mesa/src/mesa/drivers/dri/i965/brw_fs.cpp

3025 lines
79 KiB
C++
Raw Normal View History

2010-08-10 20:39:06 -07:00
/*
* Copyright © 2010 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
* Authors:
* Eric Anholt <eric@anholt.net>
*
*/
extern "C" {
#include <sys/types.h>
2010-08-10 20:39:06 -07:00
#include "main/macros.h"
#include "main/shaderobj.h"
#include "main/uniforms.h"
2010-08-10 20:39:06 -07:00
#include "program/prog_parameter.h"
#include "program/prog_print.h"
#include "program/prog_optimize.h"
#include "program/register_allocate.h"
#include "program/sampler.h"
#include "program/hash_table.h"
2010-08-10 20:39:06 -07:00
#include "brw_context.h"
#include "brw_eu.h"
#include "brw_wm.h"
#include "talloc.h"
}
#include "../glsl/glsl_types.h"
#include "../glsl/ir_optimization.h"
#include "../glsl/ir_print_visitor.h"
2010-08-10 20:39:06 -07:00
enum register_file {
ARF = BRW_ARCHITECTURE_REGISTER_FILE,
GRF = BRW_GENERAL_REGISTER_FILE,
MRF = BRW_MESSAGE_REGISTER_FILE,
IMM = BRW_IMMEDIATE_VALUE,
FIXED_HW_REG, /* a struct brw_reg */
UNIFORM, /* prog_data->params[hw_reg] */
BAD_FILE
};
enum fs_opcodes {
FS_OPCODE_FB_WRITE = 256,
FS_OPCODE_RCP,
FS_OPCODE_RSQ,
FS_OPCODE_SQRT,
FS_OPCODE_EXP2,
FS_OPCODE_LOG2,
FS_OPCODE_POW,
FS_OPCODE_SIN,
FS_OPCODE_COS,
FS_OPCODE_DDX,
FS_OPCODE_DDY,
FS_OPCODE_LINTERP,
FS_OPCODE_TEX,
FS_OPCODE_TXB,
FS_OPCODE_TXL,
FS_OPCODE_DISCARD,
};
static int using_new_fs = -1;
static struct brw_reg brw_reg_from_fs_reg(class fs_reg *reg);
2010-08-10 20:39:06 -07:00
struct gl_shader *
brw_new_shader(GLcontext *ctx, GLuint name, GLuint type)
{
struct brw_shader *shader;
shader = talloc_zero(NULL, struct brw_shader);
if (shader) {
shader->base.Type = type;
shader->base.Name = name;
2010-08-10 20:39:06 -07:00
_mesa_init_shader(ctx, &shader->base);
}
return &shader->base;
}
struct gl_shader_program *
brw_new_shader_program(GLcontext *ctx, GLuint name)
{
struct brw_shader_program *prog;
prog = talloc_zero(NULL, struct brw_shader_program);
if (prog) {
prog->base.Name = name;
2010-08-10 20:39:06 -07:00
_mesa_init_shader_program(ctx, &prog->base);
}
return &prog->base;
}
GLboolean
brw_compile_shader(GLcontext *ctx, struct gl_shader *shader)
{
if (!_mesa_ir_compile_shader(ctx, shader))
return GL_FALSE;
return GL_TRUE;
}
GLboolean
brw_link_shader(GLcontext *ctx, struct gl_shader_program *prog)
{
if (using_new_fs == -1)
using_new_fs = getenv("INTEL_NEW_FS") != NULL;
for (unsigned i = 0; i < prog->_NumLinkedShaders; i++) {
struct brw_shader *shader = (struct brw_shader *)prog->_LinkedShaders[i];
if (using_new_fs && shader->base.Type == GL_FRAGMENT_SHADER) {
void *mem_ctx = talloc_new(NULL);
bool progress;
if (shader->ir)
talloc_free(shader->ir);
shader->ir = new(shader) exec_list;
clone_ir_list(mem_ctx, shader->ir, shader->base.ir);
do_mat_op_to_vec(shader->ir);
do_mod_to_fract(shader->ir);
do_div_to_mul_rcp(shader->ir);
do_sub_to_add_neg(shader->ir);
do_explog_to_explog2(shader->ir);
do_lower_texture_projection(shader->ir);
do {
progress = false;
brw_do_channel_expressions(shader->ir);
brw_do_vector_splitting(shader->ir);
progress = do_lower_jumps(shader->ir, true, true,
true, /* main return */
false, /* continue */
false /* loops */
) || progress;
progress = do_common_optimization(shader->ir, true, 32) || progress;
progress = lower_noise(shader->ir) || progress;
progress =
lower_variable_index_to_cond_assign(shader->ir,
GL_TRUE, /* input */
GL_TRUE, /* output */
GL_TRUE, /* temp */
GL_TRUE /* uniform */
) || progress;
} while (progress);
validate_ir_tree(shader->ir);
reparent_ir(shader->ir, shader->ir);
talloc_free(mem_ctx);
}
}
2010-08-10 20:39:06 -07:00
if (!_mesa_ir_link_shader(ctx, prog))
return GL_FALSE;
return GL_TRUE;
}
static int
type_size(const struct glsl_type *type)
{
unsigned int size, i;
switch (type->base_type) {
case GLSL_TYPE_UINT:
case GLSL_TYPE_INT:
case GLSL_TYPE_FLOAT:
case GLSL_TYPE_BOOL:
return type->components();
case GLSL_TYPE_ARRAY:
return type_size(type->fields.array) * type->length;
case GLSL_TYPE_STRUCT:
size = 0;
for (i = 0; i < type->length; i++) {
size += type_size(type->fields.structure[i].type);
}
return size;
case GLSL_TYPE_SAMPLER:
/* Samplers take up no register space, since they're baked in at
* link time.
*/
return 0;
default:
assert(!"not reached");
return 0;
}
}
class fs_reg {
public:
/* Callers of this talloc-based new need not call delete. It's
* easier to just talloc_free 'ctx' (or any of its ancestors). */
static void* operator new(size_t size, void *ctx)
{
void *node;
node = talloc_size(ctx, size);
assert(node != NULL);
return node;
}
void init()
{
this->reg = 0;
this->reg_offset = 0;
this->negate = 0;
this->abs = 0;
this->hw_reg = -1;
}
/** Generic unset register constructor. */
fs_reg()
{
init();
this->file = BAD_FILE;
}
/** Immediate value constructor. */
fs_reg(float f)
{
init();
this->file = IMM;
this->type = BRW_REGISTER_TYPE_F;
this->imm.f = f;
}
/** Immediate value constructor. */
fs_reg(int32_t i)
{
init();
this->file = IMM;
this->type = BRW_REGISTER_TYPE_D;
this->imm.i = i;
}
/** Immediate value constructor. */
fs_reg(uint32_t u)
{
init();
this->file = IMM;
this->type = BRW_REGISTER_TYPE_UD;
this->imm.u = u;
}
/** Fixed brw_reg Immediate value constructor. */
fs_reg(struct brw_reg fixed_hw_reg)
{
init();
this->file = FIXED_HW_REG;
this->fixed_hw_reg = fixed_hw_reg;
this->type = fixed_hw_reg.type;
}
fs_reg(enum register_file file, int hw_reg);
fs_reg(class fs_visitor *v, const struct glsl_type *type);
/** Register file: ARF, GRF, MRF, IMM. */
enum register_file file;
/** virtual register number. 0 = fixed hw reg */
int reg;
/** Offset within the virtual register. */
int reg_offset;
/** HW register number. Generally unset until register allocation. */
int hw_reg;
/** Register type. BRW_REGISTER_TYPE_* */
int type;
bool negate;
bool abs;
struct brw_reg fixed_hw_reg;
/** Value for file == BRW_IMMMEDIATE_FILE */
union {
int32_t i;
uint32_t u;
float f;
} imm;
};
static const fs_reg reg_undef;
static const fs_reg reg_null(ARF, BRW_ARF_NULL);
class fs_inst : public exec_node {
public:
/* Callers of this talloc-based new need not call delete. It's
* easier to just talloc_free 'ctx' (or any of its ancestors). */
static void* operator new(size_t size, void *ctx)
{
void *node;
node = talloc_zero_size(ctx, size);
assert(node != NULL);
return node;
}
void init()
{
this->opcode = BRW_OPCODE_NOP;
this->saturate = false;
this->conditional_mod = BRW_CONDITIONAL_NONE;
this->predicated = false;
this->sampler = 0;
this->target = 0;
this->eot = false;
this->shadow_compare = false;
}
fs_inst()
{
init();
}
fs_inst(int opcode)
{
init();
this->opcode = opcode;
}
fs_inst(int opcode, fs_reg dst, fs_reg src0)
{
init();
this->opcode = opcode;
this->dst = dst;
this->src[0] = src0;
}
fs_inst(int opcode, fs_reg dst, fs_reg src0, fs_reg src1)
{
init();
this->opcode = opcode;
this->dst = dst;
this->src[0] = src0;
this->src[1] = src1;
}
fs_inst(int opcode, fs_reg dst, fs_reg src0, fs_reg src1, fs_reg src2)
{
init();
this->opcode = opcode;
this->dst = dst;
this->src[0] = src0;
this->src[1] = src1;
this->src[2] = src2;
}
int opcode; /* BRW_OPCODE_* or FS_OPCODE_* */
fs_reg dst;
fs_reg src[3];
bool saturate;
bool predicated;
int conditional_mod; /**< BRW_CONDITIONAL_* */
int mlen; /**< SEND message length */
int sampler;
int target; /**< MRT target. */
bool eot;
bool shadow_compare;
/** @{
* Annotation for the generated IR. One of the two can be set.
*/
ir_instruction *ir;
const char *annotation;
/** @} */
};
class fs_visitor : public ir_visitor
{
public:
fs_visitor(struct brw_wm_compile *c, struct brw_shader *shader)
{
this->c = c;
this->p = &c->func;
this->brw = p->brw;
this->fp = brw->fragment_program;
this->intel = &brw->intel;
this->ctx = &intel->ctx;
this->mem_ctx = talloc_new(NULL);
this->shader = shader;
this->fail = false;
this->variable_ht = hash_table_ctor(0,
hash_table_pointer_hash,
hash_table_pointer_compare);
this->frag_color = NULL;
this->frag_data = NULL;
this->frag_depth = NULL;
this->first_non_payload_grf = 0;
this->current_annotation = NULL;
this->annotation_string = NULL;
this->annotation_ir = NULL;
this->base_ir = NULL;
this->virtual_grf_sizes = NULL;
this->virtual_grf_next = 1;
this->virtual_grf_array_size = 0;
this->virtual_grf_def = NULL;
this->virtual_grf_use = NULL;
}
~fs_visitor()
{
talloc_free(this->mem_ctx);
hash_table_dtor(this->variable_ht);
}
fs_reg *variable_storage(ir_variable *var);
int virtual_grf_alloc(int size);
void visit(ir_variable *ir);
void visit(ir_assignment *ir);
void visit(ir_dereference_variable *ir);
void visit(ir_dereference_record *ir);
void visit(ir_dereference_array *ir);
void visit(ir_expression *ir);
void visit(ir_texture *ir);
void visit(ir_if *ir);
void visit(ir_constant *ir);
void visit(ir_swizzle *ir);
void visit(ir_return *ir);
void visit(ir_loop *ir);
void visit(ir_loop_jump *ir);
void visit(ir_discard *ir);
void visit(ir_call *ir);
void visit(ir_function *ir);
void visit(ir_function_signature *ir);
fs_inst *emit(fs_inst inst);
void assign_curb_setup();
void calculate_urb_setup();
void assign_urb_setup();
void assign_regs();
void assign_regs_trivial();
void calculate_live_intervals();
bool propagate_constants();
bool dead_code_eliminate();
bool virtual_grf_interferes(int a, int b);
void generate_code();
void generate_fb_write(fs_inst *inst);
void generate_linterp(fs_inst *inst, struct brw_reg dst,
struct brw_reg *src);
void generate_tex(fs_inst *inst, struct brw_reg dst, struct brw_reg src);
void generate_math(fs_inst *inst, struct brw_reg dst, struct brw_reg *src);
void generate_discard(fs_inst *inst, struct brw_reg temp);
void generate_ddx(fs_inst *inst, struct brw_reg dst, struct brw_reg src);
void generate_ddy(fs_inst *inst, struct brw_reg dst, struct brw_reg src);
void emit_dummy_fs();
void emit_fragcoord_interpolation(ir_variable *ir);
void emit_general_interpolation(ir_variable *ir);
void emit_interpolation_setup_gen4();
void emit_interpolation_setup_gen6();
fs_inst *emit_texture_gen4(ir_texture *ir, fs_reg dst, fs_reg coordinate);
fs_inst *emit_texture_gen5(ir_texture *ir, fs_reg dst, fs_reg coordinate);
void emit_fb_writes();
void emit_assignment_writes(fs_reg &l, fs_reg &r,
const glsl_type *type, bool predicated);
struct brw_reg interp_reg(int location, int channel);
int setup_uniform_values(int loc, const glsl_type *type);
void setup_builtin_uniform_values(ir_variable *ir);
struct brw_context *brw;
const struct gl_fragment_program *fp;
struct intel_context *intel;
GLcontext *ctx;
struct brw_wm_compile *c;
struct brw_compile *p;
struct brw_shader *shader;
void *mem_ctx;
exec_list instructions;
int *virtual_grf_sizes;
int virtual_grf_next;
int virtual_grf_array_size;
int *virtual_grf_def;
int *virtual_grf_use;
struct hash_table *variable_ht;
ir_variable *frag_color, *frag_data, *frag_depth;
int first_non_payload_grf;
int urb_setup[FRAG_ATTRIB_MAX];
/** @{ debug annotation info */
const char *current_annotation;
ir_instruction *base_ir;
const char **annotation_string;
ir_instruction **annotation_ir;
/** @} */
bool fail;
/* Result of last visit() method. */
fs_reg result;
fs_reg pixel_x;
fs_reg pixel_y;
fs_reg wpos_w;
fs_reg pixel_w;
fs_reg delta_x;
fs_reg delta_y;
int grf_used;
};
int
fs_visitor::virtual_grf_alloc(int size)
{
if (virtual_grf_array_size <= virtual_grf_next) {
if (virtual_grf_array_size == 0)
virtual_grf_array_size = 16;
else
virtual_grf_array_size *= 2;
virtual_grf_sizes = talloc_realloc(mem_ctx, virtual_grf_sizes,
int, virtual_grf_array_size);
/* This slot is always unused. */
virtual_grf_sizes[0] = 0;
}
virtual_grf_sizes[virtual_grf_next] = size;
return virtual_grf_next++;
}
/** Fixed HW reg constructor. */
fs_reg::fs_reg(enum register_file file, int hw_reg)
{
init();
this->file = file;
this->hw_reg = hw_reg;
this->type = BRW_REGISTER_TYPE_F;
}
int
brw_type_for_base_type(const struct glsl_type *type)
{
switch (type->base_type) {
case GLSL_TYPE_FLOAT:
return BRW_REGISTER_TYPE_F;
case GLSL_TYPE_INT:
case GLSL_TYPE_BOOL:
return BRW_REGISTER_TYPE_D;
case GLSL_TYPE_UINT:
return BRW_REGISTER_TYPE_UD;
case GLSL_TYPE_ARRAY:
case GLSL_TYPE_STRUCT:
/* These should be overridden with the type of the member when
* dereferenced into. BRW_REGISTER_TYPE_UD seems like a likely
* way to trip up if we don't.
*/
return BRW_REGISTER_TYPE_UD;
default:
assert(!"not reached");
return BRW_REGISTER_TYPE_F;
}
}
/** Automatic reg constructor. */
fs_reg::fs_reg(class fs_visitor *v, const struct glsl_type *type)
{
init();
this->file = GRF;
this->reg = v->virtual_grf_alloc(type_size(type));
this->reg_offset = 0;
this->type = brw_type_for_base_type(type);
}
fs_reg *
fs_visitor::variable_storage(ir_variable *var)
{
return (fs_reg *)hash_table_find(this->variable_ht, var);
}
/* Our support for uniforms is piggy-backed on the struct
* gl_fragment_program, because that's where the values actually
* get stored, rather than in some global gl_shader_program uniform
* store.
*/
int
fs_visitor::setup_uniform_values(int loc, const glsl_type *type)
{
unsigned int offset = 0;
float *vec_values;
if (type->is_matrix()) {
const glsl_type *column = glsl_type::get_instance(GLSL_TYPE_FLOAT,
type->vector_elements,
1);
for (unsigned int i = 0; i < type->matrix_columns; i++) {
offset += setup_uniform_values(loc + offset, column);
}
return offset;
}
switch (type->base_type) {
case GLSL_TYPE_FLOAT:
case GLSL_TYPE_UINT:
case GLSL_TYPE_INT:
case GLSL_TYPE_BOOL:
vec_values = fp->Base.Parameters->ParameterValues[loc];
for (unsigned int i = 0; i < type->vector_elements; i++) {
c->prog_data.param[c->prog_data.nr_params++] = &vec_values[i];
}
return 1;
case GLSL_TYPE_STRUCT:
for (unsigned int i = 0; i < type->length; i++) {
offset += setup_uniform_values(loc + offset,
type->fields.structure[i].type);
}
return offset;
case GLSL_TYPE_ARRAY:
for (unsigned int i = 0; i < type->length; i++) {
offset += setup_uniform_values(loc + offset, type->fields.array);
}
return offset;
case GLSL_TYPE_SAMPLER:
/* The sampler takes up a slot, but we don't use any values from it. */
return 1;
default:
assert(!"not reached");
return 0;
}
}
/* Our support for builtin uniforms is even scarier than non-builtin.
* It sits on top of the PROG_STATE_VAR parameters that are
* automatically updated from GL context state.
*/
void
fs_visitor::setup_builtin_uniform_values(ir_variable *ir)
{
const struct gl_builtin_uniform_desc *statevar = NULL;
for (unsigned int i = 0; _mesa_builtin_uniform_desc[i].name; i++) {
statevar = &_mesa_builtin_uniform_desc[i];
if (strcmp(ir->name, _mesa_builtin_uniform_desc[i].name) == 0)
break;
}
if (!statevar->name) {
this->fail = true;
printf("Failed to find builtin uniform `%s'\n", ir->name);
return;
}
int array_count;
if (ir->type->is_array()) {
array_count = ir->type->length;
} else {
array_count = 1;
}
for (int a = 0; a < array_count; a++) {
for (unsigned int i = 0; i < statevar->num_elements; i++) {
struct gl_builtin_uniform_element *element = &statevar->elements[i];
int tokens[STATE_LENGTH];
memcpy(tokens, element->tokens, sizeof(element->tokens));
if (ir->type->is_array()) {
tokens[1] = a;
}
/* This state reference has already been setup by ir_to_mesa,
* but we'll get the same index back here.
*/
int index = _mesa_add_state_reference(this->fp->Base.Parameters,
(gl_state_index *)tokens);
float *vec_values = this->fp->Base.Parameters->ParameterValues[index];
/* Add each of the unique swizzles of the element as a
* parameter. This'll end up matching the expected layout of
* the array/matrix/structure we're trying to fill in.
*/
int last_swiz = -1;
for (unsigned int i = 0; i < 4; i++) {
int swiz = GET_SWZ(element->swizzle, i);
if (swiz == last_swiz)
break;
last_swiz = swiz;
c->prog_data.param[c->prog_data.nr_params++] = &vec_values[swiz];
}
}
}
}
void
fs_visitor::emit_fragcoord_interpolation(ir_variable *ir)
{
fs_reg *reg = new(this->mem_ctx) fs_reg(this, ir->type);
fs_reg wpos = *reg;
fs_reg neg_y = this->pixel_y;
neg_y.negate = true;
/* gl_FragCoord.x */
if (ir->pixel_center_integer) {
emit(fs_inst(BRW_OPCODE_MOV, wpos, this->pixel_x));
} else {
emit(fs_inst(BRW_OPCODE_ADD, wpos, this->pixel_x, fs_reg(0.5f)));
}
wpos.reg_offset++;
/* gl_FragCoord.y */
if (ir->origin_upper_left && ir->pixel_center_integer) {
emit(fs_inst(BRW_OPCODE_MOV, wpos, this->pixel_y));
} else {
fs_reg pixel_y = this->pixel_y;
float offset = (ir->pixel_center_integer ? 0.0 : 0.5);
if (!ir->origin_upper_left) {
pixel_y.negate = true;
offset += c->key.drawable_height - 1.0;
}
emit(fs_inst(BRW_OPCODE_ADD, wpos, pixel_y, fs_reg(offset)));
}
wpos.reg_offset++;
/* gl_FragCoord.z */
emit(fs_inst(FS_OPCODE_LINTERP, wpos, this->delta_x, this->delta_y,
interp_reg(FRAG_ATTRIB_WPOS, 2)));
wpos.reg_offset++;
/* gl_FragCoord.w: Already set up in emit_interpolation */
emit(fs_inst(BRW_OPCODE_MOV, wpos, this->wpos_w));
hash_table_insert(this->variable_ht, reg, ir);
}
void
fs_visitor::emit_general_interpolation(ir_variable *ir)
{
fs_reg *reg = new(this->mem_ctx) fs_reg(this, ir->type);
/* Interpolation is always in floating point regs. */
reg->type = BRW_REGISTER_TYPE_F;
fs_reg attr = *reg;
unsigned int array_elements;
const glsl_type *type;
if (ir->type->is_array()) {
array_elements = ir->type->length;
if (array_elements == 0) {
this->fail = true;
}
type = ir->type->fields.array;
} else {
array_elements = 1;
type = ir->type;
}
int location = ir->location;
for (unsigned int i = 0; i < array_elements; i++) {
for (unsigned int j = 0; j < type->matrix_columns; j++) {
if (urb_setup[location] == -1) {
/* If there's no incoming setup data for this slot, don't
* emit interpolation for it.
*/
attr.reg_offset += type->vector_elements;
location++;
continue;
}
for (unsigned int c = 0; c < type->vector_elements; c++) {
struct brw_reg interp = interp_reg(location, c);
emit(fs_inst(FS_OPCODE_LINTERP,
attr,
this->delta_x,
this->delta_y,
fs_reg(interp)));
attr.reg_offset++;
}
attr.reg_offset -= type->vector_elements;
for (unsigned int c = 0; c < type->vector_elements; c++) {
emit(fs_inst(BRW_OPCODE_MUL,
attr,
attr,
this->pixel_w));
attr.reg_offset++;
}
location++;
}
}
hash_table_insert(this->variable_ht, reg, ir);
}
void
fs_visitor::visit(ir_variable *ir)
{
fs_reg *reg = NULL;
if (variable_storage(ir))
return;
if (strcmp(ir->name, "gl_FragColor") == 0) {
this->frag_color = ir;
} else if (strcmp(ir->name, "gl_FragData") == 0) {
this->frag_data = ir;
} else if (strcmp(ir->name, "gl_FragDepth") == 0) {
this->frag_depth = ir;
}
if (ir->mode == ir_var_in) {
if (!strcmp(ir->name, "gl_FragCoord")) {
emit_fragcoord_interpolation(ir);
return;
} else if (!strcmp(ir->name, "gl_FrontFacing")) {
reg = new(this->mem_ctx) fs_reg(this, ir->type);
struct brw_reg r1_6ud = retype(brw_vec1_grf(1, 6), BRW_REGISTER_TYPE_UD);
/* bit 31 is "primitive is back face", so checking < (1 << 31) gives
* us front face
*/
fs_inst *inst = emit(fs_inst(BRW_OPCODE_CMP,
*reg,
fs_reg(r1_6ud),
fs_reg(1u << 31)));
inst->conditional_mod = BRW_CONDITIONAL_L;
emit(fs_inst(BRW_OPCODE_AND, *reg, *reg, fs_reg(1u)));
} else {
emit_general_interpolation(ir);
return;
}
}
if (ir->mode == ir_var_uniform) {
int param_index = c->prog_data.nr_params;
if (!strncmp(ir->name, "gl_", 3)) {
setup_builtin_uniform_values(ir);
} else {
setup_uniform_values(ir->location, ir->type);
}
reg = new(this->mem_ctx) fs_reg(UNIFORM, param_index);
}
if (!reg)
reg = new(this->mem_ctx) fs_reg(this, ir->type);
hash_table_insert(this->variable_ht, reg, ir);
}
void
fs_visitor::visit(ir_dereference_variable *ir)
{
fs_reg *reg = variable_storage(ir->var);
this->result = *reg;
}
void
fs_visitor::visit(ir_dereference_record *ir)
{
const glsl_type *struct_type = ir->record->type;
ir->record->accept(this);
unsigned int offset = 0;
for (unsigned int i = 0; i < struct_type->length; i++) {
if (strcmp(struct_type->fields.structure[i].name, ir->field) == 0)
break;
offset += type_size(struct_type->fields.structure[i].type);
}
this->result.reg_offset += offset;
this->result.type = brw_type_for_base_type(ir->type);
}
void
fs_visitor::visit(ir_dereference_array *ir)
{
ir_constant *index;
int element_size;
ir->array->accept(this);
index = ir->array_index->as_constant();
element_size = type_size(ir->type);
this->result.type = brw_type_for_base_type(ir->type);
if (index) {
assert(this->result.file == UNIFORM ||
(this->result.file == GRF &&
this->result.reg != 0));
this->result.reg_offset += index->value.i[0] * element_size;
} else {
assert(!"FINISHME: non-constant array element");
}
}
void
fs_visitor::visit(ir_expression *ir)
{
unsigned int operand;
fs_reg op[2], temp;
fs_reg result;
fs_inst *inst;
for (operand = 0; operand < ir->get_num_operands(); operand++) {
ir->operands[operand]->accept(this);
if (this->result.file == BAD_FILE) {
ir_print_visitor v;
printf("Failed to get tree for expression operand:\n");
ir->operands[operand]->accept(&v);
this->fail = true;
}
op[operand] = this->result;
/* Matrix expression operands should have been broken down to vector
* operations already.
*/
assert(!ir->operands[operand]->type->is_matrix());
/* And then those vector operands should have been broken down to scalar.
*/
assert(!ir->operands[operand]->type->is_vector());
}
/* Storage for our result. If our result goes into an assignment, it will
* just get copy-propagated out, so no worries.
*/
this->result = fs_reg(this, ir->type);
switch (ir->operation) {
case ir_unop_logic_not:
emit(fs_inst(BRW_OPCODE_ADD, this->result, op[0], fs_reg(-1)));
break;
case ir_unop_neg:
op[0].negate = !op[0].negate;
this->result = op[0];
break;
case ir_unop_abs:
op[0].abs = true;
this->result = op[0];
break;
case ir_unop_sign:
temp = fs_reg(this, ir->type);
emit(fs_inst(BRW_OPCODE_MOV, this->result, fs_reg(0.0f)));
inst = emit(fs_inst(BRW_OPCODE_CMP, reg_null, op[0], fs_reg(0.0f)));
inst->conditional_mod = BRW_CONDITIONAL_G;
inst = emit(fs_inst(BRW_OPCODE_MOV, this->result, fs_reg(1.0f)));
inst->predicated = true;
inst = emit(fs_inst(BRW_OPCODE_CMP, reg_null, op[0], fs_reg(0.0f)));
inst->conditional_mod = BRW_CONDITIONAL_L;
inst = emit(fs_inst(BRW_OPCODE_MOV, this->result, fs_reg(-1.0f)));
inst->predicated = true;
break;
case ir_unop_rcp:
emit(fs_inst(FS_OPCODE_RCP, this->result, op[0]));
break;
case ir_unop_exp2:
emit(fs_inst(FS_OPCODE_EXP2, this->result, op[0]));
break;
case ir_unop_log2:
emit(fs_inst(FS_OPCODE_LOG2, this->result, op[0]));
break;
case ir_unop_exp:
case ir_unop_log:
assert(!"not reached: should be handled by ir_explog_to_explog2");
break;
case ir_unop_sin:
emit(fs_inst(FS_OPCODE_SIN, this->result, op[0]));
break;
case ir_unop_cos:
emit(fs_inst(FS_OPCODE_COS, this->result, op[0]));
break;
case ir_unop_dFdx:
emit(fs_inst(FS_OPCODE_DDX, this->result, op[0]));
break;
case ir_unop_dFdy:
emit(fs_inst(FS_OPCODE_DDY, this->result, op[0]));
break;
case ir_binop_add:
emit(fs_inst(BRW_OPCODE_ADD, this->result, op[0], op[1]));
break;
case ir_binop_sub:
assert(!"not reached: should be handled by ir_sub_to_add_neg");
break;
case ir_binop_mul:
emit(fs_inst(BRW_OPCODE_MUL, this->result, op[0], op[1]));
break;
case ir_binop_div:
assert(!"not reached: should be handled by ir_div_to_mul_rcp");
break;
case ir_binop_mod:
assert(!"ir_binop_mod should have been converted to b * fract(a/b)");
break;
case ir_binop_less:
inst = emit(fs_inst(BRW_OPCODE_CMP, this->result, op[0], op[1]));
inst->conditional_mod = BRW_CONDITIONAL_L;
emit(fs_inst(BRW_OPCODE_AND, this->result, this->result, fs_reg(0x1)));
break;
case ir_binop_greater:
inst = emit(fs_inst(BRW_OPCODE_CMP, this->result, op[0], op[1]));
inst->conditional_mod = BRW_CONDITIONAL_G;
emit(fs_inst(BRW_OPCODE_AND, this->result, this->result, fs_reg(0x1)));
break;
case ir_binop_lequal:
inst = emit(fs_inst(BRW_OPCODE_CMP, this->result, op[0], op[1]));
inst->conditional_mod = BRW_CONDITIONAL_LE;
emit(fs_inst(BRW_OPCODE_AND, this->result, this->result, fs_reg(0x1)));
break;
case ir_binop_gequal:
inst = emit(fs_inst(BRW_OPCODE_CMP, this->result, op[0], op[1]));
inst->conditional_mod = BRW_CONDITIONAL_GE;
emit(fs_inst(BRW_OPCODE_AND, this->result, this->result, fs_reg(0x1)));
break;
case ir_binop_equal:
case ir_binop_all_equal: /* same as nequal for scalars */
inst = emit(fs_inst(BRW_OPCODE_CMP, this->result, op[0], op[1]));
inst->conditional_mod = BRW_CONDITIONAL_Z;
emit(fs_inst(BRW_OPCODE_AND, this->result, this->result, fs_reg(0x1)));
break;
case ir_binop_nequal:
case ir_binop_any_nequal: /* same as nequal for scalars */
inst = emit(fs_inst(BRW_OPCODE_CMP, this->result, op[0], op[1]));
inst->conditional_mod = BRW_CONDITIONAL_NZ;
emit(fs_inst(BRW_OPCODE_AND, this->result, this->result, fs_reg(0x1)));
break;
case ir_binop_logic_xor:
emit(fs_inst(BRW_OPCODE_XOR, this->result, op[0], op[1]));
break;
case ir_binop_logic_or:
emit(fs_inst(BRW_OPCODE_OR, this->result, op[0], op[1]));
break;
case ir_binop_logic_and:
emit(fs_inst(BRW_OPCODE_AND, this->result, op[0], op[1]));
break;
case ir_binop_dot:
case ir_binop_cross:
case ir_unop_any:
assert(!"not reached: should be handled by brw_fs_channel_expressions");
break;
case ir_unop_noise:
assert(!"not reached: should be handled by lower_noise");
break;
case ir_unop_sqrt:
emit(fs_inst(FS_OPCODE_SQRT, this->result, op[0]));
break;
case ir_unop_rsq:
emit(fs_inst(FS_OPCODE_RSQ, this->result, op[0]));
break;
case ir_unop_i2f:
case ir_unop_b2f:
case ir_unop_b2i:
emit(fs_inst(BRW_OPCODE_MOV, this->result, op[0]));
break;
case ir_unop_f2i:
emit(fs_inst(BRW_OPCODE_MOV, this->result, op[0]));
break;
case ir_unop_f2b:
case ir_unop_i2b:
inst = emit(fs_inst(BRW_OPCODE_CMP, this->result, op[0], fs_reg(0.0f)));
inst->conditional_mod = BRW_CONDITIONAL_NZ;
case ir_unop_trunc:
emit(fs_inst(BRW_OPCODE_RNDD, this->result, op[0]));
break;
case ir_unop_ceil:
op[0].negate = ~op[0].negate;
inst = emit(fs_inst(BRW_OPCODE_RNDD, this->result, op[0]));
this->result.negate = true;
break;
case ir_unop_floor:
inst = emit(fs_inst(BRW_OPCODE_RNDD, this->result, op[0]));
break;
case ir_unop_fract:
inst = emit(fs_inst(BRW_OPCODE_FRC, this->result, op[0]));
break;
case ir_binop_min:
inst = emit(fs_inst(BRW_OPCODE_CMP, this->result, op[0], op[1]));
inst->conditional_mod = BRW_CONDITIONAL_L;
inst = emit(fs_inst(BRW_OPCODE_SEL, this->result, op[0], op[1]));
inst->predicated = true;
break;
case ir_binop_max:
inst = emit(fs_inst(BRW_OPCODE_CMP, this->result, op[0], op[1]));
inst->conditional_mod = BRW_CONDITIONAL_G;
inst = emit(fs_inst(BRW_OPCODE_SEL, this->result, op[0], op[1]));
inst->predicated = true;
break;
case ir_binop_pow:
inst = emit(fs_inst(FS_OPCODE_POW, this->result, op[0], op[1]));
break;
case ir_unop_bit_not:
case ir_unop_u2f:
case ir_binop_lshift:
case ir_binop_rshift:
case ir_binop_bit_and:
case ir_binop_bit_xor:
case ir_binop_bit_or:
assert(!"GLSL 1.30 features unsupported");
break;
}
}
void
fs_visitor::emit_assignment_writes(fs_reg &l, fs_reg &r,
const glsl_type *type, bool predicated)
{
switch (type->base_type) {
case GLSL_TYPE_FLOAT:
case GLSL_TYPE_UINT:
case GLSL_TYPE_INT:
case GLSL_TYPE_BOOL:
for (unsigned int i = 0; i < type->components(); i++) {
l.type = brw_type_for_base_type(type);
r.type = brw_type_for_base_type(type);
fs_inst *inst = emit(fs_inst(BRW_OPCODE_MOV, l, r));
inst->predicated = predicated;
l.reg_offset++;
r.reg_offset++;
}
break;
case GLSL_TYPE_ARRAY:
for (unsigned int i = 0; i < type->length; i++) {
emit_assignment_writes(l, r, type->fields.array, predicated);
}
case GLSL_TYPE_STRUCT:
for (unsigned int i = 0; i < type->length; i++) {
emit_assignment_writes(l, r, type->fields.structure[i].type,
predicated);
}
break;
case GLSL_TYPE_SAMPLER:
break;
default:
assert(!"not reached");
break;
}
}
void
fs_visitor::visit(ir_assignment *ir)
{
struct fs_reg l, r;
fs_inst *inst;
/* FINISHME: arrays on the lhs */
ir->lhs->accept(this);
l = this->result;
ir->rhs->accept(this);
r = this->result;
assert(l.file != BAD_FILE);
assert(r.file != BAD_FILE);
if (ir->condition) {
/* Get the condition bool into the predicate. */
ir->condition->accept(this);
inst = emit(fs_inst(BRW_OPCODE_CMP, reg_null, this->result, fs_reg(0)));
inst->conditional_mod = BRW_CONDITIONAL_NZ;
}
if (ir->lhs->type->is_scalar() ||
ir->lhs->type->is_vector()) {
for (int i = 0; i < ir->lhs->type->vector_elements; i++) {
if (ir->write_mask & (1 << i)) {
inst = emit(fs_inst(BRW_OPCODE_MOV, l, r));
if (ir->condition)
inst->predicated = true;
r.reg_offset++;
}
l.reg_offset++;
}
} else {
emit_assignment_writes(l, r, ir->lhs->type, ir->condition != NULL);
}
}
fs_inst *
fs_visitor::emit_texture_gen4(ir_texture *ir, fs_reg dst, fs_reg coordinate)
{
int mlen;
int base_mrf = 2;
bool simd16 = false;
fs_reg orig_dst;
if (ir->shadow_comparitor) {
for (mlen = 0; mlen < ir->coordinate->type->vector_elements; mlen++) {
emit(fs_inst(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen),
coordinate));
coordinate.reg_offset++;
}
/* gen4's SIMD8 sampler always has the slots for u,v,r present. */
mlen = 3;
if (ir->op == ir_tex) {
/* There's no plain shadow compare message, so we use shadow
* compare with a bias of 0.0.
*/
emit(fs_inst(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen),
fs_reg(0.0f)));
mlen++;
} else if (ir->op == ir_txb) {
ir->lod_info.bias->accept(this);
emit(fs_inst(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen),
this->result));
mlen++;
} else {
assert(ir->op == ir_txl);
ir->lod_info.lod->accept(this);
emit(fs_inst(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen),
this->result));
mlen++;
}
ir->shadow_comparitor->accept(this);
emit(fs_inst(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result));
mlen++;
} else if (ir->op == ir_tex) {
for (mlen = 0; mlen < ir->coordinate->type->vector_elements; mlen++) {
emit(fs_inst(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen),
coordinate));
coordinate.reg_offset++;
}
/* gen4's SIMD8 sampler always has the slots for u,v,r present. */
mlen = 3;
} else {
/* Oh joy. gen4 doesn't have SIMD8 non-shadow-compare bias/lod
* instructions. We'll need to do SIMD16 here.
*/
assert(ir->op == ir_txb || ir->op == ir_txl);
for (mlen = 0; mlen < ir->coordinate->type->vector_elements * 2;) {
emit(fs_inst(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen),
coordinate));
coordinate.reg_offset++;
mlen++;
/* The unused upper half. */
mlen++;
}
/* lod/bias appears after u/v/r. */
mlen = 6;
if (ir->op == ir_txb) {
ir->lod_info.bias->accept(this);
emit(fs_inst(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen),
this->result));
mlen++;
} else {
ir->lod_info.lod->accept(this);
emit(fs_inst(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen),
this->result));
mlen++;
}
/* The unused upper half. */
mlen++;
/* Now, since we're doing simd16, the return is 2 interleaved
* vec4s where the odd-indexed ones are junk. We'll need to move
* this weirdness around to the expected layout.
*/
simd16 = true;
orig_dst = dst;
dst = fs_reg(this, glsl_type::get_array_instance(glsl_type::vec4_type,
2));
dst.type = BRW_REGISTER_TYPE_F;
}
fs_inst *inst = NULL;
switch (ir->op) {
case ir_tex:
inst = emit(fs_inst(FS_OPCODE_TEX, dst, fs_reg(MRF, base_mrf)));
break;
case ir_txb:
inst = emit(fs_inst(FS_OPCODE_TXB, dst, fs_reg(MRF, base_mrf)));
break;
case ir_txl:
inst = emit(fs_inst(FS_OPCODE_TXL, dst, fs_reg(MRF, base_mrf)));
break;
case ir_txd:
case ir_txf:
assert(!"GLSL 1.30 features unsupported");
break;
}
inst->mlen = mlen;
if (simd16) {
for (int i = 0; i < 4; i++) {
emit(fs_inst(BRW_OPCODE_MOV, orig_dst, dst));
orig_dst.reg_offset++;
dst.reg_offset += 2;
}
}
return inst;
}
fs_inst *
fs_visitor::emit_texture_gen5(ir_texture *ir, fs_reg dst, fs_reg coordinate)
{
/* gen5's SIMD8 sampler has slots for u, v, r, array index, then
* optional parameters like shadow comparitor or LOD bias. If
* optional parameters aren't present, those base slots are
* optional and don't need to be included in the message.
*
* We don't fill in the unnecessary slots regardless, which may
* look surprising in the disassembly.
*/
int mlen;
int base_mrf = 2;
for (mlen = 0; mlen < ir->coordinate->type->vector_elements; mlen++) {
emit(fs_inst(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), coordinate));
coordinate.reg_offset++;
}
if (ir->shadow_comparitor) {
mlen = MAX2(mlen, 4);
ir->shadow_comparitor->accept(this);
emit(fs_inst(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result));
mlen++;
}
fs_inst *inst = NULL;
switch (ir->op) {
case ir_tex:
inst = emit(fs_inst(FS_OPCODE_TEX, dst, fs_reg(MRF, base_mrf)));
break;
case ir_txb:
ir->lod_info.bias->accept(this);
mlen = MAX2(mlen, 4);
emit(fs_inst(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result));
mlen++;
inst = emit(fs_inst(FS_OPCODE_TXB, dst, fs_reg(MRF, base_mrf)));
break;
case ir_txl:
ir->lod_info.lod->accept(this);
mlen = MAX2(mlen, 4);
emit(fs_inst(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result));
mlen++;
inst = emit(fs_inst(FS_OPCODE_TXL, dst, fs_reg(MRF, base_mrf)));
break;
case ir_txd:
case ir_txf:
assert(!"GLSL 1.30 features unsupported");
break;
}
inst->mlen = mlen;
return inst;
}
void
fs_visitor::visit(ir_texture *ir)
{
fs_inst *inst = NULL;
ir->coordinate->accept(this);
fs_reg coordinate = this->result;
/* Should be lowered by do_lower_texture_projection */
assert(!ir->projector);
/* Writemasking doesn't eliminate channels on SIMD8 texture
* samples, so don't worry about them.
*/
fs_reg dst = fs_reg(this, glsl_type::vec4_type);
if (intel->gen < 5) {
inst = emit_texture_gen4(ir, dst, coordinate);
} else {
inst = emit_texture_gen5(ir, dst, coordinate);
}
inst->sampler =
_mesa_get_sampler_uniform_value(ir->sampler,
ctx->Shader.CurrentProgram,
&brw->fragment_program->Base);
inst->sampler = c->fp->program.Base.SamplerUnits[inst->sampler];
this->result = dst;
if (ir->shadow_comparitor)
inst->shadow_compare = true;
if (c->key.tex_swizzles[inst->sampler] != SWIZZLE_NOOP) {
fs_reg swizzle_dst = fs_reg(this, glsl_type::vec4_type);
for (int i = 0; i < 4; i++) {
int swiz = GET_SWZ(c->key.tex_swizzles[inst->sampler], i);
fs_reg l = swizzle_dst;
l.reg_offset += i;
if (swiz == SWIZZLE_ZERO) {
emit(fs_inst(BRW_OPCODE_MOV, l, fs_reg(0.0f)));
} else if (swiz == SWIZZLE_ONE) {
emit(fs_inst(BRW_OPCODE_MOV, l, fs_reg(1.0f)));
} else {
fs_reg r = dst;
r.reg_offset += GET_SWZ(c->key.tex_swizzles[inst->sampler], i);
emit(fs_inst(BRW_OPCODE_MOV, l, r));
}
}
this->result = swizzle_dst;
}
}
void
fs_visitor::visit(ir_swizzle *ir)
{
ir->val->accept(this);
fs_reg val = this->result;
if (ir->type->vector_elements == 1) {
this->result.reg_offset += ir->mask.x;
return;
}
fs_reg result = fs_reg(this, ir->type);
this->result = result;
for (unsigned int i = 0; i < ir->type->vector_elements; i++) {
fs_reg channel = val;
int swiz = 0;
switch (i) {
case 0:
swiz = ir->mask.x;
break;
case 1:
swiz = ir->mask.y;
break;
case 2:
swiz = ir->mask.z;
break;
case 3:
swiz = ir->mask.w;
break;
}
channel.reg_offset += swiz;
emit(fs_inst(BRW_OPCODE_MOV, result, channel));
result.reg_offset++;
}
}
void
fs_visitor::visit(ir_discard *ir)
{
fs_reg temp = fs_reg(this, glsl_type::uint_type);
assert(ir->condition == NULL); /* FINISHME */
emit(fs_inst(FS_OPCODE_DISCARD, temp, temp));
}
void
fs_visitor::visit(ir_constant *ir)
{
fs_reg reg(this, ir->type);
this->result = reg;
for (unsigned int i = 0; i < ir->type->vector_elements; i++) {
switch (ir->type->base_type) {
case GLSL_TYPE_FLOAT:
emit(fs_inst(BRW_OPCODE_MOV, reg, fs_reg(ir->value.f[i])));
break;
case GLSL_TYPE_UINT:
emit(fs_inst(BRW_OPCODE_MOV, reg, fs_reg(ir->value.u[i])));
break;
case GLSL_TYPE_INT:
emit(fs_inst(BRW_OPCODE_MOV, reg, fs_reg(ir->value.i[i])));
break;
case GLSL_TYPE_BOOL:
emit(fs_inst(BRW_OPCODE_MOV, reg, fs_reg((int)ir->value.b[i])));
break;
default:
assert(!"Non-float/uint/int/bool constant");
}
reg.reg_offset++;
}
}
void
fs_visitor::visit(ir_if *ir)
{
fs_inst *inst;
/* Don't point the annotation at the if statement, because then it plus
* the then and else blocks get printed.
*/
this->base_ir = ir->condition;
/* Generate the condition into the condition code. */
ir->condition->accept(this);
inst = emit(fs_inst(BRW_OPCODE_MOV, fs_reg(brw_null_reg()), this->result));
inst->conditional_mod = BRW_CONDITIONAL_NZ;
inst = emit(fs_inst(BRW_OPCODE_IF));
inst->predicated = true;
foreach_iter(exec_list_iterator, iter, ir->then_instructions) {
ir_instruction *ir = (ir_instruction *)iter.get();
this->base_ir = ir;
ir->accept(this);
}
if (!ir->else_instructions.is_empty()) {
emit(fs_inst(BRW_OPCODE_ELSE));
foreach_iter(exec_list_iterator, iter, ir->else_instructions) {
ir_instruction *ir = (ir_instruction *)iter.get();
this->base_ir = ir;
ir->accept(this);
}
}
emit(fs_inst(BRW_OPCODE_ENDIF));
}
void
fs_visitor::visit(ir_loop *ir)
{
fs_reg counter = reg_undef;
if (ir->counter) {
this->base_ir = ir->counter;
ir->counter->accept(this);
counter = *(variable_storage(ir->counter));
if (ir->from) {
this->base_ir = ir->from;
ir->from->accept(this);
emit(fs_inst(BRW_OPCODE_MOV, counter, this->result));
}
}
emit(fs_inst(BRW_OPCODE_DO));
if (ir->to) {
this->base_ir = ir->to;
ir->to->accept(this);
fs_inst *inst = emit(fs_inst(BRW_OPCODE_CMP, reg_null,
counter, this->result));
switch (ir->cmp) {
case ir_binop_equal:
inst->conditional_mod = BRW_CONDITIONAL_Z;
break;
case ir_binop_nequal:
inst->conditional_mod = BRW_CONDITIONAL_NZ;
break;
case ir_binop_gequal:
inst->conditional_mod = BRW_CONDITIONAL_GE;
break;
case ir_binop_lequal:
inst->conditional_mod = BRW_CONDITIONAL_LE;
break;
case ir_binop_greater:
inst->conditional_mod = BRW_CONDITIONAL_G;
break;
case ir_binop_less:
inst->conditional_mod = BRW_CONDITIONAL_L;
break;
default:
assert(!"not reached: unknown loop condition");
this->fail = true;
break;
}
inst = emit(fs_inst(BRW_OPCODE_BREAK));
inst->predicated = true;
}
foreach_iter(exec_list_iterator, iter, ir->body_instructions) {
ir_instruction *ir = (ir_instruction *)iter.get();
this->base_ir = ir;
ir->accept(this);
}
if (ir->increment) {
this->base_ir = ir->increment;
ir->increment->accept(this);
emit(fs_inst(BRW_OPCODE_ADD, counter, counter, this->result));
}
emit(fs_inst(BRW_OPCODE_WHILE));
}
void
fs_visitor::visit(ir_loop_jump *ir)
{
switch (ir->mode) {
case ir_loop_jump::jump_break:
emit(fs_inst(BRW_OPCODE_BREAK));
break;
case ir_loop_jump::jump_continue:
emit(fs_inst(BRW_OPCODE_CONTINUE));
break;
}
}
void
fs_visitor::visit(ir_call *ir)
{
assert(!"FINISHME");
}
void
fs_visitor::visit(ir_return *ir)
{
assert(!"FINISHME");
}
void
fs_visitor::visit(ir_function *ir)
{
/* Ignore function bodies other than main() -- we shouldn't see calls to
* them since they should all be inlined before we get to ir_to_mesa.
*/
if (strcmp(ir->name, "main") == 0) {
const ir_function_signature *sig;
exec_list empty;
sig = ir->matching_signature(&empty);
assert(sig);
foreach_iter(exec_list_iterator, iter, sig->body) {
ir_instruction *ir = (ir_instruction *)iter.get();
this->base_ir = ir;
ir->accept(this);
}
}
}
void
fs_visitor::visit(ir_function_signature *ir)
{
assert(!"not reached");
(void)ir;
}
fs_inst *
fs_visitor::emit(fs_inst inst)
{
fs_inst *list_inst = new(mem_ctx) fs_inst;
*list_inst = inst;
list_inst->annotation = this->current_annotation;
list_inst->ir = this->base_ir;
this->instructions.push_tail(list_inst);
return list_inst;
}
/** Emits a dummy fragment shader consisting of magenta for bringup purposes. */
void
fs_visitor::emit_dummy_fs()
{
/* Everyone's favorite color. */
emit(fs_inst(BRW_OPCODE_MOV,
fs_reg(MRF, 2),
fs_reg(1.0f)));
emit(fs_inst(BRW_OPCODE_MOV,
fs_reg(MRF, 3),
fs_reg(0.0f)));
emit(fs_inst(BRW_OPCODE_MOV,
fs_reg(MRF, 4),
fs_reg(1.0f)));
emit(fs_inst(BRW_OPCODE_MOV,
fs_reg(MRF, 5),
fs_reg(0.0f)));
fs_inst *write;
write = emit(fs_inst(FS_OPCODE_FB_WRITE,
fs_reg(0),
fs_reg(0)));
}
/* The register location here is relative to the start of the URB
* data. It will get adjusted to be a real location before
* generate_code() time.
*/
struct brw_reg
fs_visitor::interp_reg(int location, int channel)
{
int regnr = urb_setup[location] * 2 + channel / 2;
int stride = (channel & 1) * 4;
assert(urb_setup[location] != -1);
return brw_vec1_grf(regnr, stride);
}
/** Emits the interpolation for the varying inputs. */
void
fs_visitor::emit_interpolation_setup_gen4()
{
struct brw_reg g1_uw = retype(brw_vec1_grf(1, 0), BRW_REGISTER_TYPE_UW);
this->current_annotation = "compute pixel centers";
this->pixel_x = fs_reg(this, glsl_type::uint_type);
this->pixel_y = fs_reg(this, glsl_type::uint_type);
this->pixel_x.type = BRW_REGISTER_TYPE_UW;
this->pixel_y.type = BRW_REGISTER_TYPE_UW;
emit(fs_inst(BRW_OPCODE_ADD,
this->pixel_x,
fs_reg(stride(suboffset(g1_uw, 4), 2, 4, 0)),
fs_reg(brw_imm_v(0x10101010))));
emit(fs_inst(BRW_OPCODE_ADD,
this->pixel_y,
fs_reg(stride(suboffset(g1_uw, 5), 2, 4, 0)),
fs_reg(brw_imm_v(0x11001100))));
this->current_annotation = "compute pixel deltas from v0";
if (brw->has_pln) {
this->delta_x = fs_reg(this, glsl_type::vec2_type);
this->delta_y = this->delta_x;
this->delta_y.reg_offset++;
} else {
this->delta_x = fs_reg(this, glsl_type::float_type);
this->delta_y = fs_reg(this, glsl_type::float_type);
}
emit(fs_inst(BRW_OPCODE_ADD,
this->delta_x,
this->pixel_x,
fs_reg(negate(brw_vec1_grf(1, 0)))));
emit(fs_inst(BRW_OPCODE_ADD,
this->delta_y,
this->pixel_y,
fs_reg(negate(brw_vec1_grf(1, 1)))));
this->current_annotation = "compute pos.w and 1/pos.w";
/* Compute wpos.w. It's always in our setup, since it's needed to
* interpolate the other attributes.
*/
this->wpos_w = fs_reg(this, glsl_type::float_type);
emit(fs_inst(FS_OPCODE_LINTERP, wpos_w, this->delta_x, this->delta_y,
interp_reg(FRAG_ATTRIB_WPOS, 3)));
/* Compute the pixel 1/W value from wpos.w. */
this->pixel_w = fs_reg(this, glsl_type::float_type);
emit(fs_inst(FS_OPCODE_RCP, this->pixel_w, wpos_w));
this->current_annotation = NULL;
}
/** Emits the interpolation for the varying inputs. */
void
fs_visitor::emit_interpolation_setup_gen6()
{
struct brw_reg g1_uw = retype(brw_vec1_grf(1, 0), BRW_REGISTER_TYPE_UW);
/* If the pixel centers end up used, the setup is the same as for gen4. */
this->current_annotation = "compute pixel centers";
this->pixel_x = fs_reg(this, glsl_type::uint_type);
this->pixel_y = fs_reg(this, glsl_type::uint_type);
this->pixel_x.type = BRW_REGISTER_TYPE_UW;
this->pixel_y.type = BRW_REGISTER_TYPE_UW;
emit(fs_inst(BRW_OPCODE_ADD,
this->pixel_x,
fs_reg(stride(suboffset(g1_uw, 4), 2, 4, 0)),
fs_reg(brw_imm_v(0x10101010))));
emit(fs_inst(BRW_OPCODE_ADD,
this->pixel_y,
fs_reg(stride(suboffset(g1_uw, 5), 2, 4, 0)),
fs_reg(brw_imm_v(0x11001100))));
this->current_annotation = "compute 1/pos.w";
this->wpos_w = fs_reg(brw_vec8_grf(c->key.source_w_reg, 0));
this->pixel_w = fs_reg(this, glsl_type::float_type);
emit(fs_inst(FS_OPCODE_RCP, this->pixel_w, wpos_w));
this->delta_x = fs_reg(brw_vec8_grf(2, 0));
this->delta_y = fs_reg(brw_vec8_grf(3, 0));
this->current_annotation = NULL;
}
void
fs_visitor::emit_fb_writes()
{
this->current_annotation = "FB write header";
int nr = 0;
/* m0, m1 header */
nr += 2;
if (c->key.aa_dest_stencil_reg) {
emit(fs_inst(BRW_OPCODE_MOV, fs_reg(MRF, nr++),
fs_reg(brw_vec8_grf(c->key.aa_dest_stencil_reg, 0))));
}
/* Reserve space for color. It'll be filled in per MRT below. */
int color_mrf = nr;
nr += 4;
if (c->key.source_depth_to_render_target) {
if (c->key.computes_depth) {
/* Hand over gl_FragDepth. */
assert(this->frag_depth);
fs_reg depth = *(variable_storage(this->frag_depth));
emit(fs_inst(BRW_OPCODE_MOV, fs_reg(MRF, nr++), depth));
} else {
/* Pass through the payload depth. */
emit(fs_inst(BRW_OPCODE_MOV, fs_reg(MRF, nr++),
fs_reg(brw_vec8_grf(c->key.source_depth_reg, 0))));
}
}
if (c->key.dest_depth_reg) {
emit(fs_inst(BRW_OPCODE_MOV, fs_reg(MRF, nr++),
fs_reg(brw_vec8_grf(c->key.dest_depth_reg, 0))));
}
fs_reg color = reg_undef;
if (this->frag_color)
color = *(variable_storage(this->frag_color));
else if (this->frag_data)
color = *(variable_storage(this->frag_data));
for (int target = 0; target < c->key.nr_color_regions; target++) {
this->current_annotation = talloc_asprintf(this->mem_ctx,
"FB write target %d",
target);
if (this->frag_color || this->frag_data) {
for (int i = 0; i < 4; i++) {
emit(fs_inst(BRW_OPCODE_MOV,
fs_reg(MRF, color_mrf + i),
color));
color.reg_offset++;
}
}
if (this->frag_color)
color.reg_offset -= 4;
fs_inst *inst = emit(fs_inst(FS_OPCODE_FB_WRITE,
reg_undef, reg_undef));
inst->target = target;
inst->mlen = nr;
if (target == c->key.nr_color_regions - 1)
inst->eot = true;
}
if (c->key.nr_color_regions == 0) {
fs_inst *inst = emit(fs_inst(FS_OPCODE_FB_WRITE,
reg_undef, reg_undef));
inst->mlen = nr;
inst->eot = true;
}
this->current_annotation = NULL;
}
void
fs_visitor::generate_fb_write(fs_inst *inst)
{
GLboolean eot = inst->eot;
struct brw_reg implied_header;
/* Header is 2 regs, g0 and g1 are the contents. g0 will be implied
* move, here's g1.
*/
brw_push_insn_state(p);
brw_set_mask_control(p, BRW_MASK_DISABLE);
brw_set_compression_control(p, BRW_COMPRESSION_NONE);
if (intel->gen >= 6) {
brw_MOV(p,
brw_message_reg(0),
brw_vec8_grf(0, 0));
implied_header = brw_null_reg();
} else {
implied_header = retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UW);
}
brw_MOV(p,
brw_message_reg(1),
brw_vec8_grf(1, 0));
brw_pop_insn_state(p);
brw_fb_WRITE(p,
8, /* dispatch_width */
retype(vec8(brw_null_reg()), BRW_REGISTER_TYPE_UW),
0, /* base MRF */
implied_header,
inst->target,
inst->mlen,
0,
eot);
}
void
fs_visitor::generate_linterp(fs_inst *inst,
struct brw_reg dst, struct brw_reg *src)
{
struct brw_reg delta_x = src[0];
struct brw_reg delta_y = src[1];
struct brw_reg interp = src[2];
if (brw->has_pln &&
delta_y.nr == delta_x.nr + 1 &&
(intel->gen >= 6 || (delta_x.nr & 1) == 0)) {
brw_PLN(p, dst, interp, delta_x);
} else {
brw_LINE(p, brw_null_reg(), interp, delta_x);
brw_MAC(p, dst, suboffset(interp, 1), delta_y);
}
}
void
fs_visitor::generate_math(fs_inst *inst,
struct brw_reg dst, struct brw_reg *src)
{
int op;
switch (inst->opcode) {
case FS_OPCODE_RCP:
op = BRW_MATH_FUNCTION_INV;
break;
case FS_OPCODE_RSQ:
op = BRW_MATH_FUNCTION_RSQ;
break;
case FS_OPCODE_SQRT:
op = BRW_MATH_FUNCTION_SQRT;
break;
case FS_OPCODE_EXP2:
op = BRW_MATH_FUNCTION_EXP;
break;
case FS_OPCODE_LOG2:
op = BRW_MATH_FUNCTION_LOG;
break;
case FS_OPCODE_POW:
op = BRW_MATH_FUNCTION_POW;
break;
case FS_OPCODE_SIN:
op = BRW_MATH_FUNCTION_SIN;
break;
case FS_OPCODE_COS:
op = BRW_MATH_FUNCTION_COS;
break;
default:
assert(!"not reached: unknown math function");
op = 0;
break;
}
if (inst->opcode == FS_OPCODE_POW) {
brw_MOV(p, brw_message_reg(3), src[1]);
}
brw_math(p, dst,
op,
inst->saturate ? BRW_MATH_SATURATE_SATURATE :
BRW_MATH_SATURATE_NONE,
2, src[0],
BRW_MATH_DATA_VECTOR,
BRW_MATH_PRECISION_FULL);
}
void
fs_visitor::generate_tex(fs_inst *inst, struct brw_reg dst, struct brw_reg src)
{
int msg_type = -1;
int rlen = 4;
uint32_t simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD8;
if (intel->gen == 5) {
switch (inst->opcode) {
case FS_OPCODE_TEX:
if (inst->shadow_compare) {
msg_type = BRW_SAMPLER_MESSAGE_SAMPLE_COMPARE_GEN5;
} else {
msg_type = BRW_SAMPLER_MESSAGE_SAMPLE_GEN5;
}
break;
case FS_OPCODE_TXB:
if (inst->shadow_compare) {
msg_type = BRW_SAMPLER_MESSAGE_SAMPLE_BIAS_COMPARE_GEN5;
} else {
msg_type = BRW_SAMPLER_MESSAGE_SAMPLE_BIAS_GEN5;
}
break;
}
} else {
switch (inst->opcode) {
case FS_OPCODE_TEX:
/* Note that G45 and older determines shadow compare and dispatch width
* from message length for most messages.
*/
msg_type = BRW_SAMPLER_MESSAGE_SIMD8_SAMPLE;
if (inst->shadow_compare) {
assert(inst->mlen == 5);
} else {
assert(inst->mlen <= 6);
}
break;
case FS_OPCODE_TXB:
if (inst->shadow_compare) {
assert(inst->mlen == 5);
msg_type = BRW_SAMPLER_MESSAGE_SIMD8_SAMPLE;
} else {
assert(inst->mlen == 8);
msg_type = BRW_SAMPLER_MESSAGE_SIMD16_SAMPLE_BIAS;
simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16;
}
break;
}
}
assert(msg_type != -1);
if (simd_mode == BRW_SAMPLER_SIMD_MODE_SIMD16) {
rlen = 8;
dst = vec16(dst);
}
/* g0 header. */
src.nr--;
brw_SAMPLE(p,
retype(dst, BRW_REGISTER_TYPE_UW),
src.nr,
retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UW),
SURF_INDEX_TEXTURE(inst->sampler),
inst->sampler,
WRITEMASK_XYZW,
msg_type,
rlen,
inst->mlen + 1,
0,
1,
simd_mode);
}
/* For OPCODE_DDX and OPCODE_DDY, per channel of output we've got input
* looking like:
*
* arg0: ss0.tl ss0.tr ss0.bl ss0.br ss1.tl ss1.tr ss1.bl ss1.br
*
* and we're trying to produce:
*
* DDX DDY
* dst: (ss0.tr - ss0.tl) (ss0.tl - ss0.bl)
* (ss0.tr - ss0.tl) (ss0.tr - ss0.br)
* (ss0.br - ss0.bl) (ss0.tl - ss0.bl)
* (ss0.br - ss0.bl) (ss0.tr - ss0.br)
* (ss1.tr - ss1.tl) (ss1.tl - ss1.bl)
* (ss1.tr - ss1.tl) (ss1.tr - ss1.br)
* (ss1.br - ss1.bl) (ss1.tl - ss1.bl)
* (ss1.br - ss1.bl) (ss1.tr - ss1.br)
*
* and add another set of two more subspans if in 16-pixel dispatch mode.
*
* For DDX, it ends up being easy: width = 2, horiz=0 gets us the same result
* for each pair, and vertstride = 2 jumps us 2 elements after processing a
* pair. But for DDY, it's harder, as we want to produce the pairs swizzled
* between each other. We could probably do it like ddx and swizzle the right
* order later, but bail for now and just produce
* ((ss0.tl - ss0.bl)x4 (ss1.tl - ss1.bl)x4)
*/
void
fs_visitor::generate_ddx(fs_inst *inst, struct brw_reg dst, struct brw_reg src)
{
struct brw_reg src0 = brw_reg(src.file, src.nr, 1,
BRW_REGISTER_TYPE_F,
BRW_VERTICAL_STRIDE_2,
BRW_WIDTH_2,
BRW_HORIZONTAL_STRIDE_0,
BRW_SWIZZLE_XYZW, WRITEMASK_XYZW);
struct brw_reg src1 = brw_reg(src.file, src.nr, 0,
BRW_REGISTER_TYPE_F,
BRW_VERTICAL_STRIDE_2,
BRW_WIDTH_2,
BRW_HORIZONTAL_STRIDE_0,
BRW_SWIZZLE_XYZW, WRITEMASK_XYZW);
brw_ADD(p, dst, src0, negate(src1));
}
void
fs_visitor::generate_ddy(fs_inst *inst, struct brw_reg dst, struct brw_reg src)
{
struct brw_reg src0 = brw_reg(src.file, src.nr, 0,
BRW_REGISTER_TYPE_F,
BRW_VERTICAL_STRIDE_4,
BRW_WIDTH_4,
BRW_HORIZONTAL_STRIDE_0,
BRW_SWIZZLE_XYZW, WRITEMASK_XYZW);
struct brw_reg src1 = brw_reg(src.file, src.nr, 2,
BRW_REGISTER_TYPE_F,
BRW_VERTICAL_STRIDE_4,
BRW_WIDTH_4,
BRW_HORIZONTAL_STRIDE_0,
BRW_SWIZZLE_XYZW, WRITEMASK_XYZW);
brw_ADD(p, dst, src0, negate(src1));
}
void
fs_visitor::generate_discard(fs_inst *inst, struct brw_reg temp)
{
struct brw_reg g0 = retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UW);
temp = brw_uw1_reg(temp.file, temp.nr, 0);
brw_push_insn_state(p);
brw_set_mask_control(p, BRW_MASK_DISABLE);
brw_NOT(p, temp, brw_mask_reg(1)); /* IMASK */
brw_AND(p, g0, temp, g0);
brw_pop_insn_state(p);
}
void
fs_visitor::assign_curb_setup()
{
c->prog_data.first_curbe_grf = c->key.nr_payload_regs;
c->prog_data.curb_read_length = ALIGN(c->prog_data.nr_params, 8) / 8;
/* Map the offsets in the UNIFORM file to fixed HW regs. */
foreach_iter(exec_list_iterator, iter, this->instructions) {
fs_inst *inst = (fs_inst *)iter.get();
for (unsigned int i = 0; i < 3; i++) {
if (inst->src[i].file == UNIFORM) {
int constant_nr = inst->src[i].hw_reg + inst->src[i].reg_offset;
struct brw_reg brw_reg = brw_vec1_grf(c->prog_data.first_curbe_grf +
constant_nr / 8,
constant_nr % 8);
inst->src[i].file = FIXED_HW_REG;
inst->src[i].fixed_hw_reg = brw_reg;
}
}
}
}
void
fs_visitor::calculate_urb_setup()
{
for (unsigned int i = 0; i < FRAG_ATTRIB_MAX; i++) {
urb_setup[i] = -1;
}
int urb_next = 0;
/* Figure out where each of the incoming setup attributes lands. */
if (intel->gen >= 6) {
for (unsigned int i = 0; i < FRAG_ATTRIB_MAX; i++) {
if (i == FRAG_ATTRIB_WPOS ||
(brw->fragment_program->Base.InputsRead & BITFIELD64_BIT(i))) {
urb_setup[i] = urb_next++;
}
}
} else {
/* FINISHME: The sf doesn't map VS->FS inputs for us very well. */
for (unsigned int i = 0; i < VERT_RESULT_MAX; i++) {
if (c->key.vp_outputs_written & BITFIELD64_BIT(i)) {
int fp_index;
if (i >= VERT_RESULT_VAR0)
fp_index = i - (VERT_RESULT_VAR0 - FRAG_ATTRIB_VAR0);
else if (i <= VERT_RESULT_TEX7)
fp_index = i;
else
fp_index = -1;
if (fp_index >= 0)
urb_setup[fp_index] = urb_next++;
}
}
}
/* Each attribute is 4 setup channels, each of which is half a reg. */
c->prog_data.urb_read_length = urb_next * 2;
}
void
fs_visitor::assign_urb_setup()
{
int urb_start = c->prog_data.first_curbe_grf + c->prog_data.curb_read_length;
/* Offset all the urb_setup[] index by the actual position of the
* setup regs, now that the location of the constants has been chosen.
*/
foreach_iter(exec_list_iterator, iter, this->instructions) {
fs_inst *inst = (fs_inst *)iter.get();
if (inst->opcode != FS_OPCODE_LINTERP)
continue;
assert(inst->src[2].file == FIXED_HW_REG);
inst->src[2].fixed_hw_reg.nr += urb_start;
}
this->first_non_payload_grf = urb_start + c->prog_data.urb_read_length;
}
static void
assign_reg(int *reg_hw_locations, fs_reg *reg)
{
if (reg->file == GRF && reg->reg != 0) {
reg->hw_reg = reg_hw_locations[reg->reg] + reg->reg_offset;
reg->reg = 0;
}
}
void
fs_visitor::assign_regs_trivial()
{
int last_grf = 0;
int hw_reg_mapping[this->virtual_grf_next];
int i;
hw_reg_mapping[0] = 0;
hw_reg_mapping[1] = this->first_non_payload_grf;
for (i = 2; i < this->virtual_grf_next; i++) {
hw_reg_mapping[i] = (hw_reg_mapping[i - 1] +
this->virtual_grf_sizes[i - 1]);
}
last_grf = hw_reg_mapping[i - 1] + this->virtual_grf_sizes[i - 1];
foreach_iter(exec_list_iterator, iter, this->instructions) {
fs_inst *inst = (fs_inst *)iter.get();
assign_reg(hw_reg_mapping, &inst->dst);
assign_reg(hw_reg_mapping, &inst->src[0]);
assign_reg(hw_reg_mapping, &inst->src[1]);
}
this->grf_used = last_grf + 1;
}
void
fs_visitor::assign_regs()
{
int last_grf = 0;
int hw_reg_mapping[this->virtual_grf_next + 1];
int base_reg_count = BRW_MAX_GRF - this->first_non_payload_grf;
int class_sizes[base_reg_count];
int class_count = 0;
int aligned_pair_class = -1;
/* Set up the register classes.
*
* The base registers store a scalar value. For texture samples,
* we get virtual GRFs composed of 4 contiguous hw register. For
* structures and arrays, we store them as contiguous larger things
* than that, though we should be able to do better most of the
* time.
*/
class_sizes[class_count++] = 1;
if (brw->has_pln && intel->gen < 6) {
/* Always set up the (unaligned) pairs for gen5, so we can find
* them for making the aligned pair class.
*/
class_sizes[class_count++] = 2;
}
for (int r = 1; r < this->virtual_grf_next; r++) {
int i;
for (i = 0; i < class_count; i++) {
if (class_sizes[i] == this->virtual_grf_sizes[r])
break;
}
if (i == class_count) {
if (this->virtual_grf_sizes[r] >= base_reg_count) {
fprintf(stderr, "Object too large to register allocate.\n");
this->fail = true;
}
class_sizes[class_count++] = this->virtual_grf_sizes[r];
}
}
int ra_reg_count = 0;
int class_base_reg[class_count];
int class_reg_count[class_count];
int classes[class_count + 1];
for (int i = 0; i < class_count; i++) {
class_base_reg[i] = ra_reg_count;
class_reg_count[i] = base_reg_count - (class_sizes[i] - 1);
ra_reg_count += class_reg_count[i];
}
struct ra_regs *regs = ra_alloc_reg_set(ra_reg_count);
for (int i = 0; i < class_count; i++) {
classes[i] = ra_alloc_reg_class(regs);
for (int i_r = 0; i_r < class_reg_count[i]; i_r++) {
ra_class_add_reg(regs, classes[i], class_base_reg[i] + i_r);
}
/* Add conflicts between our contiguous registers aliasing
* base regs and other register classes' contiguous registers
* that alias base regs, or the base regs themselves for classes[0].
*/
for (int c = 0; c <= i; c++) {
for (int i_r = 0; i_r < class_reg_count[i]; i_r++) {
for (int c_r = MAX2(0, i_r - (class_sizes[c] - 1));
c_r < MIN2(class_reg_count[c], i_r + class_sizes[i]);
c_r++) {
if (0) {
printf("%d/%d conflicts %d/%d\n",
class_sizes[i], this->first_non_payload_grf + i_r,
class_sizes[c], this->first_non_payload_grf + c_r);
}
ra_add_reg_conflict(regs,
class_base_reg[i] + i_r,
class_base_reg[c] + c_r);
}
}
}
}
/* Add a special class for aligned pairs, which we'll put delta_x/y
* in on gen5 so that we can do PLN.
*/
if (brw->has_pln && intel->gen < 6) {
int reg_count = (base_reg_count - 1) / 2;
int unaligned_pair_class = 1;
assert(class_sizes[unaligned_pair_class] == 2);
aligned_pair_class = class_count;
classes[aligned_pair_class] = ra_alloc_reg_class(regs);
class_base_reg[aligned_pair_class] = 0;
class_reg_count[aligned_pair_class] = 0;
int start = (this->first_non_payload_grf & 1) ? 1 : 0;
for (int i = 0; i < reg_count; i++) {
ra_class_add_reg(regs, classes[aligned_pair_class],
class_base_reg[unaligned_pair_class] + i * 2 + start);
}
class_count++;
}
ra_set_finalize(regs);
struct ra_graph *g = ra_alloc_interference_graph(regs,
this->virtual_grf_next);
/* Node 0 is just a placeholder to keep virtual_grf[] mapping 1:1
* with nodes.
*/
ra_set_node_class(g, 0, classes[0]);
for (int i = 1; i < this->virtual_grf_next; i++) {
for (int c = 0; c < class_count; c++) {
if (class_sizes[c] == this->virtual_grf_sizes[i]) {
if (aligned_pair_class >= 0 &&
this->delta_x.reg == i) {
ra_set_node_class(g, i, classes[aligned_pair_class]);
} else {
ra_set_node_class(g, i, classes[c]);
}
break;
}
}
for (int j = 1; j < i; j++) {
if (virtual_grf_interferes(i, j)) {
ra_add_node_interference(g, i, j);
}
}
}
/* FINISHME: Handle spilling */
if (!ra_allocate_no_spills(g)) {
fprintf(stderr, "Failed to allocate registers.\n");
this->fail = true;
return;
}
/* Get the chosen virtual registers for each node, and map virtual
* regs in the register classes back down to real hardware reg
* numbers.
*/
hw_reg_mapping[0] = 0; /* unused */
for (int i = 1; i < this->virtual_grf_next; i++) {
int reg = ra_get_node_reg(g, i);
int hw_reg = -1;
for (int c = 0; c < class_count; c++) {
if (reg >= class_base_reg[c] &&
reg < class_base_reg[c] + class_reg_count[c]) {
hw_reg = reg - class_base_reg[c];
break;
}
}
assert(hw_reg != -1);
hw_reg_mapping[i] = this->first_non_payload_grf + hw_reg;
last_grf = MAX2(last_grf,
hw_reg_mapping[i] + this->virtual_grf_sizes[i] - 1);
}
foreach_iter(exec_list_iterator, iter, this->instructions) {
fs_inst *inst = (fs_inst *)iter.get();
assign_reg(hw_reg_mapping, &inst->dst);
assign_reg(hw_reg_mapping, &inst->src[0]);
assign_reg(hw_reg_mapping, &inst->src[1]);
}
this->grf_used = last_grf + 1;
talloc_free(g);
talloc_free(regs);
}
void
fs_visitor::calculate_live_intervals()
{
int num_vars = this->virtual_grf_next;
int *def = talloc_array(mem_ctx, int, num_vars);
int *use = talloc_array(mem_ctx, int, num_vars);
int loop_depth = 0;
int loop_start = 0;
for (int i = 0; i < num_vars; i++) {
def[i] = 1 << 30;
use[i] = -1;
}
int ip = 0;
foreach_iter(exec_list_iterator, iter, this->instructions) {
fs_inst *inst = (fs_inst *)iter.get();
if (inst->opcode == BRW_OPCODE_DO) {
if (loop_depth++ == 0)
loop_start = ip;
} else if (inst->opcode == BRW_OPCODE_WHILE) {
loop_depth--;
if (loop_depth == 0) {
/* FINISHME:
*
* Patches up any vars marked for use within the loop as
* live until the end. This is conservative, as there
* will often be variables defined and used inside the
* loop but dead at the end of the loop body.
*/
for (int i = 0; i < num_vars; i++) {
if (use[i] == loop_start) {
use[i] = ip;
}
}
}
} else {
int eip = ip;
if (loop_depth)
eip = loop_start;
for (unsigned int i = 0; i < 3; i++) {
if (inst->src[i].file == GRF && inst->src[i].reg != 0) {
use[inst->src[i].reg] = MAX2(use[inst->src[i].reg], eip);
}
}
if (inst->dst.file == GRF && inst->dst.reg != 0) {
def[inst->dst.reg] = MIN2(def[inst->dst.reg], eip);
}
}
ip++;
}
talloc_free(this->virtual_grf_def);
talloc_free(this->virtual_grf_use);
this->virtual_grf_def = def;
this->virtual_grf_use = use;
}
/**
* Attempts to move immediate constants into the immediate
* constant slot of following instructions.
*
* Immediate constants are a bit tricky -- they have to be in the last
* operand slot, you can't do abs/negate on them,
*/
bool
fs_visitor::propagate_constants()
{
bool progress = false;
foreach_iter(exec_list_iterator, iter, this->instructions) {
fs_inst *inst = (fs_inst *)iter.get();
if (inst->opcode != BRW_OPCODE_MOV ||
inst->predicated ||
inst->dst.file != GRF || inst->src[0].file != IMM ||
inst->dst.type != inst->src[0].type)
continue;
/* Don't bother with cases where we should have had the
* operation on the constant folded in GLSL already.
*/
if (inst->saturate)
continue;
/* Found a move of a constant to a GRF. Find anything else using the GRF
* before it's written, and replace it with the constant if we can.
*/
exec_list_iterator scan_iter = iter;
scan_iter.next();
for (; scan_iter.has_next(); scan_iter.next()) {
fs_inst *scan_inst = (fs_inst *)scan_iter.get();
if (scan_inst->opcode == BRW_OPCODE_DO ||
scan_inst->opcode == BRW_OPCODE_WHILE ||
scan_inst->opcode == BRW_OPCODE_ELSE ||
scan_inst->opcode == BRW_OPCODE_ENDIF) {
break;
}
for (int i = 2; i >= 0; i--) {
if (scan_inst->src[i].file != GRF ||
scan_inst->src[i].reg != inst->dst.reg ||
scan_inst->src[i].reg_offset != inst->dst.reg_offset)
continue;
/* Don't bother with cases where we should have had the
* operation on the constant folded in GLSL already.
*/
if (scan_inst->src[i].negate || scan_inst->src[i].abs)
continue;
switch (scan_inst->opcode) {
case BRW_OPCODE_MOV:
scan_inst->src[i] = inst->src[0];
progress = true;
break;
case BRW_OPCODE_MUL:
case BRW_OPCODE_ADD:
if (i == 1) {
scan_inst->src[i] = inst->src[0];
progress = true;
} else if (i == 0 && scan_inst->src[1].file != IMM) {
/* Fit this constant in by commuting the operands */
scan_inst->src[0] = scan_inst->src[1];
scan_inst->src[1] = inst->src[0];
}
break;
}
}
if (scan_inst->dst.file == GRF &&
scan_inst->dst.reg == inst->dst.reg &&
(scan_inst->dst.reg_offset == inst->dst.reg_offset ||
scan_inst->opcode == FS_OPCODE_TEX)) {
break;
}
}
}
return progress;
}
/**
* Must be called after calculate_live_intervales() to remove unused
* writes to registers -- register allocation will fail otherwise
* because something deffed but not used won't be considered to
* interfere with other regs.
*/
bool
fs_visitor::dead_code_eliminate()
{
bool progress = false;
int num_vars = this->virtual_grf_next;
bool dead[num_vars];
for (int i = 0; i < num_vars; i++) {
/* This would be ">=", but FS_OPCODE_DISCARD has a src == dst where
* it writes dst then reads it as src.
*/
dead[i] = this->virtual_grf_def[i] > this->virtual_grf_use[i];
if (dead[i]) {
/* Mark off its interval so it won't interfere with anything. */
this->virtual_grf_def[i] = -1;
this->virtual_grf_use[i] = -1;
}
}
foreach_iter(exec_list_iterator, iter, this->instructions) {
fs_inst *inst = (fs_inst *)iter.get();
if (inst->dst.file == GRF && dead[inst->dst.reg]) {
inst->remove();
progress = true;
}
}
return progress;
}
bool
fs_visitor::virtual_grf_interferes(int a, int b)
{
int start = MAX2(this->virtual_grf_def[a], this->virtual_grf_def[b]);
int end = MIN2(this->virtual_grf_use[a], this->virtual_grf_use[b]);
/* For dead code, just check if the def interferes with the other range. */
if (this->virtual_grf_use[a] == -1) {
return (this->virtual_grf_def[a] >= this->virtual_grf_def[b] &&
this->virtual_grf_def[a] < this->virtual_grf_use[b]);
}
if (this->virtual_grf_use[b] == -1) {
return (this->virtual_grf_def[b] >= this->virtual_grf_def[a] &&
this->virtual_grf_def[b] < this->virtual_grf_use[a]);
}
return start <= end;
}
static struct brw_reg brw_reg_from_fs_reg(fs_reg *reg)
{
struct brw_reg brw_reg;
switch (reg->file) {
case GRF:
case ARF:
case MRF:
brw_reg = brw_vec8_reg(reg->file,
reg->hw_reg, 0);
brw_reg = retype(brw_reg, reg->type);
break;
case IMM:
switch (reg->type) {
case BRW_REGISTER_TYPE_F:
brw_reg = brw_imm_f(reg->imm.f);
break;
case BRW_REGISTER_TYPE_D:
brw_reg = brw_imm_d(reg->imm.i);
break;
case BRW_REGISTER_TYPE_UD:
brw_reg = brw_imm_ud(reg->imm.u);
break;
default:
assert(!"not reached");
break;
}
break;
case FIXED_HW_REG:
brw_reg = reg->fixed_hw_reg;
break;
case BAD_FILE:
/* Probably unused. */
brw_reg = brw_null_reg();
break;
case UNIFORM:
assert(!"not reached");
brw_reg = brw_null_reg();
break;
}
if (reg->abs)
brw_reg = brw_abs(brw_reg);
if (reg->negate)
brw_reg = negate(brw_reg);
return brw_reg;
}
void
fs_visitor::generate_code()
{
unsigned int annotation_len = 0;
int last_native_inst = 0;
struct brw_instruction *if_stack[16], *loop_stack[16];
int if_stack_depth = 0, loop_stack_depth = 0;
int if_depth_in_loop[16];
if_depth_in_loop[loop_stack_depth] = 0;
memset(&if_stack, 0, sizeof(if_stack));
foreach_iter(exec_list_iterator, iter, this->instructions) {
fs_inst *inst = (fs_inst *)iter.get();
struct brw_reg src[3], dst;
for (unsigned int i = 0; i < 3; i++) {
src[i] = brw_reg_from_fs_reg(&inst->src[i]);
}
dst = brw_reg_from_fs_reg(&inst->dst);
brw_set_conditionalmod(p, inst->conditional_mod);
brw_set_predicate_control(p, inst->predicated);
switch (inst->opcode) {
case BRW_OPCODE_MOV:
brw_MOV(p, dst, src[0]);
break;
case BRW_OPCODE_ADD:
brw_ADD(p, dst, src[0], src[1]);
break;
case BRW_OPCODE_MUL:
brw_MUL(p, dst, src[0], src[1]);
break;
case BRW_OPCODE_FRC:
brw_FRC(p, dst, src[0]);
break;
case BRW_OPCODE_RNDD:
brw_RNDD(p, dst, src[0]);
break;
case BRW_OPCODE_RNDZ:
brw_RNDZ(p, dst, src[0]);
break;
case BRW_OPCODE_AND:
brw_AND(p, dst, src[0], src[1]);
break;
case BRW_OPCODE_OR:
brw_OR(p, dst, src[0], src[1]);
break;
case BRW_OPCODE_XOR:
brw_XOR(p, dst, src[0], src[1]);
break;
case BRW_OPCODE_CMP:
brw_CMP(p, dst, inst->conditional_mod, src[0], src[1]);
break;
case BRW_OPCODE_SEL:
brw_SEL(p, dst, src[0], src[1]);
break;
case BRW_OPCODE_IF:
assert(if_stack_depth < 16);
if_stack[if_stack_depth] = brw_IF(p, BRW_EXECUTE_8);
if_depth_in_loop[loop_stack_depth]++;
if_stack_depth++;
break;
case BRW_OPCODE_ELSE:
if_stack[if_stack_depth - 1] =
brw_ELSE(p, if_stack[if_stack_depth - 1]);
break;
case BRW_OPCODE_ENDIF:
if_stack_depth--;
brw_ENDIF(p , if_stack[if_stack_depth]);
if_depth_in_loop[loop_stack_depth]--;
break;
case BRW_OPCODE_DO:
loop_stack[loop_stack_depth++] = brw_DO(p, BRW_EXECUTE_8);
if_depth_in_loop[loop_stack_depth] = 0;
break;
case BRW_OPCODE_BREAK:
brw_BREAK(p, if_depth_in_loop[loop_stack_depth]);
brw_set_predicate_control(p, BRW_PREDICATE_NONE);
break;
case BRW_OPCODE_CONTINUE:
brw_CONT(p, if_depth_in_loop[loop_stack_depth]);
brw_set_predicate_control(p, BRW_PREDICATE_NONE);
break;
case BRW_OPCODE_WHILE: {
struct brw_instruction *inst0, *inst1;
GLuint br = 1;
if (intel->gen >= 5)
br = 2;
assert(loop_stack_depth > 0);
loop_stack_depth--;
inst0 = inst1 = brw_WHILE(p, loop_stack[loop_stack_depth]);
/* patch all the BREAK/CONT instructions from last BGNLOOP */
while (inst0 > loop_stack[loop_stack_depth]) {
inst0--;
if (inst0->header.opcode == BRW_OPCODE_BREAK &&
inst0->bits3.if_else.jump_count == 0) {
inst0->bits3.if_else.jump_count = br * (inst1 - inst0 + 1);
}
else if (inst0->header.opcode == BRW_OPCODE_CONTINUE &&
inst0->bits3.if_else.jump_count == 0) {
inst0->bits3.if_else.jump_count = br * (inst1 - inst0);
}
}
}
break;
case FS_OPCODE_RCP:
case FS_OPCODE_RSQ:
case FS_OPCODE_SQRT:
case FS_OPCODE_EXP2:
case FS_OPCODE_LOG2:
case FS_OPCODE_POW:
case FS_OPCODE_SIN:
case FS_OPCODE_COS:
generate_math(inst, dst, src);
break;
case FS_OPCODE_LINTERP:
generate_linterp(inst, dst, src);
break;
case FS_OPCODE_TEX:
case FS_OPCODE_TXB:
case FS_OPCODE_TXL:
generate_tex(inst, dst, src[0]);
break;
case FS_OPCODE_DISCARD:
generate_discard(inst, dst /* src0 == dst */);
break;
case FS_OPCODE_DDX:
generate_ddx(inst, dst, src[0]);
break;
case FS_OPCODE_DDY:
generate_ddy(inst, dst, src[0]);
break;
case FS_OPCODE_FB_WRITE:
generate_fb_write(inst);
break;
default:
if (inst->opcode < (int)ARRAY_SIZE(brw_opcodes)) {
_mesa_problem(ctx, "Unsupported opcode `%s' in FS",
brw_opcodes[inst->opcode].name);
} else {
_mesa_problem(ctx, "Unsupported opcode %d in FS", inst->opcode);
}
this->fail = true;
}
if (annotation_len < p->nr_insn) {
annotation_len *= 2;
if (annotation_len < 16)
annotation_len = 16;
this->annotation_string = talloc_realloc(this->mem_ctx,
annotation_string,
const char *,
annotation_len);
this->annotation_ir = talloc_realloc(this->mem_ctx,
annotation_ir,
ir_instruction *,
annotation_len);
}
for (unsigned int i = last_native_inst; i < p->nr_insn; i++) {
this->annotation_string[i] = inst->annotation;
this->annotation_ir[i] = inst->ir;
}
last_native_inst = p->nr_insn;
}
}
GLboolean
brw_wm_fs_emit(struct brw_context *brw, struct brw_wm_compile *c)
{
struct brw_compile *p = &c->func;
struct intel_context *intel = &brw->intel;
GLcontext *ctx = &intel->ctx;
struct brw_shader *shader = NULL;
struct gl_shader_program *prog = ctx->Shader.CurrentProgram;
if (!prog)
return GL_FALSE;
if (!using_new_fs)
return GL_FALSE;
for (unsigned int i = 0; i < prog->_NumLinkedShaders; i++) {
if (prog->_LinkedShaders[i]->Type == GL_FRAGMENT_SHADER) {
shader = (struct brw_shader *)prog->_LinkedShaders[i];
break;
}
}
if (!shader)
return GL_FALSE;
/* We always use 8-wide mode, at least for now. For one, flow
* control only works in 8-wide. Also, when we're fragment shader
* bound, we're almost always under register pressure as well, so
* 8-wide would save us from the performance cliff of spilling
* regs.
*/
c->dispatch_width = 8;
if (INTEL_DEBUG & DEBUG_WM) {
printf("GLSL IR for native fragment shader %d:\n", prog->Name);
_mesa_print_ir(shader->ir, NULL);
printf("\n");
}
/* Now the main event: Visit the shader IR and generate our FS IR for it.
*/
fs_visitor v(c, shader);
if (0) {
v.emit_dummy_fs();
} else {
v.calculate_urb_setup();
if (intel->gen < 6)
v.emit_interpolation_setup_gen4();
else
v.emit_interpolation_setup_gen6();
/* Generate FS IR for main(). (the visitor only descends into
* functions called "main").
*/
foreach_iter(exec_list_iterator, iter, *shader->ir) {
ir_instruction *ir = (ir_instruction *)iter.get();
v.base_ir = ir;
ir->accept(&v);
}
v.emit_fb_writes();
v.assign_curb_setup();
v.assign_urb_setup();
bool progress;
do {
progress = false;
v.calculate_live_intervals();
progress = v.propagate_constants() || progress;
progress = v.dead_code_eliminate() || progress;
} while (progress);
if (0)
v.assign_regs_trivial();
else
v.assign_regs();
}
if (!v.fail)
v.generate_code();
assert(!v.fail); /* FINISHME: Cleanly fail, tested at link time, etc. */
if (v.fail)
return GL_FALSE;
if (INTEL_DEBUG & DEBUG_WM) {
const char *last_annotation_string = NULL;
ir_instruction *last_annotation_ir = NULL;
printf("Native code for fragment shader %d:\n", prog->Name);
for (unsigned int i = 0; i < p->nr_insn; i++) {
if (last_annotation_ir != v.annotation_ir[i]) {
last_annotation_ir = v.annotation_ir[i];
if (last_annotation_ir) {
printf(" ");
last_annotation_ir->print();
printf("\n");
}
}
if (last_annotation_string != v.annotation_string[i]) {
last_annotation_string = v.annotation_string[i];
if (last_annotation_string)
printf(" %s\n", last_annotation_string);
}
brw_disasm(stdout, &p->store[i], intel->gen);
}
printf("\n");
}
c->prog_data.total_grf = v.grf_used;
c->prog_data.total_scratch = 0;
return GL_TRUE;
}