data.location == VARYING_SLOT_POS) {
reg = *emit_fragcoord_interpolation(var->data.pixel_center_integer,
var->data.origin_upper_left);
emit_percomp(bld, fs_inst(BRW_OPCODE_MOV, bld.dispatch_width(),
input, reg), 0xF);
} else {
emit_general_interpolation(input, var->name, var->type,
(glsl_interp_qualifier) var->data.interpolation,
var->data.location, var->data.centroid,
var->data.sample);
}
break;
}
}
}
void
fs_visitor::nir_setup_outputs(nir_shader *shader)
{
brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
nir_outputs = bld.vgrf(BRW_REGISTER_TYPE_F, shader->num_outputs);
foreach_list_typed(nir_variable, var, node, &shader->outputs) {
fs_reg reg = offset(nir_outputs, bld, var->data.driver_location);
int vector_elements =
var->type->is_array() ? var->type->fields.array->vector_elements
: var->type->vector_elements;
switch (stage) {
case MESA_SHADER_VERTEX:
for (unsigned int i = 0; i < ALIGN(type_size_scalar(var->type), 4) / 4; i++) {
int output = var->data.location + i;
this->outputs[output] = offset(reg, bld, 4 * i);
this->output_components[output] = vector_elements;
}
break;
case MESA_SHADER_FRAGMENT:
if (var->data.index > 0) {
assert(var->data.location == FRAG_RESULT_DATA0);
assert(var->data.index == 1);
this->dual_src_output = reg;
this->do_dual_src = true;
} else if (var->data.location == FRAG_RESULT_COLOR) {
/* Writing gl_FragColor outputs to all color regions. */
for (unsigned int i = 0; i < MAX2(key->nr_color_regions, 1); i++) {
this->outputs[i] = reg;
this->output_components[i] = 4;
}
} else if (var->data.location == FRAG_RESULT_DEPTH) {
this->frag_depth = reg;
} else if (var->data.location == FRAG_RESULT_SAMPLE_MASK) {
this->sample_mask = reg;
} else {
/* gl_FragData or a user-defined FS output */
assert(var->data.location >= FRAG_RESULT_DATA0 &&
var->data.location < FRAG_RESULT_DATA0+BRW_MAX_DRAW_BUFFERS);
/* General color output. */
for (unsigned int i = 0; i < MAX2(1, var->type->length); i++) {
int output = var->data.location - FRAG_RESULT_DATA0 + i;
this->outputs[output] = offset(reg, bld, vector_elements * i);
this->output_components[output] = vector_elements;
}
}
break;
default:
unreachable("unhandled shader stage");
}
}
}
void
fs_visitor::nir_setup_uniforms(nir_shader *shader)
{
if (dispatch_width != 8)
return;
uniforms = shader->num_uniforms;
if (shader_prog) {
foreach_list_typed(nir_variable, var, node, &shader->uniforms) {
/* UBO's and atomics don't take up space in the uniform file */
if (var->interface_type != NULL || var->type->contains_atomic())
continue;
if (strncmp(var->name, "gl_", 3) == 0)
nir_setup_builtin_uniform(var);
else
nir_setup_uniform(var);
if(type_size_scalar(var->type) > 0)
param_size[var->data.driver_location] = type_size_scalar(var->type);
}
} else {
/* prog_to_nir only creates a single giant uniform variable so we can
* just set param up directly. */
for (unsigned p = 0; p < prog->Parameters->NumParameters; p++) {
for (unsigned int i = 0; i < 4; i++) {
stage_prog_data->param[4 * p + i] =
&prog->Parameters->ParameterValues[p][i];
}
}
if(prog->Parameters->NumParameters > 0)
param_size[0] = prog->Parameters->NumParameters * 4;
}
}
void
fs_visitor::nir_setup_uniform(nir_variable *var)
{
int namelen = strlen(var->name);
/* The data for our (non-builtin) uniforms is stored in a series of
* gl_uniform_driver_storage structs for each subcomponent that
* glGetUniformLocation() could name. We know it's been set up in the
* same order we'd walk the type, so walk the list of storage and find
* anything with our name, or the prefix of a component that starts with
* our name.
*/
unsigned index = var->data.driver_location;
for (unsigned u = 0; u < shader_prog->NumUniformStorage; u++) {
struct gl_uniform_storage *storage = &shader_prog->UniformStorage[u];
if (storage->builtin)
continue;
if (strncmp(var->name, storage->name, namelen) != 0 ||
(storage->name[namelen] != 0 &&
storage->name[namelen] != '.' &&
storage->name[namelen] != '[')) {
continue;
}
if (storage->type->is_image()) {
setup_image_uniform_values(index, storage);
} else {
unsigned slots = storage->type->component_slots();
if (storage->array_elements)
slots *= storage->array_elements;
for (unsigned i = 0; i < slots; i++) {
stage_prog_data->param[index++] = &storage->storage[i];
}
}
}
}
void
fs_visitor::nir_setup_builtin_uniform(nir_variable *var)
{
const nir_state_slot *const slots = var->state_slots;
assert(var->state_slots != NULL);
unsigned uniform_index = var->data.driver_location;
for (unsigned int i = 0; i < var->num_state_slots; i++) {
/* This state reference has already been setup by ir_to_mesa, but we'll
* get the same index back here.
*/
int index = _mesa_add_state_reference(this->prog->Parameters,
(gl_state_index *)slots[i].tokens);
/* Add each of the unique swizzles of the element as a parameter.
* This'll end up matching the expected layout of the
* array/matrix/structure we're trying to fill in.
*/
int last_swiz = -1;
for (unsigned int j = 0; j < 4; j++) {
int swiz = GET_SWZ(slots[i].swizzle, j);
if (swiz == last_swiz)
break;
last_swiz = swiz;
stage_prog_data->param[uniform_index++] =
&prog->Parameters->ParameterValues[index][swiz];
}
}
}
static bool
emit_system_values_block(nir_block *block, void *void_visitor)
{
fs_visitor *v = (fs_visitor *)void_visitor;
fs_reg *reg;
nir_foreach_instr(block, instr) {
if (instr->type != nir_instr_type_intrinsic)
continue;
nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
switch (intrin->intrinsic) {
case nir_intrinsic_load_vertex_id:
unreachable("should be lowered by lower_vertex_id().");
case nir_intrinsic_load_vertex_id_zero_base:
assert(v->stage == MESA_SHADER_VERTEX);
reg = &v->nir_system_values[SYSTEM_VALUE_VERTEX_ID_ZERO_BASE];
if (reg->file == BAD_FILE)
*reg = *v->emit_vs_system_value(SYSTEM_VALUE_VERTEX_ID_ZERO_BASE);
break;
case nir_intrinsic_load_base_vertex:
assert(v->stage == MESA_SHADER_VERTEX);
reg = &v->nir_system_values[SYSTEM_VALUE_BASE_VERTEX];
if (reg->file == BAD_FILE)
*reg = *v->emit_vs_system_value(SYSTEM_VALUE_BASE_VERTEX);
break;
case nir_intrinsic_load_instance_id:
assert(v->stage == MESA_SHADER_VERTEX);
reg = &v->nir_system_values[SYSTEM_VALUE_INSTANCE_ID];
if (reg->file == BAD_FILE)
*reg = *v->emit_vs_system_value(SYSTEM_VALUE_INSTANCE_ID);
break;
case nir_intrinsic_load_sample_pos:
assert(v->stage == MESA_SHADER_FRAGMENT);
reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_POS];
if (reg->file == BAD_FILE)
*reg = *v->emit_samplepos_setup();
break;
case nir_intrinsic_load_sample_id:
assert(v->stage == MESA_SHADER_FRAGMENT);
reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_ID];
if (reg->file == BAD_FILE)
*reg = *v->emit_sampleid_setup();
break;
case nir_intrinsic_load_sample_mask_in:
assert(v->stage == MESA_SHADER_FRAGMENT);
assert(v->devinfo->gen >= 7);
reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_MASK_IN];
if (reg->file == BAD_FILE)
*reg = fs_reg(retype(brw_vec8_grf(v->payload.sample_mask_in_reg, 0),
BRW_REGISTER_TYPE_D));
break;
default:
break;
}
}
return true;
}
void
fs_visitor::nir_emit_system_values(nir_shader *shader)
{
nir_system_values = ralloc_array(mem_ctx, fs_reg, SYSTEM_VALUE_MAX);
nir_foreach_overload(shader, overload) {
assert(strcmp(overload->function->name, "main") == 0);
assert(overload->impl);
nir_foreach_block(overload->impl, emit_system_values_block, this);
}
}
void
fs_visitor::nir_emit_impl(nir_function_impl *impl)
{
nir_locals = reralloc(mem_ctx, nir_locals, fs_reg, impl->reg_alloc);
foreach_list_typed(nir_register, reg, node, &impl->registers) {
unsigned array_elems =
reg->num_array_elems == 0 ? 1 : reg->num_array_elems;
unsigned size = array_elems * reg->num_components;
nir_locals[reg->index] = bld.vgrf(BRW_REGISTER_TYPE_F, size);
}
nir_ssa_values = reralloc(mem_ctx, nir_ssa_values, fs_reg,
impl->ssa_alloc);
nir_emit_cf_list(&impl->body);
}
void
fs_visitor::nir_emit_cf_list(exec_list *list)
{
exec_list_validate(list);
foreach_list_typed(nir_cf_node, node, node, list) {
switch (node->type) {
case nir_cf_node_if:
nir_emit_if(nir_cf_node_as_if(node));
break;
case nir_cf_node_loop:
nir_emit_loop(nir_cf_node_as_loop(node));
break;
case nir_cf_node_block:
nir_emit_block(nir_cf_node_as_block(node));
break;
default:
unreachable("Invalid CFG node block");
}
}
}
void
fs_visitor::nir_emit_if(nir_if *if_stmt)
{
/* first, put the condition into f0 */
fs_inst *inst = bld.MOV(bld.null_reg_d(),
retype(get_nir_src(if_stmt->condition),
BRW_REGISTER_TYPE_D));
inst->conditional_mod = BRW_CONDITIONAL_NZ;
bld.IF(BRW_PREDICATE_NORMAL);
nir_emit_cf_list(&if_stmt->then_list);
/* note: if the else is empty, dead CF elimination will remove it */
bld.emit(BRW_OPCODE_ELSE);
nir_emit_cf_list(&if_stmt->else_list);
bld.emit(BRW_OPCODE_ENDIF);
}
void
fs_visitor::nir_emit_loop(nir_loop *loop)
{
bld.emit(BRW_OPCODE_DO);
nir_emit_cf_list(&loop->body);
bld.emit(BRW_OPCODE_WHILE);
}
void
fs_visitor::nir_emit_block(nir_block *block)
{
nir_foreach_instr(block, instr) {
nir_emit_instr(instr);
}
}
void
fs_visitor::nir_emit_instr(nir_instr *instr)
{
const fs_builder abld = bld.annotate(NULL, instr);
switch (instr->type) {
case nir_instr_type_alu:
nir_emit_alu(abld, nir_instr_as_alu(instr));
break;
case nir_instr_type_intrinsic:
nir_emit_intrinsic(abld, nir_instr_as_intrinsic(instr));
break;
case nir_instr_type_tex:
nir_emit_texture(abld, nir_instr_as_tex(instr));
break;
case nir_instr_type_load_const:
nir_emit_load_const(abld, nir_instr_as_load_const(instr));
break;
case nir_instr_type_ssa_undef:
nir_emit_undef(abld, nir_instr_as_ssa_undef(instr));
break;
case nir_instr_type_jump:
nir_emit_jump(abld, nir_instr_as_jump(instr));
break;
default:
unreachable("unknown instruction type");
}
}
bool
fs_visitor::optimize_frontfacing_ternary(nir_alu_instr *instr,
const fs_reg &result)
{
if (!instr->src[0].src.is_ssa ||
instr->src[0].src.ssa->parent_instr->type != nir_instr_type_intrinsic)
return false;
nir_intrinsic_instr *src0 =
nir_instr_as_intrinsic(instr->src[0].src.ssa->parent_instr);
if (src0->intrinsic != nir_intrinsic_load_front_face)
return false;
nir_const_value *value1 = nir_src_as_const_value(instr->src[1].src);
if (!value1 || fabsf(value1->f[0]) != 1.0f)
return false;
nir_const_value *value2 = nir_src_as_const_value(instr->src[2].src);
if (!value2 || fabsf(value2->f[0]) != 1.0f)
return false;
fs_reg tmp = vgrf(glsl_type::int_type);
if (devinfo->gen >= 6) {
/* Bit 15 of g0.0 is 0 if the polygon is front facing. */
fs_reg g0 = fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_W));
/* For (gl_FrontFacing ? 1.0 : -1.0), emit:
*
* or(8) tmp.1<2>W g0.0<0,1,0>W 0x00003f80W
* and(8) dst<1>D tmp<8,8,1>D 0xbf800000D
*
* and negate g0.0<0,1,0>W for (gl_FrontFacing ? -1.0 : 1.0).
*
* This negation looks like it's safe in practice, because bits 0:4 will
* surely be TRIANGLES
*/
if (value1->f[0] == -1.0f) {
g0.negate = true;
}
tmp.type = BRW_REGISTER_TYPE_W;
tmp.subreg_offset = 2;
tmp.stride = 2;
fs_inst *or_inst = bld.OR(tmp, g0, fs_reg(0x3f80));
or_inst->src[1].type = BRW_REGISTER_TYPE_UW;
tmp.type = BRW_REGISTER_TYPE_D;
tmp.subreg_offset = 0;
tmp.stride = 1;
} else {
/* Bit 31 of g1.6 is 0 if the polygon is front facing. */
fs_reg g1_6 = fs_reg(retype(brw_vec1_grf(1, 6), BRW_REGISTER_TYPE_D));
/* For (gl_FrontFacing ? 1.0 : -1.0), emit:
*
* or(8) tmp<1>D g1.6<0,1,0>D 0x3f800000D
* and(8) dst<1>D tmp<8,8,1>D 0xbf800000D
*
* and negate g1.6<0,1,0>D for (gl_FrontFacing ? -1.0 : 1.0).
*
* This negation looks like it's safe in practice, because bits 0:4 will
* surely be TRIANGLES
*/
if (value1->f[0] == -1.0f) {
g1_6.negate = true;
}
bld.OR(tmp, g1_6, fs_reg(0x3f800000));
}
bld.AND(retype(result, BRW_REGISTER_TYPE_D), tmp, fs_reg(0xbf800000));
return true;
}
void
fs_visitor::nir_emit_alu(const fs_builder &bld, nir_alu_instr *instr)
{
struct brw_wm_prog_key *fs_key = (struct brw_wm_prog_key *) this->key;
fs_inst *inst;
fs_reg result = get_nir_dest(instr->dest.dest);
result.type = brw_type_for_nir_type(nir_op_infos[instr->op].output_type);
fs_reg op[4];
for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
op[i] = get_nir_src(instr->src[i].src);
op[i].type = brw_type_for_nir_type(nir_op_infos[instr->op].input_types[i]);
op[i].abs = instr->src[i].abs;
op[i].negate = instr->src[i].negate;
}
/* We get a bunch of mov's out of the from_ssa pass and they may still
* be vectorized. We'll handle them as a special-case. We'll also
* handle vecN here because it's basically the same thing.
*/
switch (instr->op) {
case nir_op_imov:
case nir_op_fmov:
case nir_op_vec2:
case nir_op_vec3:
case nir_op_vec4: {
fs_reg temp = result;
bool need_extra_copy = false;
for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
if (!instr->src[i].src.is_ssa &&
instr->dest.dest.reg.reg == instr->src[i].src.reg.reg) {
need_extra_copy = true;
temp = bld.vgrf(result.type, 4);
break;
}
}
for (unsigned i = 0; i < 4; i++) {
if (!(instr->dest.write_mask & (1 << i)))
continue;
if (instr->op == nir_op_imov || instr->op == nir_op_fmov) {
inst = bld.MOV(offset(temp, bld, i),
offset(op[0], bld, instr->src[0].swizzle[i]));
} else {
inst = bld.MOV(offset(temp, bld, i),
offset(op[i], bld, instr->src[i].swizzle[0]));
}
inst->saturate = instr->dest.saturate;
}
/* In this case the source and destination registers were the same,
* so we need to insert an extra set of moves in order to deal with
* any swizzling.
*/
if (need_extra_copy) {
for (unsigned i = 0; i < 4; i++) {
if (!(instr->dest.write_mask & (1 << i)))
continue;
bld.MOV(offset(result, bld, i), offset(temp, bld, i));
}
}
return;
}
default:
break;
}
/* At this point, we have dealt with any instruction that operates on
* more than a single channel. Therefore, we can just adjust the source
* and destination registers for that channel and emit the instruction.
*/
unsigned channel = 0;
if (nir_op_infos[instr->op].output_size == 0) {
/* Since NIR is doing the scalarizing for us, we should only ever see
* vectorized operations with a single channel.
*/
assert(_mesa_bitcount(instr->dest.write_mask) == 1);
channel = ffs(instr->dest.write_mask) - 1;
result = offset(result, bld, channel);
}
for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
assert(nir_op_infos[instr->op].input_sizes[i] < 2);
op[i] = offset(op[i], bld, instr->src[i].swizzle[channel]);
}
switch (instr->op) {
case nir_op_i2f:
case nir_op_u2f:
inst = bld.MOV(result, op[0]);
inst->saturate = instr->dest.saturate;
break;
case nir_op_f2i:
case nir_op_f2u:
bld.MOV(result, op[0]);
break;
case nir_op_fsign: {
/* AND(val, 0x80000000) gives the sign bit.
*
* Predicated OR ORs 1.0 (0x3f800000) with the sign bit if val is not
* zero.
*/
bld.CMP(bld.null_reg_f(), op[0], fs_reg(0.0f), BRW_CONDITIONAL_NZ);
fs_reg result_int = retype(result, BRW_REGISTER_TYPE_UD);
op[0].type = BRW_REGISTER_TYPE_UD;
result.type = BRW_REGISTER_TYPE_UD;
bld.AND(result_int, op[0], fs_reg(0x80000000u));
inst = bld.OR(result_int, result_int, fs_reg(0x3f800000u));
inst->predicate = BRW_PREDICATE_NORMAL;
if (instr->dest.saturate) {
inst = bld.MOV(result, result);
inst->saturate = true;
}
break;
}
case nir_op_isign:
/* ASR(val, 31) -> negative val generates 0xffffffff (signed -1).
* -> non-negative val generates 0x00000000.
* Predicated OR sets 1 if val is positive.
*/
bld.CMP(bld.null_reg_d(), op[0], fs_reg(0), BRW_CONDITIONAL_G);
bld.ASR(result, op[0], fs_reg(31));
inst = bld.OR(result, result, fs_reg(1));
inst->predicate = BRW_PREDICATE_NORMAL;
break;
case nir_op_frcp:
inst = bld.emit(SHADER_OPCODE_RCP, result, op[0]);
inst->saturate = instr->dest.saturate;
break;
case nir_op_fexp2:
inst = bld.emit(SHADER_OPCODE_EXP2, result, op[0]);
inst->saturate = instr->dest.saturate;
break;
case nir_op_flog2:
inst = bld.emit(SHADER_OPCODE_LOG2, result, op[0]);
inst->saturate = instr->dest.saturate;
break;
case nir_op_fsin:
inst = bld.emit(SHADER_OPCODE_SIN, result, op[0]);
inst->saturate = instr->dest.saturate;
break;
case nir_op_fcos:
inst = bld.emit(SHADER_OPCODE_COS, result, op[0]);
inst->saturate = instr->dest.saturate;
break;
case nir_op_fddx:
if (fs_key->high_quality_derivatives) {
inst = bld.emit(FS_OPCODE_DDX_FINE, result, op[0]);
} else {
inst = bld.emit(FS_OPCODE_DDX_COARSE, result, op[0]);
}
inst->saturate = instr->dest.saturate;
break;
case nir_op_fddx_fine:
inst = bld.emit(FS_OPCODE_DDX_FINE, result, op[0]);
inst->saturate = instr->dest.saturate;
break;
case nir_op_fddx_coarse:
inst = bld.emit(FS_OPCODE_DDX_COARSE, result, op[0]);
inst->saturate = instr->dest.saturate;
break;
case nir_op_fddy:
if (fs_key->high_quality_derivatives) {
inst = bld.emit(FS_OPCODE_DDY_FINE, result, op[0],
fs_reg(fs_key->render_to_fbo));
} else {
inst = bld.emit(FS_OPCODE_DDY_COARSE, result, op[0],
fs_reg(fs_key->render_to_fbo));
}
inst->saturate = instr->dest.saturate;
break;
case nir_op_fddy_fine:
inst = bld.emit(FS_OPCODE_DDY_FINE, result, op[0],
fs_reg(fs_key->render_to_fbo));
inst->saturate = instr->dest.saturate;
break;
case nir_op_fddy_coarse:
inst = bld.emit(FS_OPCODE_DDY_COARSE, result, op[0],
fs_reg(fs_key->render_to_fbo));
inst->saturate = instr->dest.saturate;
break;
case nir_op_fadd:
case nir_op_iadd:
inst = bld.ADD(result, op[0], op[1]);
inst->saturate = instr->dest.saturate;
break;
case nir_op_fmul:
inst = bld.MUL(result, op[0], op[1]);
inst->saturate = instr->dest.saturate;
break;
case nir_op_imul:
bld.MUL(result, op[0], op[1]);
break;
case nir_op_imul_high:
case nir_op_umul_high:
bld.emit(SHADER_OPCODE_MULH, result, op[0], op[1]);
break;
case nir_op_idiv:
case nir_op_udiv:
bld.emit(SHADER_OPCODE_INT_QUOTIENT, result, op[0], op[1]);
break;
case nir_op_uadd_carry:
unreachable("Should have been lowered by carry_to_arith().");
case nir_op_usub_borrow:
unreachable("Should have been lowered by borrow_to_arith().");
case nir_op_umod:
bld.emit(SHADER_OPCODE_INT_REMAINDER, result, op[0], op[1]);
break;
case nir_op_flt:
case nir_op_ilt:
case nir_op_ult:
bld.CMP(result, op[0], op[1], BRW_CONDITIONAL_L);
break;
case nir_op_fge:
case nir_op_ige:
case nir_op_uge:
bld.CMP(result, op[0], op[1], BRW_CONDITIONAL_GE);
break;
case nir_op_feq:
case nir_op_ieq:
bld.CMP(result, op[0], op[1], BRW_CONDITIONAL_Z);
break;
case nir_op_fne:
case nir_op_ine:
bld.CMP(result, op[0], op[1], BRW_CONDITIONAL_NZ);
break;
case nir_op_inot:
if (devinfo->gen >= 8) {
op[0] = resolve_source_modifiers(op[0]);
}
bld.NOT(result, op[0]);
break;
case nir_op_ixor:
if (devinfo->gen >= 8) {
op[0] = resolve_source_modifiers(op[0]);
op[1] = resolve_source_modifiers(op[1]);
}
bld.XOR(result, op[0], op[1]);
break;
case nir_op_ior:
if (devinfo->gen >= 8) {
op[0] = resolve_source_modifiers(op[0]);
op[1] = resolve_source_modifiers(op[1]);
}
bld.OR(result, op[0], op[1]);
break;
case nir_op_iand:
if (devinfo->gen >= 8) {
op[0] = resolve_source_modifiers(op[0]);
op[1] = resolve_source_modifiers(op[1]);
}
bld.AND(result, op[0], op[1]);
break;
case nir_op_fdot2:
case nir_op_fdot3:
case nir_op_fdot4:
case nir_op_bany2:
case nir_op_bany3:
case nir_op_bany4:
case nir_op_ball2:
case nir_op_ball3:
case nir_op_ball4:
case nir_op_ball_fequal2:
case nir_op_ball_iequal2:
case nir_op_ball_fequal3:
case nir_op_ball_iequal3:
case nir_op_ball_fequal4:
case nir_op_ball_iequal4:
case nir_op_bany_fnequal2:
case nir_op_bany_inequal2:
case nir_op_bany_fnequal3:
case nir_op_bany_inequal3:
case nir_op_bany_fnequal4:
case nir_op_bany_inequal4:
unreachable("Lowered by nir_lower_alu_reductions");
case nir_op_fnoise1_1:
case nir_op_fnoise1_2:
case nir_op_fnoise1_3:
case nir_op_fnoise1_4:
case nir_op_fnoise2_1:
case nir_op_fnoise2_2:
case nir_op_fnoise2_3:
case nir_op_fnoise2_4:
case nir_op_fnoise3_1:
case nir_op_fnoise3_2:
case nir_op_fnoise3_3:
case nir_op_fnoise3_4:
case nir_op_fnoise4_1:
case nir_op_fnoise4_2:
case nir_op_fnoise4_3:
case nir_op_fnoise4_4:
unreachable("not reached: should be handled by lower_noise");
case nir_op_ldexp:
unreachable("not reached: should be handled by ldexp_to_arith()");
case nir_op_fsqrt:
inst = bld.emit(SHADER_OPCODE_SQRT, result, op[0]);
inst->saturate = instr->dest.saturate;
break;
case nir_op_frsq:
inst = bld.emit(SHADER_OPCODE_RSQ, result, op[0]);
inst->saturate = instr->dest.saturate;
break;
case nir_op_b2i:
case nir_op_b2f:
bld.MOV(result, negate(op[0]));
break;
case nir_op_f2b:
bld.CMP(result, op[0], fs_reg(0.0f), BRW_CONDITIONAL_NZ);
break;
case nir_op_i2b:
bld.CMP(result, op[0], fs_reg(0), BRW_CONDITIONAL_NZ);
break;
case nir_op_ftrunc:
inst = bld.RNDZ(result, op[0]);
inst->saturate = instr->dest.saturate;
break;
case nir_op_fceil: {
op[0].negate = !op[0].negate;
fs_reg temp = vgrf(glsl_type::float_type);
bld.RNDD(temp, op[0]);
temp.negate = true;
inst = bld.MOV(result, temp);
inst->saturate = instr->dest.saturate;
break;
}
case nir_op_ffloor:
inst = bld.RNDD(result, op[0]);
inst->saturate = instr->dest.saturate;
break;
case nir_op_ffract:
inst = bld.FRC(result, op[0]);
inst->saturate = instr->dest.saturate;
break;
case nir_op_fround_even:
inst = bld.RNDE(result, op[0]);
inst->saturate = instr->dest.saturate;
break;
case nir_op_fmin:
case nir_op_imin:
case nir_op_umin:
if (devinfo->gen >= 6) {
inst = bld.emit(BRW_OPCODE_SEL, result, op[0], op[1]);
inst->conditional_mod = BRW_CONDITIONAL_L;
} else {
bld.CMP(bld.null_reg_d(), op[0], op[1], BRW_CONDITIONAL_L);
inst = bld.SEL(result, op[0], op[1]);
inst->predicate = BRW_PREDICATE_NORMAL;
}
inst->saturate = instr->dest.saturate;
break;
case nir_op_fmax:
case nir_op_imax:
case nir_op_umax:
if (devinfo->gen >= 6) {
inst = bld.emit(BRW_OPCODE_SEL, result, op[0], op[1]);
inst->conditional_mod = BRW_CONDITIONAL_GE;
} else {
bld.CMP(bld.null_reg_d(), op[0], op[1], BRW_CONDITIONAL_GE);
inst = bld.SEL(result, op[0], op[1]);
inst->predicate = BRW_PREDICATE_NORMAL;
}
inst->saturate = instr->dest.saturate;
break;
case nir_op_pack_snorm_2x16:
case nir_op_pack_snorm_4x8:
case nir_op_pack_unorm_2x16:
case nir_op_pack_unorm_4x8:
case nir_op_unpack_snorm_2x16:
case nir_op_unpack_snorm_4x8:
case nir_op_unpack_unorm_2x16:
case nir_op_unpack_unorm_4x8:
case nir_op_unpack_half_2x16:
case nir_op_pack_half_2x16:
unreachable("not reached: should be handled by lower_packing_builtins");
case nir_op_unpack_half_2x16_split_x:
inst = bld.emit(FS_OPCODE_UNPACK_HALF_2x16_SPLIT_X, result, op[0]);
inst->saturate = instr->dest.saturate;
break;
case nir_op_unpack_half_2x16_split_y:
inst = bld.emit(FS_OPCODE_UNPACK_HALF_2x16_SPLIT_Y, result, op[0]);
inst->saturate = instr->dest.saturate;
break;
case nir_op_fpow:
inst = bld.emit(SHADER_OPCODE_POW, result, op[0], op[1]);
inst->saturate = instr->dest.saturate;
break;
case nir_op_bitfield_reverse:
bld.BFREV(result, op[0]);
break;
case nir_op_bit_count:
bld.CBIT(result, op[0]);
break;
case nir_op_ufind_msb:
case nir_op_ifind_msb: {
bld.FBH(retype(result, BRW_REGISTER_TYPE_UD), op[0]);
/* FBH counts from the MSB side, while GLSL's findMSB() wants the count
* from the LSB side. If FBH didn't return an error (0xFFFFFFFF), then
* subtract the result from 31 to convert the MSB count into an LSB count.
*/
bld.CMP(bld.null_reg_d(), result, fs_reg(-1), BRW_CONDITIONAL_NZ);
fs_reg neg_result(result);
neg_result.negate = true;
inst = bld.ADD(result, neg_result, fs_reg(31));
inst->predicate = BRW_PREDICATE_NORMAL;
break;
}
case nir_op_find_lsb:
bld.FBL(result, op[0]);
break;
case nir_op_ubitfield_extract:
case nir_op_ibitfield_extract:
bld.BFE(result, op[2], op[1], op[0]);
break;
case nir_op_bfm:
bld.BFI1(result, op[0], op[1]);
break;
case nir_op_bfi:
bld.BFI2(result, op[0], op[1], op[2]);
break;
case nir_op_bitfield_insert:
unreachable("not reached: should be handled by "
"lower_instructions::bitfield_insert_to_bfm_bfi");
case nir_op_ishl:
bld.SHL(result, op[0], op[1]);
break;
case nir_op_ishr:
bld.ASR(result, op[0], op[1]);
break;
case nir_op_ushr:
bld.SHR(result, op[0], op[1]);
break;
case nir_op_pack_half_2x16_split:
bld.emit(FS_OPCODE_PACK_HALF_2x16_SPLIT, result, op[0], op[1]);
break;
case nir_op_ffma:
inst = bld.MAD(result, op[2], op[1], op[0]);
inst->saturate = instr->dest.saturate;
break;
case nir_op_flrp:
inst = bld.LRP(result, op[0], op[1], op[2]);
inst->saturate = instr->dest.saturate;
break;
case nir_op_bcsel:
if (optimize_frontfacing_ternary(instr, result))
return;
bld.CMP(bld.null_reg_d(), op[0], fs_reg(0), BRW_CONDITIONAL_NZ);
inst = bld.SEL(result, op[1], op[2]);
inst->predicate = BRW_PREDICATE_NORMAL;
break;
default:
unreachable("unhandled instruction");
}
/* If we need to do a boolean resolve, replace the result with -(x & 1)
* to sign extend the low bit to 0/~0
*/
if (devinfo->gen <= 5 &&
(instr->instr.pass_flags & BRW_NIR_BOOLEAN_MASK) == BRW_NIR_BOOLEAN_NEEDS_RESOLVE) {
fs_reg masked = vgrf(glsl_type::int_type);
bld.AND(masked, result, fs_reg(1));
masked.negate = true;
bld.MOV(retype(result, BRW_REGISTER_TYPE_D), masked);
}
}
void
fs_visitor::nir_emit_load_const(const fs_builder &bld,
nir_load_const_instr *instr)
{
fs_reg reg = bld.vgrf(BRW_REGISTER_TYPE_D, instr->def.num_components);
for (unsigned i = 0; i < instr->def.num_components; i++)
bld.MOV(offset(reg, bld, i), fs_reg(instr->value.i[i]));
nir_ssa_values[instr->def.index] = reg;
}
void
fs_visitor::nir_emit_undef(const fs_builder &bld, nir_ssa_undef_instr *instr)
{
nir_ssa_values[instr->def.index] = bld.vgrf(BRW_REGISTER_TYPE_D,
instr->def.num_components);
}
static fs_reg
fs_reg_for_nir_reg(fs_visitor *v, nir_register *nir_reg,
unsigned base_offset, nir_src *indirect)
{
fs_reg reg;
assert(!nir_reg->is_global);
reg = v->nir_locals[nir_reg->index];
reg = offset(reg, v->bld, base_offset * nir_reg->num_components);
if (indirect) {
int multiplier = nir_reg->num_components * (v->dispatch_width / 8);
reg.reladdr = new(v->mem_ctx) fs_reg(v->vgrf(glsl_type::int_type));
v->bld.MUL(*reg.reladdr, v->get_nir_src(*indirect),
fs_reg(multiplier));
}
return reg;
}
fs_reg
fs_visitor::get_nir_src(nir_src src)
{
fs_reg reg;
if (src.is_ssa) {
reg = nir_ssa_values[src.ssa->index];
} else {
reg = fs_reg_for_nir_reg(this, src.reg.reg, src.reg.base_offset,
src.reg.indirect);
}
/* to avoid floating-point denorm flushing problems, set the type by
* default to D - instructions that need floating point semantics will set
* this to F if they need to
*/
return retype(reg, BRW_REGISTER_TYPE_D);
}
fs_reg
fs_visitor::get_nir_dest(nir_dest dest)
{
if (dest.is_ssa) {
nir_ssa_values[dest.ssa.index] = bld.vgrf(BRW_REGISTER_TYPE_F,
dest.ssa.num_components);
return nir_ssa_values[dest.ssa.index];
}
return fs_reg_for_nir_reg(this, dest.reg.reg, dest.reg.base_offset,
dest.reg.indirect);
}
fs_reg
fs_visitor::get_nir_image_deref(const nir_deref_var *deref)
{
fs_reg image(UNIFORM, deref->var->data.driver_location,
BRW_REGISTER_TYPE_UD);
if (deref->deref.child) {
const nir_deref_array *deref_array =
nir_deref_as_array(deref->deref.child);
assert(deref->deref.child->deref_type == nir_deref_type_array &&
deref_array->deref.child == NULL);
const unsigned size = glsl_get_length(deref->var->type);
const unsigned base = MIN2(deref_array->base_offset, size - 1);
image = offset(image, bld, base * BRW_IMAGE_PARAM_SIZE);
if (deref_array->deref_array_type == nir_deref_array_type_indirect) {
fs_reg *tmp = new(mem_ctx) fs_reg(vgrf(glsl_type::int_type));
if (devinfo->gen == 7 && !devinfo->is_haswell) {
/* IVB hangs when trying to access an invalid surface index with
* the dataport. According to the spec "if the index used to
* select an individual element is negative or greater than or
* equal to the size of the array, the results of the operation
* are undefined but may not lead to termination" -- which is one
* of the possible outcomes of the hang. Clamp the index to
* prevent access outside of the array bounds.
*/
bld.emit_minmax(*tmp, retype(get_nir_src(deref_array->indirect),
BRW_REGISTER_TYPE_UD),
fs_reg(size - base - 1), BRW_CONDITIONAL_L);
} else {
bld.MOV(*tmp, get_nir_src(deref_array->indirect));
}
bld.MUL(*tmp, *tmp, fs_reg(BRW_IMAGE_PARAM_SIZE));
image.reladdr = tmp;
}
}
return image;
}
void
fs_visitor::emit_percomp(const fs_builder &bld, const fs_inst &inst,
unsigned wr_mask)
{
for (unsigned i = 0; i < 4; i++) {
if (!((wr_mask >> i) & 1))
continue;
fs_inst *new_inst = new(mem_ctx) fs_inst(inst);
new_inst->dst = offset(new_inst->dst, bld, i);
for (unsigned j = 0; j < new_inst->sources; j++)
if (new_inst->src[j].file == GRF)
new_inst->src[j] = offset(new_inst->src[j], bld, i);
bld.emit(new_inst);
}
}
/**
* Get the matching channel register datatype for an image intrinsic of the
* specified GLSL image type.
*/
static brw_reg_type
get_image_base_type(const glsl_type *type)
{
switch ((glsl_base_type)type->sampler_type) {
case GLSL_TYPE_UINT:
return BRW_REGISTER_TYPE_UD;
case GLSL_TYPE_INT:
return BRW_REGISTER_TYPE_D;
case GLSL_TYPE_FLOAT:
return BRW_REGISTER_TYPE_F;
default:
unreachable("Not reached.");
}
}
/**
* Get the appropriate atomic op for an image atomic intrinsic.
*/
static unsigned
get_image_atomic_op(nir_intrinsic_op op, const glsl_type *type)
{
switch (op) {
case nir_intrinsic_image_atomic_add:
return BRW_AOP_ADD;
case nir_intrinsic_image_atomic_min:
return (get_image_base_type(type) == BRW_REGISTER_TYPE_D ?
BRW_AOP_IMIN : BRW_AOP_UMIN);
case nir_intrinsic_image_atomic_max:
return (get_image_base_type(type) == BRW_REGISTER_TYPE_D ?
BRW_AOP_IMAX : BRW_AOP_UMAX);
case nir_intrinsic_image_atomic_and:
return BRW_AOP_AND;
case nir_intrinsic_image_atomic_or:
return BRW_AOP_OR;
case nir_intrinsic_image_atomic_xor:
return BRW_AOP_XOR;
case nir_intrinsic_image_atomic_exchange:
return BRW_AOP_MOV;
case nir_intrinsic_image_atomic_comp_swap:
return BRW_AOP_CMPWR;
default:
unreachable("Not reachable.");
}
}
void
fs_visitor::nir_emit_intrinsic(const fs_builder &bld, nir_intrinsic_instr *instr)
{
fs_reg dest;
if (nir_intrinsic_infos[instr->intrinsic].has_dest)
dest = get_nir_dest(instr->dest);
bool has_indirect = false;
switch (instr->intrinsic) {
case nir_intrinsic_discard:
case nir_intrinsic_discard_if: {
/* We track our discarded pixels in f0.1. By predicating on it, we can
* update just the flag bits that aren't yet discarded. If there's no
* condition, we emit a CMP of g0 != g0, so all currently executing
* channels will get turned off.
*/
fs_inst *cmp;
if (instr->intrinsic == nir_intrinsic_discard_if) {
cmp = bld.CMP(bld.null_reg_f(), get_nir_src(instr->src[0]),
fs_reg(0), BRW_CONDITIONAL_Z);
} else {
fs_reg some_reg = fs_reg(retype(brw_vec8_grf(0, 0),
BRW_REGISTER_TYPE_UW));
cmp = bld.CMP(bld.null_reg_f(), some_reg, some_reg, BRW_CONDITIONAL_NZ);
}
cmp->predicate = BRW_PREDICATE_NORMAL;
cmp->flag_subreg = 1;
if (devinfo->gen >= 6) {
emit_discard_jump();
}
break;
}
case nir_intrinsic_atomic_counter_inc:
case nir_intrinsic_atomic_counter_dec:
case nir_intrinsic_atomic_counter_read: {
using namespace surface_access;
/* Get the arguments of the atomic intrinsic. */
const fs_reg offset = get_nir_src(instr->src[0]);
const unsigned surface = (stage_prog_data->binding_table.abo_start +
instr->const_index[0]);
fs_reg tmp;
/* Emit a surface read or atomic op. */
switch (instr->intrinsic) {
case nir_intrinsic_atomic_counter_read:
tmp = emit_untyped_read(bld, fs_reg(surface), offset, 1, 1);
break;
case nir_intrinsic_atomic_counter_inc:
tmp = emit_untyped_atomic(bld, fs_reg(surface), offset, fs_reg(),
fs_reg(), 1, 1, BRW_AOP_INC);
break;
case nir_intrinsic_atomic_counter_dec:
tmp = emit_untyped_atomic(bld, fs_reg(surface), offset, fs_reg(),
fs_reg(), 1, 1, BRW_AOP_PREDEC);
break;
default:
unreachable("Unreachable");
}
/* Assign the result. */
bld.MOV(retype(dest, BRW_REGISTER_TYPE_UD), tmp);
/* Mark the surface as used. */
brw_mark_surface_used(stage_prog_data, surface);
break;
}
case nir_intrinsic_image_load:
case nir_intrinsic_image_store:
case nir_intrinsic_image_atomic_add:
case nir_intrinsic_image_atomic_min:
case nir_intrinsic_image_atomic_max:
case nir_intrinsic_image_atomic_and:
case nir_intrinsic_image_atomic_or:
case nir_intrinsic_image_atomic_xor:
case nir_intrinsic_image_atomic_exchange:
case nir_intrinsic_image_atomic_comp_swap: {
using namespace image_access;
/* Get the referenced image variable and type. */
const nir_variable *var = instr->variables[0]->var;
const glsl_type *type = var->type->without_array();
const brw_reg_type base_type = get_image_base_type(type);
/* Get some metadata from the image intrinsic. */
const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic];
const unsigned arr_dims = type->sampler_array ? 1 : 0;
const unsigned surf_dims = type->coordinate_components() - arr_dims;
const mesa_format format =
(var->data.image.write_only ? MESA_FORMAT_NONE :
_mesa_get_shader_image_format(var->data.image.format));
/* Get the arguments of the image intrinsic. */
const fs_reg image = get_nir_image_deref(instr->variables[0]);
const fs_reg addr = retype(get_nir_src(instr->src[0]),
BRW_REGISTER_TYPE_UD);
const fs_reg src0 = (info->num_srcs >= 3 ?
retype(get_nir_src(instr->src[2]), base_type) :
fs_reg());
const fs_reg src1 = (info->num_srcs >= 4 ?
retype(get_nir_src(instr->src[3]), base_type) :
fs_reg());
fs_reg tmp;
/* Emit an image load, store or atomic op. */
if (instr->intrinsic == nir_intrinsic_image_load)
tmp = emit_image_load(bld, image, addr, surf_dims, arr_dims, format);
else if (instr->intrinsic == nir_intrinsic_image_store)
emit_image_store(bld, image, addr, src0, surf_dims, arr_dims, format);
else
tmp = emit_image_atomic(bld, image, addr, src0, src1,
surf_dims, arr_dims, info->dest_components,
get_image_atomic_op(instr->intrinsic, type));
/* Assign the result. */
for (unsigned c = 0; c < info->dest_components; ++c)
bld.MOV(offset(retype(dest, base_type), bld, c),
offset(tmp, bld, c));
break;
}
case nir_intrinsic_memory_barrier: {
const fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD, 16 / dispatch_width);
bld.emit(SHADER_OPCODE_MEMORY_FENCE, tmp)
->regs_written = 2;
break;
}
case nir_intrinsic_image_size: {
/* Get the referenced image variable and type. */
const nir_variable *var = instr->variables[0]->var;
const glsl_type *type = var->type->without_array();
/* Get the size of the image. */
const fs_reg image = get_nir_image_deref(instr->variables[0]);
const fs_reg size = offset(image, bld, BRW_IMAGE_PARAM_SIZE_OFFSET);
/* For 1DArray image types, the array index is stored in the Z component.
* Fix this by swizzling the Z component to the Y component.
*/
const bool is_1d_array_image =
type->sampler_dimensionality == GLSL_SAMPLER_DIM_1D &&
type->sampler_array;
/* For CubeArray images, we should count the number of cubes instead
* of the number of faces. Fix it by dividing the (Z component) by 6.
*/
const bool is_cube_array_image =
type->sampler_dimensionality == GLSL_SAMPLER_DIM_CUBE &&
type->sampler_array;
/* Copy all the components. */
const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic];
for (unsigned c = 0; c < info->dest_components; ++c) {
if ((int)c >= type->coordinate_components()) {
bld.MOV(offset(retype(dest, BRW_REGISTER_TYPE_D), bld, c),
fs_reg(1));
} else if (c == 1 && is_1d_array_image) {
bld.MOV(offset(retype(dest, BRW_REGISTER_TYPE_D), bld, c),
offset(size, bld, 2));
} else if (c == 2 && is_cube_array_image) {
bld.emit(SHADER_OPCODE_INT_QUOTIENT,
offset(retype(dest, BRW_REGISTER_TYPE_D), bld, c),
offset(size, bld, c), fs_reg(6));
} else {
bld.MOV(offset(retype(dest, BRW_REGISTER_TYPE_D), bld, c),
offset(size, bld, c));
}
}
break;
}
case nir_intrinsic_load_front_face:
bld.MOV(retype(dest, BRW_REGISTER_TYPE_D),
*emit_frontfacing_interpolation());
break;
case nir_intrinsic_load_vertex_id:
unreachable("should be lowered by lower_vertex_id()");
case nir_intrinsic_load_vertex_id_zero_base:
case nir_intrinsic_load_base_vertex:
case nir_intrinsic_load_instance_id:
case nir_intrinsic_load_sample_mask_in:
case nir_intrinsic_load_sample_id: {
gl_system_value sv = nir_system_value_from_intrinsic(instr->intrinsic);
fs_reg val = nir_system_values[sv];
assert(val.file != BAD_FILE);
dest.type = val.type;
bld.MOV(dest, val);
break;
}
case nir_intrinsic_load_sample_pos: {
fs_reg sample_pos = nir_system_values[SYSTEM_VALUE_SAMPLE_POS];
assert(sample_pos.file != BAD_FILE);
dest.type = sample_pos.type;
bld.MOV(dest, sample_pos);
bld.MOV(offset(dest, bld, 1), offset(sample_pos, bld, 1));
break;
}
case nir_intrinsic_load_uniform_indirect:
has_indirect = true;
2015-04-11 09:49:36 -07:00
/* fallthrough */
case nir_intrinsic_load_uniform: {
fs_reg uniform_reg(UNIFORM, instr->const_index[0]);
uniform_reg.reg_offset = instr->const_index[1];
for (unsigned j = 0; j < instr->num_components; j++) {
fs_reg src = offset(retype(uniform_reg, dest.type), bld, j);
if (has_indirect)
src.reladdr = new(mem_ctx) fs_reg(get_nir_src(instr->src[0]));
bld.MOV(dest, src);
dest = offset(dest, bld, 1);
}
break;
}
case nir_intrinsic_load_ubo_indirect:
has_indirect = true;
2015-02-28 10:37:50 -08:00
/* fallthrough */
case nir_intrinsic_load_ubo: {
nir_const_value *const_index = nir_src_as_const_value(instr->src[0]);
fs_reg surf_index;
if (const_index) {
surf_index = fs_reg(stage_prog_data->binding_table.ubo_start +
const_index->u[0]);
} else {
/* The block index is not a constant. Evaluate the index expression
* per-channel and add the base UBO index; we have to select a value
* from any live channel.
*/
surf_index = vgrf(glsl_type::uint_type);
bld.ADD(surf_index, get_nir_src(instr->src[0]),
fs_reg(stage_prog_data->binding_table.ubo_start));
surf_index = bld.emit_uniformize(surf_index);
/* Assume this may touch any UBO. It would be nice to provide
* a tighter bound, but the array information is already lowered away.
*/
brw_mark_surface_used(prog_data,
stage_prog_data->binding_table.ubo_start +
shader_prog->NumUniformBlocks - 1);
}
if (has_indirect) {
/* Turn the byte offset into a dword offset. */
fs_reg base_offset = vgrf(glsl_type::int_type);
bld.SHR(base_offset, retype(get_nir_src(instr->src[1]),
BRW_REGISTER_TYPE_D),
fs_reg(2));
unsigned vec4_offset = instr->const_index[0] / 4;
for (int i = 0; i < instr->num_components; i++)
VARYING_PULL_CONSTANT_LOAD(bld, offset(dest, bld, i), surf_index,
base_offset, vec4_offset + i);
} else {
fs_reg packed_consts = vgrf(glsl_type::float_type);
packed_consts.type = dest.type;
fs_reg const_offset_reg((unsigned) instr->const_index[0] & ~15);
bld.emit(FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD, packed_consts,
surf_index, const_offset_reg);
for (unsigned i = 0; i < instr->num_components; i++) {
packed_consts.set_smear(instr->const_index[0] % 16 / 4 + i);
/* The std140 packing rules don't allow vectors to cross 16-byte
* boundaries, and a reg is 32 bytes.
*/
assert(packed_consts.subreg_offset < 32);
bld.MOV(dest, packed_consts);
dest = offset(dest, bld, 1);
}
}
break;
}
case nir_intrinsic_load_input_indirect:
has_indirect = true;
2015-02-28 10:46:33 -08:00
/* fallthrough */
case nir_intrinsic_load_input: {
unsigned index = 0;
for (unsigned j = 0; j < instr->num_components; j++) {
fs_reg src = offset(retype(nir_inputs, dest.type), bld,
instr->const_index[0] + index);
if (has_indirect)
src.reladdr = new(mem_ctx) fs_reg(get_nir_src(instr->src[0]));
index++;
bld.MOV(dest, src);
dest = offset(dest, bld, 1);
}
break;
}
/* Handle ARB_gpu_shader5 interpolation intrinsics
*
* It's worth a quick word of explanation as to why we handle the full
* variable-based interpolation intrinsic rather than a lowered version
* with like we do for other inputs. We have to do that because the way
* we set up inputs doesn't allow us to use the already setup inputs for
* interpolation. At the beginning of the shader, we go through all of
* the input variables and do the initial interpolation and put it in
* the nir_inputs array based on its location as determined in
* nir_lower_io. If the input isn't used, dead code cleans up and
* everything works fine. However, when we get to the ARB_gpu_shader5
* interpolation intrinsics, we need to reinterpolate the input
* differently. If we used an intrinsic that just had an index it would
* only give us the offset into the nir_inputs array. However, this is
* useless because that value is post-interpolation and we need
* pre-interpolation. In order to get the actual location of the bits
* we get from the vertex fetching hardware, we need the variable.
*/
case nir_intrinsic_interp_var_at_centroid:
case nir_intrinsic_interp_var_at_sample:
case nir_intrinsic_interp_var_at_offset: {
assert(stage == MESA_SHADER_FRAGMENT);
((struct brw_wm_prog_data *) prog_data)->pulls_bary = true;
fs_reg dst_xy = bld.vgrf(BRW_REGISTER_TYPE_F, 2);
/* For most messages, we need one reg of ignored data; the hardware
* requires mlen==1 even when there is no payload. in the per-slot
* offset case, we'll replace this with the proper source data.
*/
fs_reg src = vgrf(glsl_type::float_type);
int mlen = 1; /* one reg unless overriden */
fs_inst *inst;
switch (instr->intrinsic) {
case nir_intrinsic_interp_var_at_centroid:
inst = bld.emit(FS_OPCODE_INTERPOLATE_AT_CENTROID,
dst_xy, src, fs_reg(0u));
break;
case nir_intrinsic_interp_var_at_sample: {
/* XXX: We should probably handle non-constant sample id's */
nir_const_value *const_sample = nir_src_as_const_value(instr->src[0]);
assert(const_sample);
unsigned msg_data = const_sample ? const_sample->i[0] << 4 : 0;
inst = bld.emit(FS_OPCODE_INTERPOLATE_AT_SAMPLE, dst_xy, src,
fs_reg(msg_data));
break;
}
case nir_intrinsic_interp_var_at_offset: {
nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
if (const_offset) {
unsigned off_x = MIN2((int)(const_offset->f[0] * 16), 7) & 0xf;
unsigned off_y = MIN2((int)(const_offset->f[1] * 16), 7) & 0xf;
inst = bld.emit(FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET, dst_xy, src,
fs_reg(off_x | (off_y << 4)));
} else {
src = vgrf(glsl_type::ivec2_type);
fs_reg offset_src = retype(get_nir_src(instr->src[0]),
BRW_REGISTER_TYPE_F);
for (int i = 0; i < 2; i++) {
fs_reg temp = vgrf(glsl_type::float_type);
bld.MUL(temp, offset(offset_src, bld, i), fs_reg(16.0f));
fs_reg itemp = vgrf(glsl_type::int_type);
bld.MOV(itemp, temp); /* float to int */
/* Clamp the upper end of the range to +7/16.
* ARB_gpu_shader5 requires that we support a maximum offset
* of +0.5, which isn't representable in a S0.4 value -- if
* we didn't clamp it, we'd end up with -8/16, which is the
* opposite of what the shader author wanted.
*
* This is legal due to ARB_gpu_shader5's quantization
* rules:
*
* "Not all values of <offset> may be supported; x and y
* offsets may be rounded to fixed-point values with the
* number of fraction bits given by the
* implementation-dependent constant
* FRAGMENT_INTERPOLATION_OFFSET_BITS"
*/
set_condmod(BRW_CONDITIONAL_L,
bld.SEL(offset(src, bld, i), itemp, fs_reg(7)));
}
mlen = 2 * dispatch_width / 8;
inst = bld.emit(FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET, dst_xy, src,
fs_reg(0u));
}
break;
}
default:
unreachable("Invalid intrinsic");
}
inst->mlen = mlen;
/* 2 floats per slot returned */
inst->regs_written = 2 * dispatch_width / 8;
inst->pi_noperspective = instr->variables[0]->var->data.interpolation ==
INTERP_QUALIFIER_NOPERSPECTIVE;
for (unsigned j = 0; j < instr->num_components; j++) {
fs_reg src = interp_reg(instr->variables[0]->var->data.location, j);
src.type = dest.type;
bld.emit(FS_OPCODE_LINTERP, dest, dst_xy, src);
dest = offset(dest, bld, 1);
}
break;
}
case nir_intrinsic_store_output_indirect:
has_indirect = true;
2015-04-11 09:49:36 -07:00
/* fallthrough */
case nir_intrinsic_store_output: {
fs_reg src = get_nir_src(instr->src[0]);
unsigned index = 0;
for (unsigned j = 0; j < instr->num_components; j++) {
fs_reg new_dest = offset(retype(nir_outputs, src.type), bld,
instr->const_index[0] + index);
if (has_indirect)
src.reladdr = new(mem_ctx) fs_reg(get_nir_src(instr->src[1]));
index++;
bld.MOV(new_dest, src);
src = offset(src, bld, 1);
}
break;
}
case nir_intrinsic_barrier:
emit_barrier();
break;
default:
unreachable("unknown intrinsic");
}
}
void
fs_visitor::nir_emit_texture(const fs_builder &bld, nir_tex_instr *instr)
{
unsigned sampler = instr->sampler_index;
fs_reg sampler_reg(sampler);
/* FINISHME: We're failing to recompile our programs when the sampler is
* updated. This only matters for the texture rectangle scale parameters
* (pre-gen6, or gen6+ with GL_CLAMP).
*/
int texunit = prog->SamplerUnits[sampler];
int gather_component = instr->component;
bool is_rect = instr->sampler_dim == GLSL_SAMPLER_DIM_RECT;
bool is_cube_array = instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE &&
instr->is_array;
int lod_components = 0;
int UNUSED offset_components = 0;
fs_reg coordinate, shadow_comparitor, lod, lod2, sample_index, mcs, tex_offset;
for (unsigned i = 0; i < instr->num_srcs; i++) {
fs_reg src = get_nir_src(instr->src[i].src);
switch (instr->src[i].src_type) {
case nir_tex_src_bias:
lod = retype(src, BRW_REGISTER_TYPE_F);
break;
case nir_tex_src_comparitor:
shadow_comparitor = retype(src, BRW_REGISTER_TYPE_F);
break;
case nir_tex_src_coord:
switch (instr->op) {
case nir_texop_txf:
case nir_texop_txf_ms:
coordinate = retype(src, BRW_REGISTER_TYPE_D);
break;
default:
coordinate = retype(src, BRW_REGISTER_TYPE_F);
break;
}
break;
case nir_tex_src_ddx:
lod = retype(src, BRW_REGISTER_TYPE_F);
lod_components = nir_tex_instr_src_size(instr, i);
break;
case nir_tex_src_ddy:
lod2 = retype(src, BRW_REGISTER_TYPE_F);
break;
case nir_tex_src_lod:
switch (instr->op) {
case nir_texop_txs:
lod = retype(src, BRW_REGISTER_TYPE_UD);
break;
case nir_texop_txf:
lod = retype(src, BRW_REGISTER_TYPE_D);
break;
default:
lod = retype(src, BRW_REGISTER_TYPE_F);
break;
}
break;
case nir_tex_src_ms_index:
sample_index = retype(src, BRW_REGISTER_TYPE_UD);
break;
case nir_tex_src_offset:
tex_offset = retype(src, BRW_REGISTER_TYPE_D);
if (instr->is_array)
offset_components = instr->coord_components - 1;
else
offset_components = instr->coord_components;
break;
case nir_tex_src_projector:
unreachable("should be lowered");
case nir_tex_src_sampler_offset: {
/* Figure out the highest possible sampler index and mark it as used */
uint32_t max_used = sampler + instr->sampler_array_size - 1;
if (instr->op == nir_texop_tg4 && devinfo->gen < 8) {
max_used += stage_prog_data->binding_table.gather_texture_start;
} else {
max_used += stage_prog_data->binding_table.texture_start;
}
brw_mark_surface_used(prog_data, max_used);
/* Emit code to evaluate the actual indexing expression */
sampler_reg = vgrf(glsl_type::uint_type);
bld.ADD(sampler_reg, src, fs_reg(sampler));
sampler_reg = bld.emit_uniformize(sampler_reg);
break;
}
default:
unreachable("unknown texture source");
}
}
if (instr->op == nir_texop_txf_ms) {
if (devinfo->gen >= 7 &&
key_tex->compressed_multisample_layout_mask & (1 << sampler)) {
mcs = emit_mcs_fetch(coordinate, instr->coord_components, sampler_reg);
} else {
mcs = fs_reg(0u);
}
}
for (unsigned i = 0; i < 3; i++) {
if (instr->const_offset[i] != 0) {
assert(offset_components == 0);
tex_offset = fs_reg(brw_texture_offset(instr->const_offset, 3));
break;
}
}
enum glsl_base_type dest_base_type =
brw_glsl_base_type_for_nir_type (instr->dest_type);
const glsl_type *dest_type =
glsl_type::get_instance(dest_base_type, nir_tex_instr_dest_size(instr),
1);
ir_texture_opcode op;
switch (instr->op) {
case nir_texop_lod: op = ir_lod; break;
case nir_texop_query_levels: op = ir_query_levels; break;
case nir_texop_tex: op = ir_tex; break;
case nir_texop_tg4: op = ir_tg4; break;
case nir_texop_txb: op = ir_txb; break;
case nir_texop_txd: op = ir_txd; break;
case nir_texop_txf: op = ir_txf; break;
case nir_texop_txf_ms: op = ir_txf_ms; break;
case nir_texop_txl: op = ir_txl; break;
case nir_texop_txs: op = ir_txs; break;
default:
unreachable("unknown texture opcode");
}
emit_texture(op, dest_type, coordinate, instr->coord_components,
shadow_comparitor, lod, lod2, lod_components, sample_index,
tex_offset, mcs, gather_component,
is_cube_array, is_rect, sampler, sampler_reg, texunit);
fs_reg dest = get_nir_dest(instr->dest);
dest.type = this->result.type;
unsigned num_components = nir_tex_instr_dest_size(instr);
emit_percomp(bld, fs_inst(BRW_OPCODE_MOV, bld.dispatch_width(),
dest, this->result),
(1 << num_components) - 1);
}
void
fs_visitor::nir_emit_jump(const fs_builder &bld, nir_jump_instr *instr)
{
switch (instr->type) {
case nir_jump_break:
bld.emit(BRW_OPCODE_BREAK);
break;
case nir_jump_continue:
bld.emit(BRW_OPCODE_CONTINUE);
break;
case nir_jump_return:
default:
unreachable("unknown jump");
}
}