mesa/src/mesa/drivers/dri/i965/brw_fs_nir.cpp

1698 lines
53 KiB
C++
Raw Normal View History

/*
* Copyright © 2010 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include "glsl/nir/glsl_to_nir.h"
#include "brw_fs.h"
void
fs_visitor::emit_nir_code()
{
/* first, lower the GLSL IR shader to NIR */
nir_shader *nir = glsl_to_nir(shader->base.ir, NULL, true);
nir_validate_shader(nir);
/* lower some of the GLSL-isms into NIR-isms - after this point, we no
* longer have to deal with variables inside the shader
*/
nir_lower_variables_scalar(nir, true, true, true, true);
nir_validate_shader(nir);
nir_lower_samplers(nir, shader_prog, shader->base.Program);
nir_validate_shader(nir);
nir_lower_system_values(nir);
nir_validate_shader(nir);
nir_lower_atomics(nir);
nir_validate_shader(nir);
nir_remove_dead_variables(nir);
nir_opt_global_to_local(nir);
nir_validate_shader(nir);
nir_convert_to_ssa(nir);
nir_validate_shader(nir);
bool progress;
do {
progress = false;
progress |= nir_copy_prop(nir);
nir_validate_shader(nir);
progress |= nir_opt_dce(nir);
nir_validate_shader(nir);
progress |= nir_opt_cse(nir);
nir_validate_shader(nir);
progress |= nir_opt_peephole_select(nir);
nir_validate_shader(nir);
progress |= nir_opt_peephole_ffma(nir);
2014-11-11 12:16:55 -08:00
nir_validate_shader(nir);
} while (progress);
nir_convert_from_ssa(nir);
nir_validate_shader(nir);
nir_lower_vec_to_movs(nir);
nir_validate_shader(nir);
/* emit the arrays used for inputs and outputs - load/store intrinsics will
* be converted to reads/writes of these arrays
*/
if (nir->num_inputs > 0) {
nir_inputs = fs_reg(GRF, virtual_grf_alloc(nir->num_inputs));
nir_setup_inputs(nir);
}
if (nir->num_outputs > 0) {
nir_outputs = fs_reg(GRF, virtual_grf_alloc(nir->num_outputs));
nir_setup_outputs(nir);
}
if (nir->num_uniforms > 0) {
nir_uniforms = fs_reg(UNIFORM, 0);
nir_setup_uniforms(nir);
}
nir_globals = ralloc_array(mem_ctx, fs_reg, nir->reg_alloc);
foreach_list_typed(nir_register, reg, node, &nir->registers) {
unsigned array_elems =
reg->num_array_elems == 0 ? 1 : reg->num_array_elems;
unsigned size = array_elems * reg->num_components;
nir_globals[reg->index] = fs_reg(GRF, virtual_grf_alloc(size));
}
/* get the main function and emit it */
nir_foreach_overload(nir, overload) {
assert(strcmp(overload->function->name, "main") == 0);
assert(overload->impl);
nir_emit_impl(overload->impl);
}
ralloc_free(nir);
}
void
fs_visitor::nir_setup_inputs(nir_shader *shader)
{
fs_reg varying = nir_inputs;
struct hash_entry *entry;
hash_table_foreach(shader->inputs, entry) {
nir_variable *var = (nir_variable *) entry->data;
varying.reg_offset = var->data.driver_location;
fs_reg reg;
if (!strcmp(var->name, "gl_FragCoord")) {
reg = *emit_fragcoord_interpolation(var->data.pixel_center_integer,
var->data.origin_upper_left);
emit_percomp(MOV(varying, reg), 0xF);
} else if (!strcmp(var->name, "gl_FrontFacing")) {
reg = *emit_frontfacing_interpolation();
emit(MOV(retype(varying, BRW_REGISTER_TYPE_UD), reg));
} else {
emit_general_interpolation(varying, var->name, var->type,
(glsl_interp_qualifier) var->data.interpolation,
var->data.location, var->data.centroid,
var->data.sample);
}
}
}
void
fs_visitor::nir_setup_outputs(nir_shader *shader)
{
brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
fs_reg reg = nir_outputs;
struct hash_entry *entry;
hash_table_foreach(shader->outputs, entry) {
nir_variable *var = (nir_variable *) entry->data;
reg.reg_offset = var->data.driver_location;
if (var->data.index > 0) {
assert(var->data.location == FRAG_RESULT_DATA0);
assert(var->data.index == 1);
this->dual_src_output = reg;
this->do_dual_src = true;
} else if (var->data.location == FRAG_RESULT_COLOR) {
/* Writing gl_FragColor outputs to all color regions. */
for (unsigned int i = 0; i < MAX2(key->nr_color_regions, 1); i++) {
this->outputs[i] = reg;
this->output_components[i] = 4;
}
} else if (var->data.location == FRAG_RESULT_DEPTH) {
this->frag_depth = reg;
} else if (var->data.location == FRAG_RESULT_SAMPLE_MASK) {
this->sample_mask = reg;
} else {
/* gl_FragData or a user-defined FS output */
assert(var->data.location >= FRAG_RESULT_DATA0 &&
var->data.location < FRAG_RESULT_DATA0 + BRW_MAX_DRAW_BUFFERS);
int vector_elements =
var->type->is_array() ? var->type->fields.array->vector_elements
: var->type->vector_elements;
/* General color output. */
for (unsigned int i = 0; i < MAX2(1, var->type->length); i++) {
int output = var->data.location - FRAG_RESULT_DATA0 + i;
this->outputs[output] = reg;
this->outputs[output].reg_offset += vector_elements * i;
this->output_components[output] = vector_elements;
}
}
}
}
void
fs_visitor::nir_setup_uniforms(nir_shader *shader)
{
uniforms = shader->num_uniforms;
param_size[0] = shader->num_uniforms;
if (dispatch_width != 8)
return;
struct hash_entry *entry;
hash_table_foreach(shader->uniforms, entry) {
nir_variable *var = (nir_variable *) entry->data;
/* UBO's and atomics don't take up space in the uniform file */
if (var->interface_type != NULL || var->type->contains_atomic())
continue;
if (strncmp(var->name, "gl_", 3) == 0)
nir_setup_builtin_uniform(var);
else
nir_setup_uniform(var);
}
}
void
fs_visitor::nir_setup_uniform(nir_variable *var)
{
int namelen = strlen(var->name);
/* The data for our (non-builtin) uniforms is stored in a series of
* gl_uniform_driver_storage structs for each subcomponent that
* glGetUniformLocation() could name. We know it's been set up in the
* same order we'd walk the type, so walk the list of storage and find
* anything with our name, or the prefix of a component that starts with
* our name.
*/
unsigned index = var->data.driver_location;
for (unsigned u = 0; u < shader_prog->NumUserUniformStorage; u++) {
struct gl_uniform_storage *storage = &shader_prog->UniformStorage[u];
if (strncmp(var->name, storage->name, namelen) != 0 ||
(storage->name[namelen] != 0 &&
storage->name[namelen] != '.' &&
storage->name[namelen] != '[')) {
continue;
}
unsigned slots = storage->type->component_slots();
if (storage->array_elements)
slots *= storage->array_elements;
for (unsigned i = 0; i < slots; i++) {
stage_prog_data->param[index++] = &storage->storage[i];
}
}
/* Make sure we actually initialized the right amount of stuff here. */
assert(var->data.driver_location + var->type->component_slots() == index);
}
void
fs_visitor::nir_setup_builtin_uniform(nir_variable *var)
{
const nir_state_slot *const slots = var->state_slots;
assert(var->state_slots != NULL);
unsigned uniform_index = var->data.driver_location;
for (unsigned int i = 0; i < var->num_state_slots; i++) {
/* This state reference has already been setup by ir_to_mesa, but we'll
* get the same index back here.
*/
int index = _mesa_add_state_reference(this->prog->Parameters,
(gl_state_index *)slots[i].tokens);
/* Add each of the unique swizzles of the element as a parameter.
* This'll end up matching the expected layout of the
* array/matrix/structure we're trying to fill in.
*/
int last_swiz = -1;
for (unsigned int j = 0; j < 4; j++) {
int swiz = GET_SWZ(slots[i].swizzle, j);
if (swiz == last_swiz)
break;
last_swiz = swiz;
stage_prog_data->param[uniform_index++] =
&prog->Parameters->ParameterValues[index][swiz];
}
}
}
void
fs_visitor::nir_emit_impl(nir_function_impl *impl)
{
nir_locals = reralloc(mem_ctx, nir_locals, fs_reg, impl->reg_alloc);
foreach_list_typed(nir_register, reg, node, &impl->registers) {
unsigned array_elems =
reg->num_array_elems == 0 ? 1 : reg->num_array_elems;
unsigned size = array_elems * reg->num_components;
nir_locals[reg->index] = fs_reg(GRF, virtual_grf_alloc(size));
}
nir_emit_cf_list(&impl->body);
}
void
fs_visitor::nir_emit_cf_list(exec_list *list)
{
foreach_list_typed(nir_cf_node, node, node, list) {
switch (node->type) {
case nir_cf_node_if:
nir_emit_if(nir_cf_node_as_if(node));
break;
case nir_cf_node_loop:
nir_emit_loop(nir_cf_node_as_loop(node));
break;
case nir_cf_node_block:
nir_emit_block(nir_cf_node_as_block(node));
break;
default:
unreachable("Invalid CFG node block");
}
}
}
void
fs_visitor::nir_emit_if(nir_if *if_stmt)
{
if (brw->gen < 6) {
no16("Can't support (non-uniform) control flow on SIMD16\n");
}
/* first, put the condition into f0 */
fs_inst *inst = emit(MOV(reg_null_d,
retype(get_nir_src(if_stmt->condition),
BRW_REGISTER_TYPE_UD)));
inst->conditional_mod = BRW_CONDITIONAL_NZ;
emit(IF(BRW_PREDICATE_NORMAL));
nir_emit_cf_list(&if_stmt->then_list);
/* note: if the else is empty, dead CF elimination will remove it */
emit(BRW_OPCODE_ELSE);
nir_emit_cf_list(&if_stmt->else_list);
emit(BRW_OPCODE_ENDIF);
try_replace_with_sel();
}
void
fs_visitor::nir_emit_loop(nir_loop *loop)
{
if (brw->gen < 6) {
no16("Can't support (non-uniform) control flow on SIMD16\n");
}
emit(BRW_OPCODE_DO);
nir_emit_cf_list(&loop->body);
emit(BRW_OPCODE_WHILE);
}
void
fs_visitor::nir_emit_block(nir_block *block)
{
nir_foreach_instr(block, instr) {
nir_emit_instr(instr);
}
}
void
fs_visitor::nir_emit_instr(nir_instr *instr)
{
switch (instr->type) {
case nir_instr_type_alu:
nir_emit_alu(nir_instr_as_alu(instr));
break;
case nir_instr_type_intrinsic:
nir_emit_intrinsic(nir_instr_as_intrinsic(instr));
break;
case nir_instr_type_texture:
nir_emit_texture(nir_instr_as_texture(instr));
break;
case nir_instr_type_load_const:
nir_emit_load_const(nir_instr_as_load_const(instr));
break;
case nir_instr_type_jump:
nir_emit_jump(nir_instr_as_jump(instr));
break;
default:
unreachable("unknown instruction type");
}
}
static brw_reg_type
brw_type_for_nir_type(nir_alu_type type)
{
switch (type) {
case nir_type_bool:
case nir_type_unsigned:
return BRW_REGISTER_TYPE_UD;
case nir_type_int:
return BRW_REGISTER_TYPE_D;
case nir_type_float:
return BRW_REGISTER_TYPE_F;
default:
unreachable("unknown type");
}
return BRW_REGISTER_TYPE_F;
}
void
fs_visitor::nir_emit_alu(nir_alu_instr *instr)
{
struct brw_wm_prog_key *fs_key = (struct brw_wm_prog_key *) this->key;
fs_reg op[3];
fs_reg dest = get_nir_dest(instr->dest.dest);
dest.type = brw_type_for_nir_type(nir_op_infos[instr->op].output_type);
fs_reg result;
if (instr->has_predicate) {
result = fs_reg(GRF, virtual_grf_alloc(4));
result.type = dest.type;
} else {
result = dest;
}
for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++)
op[i] = get_nir_alu_src(instr, i);
switch (instr->op) {
case nir_op_fmov:
case nir_op_i2f:
case nir_op_u2f: {
fs_inst *inst = MOV(result, op[0]);
inst->saturate = instr->dest.saturate;
emit_percomp(inst, instr->dest.write_mask);
}
break;
case nir_op_imov:
case nir_op_f2i:
case nir_op_f2u:
emit_percomp(MOV(result, op[0]), instr->dest.write_mask);
break;
case nir_op_fsign: {
/* AND(val, 0x80000000) gives the sign bit.
*
* Predicated OR ORs 1.0 (0x3f800000) with the sign bit if val is not
* zero.
*/
emit_percomp(CMP(reg_null_f, op[0], fs_reg(0.0f), BRW_CONDITIONAL_NZ),
instr->dest.write_mask);
fs_reg result_int = retype(result, BRW_REGISTER_TYPE_UD);
op[0].type = BRW_REGISTER_TYPE_UD;
result.type = BRW_REGISTER_TYPE_UD;
emit_percomp(AND(result_int, op[0], fs_reg(0x80000000u)),
instr->dest.write_mask);
fs_inst *inst = OR(result_int, result_int, fs_reg(0x3f800000u));
inst->predicate = BRW_PREDICATE_NORMAL;
emit_percomp(inst, instr->dest.write_mask);
if (instr->dest.saturate) {
fs_inst *inst = MOV(result, result);
inst->saturate = true;
emit_percomp(inst, instr->dest.write_mask);
}
break;
}
case nir_op_isign: {
/* ASR(val, 31) -> negative val generates 0xffffffff (signed -1).
* -> non-negative val generates 0x00000000.
* Predicated OR sets 1 if val is positive.
*/
emit_percomp(CMP(reg_null_d, op[0], fs_reg(0), BRW_CONDITIONAL_G),
instr->dest.write_mask);
emit_percomp(ASR(result, op[0], fs_reg(31)), instr->dest.write_mask);
fs_inst *inst = OR(result, result, fs_reg(1));
inst->predicate = BRW_PREDICATE_NORMAL;
emit_percomp(inst, instr->dest.write_mask);
break;
}
case nir_op_frcp:
emit_math_percomp(SHADER_OPCODE_RCP, result, op[0],
instr->dest.write_mask, instr->dest.saturate);
break;
case nir_op_fexp2:
emit_math_percomp(SHADER_OPCODE_EXP2, result, op[0],
instr->dest.write_mask, instr->dest.saturate);
break;
case nir_op_flog2:
emit_math_percomp(SHADER_OPCODE_LOG2, result, op[0],
instr->dest.write_mask, instr->dest.saturate);
break;
case nir_op_fexp:
case nir_op_flog:
unreachable("not reached: should be handled by ir_explog_to_explog2");
case nir_op_fsin:
case nir_op_fsin_reduced:
emit_math_percomp(SHADER_OPCODE_SIN, result, op[0],
instr->dest.write_mask, instr->dest.saturate);
break;
case nir_op_fcos:
case nir_op_fcos_reduced:
emit_math_percomp(SHADER_OPCODE_COS, result, op[0],
instr->dest.write_mask, instr->dest.saturate);
break;
case nir_op_fddx:
if (fs_key->high_quality_derivatives)
emit_percomp(FS_OPCODE_DDX_FINE, result, op[0],
instr->dest.write_mask, instr->dest.saturate);
else
emit_percomp(FS_OPCODE_DDX_COARSE, result, op[0],
instr->dest.write_mask, instr->dest.saturate);
break;
case nir_op_fddx_fine:
emit_percomp(FS_OPCODE_DDX_FINE, result, op[0],
instr->dest.write_mask, instr->dest.saturate);
break;
case nir_op_fddx_coarse:
emit_percomp(FS_OPCODE_DDX_COARSE, result, op[0],
instr->dest.write_mask, instr->dest.saturate);
break;
case nir_op_fddy:
if (fs_key->high_quality_derivatives)
emit_percomp(FS_OPCODE_DDY_FINE, result, op[0],
fs_reg(fs_key->render_to_fbo),
instr->dest.write_mask, instr->dest.saturate);
else
emit_percomp(FS_OPCODE_DDY_COARSE, result, op[0],
fs_reg(fs_key->render_to_fbo),
instr->dest.write_mask, instr->dest.saturate);
break;
case nir_op_fddy_fine:
emit_percomp(FS_OPCODE_DDY_FINE, result, op[0],
fs_reg(fs_key->render_to_fbo),
instr->dest.write_mask, instr->dest.saturate);
break;
case nir_op_fddy_coarse:
emit_percomp(FS_OPCODE_DDY_COARSE, result, op[0],
fs_reg(fs_key->render_to_fbo),
instr->dest.write_mask, instr->dest.saturate);
break;
case nir_op_fadd:
case nir_op_iadd: {
fs_inst *inst = ADD(result, op[0], op[1]);
inst->saturate = instr->dest.saturate;
emit_percomp(inst, instr->dest.write_mask);
break;
}
case nir_op_fmul: {
fs_inst *inst = MUL(result, op[0], op[1]);
inst->saturate = instr->dest.saturate;
emit_percomp(inst, instr->dest.write_mask);
break;
}
case nir_op_imul: {
/* TODO put in the 16-bit constant optimization once we have SSA */
if (brw->gen >= 7)
no16("SIMD16 explicit accumulator operands unsupported\n");
struct brw_reg acc = retype(brw_acc_reg(dispatch_width), result.type);
emit_percomp(MUL(acc, op[0], op[1]), instr->dest.write_mask);
emit_percomp(MACH(reg_null_d, op[0], op[1]), instr->dest.write_mask);
emit_percomp(MOV(result, fs_reg(acc)), instr->dest.write_mask);
break;
}
case nir_op_imul_high:
case nir_op_umul_high: {
if (brw->gen >= 7)
no16("SIMD16 explicit accumulator operands unsupported\n");
struct brw_reg acc = retype(brw_acc_reg(dispatch_width), result.type);
emit_percomp(MUL(acc, op[0], op[1]), instr->dest.write_mask);
emit_percomp(MACH(result, op[0], op[1]), instr->dest.write_mask);
break;
}
case nir_op_idiv:
case nir_op_udiv:
emit_math_percomp(SHADER_OPCODE_INT_QUOTIENT, result, op[0], op[1],
instr->dest.write_mask);
break;
case nir_op_uadd_carry: {
if (brw->gen >= 7)
no16("SIMD16 explicit accumulator operands unsupported\n");
struct brw_reg acc = retype(brw_acc_reg(dispatch_width),
BRW_REGISTER_TYPE_UD);
emit_percomp(ADDC(reg_null_ud, op[0], op[1]), instr->dest.write_mask);
emit_percomp(MOV(result, fs_reg(acc)), instr->dest.write_mask);
break;
}
case nir_op_usub_borrow: {
if (brw->gen >= 7)
no16("SIMD16 explicit accumulator operands unsupported\n");
struct brw_reg acc = retype(brw_acc_reg(dispatch_width),
BRW_REGISTER_TYPE_UD);
emit_percomp(SUBB(reg_null_ud, op[0], op[1]), instr->dest.write_mask);
emit_percomp(MOV(result, fs_reg(acc)), instr->dest.write_mask);
break;
}
case nir_op_umod:
emit_math_percomp(SHADER_OPCODE_INT_REMAINDER, result, op[0],
op[1], instr->dest.write_mask);
break;
case nir_op_flt:
case nir_op_ilt:
case nir_op_ult:
emit_percomp(CMP(result, op[0], op[1], BRW_CONDITIONAL_L),
instr->dest.write_mask);
break;
case nir_op_fge:
case nir_op_ige:
case nir_op_uge:
emit_percomp(CMP(result, op[0], op[1], BRW_CONDITIONAL_GE),
instr->dest.write_mask);
break;
case nir_op_feq:
case nir_op_ieq:
emit_percomp(CMP(result, op[0], op[1], BRW_CONDITIONAL_Z),
instr->dest.write_mask);
break;
case nir_op_fne:
case nir_op_ine:
emit_percomp(CMP(result, op[0], op[1], BRW_CONDITIONAL_NZ),
instr->dest.write_mask);
break;
case nir_op_ball_fequal2:
case nir_op_ball_iequal2:
case nir_op_ball_fequal3:
case nir_op_ball_iequal3:
case nir_op_ball_fequal4:
case nir_op_ball_iequal4: {
unsigned num_components = nir_op_infos[instr->op].input_sizes[0];
fs_reg temp = fs_reg(GRF, virtual_grf_alloc(num_components));
emit_percomp(CMP(temp, op[0], op[1], BRW_CONDITIONAL_Z),
(1 << num_components) - 1);
emit_reduction(BRW_OPCODE_AND, result, temp, num_components);
break;
}
case nir_op_bany_fnequal2:
case nir_op_bany_inequal2:
case nir_op_bany_fnequal3:
case nir_op_bany_inequal3:
case nir_op_bany_fnequal4:
case nir_op_bany_inequal4: {
unsigned num_components = nir_op_infos[instr->op].input_sizes[0];
fs_reg temp = fs_reg(GRF, virtual_grf_alloc(num_components));
temp.type = BRW_REGISTER_TYPE_UD;
emit_percomp(CMP(temp, op[0], op[1], BRW_CONDITIONAL_NZ),
(1 << num_components) - 1);
emit_reduction(BRW_OPCODE_OR, result, temp, num_components);
break;
}
case nir_op_inot:
emit_percomp(NOT(result, op[0]), instr->dest.write_mask);
break;
case nir_op_ixor:
emit_percomp(XOR(result, op[0], op[1]), instr->dest.write_mask);
break;
case nir_op_ior:
emit_percomp(OR(result, op[0], op[1]), instr->dest.write_mask);
break;
case nir_op_iand:
emit_percomp(AND(result, op[0], op[1]), instr->dest.write_mask);
break;
case nir_op_fdot2:
case nir_op_fdot3:
case nir_op_fdot4: {
unsigned num_components = nir_op_infos[instr->op].input_sizes[0];
fs_reg temp = fs_reg(GRF, virtual_grf_alloc(num_components));
emit_percomp(MUL(temp, op[0], op[1]), (1 << num_components) - 1);
emit_reduction(BRW_OPCODE_ADD, result, temp, num_components);
if (instr->dest.saturate) {
fs_inst *inst = emit(MOV(result, result));
inst->saturate = true;
}
break;
}
case nir_op_bany2:
case nir_op_bany3:
case nir_op_bany4: {
unsigned num_components = nir_op_infos[instr->op].input_sizes[0];
emit_reduction(BRW_OPCODE_OR, result, op[0], num_components);
break;
}
case nir_op_ball2:
case nir_op_ball3:
case nir_op_ball4: {
unsigned num_components = nir_op_infos[instr->op].input_sizes[0];
emit_reduction(BRW_OPCODE_AND, result, op[0], num_components);
break;
}
case nir_op_fnoise1_1:
case nir_op_fnoise1_2:
case nir_op_fnoise1_3:
case nir_op_fnoise1_4:
case nir_op_fnoise2_1:
case nir_op_fnoise2_2:
case nir_op_fnoise2_3:
case nir_op_fnoise2_4:
case nir_op_fnoise3_1:
case nir_op_fnoise3_2:
case nir_op_fnoise3_3:
case nir_op_fnoise3_4:
case nir_op_fnoise4_1:
case nir_op_fnoise4_2:
case nir_op_fnoise4_3:
case nir_op_fnoise4_4:
unreachable("not reached: should be handled by lower_noise");
case nir_op_vec2:
case nir_op_vec3:
case nir_op_vec4:
unreachable("not reached: should be handled by lower_quadop_vector");
case nir_op_ldexp:
unreachable("not reached: should be handled by ldexp_to_arith()");
case nir_op_fsqrt:
emit_math_percomp(SHADER_OPCODE_SQRT, result, op[0],
instr->dest.write_mask, instr->dest.saturate);
break;
case nir_op_frsq:
emit_math_percomp(SHADER_OPCODE_RSQ, result, op[0],
instr->dest.write_mask, instr->dest.saturate);
break;
case nir_op_b2i:
emit_percomp(AND(result, op[0], fs_reg(1)), instr->dest.write_mask);
break;
case nir_op_b2f: {
emit_percomp(AND(retype(result, BRW_REGISTER_TYPE_UD), op[0],
fs_reg(0x3f800000u)),
instr->dest.write_mask);
break;
}
case nir_op_f2b:
emit_percomp(CMP(result, op[0], fs_reg(0.0f), BRW_CONDITIONAL_NZ),
instr->dest.write_mask);
break;
case nir_op_i2b:
emit_percomp(CMP(result, op[0], fs_reg(0), BRW_CONDITIONAL_NZ),
instr->dest.write_mask);
break;
case nir_op_ftrunc: {
fs_inst *inst = RNDZ(result, op[0]);
inst->saturate = instr->dest.saturate;
emit_percomp(inst, instr->dest.write_mask);
break;
}
case nir_op_fceil: {
op[0].negate = !op[0].negate;
fs_reg temp = fs_reg(this, glsl_type::vec4_type);
emit_percomp(RNDD(temp, op[0]), instr->dest.write_mask);
temp.negate = true;
fs_inst *inst = MOV(result, temp);
inst->saturate = instr->dest.saturate;
emit_percomp(inst, instr->dest.write_mask);
break;
}
case nir_op_ffloor: {
fs_inst *inst = RNDD(result, op[0]);
inst->saturate = instr->dest.saturate;
emit_percomp(inst, instr->dest.write_mask);
break;
}
case nir_op_ffract: {
fs_inst *inst = FRC(result, op[0]);
inst->saturate = instr->dest.saturate;
emit_percomp(inst, instr->dest.write_mask);
break;
}
case nir_op_fround_even: {
fs_inst *inst = RNDE(result, op[0]);
inst->saturate = instr->dest.saturate;
emit_percomp(inst, instr->dest.write_mask);
break;
}
case nir_op_fmin:
case nir_op_imin:
case nir_op_umin:
if (brw->gen >= 6) {
emit_percomp(BRW_OPCODE_SEL, result, op[0], op[1],
instr->dest.write_mask, instr->dest.saturate,
BRW_PREDICATE_NONE, BRW_CONDITIONAL_L);
} else {
emit_percomp(CMP(reg_null_d, op[0], op[1], BRW_CONDITIONAL_L),
instr->dest.write_mask);
emit_percomp(BRW_OPCODE_SEL, result, op[0], op[1],
instr->dest.write_mask, instr->dest.saturate,
BRW_PREDICATE_NORMAL);
}
break;
case nir_op_fmax:
case nir_op_imax:
case nir_op_umax:
if (brw->gen >= 6) {
emit_percomp(BRW_OPCODE_SEL, result, op[0], op[1],
instr->dest.write_mask, instr->dest.saturate,
BRW_PREDICATE_NONE, BRW_CONDITIONAL_GE);
} else {
emit_percomp(CMP(reg_null_d, op[0], op[1], BRW_CONDITIONAL_GE),
instr->dest.write_mask);
emit_percomp(BRW_OPCODE_SEL, result, op[0], op[1],
instr->dest.write_mask, instr->dest.saturate,
BRW_PREDICATE_NORMAL);
}
break;
case nir_op_pack_snorm_2x16:
case nir_op_pack_snorm_4x8:
case nir_op_pack_unorm_2x16:
case nir_op_pack_unorm_4x8:
case nir_op_unpack_snorm_2x16:
case nir_op_unpack_snorm_4x8:
case nir_op_unpack_unorm_2x16:
case nir_op_unpack_unorm_4x8:
case nir_op_unpack_half_2x16:
case nir_op_pack_half_2x16:
unreachable("not reached: should be handled by lower_packing_builtins");
case nir_op_unpack_half_2x16_split_x:
emit_percomp(FS_OPCODE_UNPACK_HALF_2x16_SPLIT_X, result, op[0],
instr->dest.write_mask, instr->dest.saturate);
break;
case nir_op_unpack_half_2x16_split_y:
emit_percomp(FS_OPCODE_UNPACK_HALF_2x16_SPLIT_Y, result, op[0],
instr->dest.write_mask, instr->dest.saturate);
break;
case nir_op_fpow:
emit_percomp(SHADER_OPCODE_POW, result, op[0], op[1],
instr->dest.write_mask, instr->dest.saturate);
break;
case nir_op_bitfield_reverse:
emit_percomp(BFREV(result, op[0]), instr->dest.write_mask);
break;
case nir_op_bit_count:
emit_percomp(CBIT(result, op[0]), instr->dest.write_mask);
break;
case nir_op_ufind_msb:
case nir_op_ifind_msb: {
emit_percomp(FBH(retype(result, BRW_REGISTER_TYPE_UD), op[0]),
instr->dest.write_mask);
/* FBH counts from the MSB side, while GLSL's findMSB() wants the count
* from the LSB side. If FBH didn't return an error (0xFFFFFFFF), then
* subtract the result from 31 to convert the MSB count into an LSB count.
*/
emit_percomp(CMP(reg_null_d, result, fs_reg(-1), BRW_CONDITIONAL_NZ),
instr->dest.write_mask);
fs_reg neg_result(result);
neg_result.negate = true;
fs_inst *inst = ADD(result, neg_result, fs_reg(31));
inst->predicate = BRW_PREDICATE_NORMAL;
emit_percomp(inst, instr->dest.write_mask);
break;
}
case nir_op_find_lsb:
emit_percomp(FBL(result, op[0]), instr->dest.write_mask);
break;
case nir_op_ubitfield_extract:
case nir_op_ibitfield_extract:
emit_percomp(BFE(result, op[2], op[1], op[0]), instr->dest.write_mask);
break;
case nir_op_bfm:
emit_percomp(BFI1(result, op[0], op[1]), instr->dest.write_mask);
break;
case nir_op_bfi:
emit_percomp(BFI2(result, op[0], op[1], op[2]), instr->dest.write_mask);
break;
case nir_op_bitfield_insert:
unreachable("not reached: should be handled by "
"lower_instructions::bitfield_insert_to_bfm_bfi");
case nir_op_ishl:
emit_percomp(SHL(result, op[0], op[1]), instr->dest.write_mask);
break;
case nir_op_ishr:
emit_percomp(ASR(result, op[0], op[1]), instr->dest.write_mask);
break;
case nir_op_ushr:
emit_percomp(SHR(result, op[0], op[1]), instr->dest.write_mask);
break;
case nir_op_pack_half_2x16_split:
emit_percomp(FS_OPCODE_PACK_HALF_2x16_SPLIT, result, op[0], op[1],
instr->dest.write_mask);
break;
case nir_op_ffma:
emit_percomp(MAD(result, op[2], op[1], op[0]), instr->dest.write_mask);
break;
case nir_op_flrp:
/* TODO emulate for gen < 6 */
emit_percomp(LRP(result, op[2], op[1], op[0]), instr->dest.write_mask);
break;
case nir_op_bcsel:
emit(CMP(reg_null_d, op[0], fs_reg(0), BRW_CONDITIONAL_NZ));
emit_percomp(BRW_OPCODE_SEL, result, op[1], op[2],
instr->dest.write_mask, false, BRW_PREDICATE_NORMAL);
break;
default:
unreachable("unhandled instruction");
}
/* emit a predicated move if there was predication */
if (instr->has_predicate) {
fs_inst *inst = emit(MOV(reg_null_d,
retype(get_nir_src(instr->predicate),
BRW_REGISTER_TYPE_UD)));
inst->conditional_mod = BRW_CONDITIONAL_NZ;
inst = MOV(dest, result);
inst->predicate = BRW_PREDICATE_NORMAL;
emit_percomp(inst, instr->dest.write_mask);
}
}
fs_reg
fs_visitor::get_nir_src(nir_src src)
{
if (src.is_ssa) {
assert(src.ssa->parent_instr->type == nir_instr_type_load_const);
nir_load_const_instr *load = nir_instr_as_load_const(src.ssa->parent_instr);
fs_reg reg(GRF, virtual_grf_alloc(src.ssa->num_components),
BRW_REGISTER_TYPE_D);
for (unsigned i = 0; i < src.ssa->num_components; ++i)
emit(MOV(offset(reg, i), fs_reg(load->value.i[i])));
return reg;
} else {
fs_reg reg;
if (src.reg.reg->is_global)
reg = nir_globals[src.reg.reg->index];
else
reg = nir_locals[src.reg.reg->index];
/* to avoid floating-point denorm flushing problems, set the type by
* default to D - instructions that need floating point semantics will set
* this to F if they need to
*/
reg.type = BRW_REGISTER_TYPE_D;
reg.reg_offset = src.reg.base_offset;
if (src.reg.indirect) {
reg.reladdr = new(mem_ctx) fs_reg();
*reg.reladdr = retype(get_nir_src(*src.reg.indirect),
BRW_REGISTER_TYPE_D);
}
return reg;
}
}
fs_reg
fs_visitor::get_nir_alu_src(nir_alu_instr *instr, unsigned src)
{
fs_reg reg = get_nir_src(instr->src[src].src);
reg.type = brw_type_for_nir_type(nir_op_infos[instr->op].input_types[src]);
reg.abs = instr->src[src].abs;
reg.negate = instr->src[src].negate;
bool needs_swizzle = false;
unsigned num_components = 0;
for (unsigned i = 0; i < 4; i++) {
if (!nir_alu_instr_channel_used(instr, src, i))
continue;
if (instr->src[src].swizzle[i] != i)
needs_swizzle = true;
num_components = i + 1;
}
if (needs_swizzle) {
/* resolve the swizzle through MOV's */
fs_reg new_reg = fs_reg(GRF, virtual_grf_alloc(num_components), reg.type);
for (unsigned i = 0; i < 4; i++) {
if (!nir_alu_instr_channel_used(instr, src, i))
continue;
emit(MOV(offset(new_reg, i),
offset(reg, instr->src[src].swizzle[i])));
}
return new_reg;
}
return reg;
}
fs_reg
fs_visitor::get_nir_dest(nir_dest dest)
{
fs_reg reg;
if (dest.reg.reg->is_global)
reg = nir_globals[dest.reg.reg->index];
else
reg = nir_locals[dest.reg.reg->index];
reg.reg_offset = dest.reg.base_offset;
if (dest.reg.indirect) {
reg.reladdr = new(mem_ctx) fs_reg();
*reg.reladdr = retype(get_nir_src(*dest.reg.indirect),
BRW_REGISTER_TYPE_D);
}
return reg;
}
void
fs_visitor::emit_percomp(fs_inst *inst, unsigned wr_mask)
{
for (unsigned i = 0; i < 4; i++) {
if (!((wr_mask >> i) & 1))
continue;
fs_inst *new_inst = new(mem_ctx) fs_inst(*inst);
new_inst->dst.reg_offset += i;
for (unsigned j = 0; j < new_inst->sources; j++)
if (inst->src[j].file == GRF)
new_inst->src[j].reg_offset += i;
emit(new_inst);
}
}
void
fs_visitor::emit_percomp(enum opcode op, fs_reg dest, fs_reg src0,
unsigned wr_mask, bool saturate,
enum brw_predicate predicate,
enum brw_conditional_mod mod)
{
for (unsigned i = 0; i < 4; i++) {
if (!((wr_mask >> i) & 1))
continue;
fs_inst *new_inst = new(mem_ctx) fs_inst(op, dest, src0);
new_inst->dst.reg_offset += i;
for (unsigned j = 0; j < new_inst->sources; j++)
if (new_inst->src[j].file == GRF)
new_inst->src[j].reg_offset += i;
new_inst->predicate = predicate;
new_inst->conditional_mod = mod;
new_inst->saturate = saturate;
emit(new_inst);
}
}
void
fs_visitor::emit_percomp(enum opcode op, fs_reg dest, fs_reg src0, fs_reg src1,
unsigned wr_mask, bool saturate,
enum brw_predicate predicate,
enum brw_conditional_mod mod)
{
for (unsigned i = 0; i < 4; i++) {
if (!((wr_mask >> i) & 1))
continue;
fs_inst *new_inst = new(mem_ctx) fs_inst(op, dest, src0, src1);
new_inst->dst.reg_offset += i;
for (unsigned j = 0; j < new_inst->sources; j++)
if (new_inst->src[j].file == GRF)
new_inst->src[j].reg_offset += i;
new_inst->predicate = predicate;
new_inst->conditional_mod = mod;
new_inst->saturate = saturate;
emit(new_inst);
}
}
void
fs_visitor::emit_math_percomp(enum opcode op, fs_reg dest, fs_reg src0,
unsigned wr_mask, bool saturate)
{
for (unsigned i = 0; i < 4; i++) {
if (!((wr_mask >> i) & 1))
continue;
fs_reg new_dest = dest;
new_dest.reg_offset += i;
fs_reg new_src0 = src0;
if (src0.file == GRF)
new_src0.reg_offset += i;
fs_inst *new_inst = emit_math(op, new_dest, new_src0);
new_inst->saturate = saturate;
}
}
void
fs_visitor::emit_math_percomp(enum opcode op, fs_reg dest, fs_reg src0,
fs_reg src1, unsigned wr_mask,
bool saturate)
{
for (unsigned i = 0; i < 4; i++) {
if (!((wr_mask >> i) & 1))
continue;
fs_reg new_dest = dest;
new_dest.reg_offset += i;
fs_reg new_src0 = src0;
if (src0.file == GRF)
new_src0.reg_offset += i;
fs_reg new_src1 = src1;
if (src1.file == GRF)
new_src1.reg_offset += i;
fs_inst *new_inst = emit_math(op, new_dest, new_src0, new_src1);
new_inst->saturate = saturate;
}
}
void
fs_visitor::emit_reduction(enum opcode op, fs_reg dest, fs_reg src,
unsigned num_components)
{
fs_reg src0 = src;
fs_reg src1 = src;
src1.reg_offset++;
if (num_components == 2) {
emit(op, dest, src0, src1);
return;
}
fs_reg temp1 = fs_reg(GRF, virtual_grf_alloc(1));
temp1.type = src.type;
emit(op, temp1, src0, src1);
fs_reg src2 = src;
src2.reg_offset += 2;
if (num_components == 3) {
emit(op, dest, temp1, src2);
return;
}
assert(num_components == 4);
fs_reg src3 = src;
src3.reg_offset += 3;
fs_reg temp2 = fs_reg(GRF, virtual_grf_alloc(1));
temp2.type = src.type;
emit(op, temp2, src2, src3);
emit(op, dest, temp1, temp2);
}
void
fs_visitor::nir_emit_intrinsic(nir_intrinsic_instr *instr)
{
fs_reg dest;
if (nir_intrinsic_infos[instr->intrinsic].has_dest)
dest = get_nir_dest(instr->dest);
if (instr->has_predicate) {
fs_inst *inst = emit(MOV(reg_null_d,
retype(get_nir_src(instr->predicate),
BRW_REGISTER_TYPE_UD)));
inst->conditional_mod = BRW_CONDITIONAL_NZ;
}
switch (instr->intrinsic) {
case nir_intrinsic_discard: {
/* We track our discarded pixels in f0.1. By predicating on it, we can
* update just the flag bits that aren't yet discarded. By emitting a
* CMP of g0 != g0, all our currently executing channels will get turned
* off.
*/
fs_reg some_reg = fs_reg(retype(brw_vec8_grf(0, 0),
BRW_REGISTER_TYPE_UW));
fs_inst *cmp = emit(CMP(reg_null_f, some_reg, some_reg,
BRW_CONDITIONAL_NZ));
cmp->predicate = BRW_PREDICATE_NORMAL;
cmp->flag_subreg = 1;
if (brw->gen >= 6) {
/* For performance, after a discard, jump to the end of the shader.
* Only jump if all relevant channels have been discarded.
*/
fs_inst *discard_jump = emit(FS_OPCODE_DISCARD_JUMP);
discard_jump->flag_subreg = 1;
discard_jump->predicate = (dispatch_width == 8)
? BRW_PREDICATE_ALIGN1_ANY8H
: BRW_PREDICATE_ALIGN1_ANY16H;
discard_jump->predicate_inverse = true;
}
break;
}
case nir_intrinsic_atomic_counter_inc:
case nir_intrinsic_atomic_counter_dec:
case nir_intrinsic_atomic_counter_read: {
unsigned surf_index = prog_data->binding_table.abo_start +
(unsigned) instr->const_index[0];
fs_reg offset = fs_reg(get_nir_src(instr->src[0]));
switch (instr->intrinsic) {
case nir_intrinsic_atomic_counter_inc:
emit_untyped_atomic(BRW_AOP_INC, surf_index, dest, offset,
fs_reg(), fs_reg());
break;
case nir_intrinsic_atomic_counter_dec:
emit_untyped_atomic(BRW_AOP_PREDEC, surf_index, dest, offset,
fs_reg(), fs_reg());
break;
case nir_intrinsic_atomic_counter_read:
emit_untyped_surface_read(surf_index, dest, offset);
break;
default:
unreachable("Unreachable");
}
break;
}
case nir_intrinsic_load_front_face:
assert(!"TODO");
case nir_intrinsic_load_sample_mask_in: {
assert(brw->gen >= 7);
fs_reg reg = fs_reg(retype(brw_vec8_grf(payload.sample_mask_in_reg, 0),
BRW_REGISTER_TYPE_D));
dest.type = reg.type;
fs_inst *inst = MOV(dest, reg);
if (instr->has_predicate)
inst->predicate = BRW_PREDICATE_NORMAL;
emit(inst);
break;
}
case nir_intrinsic_load_sample_pos: {
fs_reg *reg = emit_samplepos_setup();
dest.type = reg->type;
emit(MOV(dest, *reg));
emit(MOV(offset(dest, 1), offset(*reg, 1)));
break;
}
case nir_intrinsic_load_sample_id: {
fs_reg *reg = emit_sampleid_setup();
dest.type = reg->type;
emit(MOV(dest, *reg));
break;
}
case nir_intrinsic_load_uniform_vec1:
case nir_intrinsic_load_uniform_vec2:
case nir_intrinsic_load_uniform_vec3:
case nir_intrinsic_load_uniform_vec4: {
unsigned index = 0;
for (int i = 0; i < instr->const_index[1]; i++) {
for (unsigned j = 0;
j < nir_intrinsic_infos[instr->intrinsic].dest_components; j++) {
fs_reg src = nir_uniforms;
src.reg_offset = instr->const_index[0] + index;
src.type = dest.type;
index++;
fs_inst *inst = MOV(dest, src);
if (instr->has_predicate)
inst->predicate = BRW_PREDICATE_NORMAL;
emit(inst);
dest.reg_offset++;
}
}
break;
}
case nir_intrinsic_load_uniform_vec1_indirect:
case nir_intrinsic_load_uniform_vec2_indirect:
case nir_intrinsic_load_uniform_vec3_indirect:
case nir_intrinsic_load_uniform_vec4_indirect: {
unsigned index = 0;
for (int i = 0; i < instr->const_index[1]; i++) {
for (unsigned j = 0;
j < nir_intrinsic_infos[instr->intrinsic].dest_components; j++) {
fs_reg src = nir_uniforms;
src.reg_offset = instr->const_index[0] + index;
src.reladdr = new(mem_ctx) fs_reg(get_nir_src(instr->src[0]));
src.reladdr->type = BRW_REGISTER_TYPE_D;
src.type = dest.type;
index++;
fs_inst *inst = MOV(dest, src);
if (instr->has_predicate)
inst->predicate = BRW_PREDICATE_NORMAL;
emit(inst);
dest.reg_offset++;
}
}
break;
}
case nir_intrinsic_load_ubo_vec1:
case nir_intrinsic_load_ubo_vec2:
case nir_intrinsic_load_ubo_vec3:
case nir_intrinsic_load_ubo_vec4: {
fs_reg surf_index = fs_reg(prog_data->binding_table.ubo_start +
(unsigned) instr->const_index[0]);
fs_reg packed_consts = fs_reg(this, glsl_type::float_type);
packed_consts.type = dest.type;
fs_reg const_offset_reg = fs_reg((unsigned) instr->const_index[1] & ~15);
emit(new(mem_ctx) fs_inst(FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD,
packed_consts, surf_index, const_offset_reg));
for (unsigned i = 0;
i < nir_intrinsic_infos[instr->intrinsic].dest_components; i++) {
packed_consts.set_smear(instr->const_index[1] % 16 / 4 + i);
/* The std140 packing rules don't allow vectors to cross 16-byte
* boundaries, and a reg is 32 bytes.
*/
assert(packed_consts.subreg_offset < 32);
fs_inst *inst = MOV(dest, packed_consts);
if (instr->has_predicate)
inst->predicate = BRW_PREDICATE_NORMAL;
emit(inst);
dest.reg_offset++;
}
break;
}
case nir_intrinsic_load_ubo_vec1_indirect:
case nir_intrinsic_load_ubo_vec2_indirect:
case nir_intrinsic_load_ubo_vec3_indirect:
case nir_intrinsic_load_ubo_vec4_indirect: {
fs_reg surf_index = fs_reg(prog_data->binding_table.ubo_start +
instr->const_index[0]);
/* Turn the byte offset into a dword offset. */
unsigned base_offset = instr->const_index[1] / 4;
fs_reg offset = fs_reg(this, glsl_type::int_type);
emit(SHR(offset, retype(get_nir_src(instr->src[0]), BRW_REGISTER_TYPE_D),
fs_reg(2)));
for (unsigned i = 0;
i < nir_intrinsic_infos[instr->intrinsic].dest_components; i++) {
exec_list list = VARYING_PULL_CONSTANT_LOAD(dest, surf_index,
offset, base_offset + i);
fs_inst *last_inst = (fs_inst *) list.get_tail();
if (instr->has_predicate)
last_inst->predicate = BRW_PREDICATE_NORMAL;
emit(list);
dest.reg_offset++;
}
break;
}
case nir_intrinsic_load_input_vec1:
case nir_intrinsic_load_input_vec2:
case nir_intrinsic_load_input_vec3:
case nir_intrinsic_load_input_vec4: {
unsigned index = 0;
for (int i = 0; i < instr->const_index[1]; i++) {
for (unsigned j = 0;
j < nir_intrinsic_infos[instr->intrinsic].dest_components; j++) {
fs_reg src = nir_inputs;
src.reg_offset = instr->const_index[0] + index;
src.type = dest.type;
index++;
fs_inst *inst = MOV(dest, src);
if (instr->has_predicate)
inst->predicate = BRW_PREDICATE_NORMAL;
emit(inst);
dest.reg_offset++;
}
}
break;
}
case nir_intrinsic_load_input_vec1_indirect:
case nir_intrinsic_load_input_vec2_indirect:
case nir_intrinsic_load_input_vec3_indirect:
case nir_intrinsic_load_input_vec4_indirect: {
unsigned index = 0;
for (int i = 0; i < instr->const_index[1]; i++) {
for (unsigned j = 0;
j < nir_intrinsic_infos[instr->intrinsic].dest_components; j++) {
fs_reg src = nir_inputs;
src.reg_offset = instr->const_index[0] + index;
src.reladdr = new(mem_ctx) fs_reg(get_nir_src(instr->src[0]));
src.reladdr->type = BRW_REGISTER_TYPE_D;
src.type = dest.type;
index++;
fs_inst *inst = MOV(dest, src);
if (instr->has_predicate)
inst->predicate = BRW_PREDICATE_NORMAL;
emit(inst);
dest.reg_offset++;
}
}
break;
}
case nir_intrinsic_store_output_vec1:
case nir_intrinsic_store_output_vec2:
case nir_intrinsic_store_output_vec3:
case nir_intrinsic_store_output_vec4: {
fs_reg src = get_nir_src(instr->src[0]);
unsigned index = 0;
for (int i = 0; i < instr->const_index[1]; i++) {
for (unsigned j = 0;
j < nir_intrinsic_infos[instr->intrinsic].src_components[0]; j++) {
fs_reg new_dest = nir_outputs;
new_dest.reg_offset = instr->const_index[0] + index;
new_dest.type = src.type;
index++;
fs_inst *inst = MOV(new_dest, src);
if (instr->has_predicate)
inst->predicate = BRW_PREDICATE_NORMAL;
emit(inst);
src.reg_offset++;
}
}
break;
}
case nir_intrinsic_store_output_vec1_indirect:
case nir_intrinsic_store_output_vec2_indirect:
case nir_intrinsic_store_output_vec3_indirect:
case nir_intrinsic_store_output_vec4_indirect: {
fs_reg src = get_nir_src(instr->src[0]);
fs_reg indirect = get_nir_src(instr->src[1]);
unsigned index = 0;
for (int i = 0; i < instr->const_index[1]; i++) {
for (unsigned j = 0;
j < nir_intrinsic_infos[instr->intrinsic].src_components[0]; j++) {
fs_reg new_dest = nir_outputs;
new_dest.reg_offset = instr->const_index[0] + index;
new_dest.reladdr = new(mem_ctx) fs_reg(indirect);
new_dest.type = src.type;
index++;
fs_inst *inst = MOV(new_dest, src);
if (instr->has_predicate)
inst->predicate = BRW_PREDICATE_NORMAL;
emit(MOV(new_dest, src));
src.reg_offset++;
}
}
break;
}
default:
unreachable("unknown intrinsic");
}
}
void
fs_visitor::nir_emit_texture(nir_tex_instr *instr)
{
brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
unsigned sampler = instr->sampler_index;
/* FINISHME: We're failing to recompile our programs when the sampler is
* updated. This only matters for the texture rectangle scale parameters
* (pre-gen6, or gen6+ with GL_CLAMP).
*/
int texunit = prog->SamplerUnits[sampler];
int gather_component = instr->component;
bool is_rect = instr->sampler_dim == GLSL_SAMPLER_DIM_RECT;
bool is_cube_array = instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE &&
instr->is_array;
int lod_components, offset_components = 0;
fs_reg coordinate, shadow_comparitor, lod, lod2, sample_index, mcs, offset;
for (unsigned i = 0; i < instr->num_srcs; i++) {
fs_reg src = get_nir_src(instr->src[i]);
switch (instr->src_type[i]) {
case nir_tex_src_bias:
lod = retype(src, BRW_REGISTER_TYPE_F);
break;
case nir_tex_src_comparitor:
shadow_comparitor = retype(src, BRW_REGISTER_TYPE_F);
break;
case nir_tex_src_coord:
switch (instr->op) {
case nir_texop_txf:
case nir_texop_txf_ms:
coordinate = retype(src, BRW_REGISTER_TYPE_D);
break;
default:
coordinate = retype(src, BRW_REGISTER_TYPE_F);
break;
}
break;
case nir_tex_src_ddx:
lod = retype(src, BRW_REGISTER_TYPE_F);
lod_components = nir_tex_instr_src_size(instr, i);
break;
case nir_tex_src_ddy:
lod2 = retype(src, BRW_REGISTER_TYPE_F);
break;
case nir_tex_src_lod:
switch (instr->op) {
case nir_texop_txs:
lod = retype(src, BRW_REGISTER_TYPE_UD);
break;
case nir_texop_txf:
lod = retype(src, BRW_REGISTER_TYPE_D);
break;
default:
lod = retype(src, BRW_REGISTER_TYPE_F);
break;
}
break;
case nir_tex_src_ms_index:
sample_index = retype(src, BRW_REGISTER_TYPE_UD);
break;
case nir_tex_src_offset:
offset = retype(src, BRW_REGISTER_TYPE_D);
if (instr->is_array)
offset_components = instr->coord_components - 1;
else
offset_components = instr->coord_components;
break;
case nir_tex_src_projector:
unreachable("should be lowered");
case nir_tex_src_sampler_index:
unreachable("not yet supported");
default:
unreachable("unknown texture source");
}
}
if (instr->op == nir_texop_txf_ms) {
if (brw->gen >= 7 && key->tex.compressed_multisample_layout_mask & (1<<sampler))
mcs = emit_mcs_fetch(coordinate, instr->coord_components, fs_reg(sampler));
else
mcs = fs_reg(0u);
}
for (unsigned i = 0; i < 3; i++) {
if (instr->const_offset[i] != 0) {
assert(offset_components == 0);
offset = fs_reg(brw_texture_offset(ctx, instr->const_offset, 3));
break;
}
}
enum glsl_base_type dest_base_type;
switch (instr->dest_type) {
case nir_type_float:
dest_base_type = GLSL_TYPE_FLOAT;
break;
case nir_type_int:
dest_base_type = GLSL_TYPE_INT;
break;
case nir_type_unsigned:
dest_base_type = GLSL_TYPE_UINT;
break;
default:
unreachable("bad type");
}
const glsl_type *dest_type =
glsl_type::get_instance(dest_base_type, nir_tex_instr_dest_size(instr),
1);
ir_texture_opcode op;
switch (instr->op) {
case nir_texop_lod: op = ir_lod; break;
case nir_texop_query_levels: op = ir_query_levels; break;
case nir_texop_tex: op = ir_tex; break;
case nir_texop_tg4: op = ir_tg4; break;
case nir_texop_txb: op = ir_txb; break;
case nir_texop_txd: op = ir_txd; break;
case nir_texop_txf: op = ir_txf; break;
case nir_texop_txf_ms: op = ir_txf_ms; break;
case nir_texop_txl: op = ir_txl; break;
case nir_texop_txs: op = ir_txs; break;
default:
unreachable("unknown texture opcode");
}
emit_texture(op, dest_type, coordinate, instr->coord_components,
shadow_comparitor, lod, lod2, lod_components, sample_index,
offset, offset_components, mcs, gather_component,
is_cube_array, is_rect, sampler, fs_reg(sampler), texunit);
fs_reg dest = get_nir_dest(instr->dest);
dest.type = this->result.type;
unsigned num_components = nir_tex_instr_dest_size(instr);
emit_percomp(MOV(dest, this->result), (1 << num_components) - 1);
}
void
fs_visitor::nir_emit_load_const(nir_load_const_instr *instr)
{
/* Bail on SSA constant loads. These are used for immediates. */
if (instr->dest.is_ssa)
return;
fs_reg dest = get_nir_dest(instr->dest);
dest.type = BRW_REGISTER_TYPE_UD;
if (instr->array_elems == 0) {
for (unsigned i = 0; i < instr->num_components; i++) {
emit(MOV(dest, fs_reg(instr->value.u[i])));
dest.reg_offset++;
}
} else {
for (unsigned i = 0; i < instr->array_elems; i++) {
for (unsigned j = 0; j < instr->num_components; j++) {
emit(MOV(dest, fs_reg(instr->array[i].u[j])));
dest.reg_offset++;
}
}
}
}
void
fs_visitor::nir_emit_jump(nir_jump_instr *instr)
{
switch (instr->type) {
case nir_jump_break:
emit(BRW_OPCODE_BREAK);
break;
case nir_jump_continue:
emit(BRW_OPCODE_CONTINUE);
break;
case nir_jump_return:
default:
unreachable("unknown jump");
}
}