mesa/src/mesa/drivers/dri/i965/brw_fs.cpp

2098 lines
54 KiB
C++
Raw Normal View History

2010-08-10 20:39:06 -07:00
/*
* Copyright © 2010 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
* Authors:
* Eric Anholt <eric@anholt.net>
*
*/
extern "C" {
#include <sys/types.h>
2010-08-10 20:39:06 -07:00
#include "main/macros.h"
#include "main/shaderobj.h"
#include "program/prog_parameter.h"
#include "program/prog_print.h"
#include "program/prog_optimize.h"
#include "program/hash_table.h"
2010-08-10 20:39:06 -07:00
#include "brw_context.h"
#include "brw_eu.h"
#include "brw_wm.h"
#include "talloc.h"
}
#include "../glsl/glsl_types.h"
#include "../glsl/ir_optimization.h"
#include "../glsl/ir_print_visitor.h"
2010-08-10 20:39:06 -07:00
enum register_file {
ARF = BRW_ARCHITECTURE_REGISTER_FILE,
GRF = BRW_GENERAL_REGISTER_FILE,
MRF = BRW_MESSAGE_REGISTER_FILE,
IMM = BRW_IMMEDIATE_VALUE,
FIXED_HW_REG, /* a struct brw_reg */
UNIFORM, /* prog_data->params[hw_reg] */
BAD_FILE
};
enum fs_opcodes {
FS_OPCODE_FB_WRITE = 256,
FS_OPCODE_RCP,
FS_OPCODE_RSQ,
FS_OPCODE_SQRT,
FS_OPCODE_EXP2,
FS_OPCODE_LOG2,
FS_OPCODE_POW,
FS_OPCODE_SIN,
FS_OPCODE_COS,
FS_OPCODE_DDX,
FS_OPCODE_DDY,
FS_OPCODE_LINTERP,
FS_OPCODE_TEX,
FS_OPCODE_TXB,
FS_OPCODE_TXL,
FS_OPCODE_DISCARD,
};
static int using_new_fs = -1;
2010-08-10 20:39:06 -07:00
struct gl_shader *
brw_new_shader(GLcontext *ctx, GLuint name, GLuint type)
{
struct brw_shader *shader;
shader = talloc_zero(NULL, struct brw_shader);
if (shader) {
shader->base.Type = type;
shader->base.Name = name;
2010-08-10 20:39:06 -07:00
_mesa_init_shader(ctx, &shader->base);
}
return &shader->base;
}
struct gl_shader_program *
brw_new_shader_program(GLcontext *ctx, GLuint name)
{
struct brw_shader_program *prog;
prog = talloc_zero(NULL, struct brw_shader_program);
if (prog) {
prog->base.Name = name;
2010-08-10 20:39:06 -07:00
_mesa_init_shader_program(ctx, &prog->base);
}
return &prog->base;
}
GLboolean
brw_compile_shader(GLcontext *ctx, struct gl_shader *shader)
{
if (!_mesa_ir_compile_shader(ctx, shader))
return GL_FALSE;
return GL_TRUE;
}
GLboolean
brw_link_shader(GLcontext *ctx, struct gl_shader_program *prog)
{
if (using_new_fs == -1)
using_new_fs = getenv("INTEL_NEW_FS") != NULL;
for (unsigned i = 0; i < prog->_NumLinkedShaders; i++) {
struct brw_shader *shader = (struct brw_shader *)prog->_LinkedShaders[i];
if (using_new_fs && shader->base.Type == GL_FRAGMENT_SHADER) {
void *mem_ctx = talloc_new(NULL);
bool progress;
if (shader->ir)
talloc_free(shader->ir);
shader->ir = new(shader) exec_list;
clone_ir_list(mem_ctx, shader->ir, shader->base.ir);
do_mat_op_to_vec(shader->ir);
do_mod_to_fract(shader->ir);
do_div_to_mul_rcp(shader->ir);
do_sub_to_add_neg(shader->ir);
do_explog_to_explog2(shader->ir);
do {
progress = false;
brw_do_channel_expressions(shader->ir);
brw_do_vector_splitting(shader->ir);
progress = do_lower_jumps(shader->ir, true, true,
true, /* main return */
false, /* continue */
false /* loops */
) || progress;
progress = do_common_optimization(shader->ir, true, 32) || progress;
progress = lower_noise(shader->ir) || progress;
progress =
lower_variable_index_to_cond_assign(shader->ir,
GL_TRUE, /* input */
GL_TRUE, /* output */
GL_TRUE, /* temp */
GL_TRUE /* uniform */
) || progress;
} while (progress);
validate_ir_tree(shader->ir);
reparent_ir(shader->ir, shader->ir);
talloc_free(mem_ctx);
}
}
2010-08-10 20:39:06 -07:00
if (!_mesa_ir_link_shader(ctx, prog))
return GL_FALSE;
return GL_TRUE;
}
static int
type_size(const struct glsl_type *type)
{
unsigned int size, i;
switch (type->base_type) {
case GLSL_TYPE_UINT:
case GLSL_TYPE_INT:
case GLSL_TYPE_FLOAT:
case GLSL_TYPE_BOOL:
return type->components();
case GLSL_TYPE_ARRAY:
/* FINISHME: uniform/varying arrays. */
return type_size(type->fields.array) * type->length;
case GLSL_TYPE_STRUCT:
size = 0;
for (i = 0; i < type->length; i++) {
size += type_size(type->fields.structure[i].type);
}
return size;
case GLSL_TYPE_SAMPLER:
/* Samplers take up no register space, since they're baked in at
* link time.
*/
return 0;
default:
assert(!"not reached");
return 0;
}
}
class fs_reg {
public:
/* Callers of this talloc-based new need not call delete. It's
* easier to just talloc_free 'ctx' (or any of its ancestors). */
static void* operator new(size_t size, void *ctx)
{
void *node;
node = talloc_size(ctx, size);
assert(node != NULL);
return node;
}
void init()
{
this->reg = 0;
this->reg_offset = 0;
this->negate = 0;
this->abs = 0;
this->hw_reg = -1;
}
/** Generic unset register constructor. */
fs_reg()
{
init();
this->file = BAD_FILE;
}
/** Immediate value constructor. */
fs_reg(float f)
{
init();
this->file = IMM;
this->type = BRW_REGISTER_TYPE_F;
this->imm.f = f;
}
/** Immediate value constructor. */
fs_reg(int32_t i)
{
init();
this->file = IMM;
this->type = BRW_REGISTER_TYPE_D;
this->imm.i = i;
}
/** Immediate value constructor. */
fs_reg(uint32_t u)
{
init();
this->file = IMM;
this->type = BRW_REGISTER_TYPE_UD;
this->imm.u = u;
}
/** Fixed brw_reg Immediate value constructor. */
fs_reg(struct brw_reg fixed_hw_reg)
{
init();
this->file = FIXED_HW_REG;
this->fixed_hw_reg = fixed_hw_reg;
this->type = fixed_hw_reg.type;
}
fs_reg(enum register_file file, int hw_reg);
fs_reg(class fs_visitor *v, const struct glsl_type *type);
/** Register file: ARF, GRF, MRF, IMM. */
enum register_file file;
/** Abstract register number. 0 = fixed hw reg */
int reg;
/** Offset within the abstract register. */
int reg_offset;
/** HW register number. Generally unset until register allocation. */
int hw_reg;
/** Register type. BRW_REGISTER_TYPE_* */
int type;
bool negate;
bool abs;
struct brw_reg fixed_hw_reg;
/** Value for file == BRW_IMMMEDIATE_FILE */
union {
int32_t i;
uint32_t u;
float f;
} imm;
};
static const fs_reg reg_undef;
static const fs_reg reg_null(ARF, BRW_ARF_NULL);
class fs_inst : public exec_node {
public:
/* Callers of this talloc-based new need not call delete. It's
* easier to just talloc_free 'ctx' (or any of its ancestors). */
static void* operator new(size_t size, void *ctx)
{
void *node;
node = talloc_zero_size(ctx, size);
assert(node != NULL);
return node;
}
void init()
{
this->opcode = BRW_OPCODE_NOP;
this->saturate = false;
this->conditional_mod = BRW_CONDITIONAL_NONE;
this->predicated = false;
this->sampler = 0;
this->shadow_compare = false;
}
fs_inst()
{
init();
}
fs_inst(int opcode)
{
init();
this->opcode = opcode;
}
fs_inst(int opcode, fs_reg dst, fs_reg src0)
{
init();
this->opcode = opcode;
this->dst = dst;
this->src[0] = src0;
}
fs_inst(int opcode, fs_reg dst, fs_reg src0, fs_reg src1)
{
init();
this->opcode = opcode;
this->dst = dst;
this->src[0] = src0;
this->src[1] = src1;
}
fs_inst(int opcode, fs_reg dst, fs_reg src0, fs_reg src1, fs_reg src2)
{
init();
this->opcode = opcode;
this->dst = dst;
this->src[0] = src0;
this->src[1] = src1;
this->src[2] = src2;
}
int opcode; /* BRW_OPCODE_* or FS_OPCODE_* */
fs_reg dst;
fs_reg src[3];
bool saturate;
bool predicated;
int conditional_mod; /**< BRW_CONDITIONAL_* */
int mlen; /** SEND message length */
int sampler;
bool shadow_compare;
/** @{
* Annotation for the generated IR. One of the two can be set.
*/
ir_instruction *ir;
const char *annotation;
/** @} */
};
class fs_visitor : public ir_visitor
{
public:
fs_visitor(struct brw_wm_compile *c, struct brw_shader *shader)
{
this->c = c;
this->p = &c->func;
this->brw = p->brw;
this->intel = &brw->intel;
this->ctx = &intel->ctx;
this->mem_ctx = talloc_new(NULL);
this->shader = shader;
this->fail = false;
this->next_abstract_grf = 1;
this->variable_ht = hash_table_ctor(0,
hash_table_pointer_hash,
hash_table_pointer_compare);
this->frag_color = NULL;
this->frag_data = NULL;
this->frag_depth = NULL;
this->first_non_payload_grf = 0;
this->current_annotation = NULL;
this->annotation_string = NULL;
this->annotation_ir = NULL;
this->base_ir = NULL;
}
~fs_visitor()
{
talloc_free(this->mem_ctx);
hash_table_dtor(this->variable_ht);
}
fs_reg *variable_storage(ir_variable *var);
void visit(ir_variable *ir);
void visit(ir_assignment *ir);
void visit(ir_dereference_variable *ir);
void visit(ir_dereference_record *ir);
void visit(ir_dereference_array *ir);
void visit(ir_expression *ir);
void visit(ir_texture *ir);
void visit(ir_if *ir);
void visit(ir_constant *ir);
void visit(ir_swizzle *ir);
void visit(ir_return *ir);
void visit(ir_loop *ir);
void visit(ir_loop_jump *ir);
void visit(ir_discard *ir);
void visit(ir_call *ir);
void visit(ir_function *ir);
void visit(ir_function_signature *ir);
fs_inst *emit(fs_inst inst);
void assign_curb_setup();
void assign_urb_setup();
void assign_regs();
void generate_code();
void generate_fb_write(fs_inst *inst);
void generate_linterp(fs_inst *inst, struct brw_reg dst,
struct brw_reg *src);
void generate_tex(fs_inst *inst, struct brw_reg dst, struct brw_reg src);
void generate_math(fs_inst *inst, struct brw_reg dst, struct brw_reg *src);
void generate_discard(fs_inst *inst);
void generate_ddx(fs_inst *inst, struct brw_reg dst, struct brw_reg src);
void generate_ddy(fs_inst *inst, struct brw_reg dst, struct brw_reg src);
void emit_dummy_fs();
void emit_interpolation();
void emit_pinterp(int location);
void emit_fb_writes();
struct brw_reg interp_reg(int location, int channel);
int setup_uniform_values(int loc, const glsl_type *type);
struct brw_context *brw;
struct intel_context *intel;
GLcontext *ctx;
struct brw_wm_compile *c;
struct brw_compile *p;
struct brw_shader *shader;
void *mem_ctx;
exec_list instructions;
int next_abstract_grf;
struct hash_table *variable_ht;
ir_variable *frag_color, *frag_data, *frag_depth;
int first_non_payload_grf;
/** @{ debug annotation info */
const char *current_annotation;
ir_instruction *base_ir;
const char **annotation_string;
ir_instruction **annotation_ir;
/** @} */
bool fail;
/* Result of last visit() method. */
fs_reg result;
fs_reg pixel_x;
fs_reg pixel_y;
fs_reg pixel_w;
fs_reg delta_x;
fs_reg delta_y;
fs_reg interp_attrs[64];
int grf_used;
};
/** Fixed HW reg constructor. */
fs_reg::fs_reg(enum register_file file, int hw_reg)
{
init();
this->file = file;
this->hw_reg = hw_reg;
this->type = BRW_REGISTER_TYPE_F;
}
int
brw_type_for_base_type(const struct glsl_type *type)
{
switch (type->base_type) {
case GLSL_TYPE_FLOAT:
return BRW_REGISTER_TYPE_F;
case GLSL_TYPE_INT:
case GLSL_TYPE_BOOL:
return BRW_REGISTER_TYPE_D;
case GLSL_TYPE_UINT:
return BRW_REGISTER_TYPE_UD;
case GLSL_TYPE_ARRAY:
case GLSL_TYPE_STRUCT:
/* These should be overridden with the type of the member when
* dereferenced into. BRW_REGISTER_TYPE_UD seems like a likely
* way to trip up if we don't.
*/
return BRW_REGISTER_TYPE_UD;
default:
assert(!"not reached");
return BRW_REGISTER_TYPE_F;
}
}
/** Automatic reg constructor. */
fs_reg::fs_reg(class fs_visitor *v, const struct glsl_type *type)
{
init();
this->file = GRF;
this->reg = v->next_abstract_grf;
this->reg_offset = 0;
v->next_abstract_grf += type_size(type);
this->type = brw_type_for_base_type(type);
}
fs_reg *
fs_visitor::variable_storage(ir_variable *var)
{
return (fs_reg *)hash_table_find(this->variable_ht, var);
}
/* Our support for uniforms is piggy-backed on the struct
* gl_fragment_program, because that's where the values actually
* get stored, rather than in some global gl_shader_program uniform
* store.
*/
int
fs_visitor::setup_uniform_values(int loc, const glsl_type *type)
{
const struct gl_program *fp = &this->brw->fragment_program->Base;
unsigned int offset = 0;
float *vec_values;
if (type->is_matrix()) {
const glsl_type *column = glsl_type::get_instance(GLSL_TYPE_FLOAT,
type->vector_elements,
1);
for (unsigned int i = 0; i < type->matrix_columns; i++) {
offset += setup_uniform_values(loc + offset, column);
}
return offset;
}
switch (type->base_type) {
case GLSL_TYPE_FLOAT:
case GLSL_TYPE_UINT:
case GLSL_TYPE_INT:
case GLSL_TYPE_BOOL:
vec_values = fp->Parameters->ParameterValues[loc];
for (unsigned int i = 0; i < type->vector_elements; i++) {
c->prog_data.param[c->prog_data.nr_params++] = &vec_values[i];
}
return 1;
case GLSL_TYPE_STRUCT:
for (unsigned int i = 0; i < type->length; i++) {
offset += setup_uniform_values(loc + offset,
type->fields.structure[i].type);
}
return offset;
case GLSL_TYPE_ARRAY:
for (unsigned int i = 0; i < type->length; i++) {
offset += setup_uniform_values(loc + offset, type->fields.array);
}
return offset;
case GLSL_TYPE_SAMPLER:
/* The sampler takes up a slot, but we don't use any values from it. */
return 1;
default:
assert(!"not reached");
return 0;
}
}
void
fs_visitor::visit(ir_variable *ir)
{
fs_reg *reg = NULL;
if (strcmp(ir->name, "gl_FragColor") == 0) {
this->frag_color = ir;
} else if (strcmp(ir->name, "gl_FragData") == 0) {
this->frag_data = ir;
} else if (strcmp(ir->name, "gl_FragDepth") == 0) {
this->frag_depth = ir;
assert(!"FINISHME: this hangs currently.");
}
if (ir->mode == ir_var_in) {
if (strcmp(ir->name, "gl_FrontFacing") == 0) {
reg = new(this->mem_ctx) fs_reg(this, ir->type);
struct brw_reg r1_6ud = retype(brw_vec1_grf(1, 6), BRW_REGISTER_TYPE_UD);
/* bit 31 is "primitive is back face", so checking < (1 << 31) gives
* us front face
*/
fs_inst *inst = emit(fs_inst(BRW_OPCODE_CMP,
*reg,
fs_reg(r1_6ud),
fs_reg(1u << 31)));
inst->conditional_mod = BRW_CONDITIONAL_L;
emit(fs_inst(BRW_OPCODE_AND, *reg, *reg, fs_reg(1u)));
} else {
reg = &this->interp_attrs[ir->location];
}
}
if (ir->mode == ir_var_uniform) {
int param_index = c->prog_data.nr_params;
setup_uniform_values(ir->location, ir->type);
reg = new(this->mem_ctx) fs_reg(UNIFORM, param_index);
}
if (!reg)
reg = new(this->mem_ctx) fs_reg(this, ir->type);
hash_table_insert(this->variable_ht, reg, ir);
}
void
fs_visitor::visit(ir_dereference_variable *ir)
{
fs_reg *reg = variable_storage(ir->var);
this->result = *reg;
}
void
fs_visitor::visit(ir_dereference_record *ir)
{
const glsl_type *struct_type = ir->record->type;
ir->record->accept(this);
unsigned int offset = 0;
for (unsigned int i = 0; i < struct_type->length; i++) {
if (strcmp(struct_type->fields.structure[i].name, ir->field) == 0)
break;
offset += type_size(struct_type->fields.structure[i].type);
}
this->result.reg_offset += offset;
this->result.type = brw_type_for_base_type(ir->type);
}
void
fs_visitor::visit(ir_dereference_array *ir)
{
ir_constant *index;
int element_size;
ir->array->accept(this);
index = ir->array_index->as_constant();
if (ir->type->is_matrix()) {
element_size = ir->type->vector_elements;
} else {
element_size = type_size(ir->type);
this->result.type = brw_type_for_base_type(ir->type);
}
if (index) {
assert(this->result.file == UNIFORM ||
(this->result.file == GRF &&
this->result.reg != 0));
this->result.reg_offset += index->value.i[0] * element_size;
} else {
assert(!"FINISHME: non-constant matrix column");
}
}
void
fs_visitor::visit(ir_expression *ir)
{
unsigned int operand;
fs_reg op[2], temp;
fs_reg result;
fs_inst *inst;
for (operand = 0; operand < ir->get_num_operands(); operand++) {
ir->operands[operand]->accept(this);
if (this->result.file == BAD_FILE) {
ir_print_visitor v;
printf("Failed to get tree for expression operand:\n");
ir->operands[operand]->accept(&v);
this->fail = true;
}
op[operand] = this->result;
/* Matrix expression operands should have been broken down to vector
* operations already.
*/
assert(!ir->operands[operand]->type->is_matrix());
/* And then those vector operands should have been broken down to scalar.
*/
assert(!ir->operands[operand]->type->is_vector());
}
/* Storage for our result. If our result goes into an assignment, it will
* just get copy-propagated out, so no worries.
*/
this->result = fs_reg(this, ir->type);
switch (ir->operation) {
case ir_unop_logic_not:
emit(fs_inst(BRW_OPCODE_ADD, this->result, op[0], fs_reg(-1)));
break;
case ir_unop_neg:
op[0].negate = !op[0].negate;
this->result = op[0];
break;
case ir_unop_abs:
op[0].abs = true;
this->result = op[0];
break;
case ir_unop_sign:
temp = fs_reg(this, ir->type);
emit(fs_inst(BRW_OPCODE_MOV, this->result, fs_reg(0.0f)));
inst = emit(fs_inst(BRW_OPCODE_CMP, reg_null, op[0], fs_reg(0.0f)));
inst->conditional_mod = BRW_CONDITIONAL_G;
inst = emit(fs_inst(BRW_OPCODE_MOV, this->result, fs_reg(1.0f)));
inst->predicated = true;
inst = emit(fs_inst(BRW_OPCODE_CMP, reg_null, op[0], fs_reg(0.0f)));
inst->conditional_mod = BRW_CONDITIONAL_L;
inst = emit(fs_inst(BRW_OPCODE_MOV, this->result, fs_reg(-1.0f)));
inst->predicated = true;
break;
case ir_unop_rcp:
emit(fs_inst(FS_OPCODE_RCP, this->result, op[0]));
break;
case ir_unop_exp2:
emit(fs_inst(FS_OPCODE_EXP2, this->result, op[0]));
break;
case ir_unop_log2:
emit(fs_inst(FS_OPCODE_LOG2, this->result, op[0]));
break;
case ir_unop_exp:
case ir_unop_log:
assert(!"not reached: should be handled by ir_explog_to_explog2");
break;
case ir_unop_sin:
emit(fs_inst(FS_OPCODE_SIN, this->result, op[0]));
break;
case ir_unop_cos:
emit(fs_inst(FS_OPCODE_COS, this->result, op[0]));
break;
case ir_unop_dFdx:
emit(fs_inst(FS_OPCODE_DDX, this->result, op[0]));
break;
case ir_unop_dFdy:
emit(fs_inst(FS_OPCODE_DDY, this->result, op[0]));
break;
case ir_binop_add:
emit(fs_inst(BRW_OPCODE_ADD, this->result, op[0], op[1]));
break;
case ir_binop_sub:
assert(!"not reached: should be handled by ir_sub_to_add_neg");
break;
case ir_binop_mul:
emit(fs_inst(BRW_OPCODE_MUL, this->result, op[0], op[1]));
break;
case ir_binop_div:
assert(!"not reached: should be handled by ir_div_to_mul_rcp");
break;
case ir_binop_mod:
assert(!"ir_binop_mod should have been converted to b * fract(a/b)");
break;
case ir_binop_less:
inst = emit(fs_inst(BRW_OPCODE_CMP, this->result, op[0], op[1]));
inst->conditional_mod = BRW_CONDITIONAL_L;
emit(fs_inst(BRW_OPCODE_AND, this->result, this->result, fs_reg(0x1)));
break;
case ir_binop_greater:
inst = emit(fs_inst(BRW_OPCODE_CMP, this->result, op[0], op[1]));
inst->conditional_mod = BRW_CONDITIONAL_G;
emit(fs_inst(BRW_OPCODE_AND, this->result, this->result, fs_reg(0x1)));
break;
case ir_binop_lequal:
inst = emit(fs_inst(BRW_OPCODE_CMP, this->result, op[0], op[1]));
inst->conditional_mod = BRW_CONDITIONAL_LE;
emit(fs_inst(BRW_OPCODE_AND, this->result, this->result, fs_reg(0x1)));
break;
case ir_binop_gequal:
inst = emit(fs_inst(BRW_OPCODE_CMP, this->result, op[0], op[1]));
inst->conditional_mod = BRW_CONDITIONAL_GE;
emit(fs_inst(BRW_OPCODE_AND, this->result, this->result, fs_reg(0x1)));
break;
case ir_binop_equal:
case ir_binop_all_equal: /* same as nequal for scalars */
inst = emit(fs_inst(BRW_OPCODE_CMP, this->result, op[0], op[1]));
inst->conditional_mod = BRW_CONDITIONAL_Z;
emit(fs_inst(BRW_OPCODE_AND, this->result, this->result, fs_reg(0x1)));
break;
case ir_binop_nequal:
case ir_binop_any_nequal: /* same as nequal for scalars */
inst = emit(fs_inst(BRW_OPCODE_CMP, this->result, op[0], op[1]));
inst->conditional_mod = BRW_CONDITIONAL_NZ;
emit(fs_inst(BRW_OPCODE_AND, this->result, this->result, fs_reg(0x1)));
break;
case ir_binop_logic_xor:
emit(fs_inst(BRW_OPCODE_XOR, this->result, op[0], op[1]));
break;
case ir_binop_logic_or:
emit(fs_inst(BRW_OPCODE_OR, this->result, op[0], op[1]));
break;
case ir_binop_logic_and:
emit(fs_inst(BRW_OPCODE_AND, this->result, op[0], op[1]));
break;
case ir_binop_dot:
case ir_binop_cross:
case ir_unop_any:
assert(!"not reached: should be handled by brw_fs_channel_expressions");
break;
case ir_unop_noise:
assert(!"not reached: should be handled by lower_noise");
break;
case ir_unop_sqrt:
emit(fs_inst(FS_OPCODE_SQRT, this->result, op[0]));
break;
case ir_unop_rsq:
emit(fs_inst(FS_OPCODE_RSQ, this->result, op[0]));
break;
case ir_unop_i2f:
case ir_unop_b2f:
case ir_unop_b2i:
emit(fs_inst(BRW_OPCODE_MOV, this->result, op[0]));
break;
case ir_unop_f2i:
emit(fs_inst(BRW_OPCODE_MOV, this->result, op[0]));
break;
case ir_unop_f2b:
case ir_unop_i2b:
inst = emit(fs_inst(BRW_OPCODE_CMP, this->result, op[0], fs_reg(0.0f)));
inst->conditional_mod = BRW_CONDITIONAL_NZ;
case ir_unop_trunc:
emit(fs_inst(BRW_OPCODE_RNDD, this->result, op[0]));
break;
case ir_unop_ceil:
op[0].negate = ~op[0].negate;
inst = emit(fs_inst(BRW_OPCODE_RNDD, this->result, op[0]));
this->result.negate = true;
break;
case ir_unop_floor:
inst = emit(fs_inst(BRW_OPCODE_RNDD, this->result, op[0]));
break;
case ir_unop_fract:
inst = emit(fs_inst(BRW_OPCODE_FRC, this->result, op[0]));
break;
case ir_binop_min:
inst = emit(fs_inst(BRW_OPCODE_CMP, this->result, op[0], op[1]));
inst->conditional_mod = BRW_CONDITIONAL_L;
inst = emit(fs_inst(BRW_OPCODE_SEL, this->result, op[0], op[1]));
inst->predicated = true;
break;
case ir_binop_max:
inst = emit(fs_inst(BRW_OPCODE_CMP, this->result, op[0], op[1]));
inst->conditional_mod = BRW_CONDITIONAL_G;
inst = emit(fs_inst(BRW_OPCODE_SEL, this->result, op[0], op[1]));
inst->predicated = true;
break;
case ir_binop_pow:
inst = emit(fs_inst(FS_OPCODE_POW, this->result, op[0], op[1]));
break;
case ir_unop_bit_not:
case ir_unop_u2f:
case ir_binop_lshift:
case ir_binop_rshift:
case ir_binop_bit_and:
case ir_binop_bit_xor:
case ir_binop_bit_or:
assert(!"GLSL 1.30 features unsupported");
break;
}
}
void
fs_visitor::visit(ir_assignment *ir)
{
struct fs_reg l, r;
int i;
int write_mask;
fs_inst *inst;
/* FINISHME: arrays on the lhs */
ir->lhs->accept(this);
l = this->result;
ir->rhs->accept(this);
r = this->result;
/* FINISHME: This should really set to the correct maximal writemask for each
* FINISHME: component written (in the loops below). This case can only
* FINISHME: occur for matrices, arrays, and structures.
*/
if (ir->write_mask == 0) {
assert(!ir->lhs->type->is_scalar() && !ir->lhs->type->is_vector());
write_mask = WRITEMASK_XYZW;
} else {
assert(ir->lhs->type->is_vector() || ir->lhs->type->is_scalar());
write_mask = ir->write_mask;
}
assert(l.file != BAD_FILE);
assert(r.file != BAD_FILE);
if (ir->condition) {
/* Get the condition bool into the predicate. */
ir->condition->accept(this);
inst = emit(fs_inst(BRW_OPCODE_CMP, reg_null, this->result, fs_reg(0)));
inst->conditional_mod = BRW_CONDITIONAL_NZ;
}
for (i = 0; i < type_size(ir->lhs->type); i++) {
if (i >= 4 || (write_mask & (1 << i))) {
inst = emit(fs_inst(BRW_OPCODE_MOV, l, r));
if (ir->condition)
inst->predicated = true;
r.reg_offset++;
}
l.reg_offset++;
}
}
void
fs_visitor::visit(ir_texture *ir)
{
int base_mrf = 2;
fs_inst *inst = NULL;
unsigned int mlen = 0;
ir->coordinate->accept(this);
fs_reg coordinate = this->result;
if (ir->projector) {
fs_reg inv_proj = fs_reg(this, glsl_type::float_type);
ir->projector->accept(this);
emit(fs_inst(FS_OPCODE_RCP, inv_proj, this->result));
fs_reg proj_coordinate = fs_reg(this, ir->coordinate->type);
for (unsigned int i = 0; i < ir->coordinate->type->vector_elements; i++) {
emit(fs_inst(BRW_OPCODE_MUL, proj_coordinate, coordinate, inv_proj));
coordinate.reg_offset++;
proj_coordinate.reg_offset++;
}
proj_coordinate.reg_offset = 0;
coordinate = proj_coordinate;
}
for (mlen = 0; mlen < ir->coordinate->type->vector_elements; mlen++) {
emit(fs_inst(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), coordinate));
coordinate.reg_offset++;
}
/* Pre-Ironlake, the 8-wide sampler always took u,v,r. */
if (intel->gen < 5)
mlen = 3;
if (ir->shadow_comparitor) {
/* For shadow comparisons, we have to supply u,v,r. */
mlen = 3;
ir->shadow_comparitor->accept(this);
emit(fs_inst(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result));
mlen++;
}
/* Do we ever want to handle writemasking on texture samples? Is it
* performance relevant?
*/
fs_reg dst = fs_reg(this, glsl_type::vec4_type);
switch (ir->op) {
case ir_tex:
inst = emit(fs_inst(FS_OPCODE_TEX, dst, fs_reg(MRF, base_mrf)));
break;
case ir_txb:
ir->lod_info.bias->accept(this);
emit(fs_inst(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result));
mlen++;
inst = emit(fs_inst(FS_OPCODE_TXB, dst, fs_reg(MRF, base_mrf)));
break;
case ir_txl:
ir->lod_info.lod->accept(this);
emit(fs_inst(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result));
mlen++;
inst = emit(fs_inst(FS_OPCODE_TXL, dst, fs_reg(MRF, base_mrf)));
break;
case ir_txd:
case ir_txf:
assert(!"GLSL 1.30 features unsupported");
break;
}
this->result = dst;
if (ir->shadow_comparitor)
inst->shadow_compare = true;
inst->mlen = mlen;
}
void
fs_visitor::visit(ir_swizzle *ir)
{
ir->val->accept(this);
fs_reg val = this->result;
fs_reg result = fs_reg(this, ir->type);
this->result = result;
for (unsigned int i = 0; i < ir->type->vector_elements; i++) {
fs_reg channel = val;
int swiz = 0;
switch (i) {
case 0:
swiz = ir->mask.x;
break;
case 1:
swiz = ir->mask.y;
break;
case 2:
swiz = ir->mask.z;
break;
case 3:
swiz = ir->mask.w;
break;
}
channel.reg_offset += swiz;
emit(fs_inst(BRW_OPCODE_MOV, result, channel));
result.reg_offset++;
}
}
void
fs_visitor::visit(ir_discard *ir)
{
assert(ir->condition == NULL); /* FINISHME */
emit(fs_inst(FS_OPCODE_DISCARD));
}
void
fs_visitor::visit(ir_constant *ir)
{
fs_reg reg(this, ir->type);
this->result = reg;
for (unsigned int i = 0; i < ir->type->vector_elements; i++) {
switch (ir->type->base_type) {
case GLSL_TYPE_FLOAT:
emit(fs_inst(BRW_OPCODE_MOV, reg, fs_reg(ir->value.f[i])));
break;
case GLSL_TYPE_UINT:
emit(fs_inst(BRW_OPCODE_MOV, reg, fs_reg(ir->value.u[i])));
break;
case GLSL_TYPE_INT:
emit(fs_inst(BRW_OPCODE_MOV, reg, fs_reg(ir->value.i[i])));
break;
case GLSL_TYPE_BOOL:
emit(fs_inst(BRW_OPCODE_MOV, reg, fs_reg((int)ir->value.b[i])));
break;
default:
assert(!"Non-float/uint/int/bool constant");
}
reg.reg_offset++;
}
}
void
fs_visitor::visit(ir_if *ir)
{
fs_inst *inst;
/* Don't point the annotation at the if statement, because then it plus
* the then and else blocks get printed.
*/
this->base_ir = ir->condition;
/* Generate the condition into the condition code. */
ir->condition->accept(this);
inst = emit(fs_inst(BRW_OPCODE_MOV, fs_reg(brw_null_reg()), this->result));
inst->conditional_mod = BRW_CONDITIONAL_NZ;
inst = emit(fs_inst(BRW_OPCODE_IF));
inst->predicated = true;
foreach_iter(exec_list_iterator, iter, ir->then_instructions) {
ir_instruction *ir = (ir_instruction *)iter.get();
this->base_ir = ir;
ir->accept(this);
}
if (!ir->else_instructions.is_empty()) {
emit(fs_inst(BRW_OPCODE_ELSE));
foreach_iter(exec_list_iterator, iter, ir->else_instructions) {
ir_instruction *ir = (ir_instruction *)iter.get();
this->base_ir = ir;
ir->accept(this);
}
}
emit(fs_inst(BRW_OPCODE_ENDIF));
}
void
fs_visitor::visit(ir_loop *ir)
{
assert(!ir->from);
assert(!ir->to);
assert(!ir->increment);
assert(!ir->counter);
emit(fs_inst(BRW_OPCODE_DO));
/* Start a safety counter. If the user messed up their loop
* counting, we don't want to hang the GPU.
*/
fs_reg max_iter = fs_reg(this, glsl_type::int_type);
emit(fs_inst(BRW_OPCODE_MOV, max_iter, fs_reg(10000)));
foreach_iter(exec_list_iterator, iter, ir->body_instructions) {
ir_instruction *ir = (ir_instruction *)iter.get();
fs_inst *inst;
this->base_ir = ir;
ir->accept(this);
/* Check the maximum loop iters counter. */
inst = emit(fs_inst(BRW_OPCODE_ADD, max_iter, max_iter, fs_reg(-1)));
inst->conditional_mod = BRW_CONDITIONAL_Z;
inst = emit(fs_inst(BRW_OPCODE_BREAK));
inst->predicated = true;
}
emit(fs_inst(BRW_OPCODE_WHILE));
}
void
fs_visitor::visit(ir_loop_jump *ir)
{
switch (ir->mode) {
case ir_loop_jump::jump_break:
emit(fs_inst(BRW_OPCODE_BREAK));
break;
case ir_loop_jump::jump_continue:
emit(fs_inst(BRW_OPCODE_CONTINUE));
break;
}
}
void
fs_visitor::visit(ir_call *ir)
{
assert(!"FINISHME");
}
void
fs_visitor::visit(ir_return *ir)
{
assert(!"FINISHME");
}
void
fs_visitor::visit(ir_function *ir)
{
/* Ignore function bodies other than main() -- we shouldn't see calls to
* them since they should all be inlined before we get to ir_to_mesa.
*/
if (strcmp(ir->name, "main") == 0) {
const ir_function_signature *sig;
exec_list empty;
sig = ir->matching_signature(&empty);
assert(sig);
foreach_iter(exec_list_iterator, iter, sig->body) {
ir_instruction *ir = (ir_instruction *)iter.get();
this->base_ir = ir;
ir->accept(this);
}
}
}
void
fs_visitor::visit(ir_function_signature *ir)
{
assert(!"not reached");
(void)ir;
}
fs_inst *
fs_visitor::emit(fs_inst inst)
{
fs_inst *list_inst = new(mem_ctx) fs_inst;
*list_inst = inst;
list_inst->annotation = this->current_annotation;
list_inst->ir = this->base_ir;
this->instructions.push_tail(list_inst);
return list_inst;
}
/** Emits a dummy fragment shader consisting of magenta for bringup purposes. */
void
fs_visitor::emit_dummy_fs()
{
/* Everyone's favorite color. */
emit(fs_inst(BRW_OPCODE_MOV,
fs_reg(MRF, 2),
fs_reg(1.0f)));
emit(fs_inst(BRW_OPCODE_MOV,
fs_reg(MRF, 3),
fs_reg(0.0f)));
emit(fs_inst(BRW_OPCODE_MOV,
fs_reg(MRF, 4),
fs_reg(1.0f)));
emit(fs_inst(BRW_OPCODE_MOV,
fs_reg(MRF, 5),
fs_reg(0.0f)));
fs_inst *write;
write = emit(fs_inst(FS_OPCODE_FB_WRITE,
fs_reg(0),
fs_reg(0)));
}
/* The register location here is relative to the start of the URB
* data. It will get adjusted to be a real location before
* generate_code() time.
*/
struct brw_reg
fs_visitor::interp_reg(int location, int channel)
{
int regnr = location * 2 + channel / 2;
int stride = (channel & 1) * 4;
return brw_vec1_grf(regnr, stride);
}
/** Emits the interpolation for the varying inputs. */
void
fs_visitor::emit_interpolation()
{
struct brw_reg g1_uw = retype(brw_vec1_grf(1, 0), BRW_REGISTER_TYPE_UW);
/* For now, the source regs for the setup URB data will be unset,
* since we don't know until codegen how many push constants we'll
* use, and therefore what the setup URB offset is.
*/
fs_reg src_reg = reg_undef;
this->current_annotation = "compute pixel centers";
this->pixel_x = fs_reg(this, glsl_type::uint_type);
this->pixel_y = fs_reg(this, glsl_type::uint_type);
this->pixel_x.type = BRW_REGISTER_TYPE_UW;
this->pixel_y.type = BRW_REGISTER_TYPE_UW;
emit(fs_inst(BRW_OPCODE_ADD,
this->pixel_x,
fs_reg(stride(suboffset(g1_uw, 4), 2, 4, 0)),
fs_reg(brw_imm_v(0x10101010))));
emit(fs_inst(BRW_OPCODE_ADD,
this->pixel_y,
fs_reg(stride(suboffset(g1_uw, 5), 2, 4, 0)),
fs_reg(brw_imm_v(0x11001100))));
this->current_annotation = "compute pixel deltas from v0";
this->delta_x = fs_reg(this, glsl_type::float_type);
this->delta_y = fs_reg(this, glsl_type::float_type);
emit(fs_inst(BRW_OPCODE_ADD,
this->delta_x,
this->pixel_x,
fs_reg(negate(brw_vec1_grf(1, 0)))));
emit(fs_inst(BRW_OPCODE_ADD,
this->delta_y,
this->pixel_y,
fs_reg(brw_vec1_grf(1, 1))));
this->current_annotation = "compute pos.w and 1/pos.w";
/* Compute wpos. Unlike many other varying inputs, we usually need it
* to produce 1/w, and the varying variable wouldn't show up.
*/
fs_reg wpos = fs_reg(this, glsl_type::vec4_type);
this->interp_attrs[FRAG_ATTRIB_WPOS] = wpos;
emit(fs_inst(BRW_OPCODE_MOV, wpos, this->pixel_x)); /* FINISHME: ARB_fcc */
wpos.reg_offset++;
emit(fs_inst(BRW_OPCODE_MOV, wpos, this->pixel_y)); /* FINISHME: ARB_fcc */
wpos.reg_offset++;
emit(fs_inst(FS_OPCODE_LINTERP, wpos, this->delta_x, this->delta_y,
interp_reg(FRAG_ATTRIB_WPOS, 2)));
wpos.reg_offset++;
emit(fs_inst(FS_OPCODE_LINTERP, wpos, this->delta_x, this->delta_y,
interp_reg(FRAG_ATTRIB_WPOS, 3)));
/* Compute the pixel W value from wpos.w. */
this->pixel_w = fs_reg(this, glsl_type::float_type);
emit(fs_inst(FS_OPCODE_RCP, this->pixel_w, wpos));
foreach_iter(exec_list_iterator, iter, *this->shader->ir) {
ir_instruction *ir = (ir_instruction *)iter.get();
ir_variable *var = ir->as_variable();
if (!var)
continue;
if (var->mode != ir_var_in)
continue;
/* If it's already set up (WPOS), skip. */
if (var->location == 0)
continue;
this->current_annotation = talloc_asprintf(this->mem_ctx,
"interpolate %s "
"(FRAG_ATTRIB[%d])",
var->name,
var->location);
emit_pinterp(var->location);
}
this->current_annotation = NULL;
}
void
fs_visitor::emit_pinterp(int location)
{
fs_reg interp_attr = fs_reg(this, glsl_type::vec4_type);
this->interp_attrs[location] = interp_attr;
for (unsigned int i = 0; i < 4; i++) {
struct brw_reg interp = interp_reg(location, i);
emit(fs_inst(FS_OPCODE_LINTERP,
interp_attr,
this->delta_x,
this->delta_y,
fs_reg(interp)));
interp_attr.reg_offset++;
}
interp_attr.reg_offset -= 4;
for (unsigned int i = 0; i < 4; i++) {
emit(fs_inst(BRW_OPCODE_MUL,
interp_attr,
interp_attr,
this->pixel_w));
interp_attr.reg_offset++;
}
}
void
fs_visitor::emit_fb_writes()
{
this->current_annotation = "FB write";
assert(this->frag_color || !"FINISHME: MRT");
fs_reg color = *(variable_storage(this->frag_color));
for (int i = 0; i < 4; i++) {
emit(fs_inst(BRW_OPCODE_MOV,
fs_reg(MRF, 2 + i),
color));
color.reg_offset++;
}
emit(fs_inst(FS_OPCODE_FB_WRITE,
fs_reg(0),
fs_reg(0)));
this->current_annotation = NULL;
}
void
fs_visitor::generate_fb_write(fs_inst *inst)
{
GLboolean eot = 1; /* FINISHME: MRT */
/* FINISHME: AADS */
/* Header is 2 regs, g0 and g1 are the contents. g0 will be implied
* move, here's g1.
*/
brw_push_insn_state(p);
brw_set_mask_control(p, BRW_MASK_DISABLE);
brw_set_compression_control(p, BRW_COMPRESSION_NONE);
brw_MOV(p,
brw_message_reg(1),
brw_vec8_grf(1, 0));
brw_pop_insn_state(p);
int nr = 2 + 4;
brw_fb_WRITE(p,
8, /* dispatch_width */
retype(vec8(brw_null_reg()), BRW_REGISTER_TYPE_UW),
0, /* base MRF */
retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UW),
0, /* FINISHME: MRT target */
nr,
0,
eot);
}
void
fs_visitor::generate_linterp(fs_inst *inst,
struct brw_reg dst, struct brw_reg *src)
{
struct brw_reg delta_x = src[0];
struct brw_reg delta_y = src[1];
struct brw_reg interp = src[2];
if (brw->has_pln &&
delta_y.nr == delta_x.nr + 1 &&
(intel->gen >= 6 || (delta_x.nr & 1) == 0)) {
brw_PLN(p, dst, interp, delta_x);
} else {
brw_LINE(p, brw_null_reg(), interp, delta_x);
brw_MAC(p, dst, suboffset(interp, 1), delta_y);
}
}
void
fs_visitor::generate_math(fs_inst *inst,
struct brw_reg dst, struct brw_reg *src)
{
int op;
switch (inst->opcode) {
case FS_OPCODE_RCP:
op = BRW_MATH_FUNCTION_INV;
break;
case FS_OPCODE_RSQ:
op = BRW_MATH_FUNCTION_RSQ;
break;
case FS_OPCODE_SQRT:
op = BRW_MATH_FUNCTION_SQRT;
break;
case FS_OPCODE_EXP2:
op = BRW_MATH_FUNCTION_EXP;
break;
case FS_OPCODE_LOG2:
op = BRW_MATH_FUNCTION_LOG;
break;
case FS_OPCODE_POW:
op = BRW_MATH_FUNCTION_POW;
break;
case FS_OPCODE_SIN:
op = BRW_MATH_FUNCTION_SIN;
break;
case FS_OPCODE_COS:
op = BRW_MATH_FUNCTION_COS;
break;
default:
assert(!"not reached: unknown math function");
op = 0;
break;
}
if (inst->opcode == FS_OPCODE_POW) {
brw_MOV(p, brw_message_reg(3), src[1]);
}
brw_math(p, dst,
op,
inst->saturate ? BRW_MATH_SATURATE_SATURATE :
BRW_MATH_SATURATE_NONE,
2, src[0],
BRW_MATH_DATA_VECTOR,
BRW_MATH_PRECISION_FULL);
}
void
fs_visitor::generate_tex(fs_inst *inst, struct brw_reg dst, struct brw_reg src)
{
int msg_type = -1;
int rlen = 4;
if (intel->gen == 5) {
switch (inst->opcode) {
case FS_OPCODE_TEX:
if (inst->shadow_compare) {
msg_type = BRW_SAMPLER_MESSAGE_SAMPLE_COMPARE_GEN5;
} else {
msg_type = BRW_SAMPLER_MESSAGE_SAMPLE_GEN5;
}
break;
case FS_OPCODE_TXB:
if (inst->shadow_compare) {
msg_type = BRW_SAMPLER_MESSAGE_SAMPLE_BIAS_COMPARE_GEN5;
} else {
msg_type = BRW_SAMPLER_MESSAGE_SAMPLE_BIAS_GEN5;
}
break;
}
} else {
switch (inst->opcode) {
case FS_OPCODE_TEX:
/* Note that G45 and older determines shadow compare and dispatch width
* from message length for most messages.
*/
if (inst->shadow_compare) {
msg_type = BRW_SAMPLER_MESSAGE_SIMD16_SAMPLE_COMPARE;
} else {
msg_type = BRW_SAMPLER_MESSAGE_SIMD16_SAMPLE;
}
case FS_OPCODE_TXB:
if (inst->shadow_compare) {
assert(!"FINISHME: shadow compare with bias.");
msg_type = BRW_SAMPLER_MESSAGE_SIMD16_SAMPLE_BIAS;
} else {
msg_type = BRW_SAMPLER_MESSAGE_SIMD16_SAMPLE_BIAS;
rlen = 8;
}
break;
}
}
assert(msg_type != -1);
/* g0 header. */
src.nr--;
brw_SAMPLE(p,
retype(dst, BRW_REGISTER_TYPE_UW),
src.nr,
retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UW),
SURF_INDEX_TEXTURE(inst->sampler),
inst->sampler,
WRITEMASK_XYZW,
msg_type,
rlen,
inst->mlen + 1,
0,
1,
BRW_SAMPLER_SIMD_MODE_SIMD8);
}
/* For OPCODE_DDX and OPCODE_DDY, per channel of output we've got input
* looking like:
*
* arg0: ss0.tl ss0.tr ss0.bl ss0.br ss1.tl ss1.tr ss1.bl ss1.br
*
* and we're trying to produce:
*
* DDX DDY
* dst: (ss0.tr - ss0.tl) (ss0.tl - ss0.bl)
* (ss0.tr - ss0.tl) (ss0.tr - ss0.br)
* (ss0.br - ss0.bl) (ss0.tl - ss0.bl)
* (ss0.br - ss0.bl) (ss0.tr - ss0.br)
* (ss1.tr - ss1.tl) (ss1.tl - ss1.bl)
* (ss1.tr - ss1.tl) (ss1.tr - ss1.br)
* (ss1.br - ss1.bl) (ss1.tl - ss1.bl)
* (ss1.br - ss1.bl) (ss1.tr - ss1.br)
*
* and add another set of two more subspans if in 16-pixel dispatch mode.
*
* For DDX, it ends up being easy: width = 2, horiz=0 gets us the same result
* for each pair, and vertstride = 2 jumps us 2 elements after processing a
* pair. But for DDY, it's harder, as we want to produce the pairs swizzled
* between each other. We could probably do it like ddx and swizzle the right
* order later, but bail for now and just produce
* ((ss0.tl - ss0.bl)x4 (ss1.tl - ss1.bl)x4)
*/
void
fs_visitor::generate_ddx(fs_inst *inst, struct brw_reg dst, struct brw_reg src)
{
struct brw_reg src0 = brw_reg(src.file, src.nr, 1,
BRW_REGISTER_TYPE_F,
BRW_VERTICAL_STRIDE_2,
BRW_WIDTH_2,
BRW_HORIZONTAL_STRIDE_0,
BRW_SWIZZLE_XYZW, WRITEMASK_XYZW);
struct brw_reg src1 = brw_reg(src.file, src.nr, 0,
BRW_REGISTER_TYPE_F,
BRW_VERTICAL_STRIDE_2,
BRW_WIDTH_2,
BRW_HORIZONTAL_STRIDE_0,
BRW_SWIZZLE_XYZW, WRITEMASK_XYZW);
brw_ADD(p, dst, src0, negate(src1));
}
void
fs_visitor::generate_ddy(fs_inst *inst, struct brw_reg dst, struct brw_reg src)
{
struct brw_reg src0 = brw_reg(src.file, src.nr, 0,
BRW_REGISTER_TYPE_F,
BRW_VERTICAL_STRIDE_4,
BRW_WIDTH_4,
BRW_HORIZONTAL_STRIDE_0,
BRW_SWIZZLE_XYZW, WRITEMASK_XYZW);
struct brw_reg src1 = brw_reg(src.file, src.nr, 2,
BRW_REGISTER_TYPE_F,
BRW_VERTICAL_STRIDE_4,
BRW_WIDTH_4,
BRW_HORIZONTAL_STRIDE_0,
BRW_SWIZZLE_XYZW, WRITEMASK_XYZW);
brw_ADD(p, dst, src0, negate(src1));
}
void
fs_visitor::generate_discard(fs_inst *inst)
{
struct brw_reg g0 = retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UW);
brw_push_insn_state(p);
brw_set_mask_control(p, BRW_MASK_DISABLE);
brw_NOT(p, c->emit_mask_reg, brw_mask_reg(1)); /* IMASK */
brw_AND(p, g0, c->emit_mask_reg, g0);
brw_pop_insn_state(p);
}
static void
trivial_assign_reg(int header_size, fs_reg *reg)
{
if (reg->file == GRF && reg->reg != 0) {
reg->hw_reg = header_size + reg->reg - 1 + reg->reg_offset;
reg->reg = 0;
}
}
void
fs_visitor::assign_curb_setup()
{
c->prog_data.first_curbe_grf = c->key.nr_payload_regs;
c->prog_data.curb_read_length = ALIGN(c->prog_data.nr_params, 8) / 8;
if (intel->gen == 5 && (c->prog_data.first_curbe_grf +
c->prog_data.curb_read_length) & 1) {
/* Align the start of the interpolation coefficients so that we can use
* the PLN instruction.
*/
c->prog_data.first_curbe_grf++;
}
/* Map the offsets in the UNIFORM file to fixed HW regs. */
foreach_iter(exec_list_iterator, iter, this->instructions) {
fs_inst *inst = (fs_inst *)iter.get();
for (unsigned int i = 0; i < 3; i++) {
if (inst->src[i].file == UNIFORM) {
int constant_nr = inst->src[i].hw_reg + inst->src[i].reg_offset;
struct brw_reg brw_reg = brw_vec1_grf(c->prog_data.first_curbe_grf +
constant_nr / 8,
constant_nr % 8);
inst->src[i].file = FIXED_HW_REG;
inst->src[i].fixed_hw_reg = brw_reg;
}
}
}
}
void
fs_visitor::assign_urb_setup()
{
int urb_start = c->prog_data.first_curbe_grf + c->prog_data.curb_read_length;
int interp_reg_nr[FRAG_ATTRIB_MAX];
c->prog_data.urb_read_length = 0;
/* Figure out where each of the incoming setup attributes lands. */
for (unsigned int i = 0; i < FRAG_ATTRIB_MAX; i++) {
interp_reg_nr[i] = -1;
if (i != FRAG_ATTRIB_WPOS &&
!(brw->fragment_program->Base.InputsRead & BITFIELD64_BIT(i)))
continue;
/* Each attribute is 4 setup channels, each of which is half a reg. */
interp_reg_nr[i] = urb_start + c->prog_data.urb_read_length;
c->prog_data.urb_read_length += 2;
}
/* Map the register numbers for FS_OPCODE_LINTERP so that it uses
* the correct setup input.
*/
foreach_iter(exec_list_iterator, iter, this->instructions) {
fs_inst *inst = (fs_inst *)iter.get();
if (inst->opcode != FS_OPCODE_LINTERP)
continue;
assert(inst->src[2].file == FIXED_HW_REG);
int location = inst->src[2].fixed_hw_reg.nr / 2;
assert(interp_reg_nr[location] != -1);
inst->src[2].fixed_hw_reg.nr = (interp_reg_nr[location] +
(inst->src[2].fixed_hw_reg.nr & 1));
}
this->first_non_payload_grf = urb_start + c->prog_data.urb_read_length;
}
void
fs_visitor::assign_regs()
{
int header_size = this->first_non_payload_grf;
int last_grf = 0;
/* FINISHME: trivial assignment of register numbers */
foreach_iter(exec_list_iterator, iter, this->instructions) {
fs_inst *inst = (fs_inst *)iter.get();
trivial_assign_reg(header_size, &inst->dst);
trivial_assign_reg(header_size, &inst->src[0]);
trivial_assign_reg(header_size, &inst->src[1]);
last_grf = MAX2(last_grf, inst->dst.hw_reg);
last_grf = MAX2(last_grf, inst->src[0].hw_reg);
last_grf = MAX2(last_grf, inst->src[1].hw_reg);
}
this->grf_used = last_grf + 1;
}
static struct brw_reg brw_reg_from_fs_reg(fs_reg *reg)
{
struct brw_reg brw_reg;
switch (reg->file) {
case GRF:
case ARF:
case MRF:
brw_reg = brw_vec8_reg(reg->file,
reg->hw_reg, 0);
brw_reg = retype(brw_reg, reg->type);
break;
case IMM:
switch (reg->type) {
case BRW_REGISTER_TYPE_F:
brw_reg = brw_imm_f(reg->imm.f);
break;
case BRW_REGISTER_TYPE_D:
brw_reg = brw_imm_d(reg->imm.i);
break;
case BRW_REGISTER_TYPE_UD:
brw_reg = brw_imm_ud(reg->imm.u);
break;
default:
assert(!"not reached");
break;
}
break;
case FIXED_HW_REG:
brw_reg = reg->fixed_hw_reg;
break;
case BAD_FILE:
/* Probably unused. */
brw_reg = brw_null_reg();
break;
case UNIFORM:
assert(!"not reached");
brw_reg = brw_null_reg();
break;
}
if (reg->abs)
brw_reg = brw_abs(brw_reg);
if (reg->negate)
brw_reg = negate(brw_reg);
return brw_reg;
}
void
fs_visitor::generate_code()
{
unsigned int annotation_len = 0;
int last_native_inst = 0;
struct brw_instruction *if_stack[16], *loop_stack[16];
int if_stack_depth = 0, loop_stack_depth = 0;
int if_depth_in_loop[16];
if_depth_in_loop[loop_stack_depth] = 0;
memset(&if_stack, 0, sizeof(if_stack));
foreach_iter(exec_list_iterator, iter, this->instructions) {
fs_inst *inst = (fs_inst *)iter.get();
struct brw_reg src[3], dst;
for (unsigned int i = 0; i < 3; i++) {
src[i] = brw_reg_from_fs_reg(&inst->src[i]);
}
dst = brw_reg_from_fs_reg(&inst->dst);
brw_set_conditionalmod(p, inst->conditional_mod);
brw_set_predicate_control(p, inst->predicated);
switch (inst->opcode) {
case BRW_OPCODE_MOV:
brw_MOV(p, dst, src[0]);
break;
case BRW_OPCODE_ADD:
brw_ADD(p, dst, src[0], src[1]);
break;
case BRW_OPCODE_MUL:
brw_MUL(p, dst, src[0], src[1]);
break;
case BRW_OPCODE_FRC:
brw_FRC(p, dst, src[0]);
break;
case BRW_OPCODE_RNDD:
brw_RNDD(p, dst, src[0]);
break;
case BRW_OPCODE_RNDZ:
brw_RNDZ(p, dst, src[0]);
break;
case BRW_OPCODE_AND:
brw_AND(p, dst, src[0], src[1]);
break;
case BRW_OPCODE_OR:
brw_OR(p, dst, src[0], src[1]);
break;
case BRW_OPCODE_XOR:
brw_XOR(p, dst, src[0], src[1]);
break;
case BRW_OPCODE_CMP:
brw_CMP(p, dst, inst->conditional_mod, src[0], src[1]);
break;
case BRW_OPCODE_SEL:
brw_SEL(p, dst, src[0], src[1]);
break;
case BRW_OPCODE_IF:
assert(if_stack_depth < 16);
if_stack[if_stack_depth] = brw_IF(p, BRW_EXECUTE_8);
if_depth_in_loop[loop_stack_depth]++;
if_stack_depth++;
break;
case BRW_OPCODE_ELSE:
if_stack[if_stack_depth - 1] =
brw_ELSE(p, if_stack[if_stack_depth - 1]);
break;
case BRW_OPCODE_ENDIF:
if_stack_depth--;
brw_ENDIF(p , if_stack[if_stack_depth]);
if_depth_in_loop[loop_stack_depth]--;
break;
case BRW_OPCODE_DO:
loop_stack[loop_stack_depth++] = brw_DO(p, BRW_EXECUTE_8);
if_depth_in_loop[loop_stack_depth] = 0;
break;
case BRW_OPCODE_BREAK:
brw_BREAK(p, if_depth_in_loop[loop_stack_depth]);
brw_set_predicate_control(p, BRW_PREDICATE_NONE);
break;
case BRW_OPCODE_CONTINUE:
brw_CONT(p, if_depth_in_loop[loop_stack_depth]);
brw_set_predicate_control(p, BRW_PREDICATE_NONE);
break;
case BRW_OPCODE_WHILE: {
struct brw_instruction *inst0, *inst1;
GLuint br = 1;
if (intel->gen == 5)
br = 2;
assert(loop_stack_depth > 0);
loop_stack_depth--;
inst0 = inst1 = brw_WHILE(p, loop_stack[loop_stack_depth]);
/* patch all the BREAK/CONT instructions from last BGNLOOP */
while (inst0 > loop_stack[loop_stack_depth]) {
inst0--;
if (inst0->header.opcode == BRW_OPCODE_BREAK &&
inst0->bits3.if_else.jump_count == 0) {
inst0->bits3.if_else.jump_count = br * (inst1 - inst0 + 1);
}
else if (inst0->header.opcode == BRW_OPCODE_CONTINUE &&
inst0->bits3.if_else.jump_count == 0) {
inst0->bits3.if_else.jump_count = br * (inst1 - inst0);
}
}
}
break;
case FS_OPCODE_RCP:
case FS_OPCODE_RSQ:
case FS_OPCODE_SQRT:
case FS_OPCODE_EXP2:
case FS_OPCODE_LOG2:
case FS_OPCODE_POW:
case FS_OPCODE_SIN:
case FS_OPCODE_COS:
generate_math(inst, dst, src);
break;
case FS_OPCODE_LINTERP:
generate_linterp(inst, dst, src);
break;
case FS_OPCODE_TEX:
case FS_OPCODE_TXB:
case FS_OPCODE_TXL:
generate_tex(inst, dst, src[0]);
break;
case FS_OPCODE_DISCARD:
generate_discard(inst);
break;
case FS_OPCODE_DDX:
generate_ddx(inst, dst, src[0]);
break;
case FS_OPCODE_DDY:
generate_ddy(inst, dst, src[0]);
break;
case FS_OPCODE_FB_WRITE:
generate_fb_write(inst);
break;
default:
if (inst->opcode < (int)ARRAY_SIZE(brw_opcodes)) {
_mesa_problem(ctx, "Unsupported opcode `%s' in FS",
brw_opcodes[inst->opcode].name);
} else {
_mesa_problem(ctx, "Unsupported opcode %d in FS", inst->opcode);
}
this->fail = true;
}
if (annotation_len < p->nr_insn) {
annotation_len *= 2;
if (annotation_len < 16)
annotation_len = 16;
this->annotation_string = talloc_realloc(this->mem_ctx,
annotation_string,
const char *,
annotation_len);
this->annotation_ir = talloc_realloc(this->mem_ctx,
annotation_ir,
ir_instruction *,
annotation_len);
}
for (unsigned int i = last_native_inst; i < p->nr_insn; i++) {
this->annotation_string[i] = inst->annotation;
this->annotation_ir[i] = inst->ir;
}
last_native_inst = p->nr_insn;
}
}
GLboolean
brw_wm_fs_emit(struct brw_context *brw, struct brw_wm_compile *c)
{
struct brw_compile *p = &c->func;
struct intel_context *intel = &brw->intel;
GLcontext *ctx = &intel->ctx;
struct brw_shader *shader = NULL;
struct gl_shader_program *prog = ctx->Shader.CurrentProgram;
if (!prog)
return GL_FALSE;
if (!using_new_fs)
return GL_FALSE;
for (unsigned int i = 0; i < prog->_NumLinkedShaders; i++) {
if (prog->_LinkedShaders[i]->Type == GL_FRAGMENT_SHADER) {
shader = (struct brw_shader *)prog->_LinkedShaders[i];
break;
}
}
if (!shader)
return GL_FALSE;
/* We always use 8-wide mode, at least for now. For one, flow
* control only works in 8-wide. Also, when we're fragment shader
* bound, we're almost always under register pressure as well, so
* 8-wide would save us from the performance cliff of spilling
* regs.
*/
c->dispatch_width = 8;
if (INTEL_DEBUG & DEBUG_WM) {
printf("GLSL IR for native fragment shader %d:\n", prog->Name);
_mesa_print_ir(shader->ir, NULL);
printf("\n");
}
/* Now the main event: Visit the shader IR and generate our FS IR for it.
*/
fs_visitor v(c, shader);
if (0) {
v.emit_dummy_fs();
} else {
v.emit_interpolation();
/* Generate FS IR for main(). (the visitor only descends into
* functions called "main").
*/
foreach_iter(exec_list_iterator, iter, *shader->ir) {
ir_instruction *ir = (ir_instruction *)iter.get();
v.base_ir = ir;
ir->accept(&v);
}
v.emit_fb_writes();
v.assign_curb_setup();
v.assign_urb_setup();
v.assign_regs();
}
v.generate_code();
assert(!v.fail); /* FINISHME: Cleanly fail, tested at link time, etc. */
if (v.fail)
return GL_FALSE;
if (INTEL_DEBUG & DEBUG_WM) {
const char *last_annotation_string = NULL;
ir_instruction *last_annotation_ir = NULL;
printf("Native code for fragment shader %d:\n", prog->Name);
for (unsigned int i = 0; i < p->nr_insn; i++) {
if (last_annotation_ir != v.annotation_ir[i]) {
last_annotation_ir = v.annotation_ir[i];
if (last_annotation_ir) {
printf(" ");
last_annotation_ir->print();
printf("\n");
}
}
if (last_annotation_string != v.annotation_string[i]) {
last_annotation_string = v.annotation_string[i];
if (last_annotation_string)
printf(" %s\n", last_annotation_string);
}
brw_disasm(stdout, &p->store[i], intel->gen);
}
printf("\n");
}
c->prog_data.total_grf = v.grf_used;
c->prog_data.total_scratch = 0;
return GL_TRUE;
}