mesa/src/compiler/nir/nir_range_analysis.c

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

2204 lines
77 KiB
C
Raw Normal View History

/*
* Copyright © 2018 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include "nir_range_analysis.h"
#include <float.h>
#include <math.h>
#include "util/hash_table.h"
#include "util/u_dynarray.h"
#include "util/u_math.h"
#include "c99_alloca.h"
#include "nir.h"
/**
* Analyzes a sequence of operations to determine some aspects of the range of
* the result.
*/
struct analysis_query {
uint32_t pushed_queries;
uint32_t result_index;
};
struct analysis_state {
nir_shader *shader;
const nir_unsigned_upper_bound_config *config;
struct hash_table *range_ht;
struct util_dynarray query_stack;
struct util_dynarray result_stack;
size_t query_size;
uintptr_t (*get_key)(struct analysis_query *q);
void (*process_query)(struct analysis_state *state, struct analysis_query *q,
uint32_t *result, const uint32_t *src);
};
static void *
push_analysis_query(struct analysis_state *state, size_t size)
{
struct analysis_query *q = util_dynarray_grow_bytes(&state->query_stack, 1, size);
q->pushed_queries = 0;
q->result_index = util_dynarray_num_elements(&state->result_stack, uint32_t);
util_dynarray_append(&state->result_stack, uint32_t, 0);
return q;
}
/* Helper for performing range analysis without recursion. */
static uint32_t
perform_analysis(struct analysis_state *state)
{
while (state->query_stack.size) {
struct analysis_query *cur =
(struct analysis_query *)((char *)util_dynarray_end(&state->query_stack) - state->query_size);
uint32_t *result = util_dynarray_element(&state->result_stack, uint32_t, cur->result_index);
uintptr_t key = state->get_key(cur);
struct hash_entry *he = NULL;
/* There might be a cycle-resolving entry for loop header phis. Ignore this when finishing
* them by testing pushed_queries.
*/
if (cur->pushed_queries == 0 && key &&
(he = _mesa_hash_table_search(state->range_ht, (void *)key))) {
*result = (uintptr_t)he->data;
state->query_stack.size -= state->query_size;
continue;
}
uint32_t *src = (uint32_t *)util_dynarray_end(&state->result_stack) - cur->pushed_queries;
state->result_stack.size -= sizeof(uint32_t) * cur->pushed_queries;
uint32_t prev_num_queries = state->query_stack.size;
state->process_query(state, cur, result, src);
uint32_t num_queries = state->query_stack.size;
if (num_queries > prev_num_queries) {
cur = (struct analysis_query *)util_dynarray_element(&state->query_stack, char,
prev_num_queries - state->query_size);
cur->pushed_queries = (num_queries - prev_num_queries) / state->query_size;
continue;
}
if (key)
_mesa_hash_table_insert(state->range_ht, (void *)key, (void *)(uintptr_t)*result);
state->query_stack.size -= state->query_size;
}
assert(state->result_stack.size == sizeof(uint32_t));
uint32_t res = util_dynarray_top(&state->result_stack, uint32_t);
util_dynarray_fini(&state->query_stack);
util_dynarray_fini(&state->result_stack);
return res;
}
nir/range-analysis: Range tracking for fpow One shader from Metro Last Light and the rest from Rochard. In the Rochard cases, something like: min(1.0, max(pow(saturate(x), y), z)) was transformed to saturate(max(pow(saturate(x), y), z)) because the result of the pow must be >= 0. The Metro Last Light case was similar. An instance of min(pow(abs(x), y), 1.0) became saturate(pow(abs(x), y)) v2: Fix some comments. Suggested by Caio. v3: Fix setting is_intgral when the exponent might be negative. See also Mesa MR !1778. Reviewed-by: Caio Marcelo de Oliveira Filho <caio.oliveira@intel.com> All Intel platforms had similar results. (Ice Lake shown) total instructions in shared programs: 16280670 -> 16280659 (<.01%) instructions in affected programs: 1130 -> 1119 (-0.97%) helped: 11 HURT: 0 helped stats (abs) min: 1 max: 1 x̄: 1.00 x̃: 1 helped stats (rel) min: 0.72% max: 1.43% x̄: 1.03% x̃: 0.97% 95% mean confidence interval for instructions value: -1.00 -1.00 95% mean confidence interval for instructions %-change: -1.19% -0.86% Instructions are helped. total cycles in shared programs: 367168430 -> 367168270 (<.01%) cycles in affected programs: 10281 -> 10121 (-1.56%) helped: 10 HURT: 1 helped stats (abs) min: 16 max: 18 x̄: 17.00 x̃: 17 helped stats (rel) min: 1.31% max: 2.43% x̄: 1.79% x̃: 1.70% HURT stats (abs) min: 10 max: 10 x̄: 10.00 x̃: 10 HURT stats (rel) min: 3.10% max: 3.10% x̄: 3.10% x̃: 3.10% 95% mean confidence interval for cycles value: -20.06 -9.04 95% mean confidence interval for cycles %-change: -2.36% -0.32% Cycles are helped.
2019-08-09 12:48:27 -07:00
static bool
is_not_negative(enum ssa_ranges r)
{
return r == gt_zero || r == ge_zero || r == eq_zero;
}
static bool
is_not_zero(enum ssa_ranges r)
{
return r == gt_zero || r == lt_zero || r == ne_zero;
}
static uint32_t
pack_data(const struct ssa_result_range r)
{
return r.range | r.is_integral << 8 | r.is_finite << 9 | r.is_a_number << 10;
}
static struct ssa_result_range
unpack_data(uint32_t v)
{
return (struct ssa_result_range){
.range = v & 0xff,
.is_integral = (v & 0x00100) != 0,
.is_finite = (v & 0x00200) != 0,
.is_a_number = (v & 0x00400) != 0
};
}
static nir_alu_type
nir_alu_src_type(const nir_alu_instr *instr, unsigned src)
{
return nir_alu_type_get_base_type(nir_op_infos[instr->op].input_types[src]) |
nir_src_bit_size(instr->src[src].src);
}
static struct ssa_result_range
analyze_constant(const struct nir_alu_instr *instr, unsigned src,
nir_alu_type use_type)
{
uint8_t swizzle[NIR_MAX_VEC_COMPONENTS] = { 0, 1, 2, 3,
4, 5, 6, 7,
8, 9, 10, 11,
12, 13, 14, 15 };
/* If the source is an explicitly sized source, then we need to reset
* both the number of components and the swizzle.
*/
const unsigned num_components = nir_ssa_alu_instr_src_components(instr, src);
for (unsigned i = 0; i < num_components; ++i)
swizzle[i] = instr->src[src].swizzle[i];
const nir_load_const_instr *const load =
nir_instr_as_load_const(instr->src[src].src.ssa->parent_instr);
struct ssa_result_range r = { unknown, false, false, false };
switch (nir_alu_type_get_base_type(use_type)) {
case nir_type_float: {
double min_value = DBL_MAX;
double max_value = -DBL_MAX;
bool any_zero = false;
bool all_zero = true;
r.is_integral = true;
r.is_a_number = true;
r.is_finite = true;
for (unsigned i = 0; i < num_components; ++i) {
const double v = nir_const_value_as_float(load->value[swizzle[i]],
load->def.bit_size);
if (floor(v) != v)
r.is_integral = false;
if (isnan(v))
r.is_a_number = false;
if (!isfinite(v))
r.is_finite = false;
any_zero = any_zero || (v == 0.0);
all_zero = all_zero && (v == 0.0);
min_value = MIN2(min_value, v);
max_value = MAX2(max_value, v);
}
assert(any_zero >= all_zero);
assert(isnan(max_value) || max_value >= min_value);
if (all_zero)
r.range = eq_zero;
else if (min_value > 0.0)
r.range = gt_zero;
else if (min_value == 0.0)
r.range = ge_zero;
else if (max_value < 0.0)
r.range = lt_zero;
else if (max_value == 0.0)
r.range = le_zero;
else if (!any_zero)
r.range = ne_zero;
else
r.range = unknown;
return r;
}
case nir_type_int:
case nir_type_bool: {
int64_t min_value = INT_MAX;
int64_t max_value = INT_MIN;
bool any_zero = false;
bool all_zero = true;
for (unsigned i = 0; i < num_components; ++i) {
const int64_t v = nir_const_value_as_int(load->value[swizzle[i]],
load->def.bit_size);
any_zero = any_zero || (v == 0);
all_zero = all_zero && (v == 0);
min_value = MIN2(min_value, v);
max_value = MAX2(max_value, v);
}
assert(any_zero >= all_zero);
assert(max_value >= min_value);
if (all_zero)
r.range = eq_zero;
else if (min_value > 0)
r.range = gt_zero;
else if (min_value == 0)
r.range = ge_zero;
else if (max_value < 0)
r.range = lt_zero;
else if (max_value == 0)
r.range = le_zero;
else if (!any_zero)
r.range = ne_zero;
else
r.range = unknown;
return r;
}
case nir_type_uint: {
bool any_zero = false;
bool all_zero = true;
for (unsigned i = 0; i < num_components; ++i) {
const uint64_t v = nir_const_value_as_uint(load->value[swizzle[i]],
load->def.bit_size);
any_zero = any_zero || (v == 0);
all_zero = all_zero && (v == 0);
}
assert(any_zero >= all_zero);
if (all_zero)
r.range = eq_zero;
else if (any_zero)
r.range = ge_zero;
else
r.range = gt_zero;
return r;
}
default:
unreachable("Invalid alu source type");
}
}
/**
* Short-hand name for use in the tables in process_fp_query. If this name
* becomes a problem on some compiler, we can change it to _.
*/
#define _______ unknown
#if defined(__clang__)
/* clang wants _Pragma("unroll X") */
#define pragma_unroll_5 _Pragma("unroll 5")
#define pragma_unroll_7 _Pragma("unroll 7")
/* gcc wants _Pragma("GCC unroll X") */
#elif defined(__GNUC__)
#if __GNUC__ >= 8
#define pragma_unroll_5 _Pragma("GCC unroll 5")
#define pragma_unroll_7 _Pragma("GCC unroll 7")
#else
#pragma GCC optimize("unroll-loops")
#define pragma_unroll_5
#define pragma_unroll_7
#endif
#else
/* MSVC doesn't have C99's _Pragma() */
#define pragma_unroll_5
#define pragma_unroll_7
#endif
#ifndef NDEBUG
#define ASSERT_TABLE_IS_COMMUTATIVE(t) \
do { \
static bool first = true; \
if (first) { \
first = false; \
pragma_unroll_7 for (unsigned r = 0; r < ARRAY_SIZE(t); r++) \
{ \
pragma_unroll_7 for (unsigned c = 0; c < ARRAY_SIZE(t[0]); c++) \
assert(t[r][c] == t[c][r]); \
} \
} \
} while (false)
#define ASSERT_TABLE_IS_DIAGONAL(t) \
do { \
static bool first = true; \
if (first) { \
first = false; \
pragma_unroll_7 for (unsigned r = 0; r < ARRAY_SIZE(t); r++) \
assert(t[r][r] == r); \
} \
} while (false)
nir/range_analysis: Fix analysis of fmin, fmax, or fsat with NaN source Recall that when either value is NaN, fmax will pick the other value. This means the result range of the fmax will either be the "ideal" result range (calculated above) or the range of the non-NaN value. Previously, something like fmax({gt_zero}, {lt_zero, is_a_number}) would return a range of gt_zero. However, if the "gt_zero" parameter is NaN, the actual result will be the "lt_zero" parameter. This analysis depends on the is_a_number analysis also added in this MR. Assuming this doesn't cause any unforeseen problems, I believe we should wait a bit, then nominate a subset of the series for the stable branches. This fixes the piglit tests tests/spec/glsl-1.30/execution/range_analysis_fmax_of_nan.shader_test tests/spec/glsl-1.30/execution/range_analysis_fmin_of_nan.shader_test from https://gitlab.freedesktop.org/mesa/piglit/-/merge_requests/463. Even with the added fsat fixes, range_analysis_fsat_of_nan.shader_test still fails. There are some other issues there that will be addressed in later commits (in another MR). v2: Add fsat fixes. Suggested by Rhys. Fixes: 405de7ccb6c ("nir/range-analysis: Rudimentary value range analysis pass") Reviewed-by: Rhys Perry <pendingchaos02@gmail.com> Shader-db results: All Intel platforms had similar results. (Tiger Lake shown) total instructions in shared programs: 21049290 -> 21049314 (<.01%) instructions in affected programs: 3175 -> 3199 (0.76%) helped: 0 HURT: 17 HURT stats (abs) min: 1 max: 3 x̄: 1.41 x̃: 1 HURT stats (rel) min: 0.20% max: 1.89% x̄: 0.97% x̃: 0.92% 95% mean confidence interval for instructions value: 1.09 1.73 95% mean confidence interval for instructions %-change: 0.75% 1.19% Instructions are HURT. total cycles in shared programs: 855136176 -> 855136406 (<.01%) cycles in affected programs: 37579 -> 37809 (0.61%) helped: 0 HURT: 17 HURT stats (abs) min: 12 max: 20 x̄: 13.53 x̃: 14 HURT stats (rel) min: 0.17% max: 1.13% x̄: 0.79% x̃: 0.91% 95% mean confidence interval for cycles value: 12.53 14.53 95% mean confidence interval for cycles %-change: 0.63% 0.94% Cycles are HURT. Fossil-db results: Tiger Lake Instructions in all programs: 160901033 -> 160902591 (+0.0%) SENDs in all programs: 6812270 -> 6812270 (+0.0%) Loops in all programs: 38225 -> 38225 (+0.0%) Cycles in all programs: 7430016795 -> 7429003266 (-0.0%) Spills in all programs: 192582 -> 192582 (+0.0%) Fills in all programs: 304539 -> 304539 (+0.0%) Ice Lake Instructions in all programs: 145299102 -> 145301634 (+0.0%) SENDs in all programs: 6863890 -> 6863890 (+0.0%) Loops in all programs: 38219 -> 38219 (+0.0%) Cycles in all programs: 8798390846 -> 8798589772 (+0.0%) Spills in all programs: 216880 -> 216880 (+0.0%) Fills in all programs: 334250 -> 334250 (+0.0%) Skylake Instructions in all programs: 135889478 -> 135892010 (+0.0%) SENDs in all programs: 6802916 -> 6802916 (+0.0%) Loops in all programs: 38216 -> 38216 (+0.0%) Cycles in all programs: 8442624166 -> 8442597324 (-0.0%) Spills in all programs: 194839 -> 194839 (+0.0%) Fills in all programs: 301116 -> 301116 (+0.0%) Part-of: <https://gitlab.freedesktop.org/mesa/mesa/-/merge_requests/9108>
2021-01-27 19:42:44 -08:00
#else
#define ASSERT_TABLE_IS_COMMUTATIVE(t)
#define ASSERT_TABLE_IS_DIAGONAL(t)
#endif /* !defined(NDEBUG) */
static enum ssa_ranges
union_ranges(enum ssa_ranges a, enum ssa_ranges b)
{
static const enum ssa_ranges union_table[last_range + 1][last_range + 1] = {
/* left\right unknown lt_zero le_zero gt_zero ge_zero ne_zero eq_zero */
/* unknown */ { _______, _______, _______, _______, _______, _______, _______ },
/* lt_zero */ { _______, lt_zero, le_zero, ne_zero, _______, ne_zero, le_zero },
/* le_zero */ { _______, le_zero, le_zero, _______, _______, _______, le_zero },
/* gt_zero */ { _______, ne_zero, _______, gt_zero, ge_zero, ne_zero, ge_zero },
/* ge_zero */ { _______, _______, _______, ge_zero, ge_zero, _______, ge_zero },
/* ne_zero */ { _______, ne_zero, _______, ne_zero, _______, ne_zero, _______ },
/* eq_zero */ { _______, le_zero, le_zero, ge_zero, ge_zero, _______, eq_zero },
};
ASSERT_TABLE_IS_COMMUTATIVE(union_table);
ASSERT_TABLE_IS_DIAGONAL(union_table);
return union_table[a][b];
}
nir/range_analysis: Fix analysis of fmin, fmax, or fsat with NaN source Recall that when either value is NaN, fmax will pick the other value. This means the result range of the fmax will either be the "ideal" result range (calculated above) or the range of the non-NaN value. Previously, something like fmax({gt_zero}, {lt_zero, is_a_number}) would return a range of gt_zero. However, if the "gt_zero" parameter is NaN, the actual result will be the "lt_zero" parameter. This analysis depends on the is_a_number analysis also added in this MR. Assuming this doesn't cause any unforeseen problems, I believe we should wait a bit, then nominate a subset of the series for the stable branches. This fixes the piglit tests tests/spec/glsl-1.30/execution/range_analysis_fmax_of_nan.shader_test tests/spec/glsl-1.30/execution/range_analysis_fmin_of_nan.shader_test from https://gitlab.freedesktop.org/mesa/piglit/-/merge_requests/463. Even with the added fsat fixes, range_analysis_fsat_of_nan.shader_test still fails. There are some other issues there that will be addressed in later commits (in another MR). v2: Add fsat fixes. Suggested by Rhys. Fixes: 405de7ccb6c ("nir/range-analysis: Rudimentary value range analysis pass") Reviewed-by: Rhys Perry <pendingchaos02@gmail.com> Shader-db results: All Intel platforms had similar results. (Tiger Lake shown) total instructions in shared programs: 21049290 -> 21049314 (<.01%) instructions in affected programs: 3175 -> 3199 (0.76%) helped: 0 HURT: 17 HURT stats (abs) min: 1 max: 3 x̄: 1.41 x̃: 1 HURT stats (rel) min: 0.20% max: 1.89% x̄: 0.97% x̃: 0.92% 95% mean confidence interval for instructions value: 1.09 1.73 95% mean confidence interval for instructions %-change: 0.75% 1.19% Instructions are HURT. total cycles in shared programs: 855136176 -> 855136406 (<.01%) cycles in affected programs: 37579 -> 37809 (0.61%) helped: 0 HURT: 17 HURT stats (abs) min: 12 max: 20 x̄: 13.53 x̃: 14 HURT stats (rel) min: 0.17% max: 1.13% x̄: 0.79% x̃: 0.91% 95% mean confidence interval for cycles value: 12.53 14.53 95% mean confidence interval for cycles %-change: 0.63% 0.94% Cycles are HURT. Fossil-db results: Tiger Lake Instructions in all programs: 160901033 -> 160902591 (+0.0%) SENDs in all programs: 6812270 -> 6812270 (+0.0%) Loops in all programs: 38225 -> 38225 (+0.0%) Cycles in all programs: 7430016795 -> 7429003266 (-0.0%) Spills in all programs: 192582 -> 192582 (+0.0%) Fills in all programs: 304539 -> 304539 (+0.0%) Ice Lake Instructions in all programs: 145299102 -> 145301634 (+0.0%) SENDs in all programs: 6863890 -> 6863890 (+0.0%) Loops in all programs: 38219 -> 38219 (+0.0%) Cycles in all programs: 8798390846 -> 8798589772 (+0.0%) Spills in all programs: 216880 -> 216880 (+0.0%) Fills in all programs: 334250 -> 334250 (+0.0%) Skylake Instructions in all programs: 135889478 -> 135892010 (+0.0%) SENDs in all programs: 6802916 -> 6802916 (+0.0%) Loops in all programs: 38216 -> 38216 (+0.0%) Cycles in all programs: 8442624166 -> 8442597324 (-0.0%) Spills in all programs: 194839 -> 194839 (+0.0%) Fills in all programs: 301116 -> 301116 (+0.0%) Part-of: <https://gitlab.freedesktop.org/mesa/mesa/-/merge_requests/9108>
2021-01-27 19:42:44 -08:00
#ifndef NDEBUG
/* Verify that the 'unknown' entry in each row (or column) of the table is the
* union of all the other values in the row (or column).
*/
#define ASSERT_UNION_OF_OTHERS_MATCHES_UNKNOWN_2_SOURCE(t) \
do { \
static bool first = true; \
if (first) { \
first = false; \
pragma_unroll_7 for (unsigned i = 0; i < last_range; i++) \
{ \
enum ssa_ranges col_range = t[i][unknown + 1]; \
enum ssa_ranges row_range = t[unknown + 1][i]; \
\
pragma_unroll_5 for (unsigned j = unknown + 2; j < last_range; j++) \
{ \
col_range = union_ranges(col_range, t[i][j]); \
row_range = union_ranges(row_range, t[j][i]); \
} \
\
assert(col_range == t[i][unknown]); \
assert(row_range == t[unknown][i]); \
} \
} \
} while (false)
/* For most operations, the union of ranges for a strict inequality and
* equality should be the range of the non-strict inequality (e.g.,
* union_ranges(range(op(lt_zero), range(op(eq_zero))) == range(op(le_zero)).
*
* Does not apply to selection-like opcodes (bcsel, fmin, fmax, etc.).
*/
#define ASSERT_UNION_OF_EQ_AND_STRICT_INEQ_MATCHES_NONSTRICT_1_SOURCE(t) \
do { \
assert(union_ranges(t[lt_zero], t[eq_zero]) == t[le_zero]); \
assert(union_ranges(t[gt_zero], t[eq_zero]) == t[ge_zero]); \
} while (false)
#define ASSERT_UNION_OF_EQ_AND_STRICT_INEQ_MATCHES_NONSTRICT_2_SOURCE(t) \
do { \
static bool first = true; \
if (first) { \
first = false; \
pragma_unroll_7 for (unsigned i = 0; i < last_range; i++) \
{ \
assert(union_ranges(t[i][lt_zero], t[i][eq_zero]) == t[i][le_zero]); \
assert(union_ranges(t[i][gt_zero], t[i][eq_zero]) == t[i][ge_zero]); \
assert(union_ranges(t[lt_zero][i], t[eq_zero][i]) == t[le_zero][i]); \
assert(union_ranges(t[gt_zero][i], t[eq_zero][i]) == t[ge_zero][i]); \
} \
} \
} while (false)
/* Several other unordered tuples span the range of "everything." Each should
* have the same value as unknown: (lt_zero, ge_zero), (le_zero, gt_zero), and
* (eq_zero, ne_zero). union_ranges is already commutative, so only one
* ordering needs to be checked.
*
* Does not apply to selection-like opcodes (bcsel, fmin, fmax, etc.).
*
* In cases where this can be used, it is unnecessary to also use
* ASSERT_UNION_OF_OTHERS_MATCHES_UNKNOWN_*_SOURCE. For any range X,
* union_ranges(X, X) == X. The disjoint ranges cover all of the non-unknown
* possibilities, so the union of all the unions of disjoint ranges is
* equivalent to the union of "others."
*/
#define ASSERT_UNION_OF_DISJOINT_MATCHES_UNKNOWN_1_SOURCE(t) \
do { \
assert(union_ranges(t[lt_zero], t[ge_zero]) == t[unknown]); \
assert(union_ranges(t[le_zero], t[gt_zero]) == t[unknown]); \
assert(union_ranges(t[eq_zero], t[ne_zero]) == t[unknown]); \
} while (false)
#define ASSERT_UNION_OF_DISJOINT_MATCHES_UNKNOWN_2_SOURCE(t) \
do { \
static bool first = true; \
if (first) { \
first = false; \
pragma_unroll_7 for (unsigned i = 0; i < last_range; i++) \
{ \
assert(union_ranges(t[i][lt_zero], t[i][ge_zero]) == \
t[i][unknown]); \
assert(union_ranges(t[i][le_zero], t[i][gt_zero]) == \
t[i][unknown]); \
assert(union_ranges(t[i][eq_zero], t[i][ne_zero]) == \
t[i][unknown]); \
\
assert(union_ranges(t[lt_zero][i], t[ge_zero][i]) == \
t[unknown][i]); \
assert(union_ranges(t[le_zero][i], t[gt_zero][i]) == \
t[unknown][i]); \
assert(union_ranges(t[eq_zero][i], t[ne_zero][i]) == \
t[unknown][i]); \
} \
} \
} while (false)
#else
#define ASSERT_UNION_OF_OTHERS_MATCHES_UNKNOWN_2_SOURCE(t)
#define ASSERT_UNION_OF_EQ_AND_STRICT_INEQ_MATCHES_NONSTRICT_1_SOURCE(t)
#define ASSERT_UNION_OF_EQ_AND_STRICT_INEQ_MATCHES_NONSTRICT_2_SOURCE(t)
#define ASSERT_UNION_OF_DISJOINT_MATCHES_UNKNOWN_1_SOURCE(t)
#define ASSERT_UNION_OF_DISJOINT_MATCHES_UNKNOWN_2_SOURCE(t)
nir/range_analysis: Fix analysis of fmin, fmax, or fsat with NaN source Recall that when either value is NaN, fmax will pick the other value. This means the result range of the fmax will either be the "ideal" result range (calculated above) or the range of the non-NaN value. Previously, something like fmax({gt_zero}, {lt_zero, is_a_number}) would return a range of gt_zero. However, if the "gt_zero" parameter is NaN, the actual result will be the "lt_zero" parameter. This analysis depends on the is_a_number analysis also added in this MR. Assuming this doesn't cause any unforeseen problems, I believe we should wait a bit, then nominate a subset of the series for the stable branches. This fixes the piglit tests tests/spec/glsl-1.30/execution/range_analysis_fmax_of_nan.shader_test tests/spec/glsl-1.30/execution/range_analysis_fmin_of_nan.shader_test from https://gitlab.freedesktop.org/mesa/piglit/-/merge_requests/463. Even with the added fsat fixes, range_analysis_fsat_of_nan.shader_test still fails. There are some other issues there that will be addressed in later commits (in another MR). v2: Add fsat fixes. Suggested by Rhys. Fixes: 405de7ccb6c ("nir/range-analysis: Rudimentary value range analysis pass") Reviewed-by: Rhys Perry <pendingchaos02@gmail.com> Shader-db results: All Intel platforms had similar results. (Tiger Lake shown) total instructions in shared programs: 21049290 -> 21049314 (<.01%) instructions in affected programs: 3175 -> 3199 (0.76%) helped: 0 HURT: 17 HURT stats (abs) min: 1 max: 3 x̄: 1.41 x̃: 1 HURT stats (rel) min: 0.20% max: 1.89% x̄: 0.97% x̃: 0.92% 95% mean confidence interval for instructions value: 1.09 1.73 95% mean confidence interval for instructions %-change: 0.75% 1.19% Instructions are HURT. total cycles in shared programs: 855136176 -> 855136406 (<.01%) cycles in affected programs: 37579 -> 37809 (0.61%) helped: 0 HURT: 17 HURT stats (abs) min: 12 max: 20 x̄: 13.53 x̃: 14 HURT stats (rel) min: 0.17% max: 1.13% x̄: 0.79% x̃: 0.91% 95% mean confidence interval for cycles value: 12.53 14.53 95% mean confidence interval for cycles %-change: 0.63% 0.94% Cycles are HURT. Fossil-db results: Tiger Lake Instructions in all programs: 160901033 -> 160902591 (+0.0%) SENDs in all programs: 6812270 -> 6812270 (+0.0%) Loops in all programs: 38225 -> 38225 (+0.0%) Cycles in all programs: 7430016795 -> 7429003266 (-0.0%) Spills in all programs: 192582 -> 192582 (+0.0%) Fills in all programs: 304539 -> 304539 (+0.0%) Ice Lake Instructions in all programs: 145299102 -> 145301634 (+0.0%) SENDs in all programs: 6863890 -> 6863890 (+0.0%) Loops in all programs: 38219 -> 38219 (+0.0%) Cycles in all programs: 8798390846 -> 8798589772 (+0.0%) Spills in all programs: 216880 -> 216880 (+0.0%) Fills in all programs: 334250 -> 334250 (+0.0%) Skylake Instructions in all programs: 135889478 -> 135892010 (+0.0%) SENDs in all programs: 6802916 -> 6802916 (+0.0%) Loops in all programs: 38216 -> 38216 (+0.0%) Cycles in all programs: 8442624166 -> 8442597324 (-0.0%) Spills in all programs: 194839 -> 194839 (+0.0%) Fills in all programs: 301116 -> 301116 (+0.0%) Part-of: <https://gitlab.freedesktop.org/mesa/mesa/-/merge_requests/9108>
2021-01-27 19:42:44 -08:00
#endif /* !defined(NDEBUG) */
struct fp_query {
struct analysis_query head;
const nir_alu_instr *instr;
unsigned src;
nir_alu_type use_type;
};
static void
push_fp_query(struct analysis_state *state, const nir_alu_instr *alu, unsigned src, nir_alu_type type)
{
struct fp_query *pushed_q = push_analysis_query(state, sizeof(struct fp_query));
pushed_q->instr = alu;
pushed_q->src = src;
pushed_q->use_type = type == nir_type_invalid ? nir_alu_src_type(alu, src) : type;
}
static uintptr_t
get_fp_key(struct analysis_query *q)
{
struct fp_query *fp_q = (struct fp_query *)q;
const nir_src *src = &fp_q->instr->src[fp_q->src].src;
if (src->ssa->parent_instr->type != nir_instr_type_alu)
return 0;
uintptr_t type_encoding;
uintptr_t ptr = (uintptr_t)nir_instr_as_alu(src->ssa->parent_instr);
/* The low 2 bits have to be zero or this whole scheme falls apart. */
assert((ptr & 0x3) == 0);
/* NIR is typeless in the sense that sequences of bits have whatever
* meaning is attached to them by the instruction that consumes them.
* However, the number of bits must match between producer and consumer.
* As a result, the number of bits does not need to be encoded here.
*/
switch (nir_alu_type_get_base_type(fp_q->use_type)) {
case nir_type_int:
type_encoding = 0;
break;
case nir_type_uint:
type_encoding = 1;
break;
case nir_type_bool:
type_encoding = 2;
break;
case nir_type_float:
type_encoding = 3;
break;
default:
unreachable("Invalid base type.");
}
return ptr | type_encoding;
}
/**
* Analyze an expression to determine the range of its result
*
* The end result of this analysis is a token that communicates something
* about the range of values. There's an implicit grammar that produces
* tokens from sequences of literal values, other tokens, and operations.
* This function implements this grammar as a recursive-descent parser. Some
* (but not all) of the grammar is listed in-line in the function.
*/
static void
process_fp_query(struct analysis_state *state, struct analysis_query *aq, uint32_t *result,
const uint32_t *src_res)
{
/* Ensure that the _Pragma("GCC unroll 7") above are correct. */
STATIC_ASSERT(last_range + 1 == 7);
struct fp_query q = *(struct fp_query *)aq;
const nir_alu_instr *instr = q.instr;
unsigned src = q.src;
nir_alu_type use_type = q.use_type;
if (nir_src_is_const(instr->src[src].src)) {
*result = pack_data(analyze_constant(instr, src, use_type));
return;
}
if (instr->src[src].src.ssa->parent_instr->type != nir_instr_type_alu) {
*result = pack_data((struct ssa_result_range){ unknown, false, false, false });
return;
}
const struct nir_alu_instr *const alu =
nir_instr_as_alu(instr->src[src].src.ssa->parent_instr);
nir/range-analysis: Bail if the types don't match Some shaders are hurt by this change because now a load_const(0x00000000) is not recognized as eq_zero when loaded as a float. This behavior is restored in a later patch (nir/range-analysis: Use types to provide better ranges from bcsel and mov). v2: Add a comment about reinterpretation of int/uint/bool. Suggested by Caio. Rewrite condition the check for types being float versus checking for types not being all the things that aren't float. Fixes: 405de7ccb6c ("nir/range-analysis: Rudimentary value range analysis pass") Reviewed-by: Caio Marcelo de Oliveira Filho <caio.oliveira@intel.com> All Gen7+ platforms had similar results. (Ice Lake shown) total instructions in shared programs: 16327543 -> 16328255 (<.01%) instructions in affected programs: 55928 -> 56640 (1.27%) helped: 0 HURT: 208 HURT stats (abs) min: 1 max: 16 x̄: 3.42 x̃: 3 HURT stats (rel) min: 0.33% max: 6.74% x̄: 1.31% x̃: 1.12% 95% mean confidence interval for instructions value: 3.06 3.79 95% mean confidence interval for instructions %-change: 1.17% 1.46% Instructions are HURT. total cycles in shared programs: 363682759 -> 363683977 (<.01%) cycles in affected programs: 325758 -> 326976 (0.37%) helped: 44 HURT: 133 helped stats (abs) min: 1 max: 179 x̄: 33.61 x̃: 5 helped stats (rel) min: 0.06% max: 14.21% x̄: 2.47% x̃: 0.29% HURT stats (abs) min: 1 max: 157 x̄: 20.28 x̃: 14 HURT stats (rel) min: 0.07% max: 14.44% x̄: 1.42% x̃: 0.73% 95% mean confidence interval for cycles value: 0.38 13.39 95% mean confidence interval for cycles %-change: -0.06% 0.96% Inconclusive result (%-change mean confidence interval includes 0). Sandy Bridge total instructions in shared programs: 10787433 -> 10787443 (<.01%) instructions in affected programs: 1842 -> 1852 (0.54%) helped: 0 HURT: 10 HURT stats (abs) min: 1 max: 1 x̄: 1.00 x̃: 1 HURT stats (rel) min: 0.33% max: 1.85% x̄: 0.73% x̃: 0.49% 95% mean confidence interval for instructions value: 1.00 1.00 95% mean confidence interval for instructions %-change: 0.36% 1.10% Instructions are HURT. total cycles in shared programs: 153724543 -> 153724563 (<.01%) cycles in affected programs: 8407 -> 8427 (0.24%) helped: 1 HURT: 3 helped stats (abs) min: 18 max: 18 x̄: 18.00 x̃: 18 helped stats (rel) min: 0.98% max: 0.98% x̄: 0.98% x̃: 0.98% HURT stats (abs) min: 4 max: 18 x̄: 12.67 x̃: 16 HURT stats (rel) min: 0.21% max: 0.75% x̄: 0.56% x̃: 0.72% 95% mean confidence interval for cycles value: -21.31 31.31 95% mean confidence interval for cycles %-change: -1.11% 1.46% Inconclusive result (value mean confidence interval includes 0). No shader-db changes on Iron Lake or GM45.
2019-09-24 15:55:49 -07:00
/* Bail if the type of the instruction generating the value does not match
* the type the value will be interpreted as. int/uint/bool can be
* reinterpreted trivially. The most important cases are between float and
* non-float.
*/
if (alu->op != nir_op_mov && alu->op != nir_op_bcsel) {
const nir_alu_type use_base_type =
nir_alu_type_get_base_type(use_type);
const nir_alu_type src_base_type =
nir_alu_type_get_base_type(nir_op_infos[alu->op].output_type);
if (use_base_type != src_base_type &&
(use_base_type == nir_type_float ||
src_base_type == nir_type_float)) {
*result = pack_data((struct ssa_result_range){ unknown, false, false, false });
return;
nir/range-analysis: Bail if the types don't match Some shaders are hurt by this change because now a load_const(0x00000000) is not recognized as eq_zero when loaded as a float. This behavior is restored in a later patch (nir/range-analysis: Use types to provide better ranges from bcsel and mov). v2: Add a comment about reinterpretation of int/uint/bool. Suggested by Caio. Rewrite condition the check for types being float versus checking for types not being all the things that aren't float. Fixes: 405de7ccb6c ("nir/range-analysis: Rudimentary value range analysis pass") Reviewed-by: Caio Marcelo de Oliveira Filho <caio.oliveira@intel.com> All Gen7+ platforms had similar results. (Ice Lake shown) total instructions in shared programs: 16327543 -> 16328255 (<.01%) instructions in affected programs: 55928 -> 56640 (1.27%) helped: 0 HURT: 208 HURT stats (abs) min: 1 max: 16 x̄: 3.42 x̃: 3 HURT stats (rel) min: 0.33% max: 6.74% x̄: 1.31% x̃: 1.12% 95% mean confidence interval for instructions value: 3.06 3.79 95% mean confidence interval for instructions %-change: 1.17% 1.46% Instructions are HURT. total cycles in shared programs: 363682759 -> 363683977 (<.01%) cycles in affected programs: 325758 -> 326976 (0.37%) helped: 44 HURT: 133 helped stats (abs) min: 1 max: 179 x̄: 33.61 x̃: 5 helped stats (rel) min: 0.06% max: 14.21% x̄: 2.47% x̃: 0.29% HURT stats (abs) min: 1 max: 157 x̄: 20.28 x̃: 14 HURT stats (rel) min: 0.07% max: 14.44% x̄: 1.42% x̃: 0.73% 95% mean confidence interval for cycles value: 0.38 13.39 95% mean confidence interval for cycles %-change: -0.06% 0.96% Inconclusive result (%-change mean confidence interval includes 0). Sandy Bridge total instructions in shared programs: 10787433 -> 10787443 (<.01%) instructions in affected programs: 1842 -> 1852 (0.54%) helped: 0 HURT: 10 HURT stats (abs) min: 1 max: 1 x̄: 1.00 x̃: 1 HURT stats (rel) min: 0.33% max: 1.85% x̄: 0.73% x̃: 0.49% 95% mean confidence interval for instructions value: 1.00 1.00 95% mean confidence interval for instructions %-change: 0.36% 1.10% Instructions are HURT. total cycles in shared programs: 153724543 -> 153724563 (<.01%) cycles in affected programs: 8407 -> 8427 (0.24%) helped: 1 HURT: 3 helped stats (abs) min: 18 max: 18 x̄: 18.00 x̃: 18 helped stats (rel) min: 0.98% max: 0.98% x̄: 0.98% x̃: 0.98% HURT stats (abs) min: 4 max: 18 x̄: 12.67 x̃: 16 HURT stats (rel) min: 0.21% max: 0.75% x̄: 0.56% x̃: 0.72% 95% mean confidence interval for cycles value: -21.31 31.31 95% mean confidence interval for cycles %-change: -1.11% 1.46% Inconclusive result (value mean confidence interval includes 0). No shader-db changes on Iron Lake or GM45.
2019-09-24 15:55:49 -07:00
}
}
if (!aq->pushed_queries) {
switch (alu->op) {
case nir_op_bcsel:
push_fp_query(state, alu, 1, use_type);
push_fp_query(state, alu, 2, use_type);
return;
case nir_op_mov:
push_fp_query(state, alu, 0, use_type);
return;
case nir_op_i2f32:
case nir_op_u2f32:
case nir_op_fabs:
case nir_op_fexp2:
case nir_op_frcp:
case nir_op_fneg:
case nir_op_fsat:
case nir_op_fsign:
case nir_op_ffloor:
case nir_op_fceil:
case nir_op_ftrunc:
case nir_op_fdot2:
case nir_op_fdot3:
case nir_op_fdot4:
case nir_op_fdot8:
case nir_op_fdot16:
case nir_op_fdot2_replicated:
case nir_op_fdot3_replicated:
case nir_op_fdot4_replicated:
case nir_op_fdot8_replicated:
case nir_op_fdot16_replicated:
push_fp_query(state, alu, 0, nir_type_invalid);
return;
case nir_op_fadd:
case nir_op_fmax:
case nir_op_fmin:
case nir_op_fmul:
case nir_op_fmulz:
case nir_op_fpow:
push_fp_query(state, alu, 0, nir_type_invalid);
push_fp_query(state, alu, 1, nir_type_invalid);
return;
case nir_op_ffma:
case nir_op_flrp:
push_fp_query(state, alu, 0, nir_type_invalid);
push_fp_query(state, alu, 1, nir_type_invalid);
push_fp_query(state, alu, 2, nir_type_invalid);
return;
default:
break;
}
}
struct ssa_result_range r = { unknown, false, false, false };
/* ge_zero: ge_zero + ge_zero
*
* gt_zero: gt_zero + eq_zero
* | gt_zero + ge_zero
* | eq_zero + gt_zero # Addition is commutative
* | ge_zero + gt_zero # Addition is commutative
* | gt_zero + gt_zero
* ;
*
* le_zero: le_zero + le_zero
*
* lt_zero: lt_zero + eq_zero
* | lt_zero + le_zero
* | eq_zero + lt_zero # Addition is commutative
* | le_zero + lt_zero # Addition is commutative
* | lt_zero + lt_zero
* ;
*
* ne_zero: eq_zero + ne_zero
* | ne_zero + eq_zero # Addition is commutative
* ;
*
* eq_zero: eq_zero + eq_zero
* ;
*
* All other cases are 'unknown'. The seeming odd entry is (ne_zero,
* ne_zero), but that could be (-5, +5) which is not ne_zero.
*/
static const enum ssa_ranges fadd_table[last_range + 1][last_range + 1] = {
/* left\right unknown lt_zero le_zero gt_zero ge_zero ne_zero eq_zero */
/* unknown */ { _______, _______, _______, _______, _______, _______, _______ },
/* lt_zero */ { _______, lt_zero, lt_zero, _______, _______, _______, lt_zero },
/* le_zero */ { _______, lt_zero, le_zero, _______, _______, _______, le_zero },
/* gt_zero */ { _______, _______, _______, gt_zero, gt_zero, _______, gt_zero },
/* ge_zero */ { _______, _______, _______, gt_zero, ge_zero, _______, ge_zero },
/* ne_zero */ { _______, _______, _______, _______, _______, _______, ne_zero },
/* eq_zero */ { _______, lt_zero, le_zero, gt_zero, ge_zero, ne_zero, eq_zero },
};
ASSERT_TABLE_IS_COMMUTATIVE(fadd_table);
ASSERT_UNION_OF_DISJOINT_MATCHES_UNKNOWN_2_SOURCE(fadd_table);
ASSERT_UNION_OF_EQ_AND_STRICT_INEQ_MATCHES_NONSTRICT_2_SOURCE(fadd_table);
nir/range-analysis: Adjust result range of multiplication to account for flush-to-zero Fixes piglit tests (new in piglit!110): - fs-underflow-fma-compare-zero.shader_test - fs-underflow-mul-compare-zero.shader_test v2: Add back part of comment accidentally deleted. Noticed by Caio. Remove is_not_zero function as it is no longer used. Bugzilla: https://bugs.freedesktop.org/show_bug.cgi?id=111308 Fixes: fa116ce357b ("nir/range-analysis: Range tracking for ffma and flrp") Fixes: 405de7ccb6c ("nir/range-analysis: Rudimentary value range analysis pass") Reviewed-by: Caio Marcelo de Oliveira Filho <caio.oliveira@intel.com> All Gen7+ platforms** had similar results. (Ice Lake shown) total instructions in shared programs: 16278465 -> 16279492 (<.01%) instructions in affected programs: 16765 -> 17792 (6.13%) helped: 0 HURT: 23 HURT stats (abs) min: 7 max: 275 x̄: 44.65 x̃: 8 HURT stats (rel) min: 1.15% max: 17.51% x̄: 4.23% x̃: 1.62% 95% mean confidence interval for instructions value: 9.57 79.74 95% mean confidence interval for instructions %-change: 1.85% 6.61% Instructions are HURT. total cycles in shared programs: 367135159 -> 367154270 (<.01%) cycles in affected programs: 279306 -> 298417 (6.84%) helped: 0 HURT: 23 HURT stats (abs) min: 13 max: 6029 x̄: 830.91 x̃: 54 HURT stats (rel) min: 0.17% max: 45.67% x̄: 7.33% x̃: 0.49% 95% mean confidence interval for cycles value: 100.89 1560.94 95% mean confidence interval for cycles %-change: 0.94% 13.71% Cycles are HURT. total spills in shared programs: 8870 -> 8869 (-0.01%) spills in affected programs: 19 -> 18 (-5.26%) helped: 1 HURT: 0 total fills in shared programs: 21904 -> 21901 (-0.01%) fills in affected programs: 81 -> 78 (-3.70%) helped: 1 HURT: 0 LOST: 0 GAINED: 1 ** On Broadwell, a shader was hurt for spills / fills instead of helped. No changes on any earlier platforms.
2019-08-09 10:55:49 -07:00
/* Due to flush-to-zero semanatics of floating-point numbers with very
* small mangnitudes, we can never really be sure a result will be
* non-zero.
*
* ge_zero: ge_zero * ge_zero
* | ge_zero * gt_zero
* | ge_zero * eq_zero
* | le_zero * lt_zero
* | lt_zero * le_zero # Multiplication is commutative
* | le_zero * le_zero
* | gt_zero * ge_zero # Multiplication is commutative
* | eq_zero * ge_zero # Multiplication is commutative
* | a * a # Left source == right source
nir/range-analysis: Adjust result range of multiplication to account for flush-to-zero Fixes piglit tests (new in piglit!110): - fs-underflow-fma-compare-zero.shader_test - fs-underflow-mul-compare-zero.shader_test v2: Add back part of comment accidentally deleted. Noticed by Caio. Remove is_not_zero function as it is no longer used. Bugzilla: https://bugs.freedesktop.org/show_bug.cgi?id=111308 Fixes: fa116ce357b ("nir/range-analysis: Range tracking for ffma and flrp") Fixes: 405de7ccb6c ("nir/range-analysis: Rudimentary value range analysis pass") Reviewed-by: Caio Marcelo de Oliveira Filho <caio.oliveira@intel.com> All Gen7+ platforms** had similar results. (Ice Lake shown) total instructions in shared programs: 16278465 -> 16279492 (<.01%) instructions in affected programs: 16765 -> 17792 (6.13%) helped: 0 HURT: 23 HURT stats (abs) min: 7 max: 275 x̄: 44.65 x̃: 8 HURT stats (rel) min: 1.15% max: 17.51% x̄: 4.23% x̃: 1.62% 95% mean confidence interval for instructions value: 9.57 79.74 95% mean confidence interval for instructions %-change: 1.85% 6.61% Instructions are HURT. total cycles in shared programs: 367135159 -> 367154270 (<.01%) cycles in affected programs: 279306 -> 298417 (6.84%) helped: 0 HURT: 23 HURT stats (abs) min: 13 max: 6029 x̄: 830.91 x̃: 54 HURT stats (rel) min: 0.17% max: 45.67% x̄: 7.33% x̃: 0.49% 95% mean confidence interval for cycles value: 100.89 1560.94 95% mean confidence interval for cycles %-change: 0.94% 13.71% Cycles are HURT. total spills in shared programs: 8870 -> 8869 (-0.01%) spills in affected programs: 19 -> 18 (-5.26%) helped: 1 HURT: 0 total fills in shared programs: 21904 -> 21901 (-0.01%) fills in affected programs: 81 -> 78 (-3.70%) helped: 1 HURT: 0 LOST: 0 GAINED: 1 ** On Broadwell, a shader was hurt for spills / fills instead of helped. No changes on any earlier platforms.
2019-08-09 10:55:49 -07:00
* | gt_zero * gt_zero
* | lt_zero * lt_zero
* ;
*
* le_zero: ge_zero * le_zero
* | ge_zero * lt_zero
* | lt_zero * ge_zero # Multiplication is commutative
* | le_zero * ge_zero # Multiplication is commutative
* | le_zero * gt_zero
nir/range-analysis: Adjust result range of multiplication to account for flush-to-zero Fixes piglit tests (new in piglit!110): - fs-underflow-fma-compare-zero.shader_test - fs-underflow-mul-compare-zero.shader_test v2: Add back part of comment accidentally deleted. Noticed by Caio. Remove is_not_zero function as it is no longer used. Bugzilla: https://bugs.freedesktop.org/show_bug.cgi?id=111308 Fixes: fa116ce357b ("nir/range-analysis: Range tracking for ffma and flrp") Fixes: 405de7ccb6c ("nir/range-analysis: Rudimentary value range analysis pass") Reviewed-by: Caio Marcelo de Oliveira Filho <caio.oliveira@intel.com> All Gen7+ platforms** had similar results. (Ice Lake shown) total instructions in shared programs: 16278465 -> 16279492 (<.01%) instructions in affected programs: 16765 -> 17792 (6.13%) helped: 0 HURT: 23 HURT stats (abs) min: 7 max: 275 x̄: 44.65 x̃: 8 HURT stats (rel) min: 1.15% max: 17.51% x̄: 4.23% x̃: 1.62% 95% mean confidence interval for instructions value: 9.57 79.74 95% mean confidence interval for instructions %-change: 1.85% 6.61% Instructions are HURT. total cycles in shared programs: 367135159 -> 367154270 (<.01%) cycles in affected programs: 279306 -> 298417 (6.84%) helped: 0 HURT: 23 HURT stats (abs) min: 13 max: 6029 x̄: 830.91 x̃: 54 HURT stats (rel) min: 0.17% max: 45.67% x̄: 7.33% x̃: 0.49% 95% mean confidence interval for cycles value: 100.89 1560.94 95% mean confidence interval for cycles %-change: 0.94% 13.71% Cycles are HURT. total spills in shared programs: 8870 -> 8869 (-0.01%) spills in affected programs: 19 -> 18 (-5.26%) helped: 1 HURT: 0 total fills in shared programs: 21904 -> 21901 (-0.01%) fills in affected programs: 81 -> 78 (-3.70%) helped: 1 HURT: 0 LOST: 0 GAINED: 1 ** On Broadwell, a shader was hurt for spills / fills instead of helped. No changes on any earlier platforms.
2019-08-09 10:55:49 -07:00
* | lt_zero * gt_zero
* | gt_zero * lt_zero # Multiplication is commutative
* ;
*
* eq_zero: eq_zero * <any>
* <any> * eq_zero # Multiplication is commutative
*
* All other cases are 'unknown'.
*/
static const enum ssa_ranges fmul_table[last_range + 1][last_range + 1] = {
/* left\right unknown lt_zero le_zero gt_zero ge_zero ne_zero eq_zero */
/* unknown */ { _______, _______, _______, _______, _______, _______, eq_zero },
nir/range-analysis: Adjust result range of multiplication to account for flush-to-zero Fixes piglit tests (new in piglit!110): - fs-underflow-fma-compare-zero.shader_test - fs-underflow-mul-compare-zero.shader_test v2: Add back part of comment accidentally deleted. Noticed by Caio. Remove is_not_zero function as it is no longer used. Bugzilla: https://bugs.freedesktop.org/show_bug.cgi?id=111308 Fixes: fa116ce357b ("nir/range-analysis: Range tracking for ffma and flrp") Fixes: 405de7ccb6c ("nir/range-analysis: Rudimentary value range analysis pass") Reviewed-by: Caio Marcelo de Oliveira Filho <caio.oliveira@intel.com> All Gen7+ platforms** had similar results. (Ice Lake shown) total instructions in shared programs: 16278465 -> 16279492 (<.01%) instructions in affected programs: 16765 -> 17792 (6.13%) helped: 0 HURT: 23 HURT stats (abs) min: 7 max: 275 x̄: 44.65 x̃: 8 HURT stats (rel) min: 1.15% max: 17.51% x̄: 4.23% x̃: 1.62% 95% mean confidence interval for instructions value: 9.57 79.74 95% mean confidence interval for instructions %-change: 1.85% 6.61% Instructions are HURT. total cycles in shared programs: 367135159 -> 367154270 (<.01%) cycles in affected programs: 279306 -> 298417 (6.84%) helped: 0 HURT: 23 HURT stats (abs) min: 13 max: 6029 x̄: 830.91 x̃: 54 HURT stats (rel) min: 0.17% max: 45.67% x̄: 7.33% x̃: 0.49% 95% mean confidence interval for cycles value: 100.89 1560.94 95% mean confidence interval for cycles %-change: 0.94% 13.71% Cycles are HURT. total spills in shared programs: 8870 -> 8869 (-0.01%) spills in affected programs: 19 -> 18 (-5.26%) helped: 1 HURT: 0 total fills in shared programs: 21904 -> 21901 (-0.01%) fills in affected programs: 81 -> 78 (-3.70%) helped: 1 HURT: 0 LOST: 0 GAINED: 1 ** On Broadwell, a shader was hurt for spills / fills instead of helped. No changes on any earlier platforms.
2019-08-09 10:55:49 -07:00
/* lt_zero */ { _______, ge_zero, ge_zero, le_zero, le_zero, _______, eq_zero },
/* le_zero */ { _______, ge_zero, ge_zero, le_zero, le_zero, _______, eq_zero },
nir/range-analysis: Adjust result range of multiplication to account for flush-to-zero Fixes piglit tests (new in piglit!110): - fs-underflow-fma-compare-zero.shader_test - fs-underflow-mul-compare-zero.shader_test v2: Add back part of comment accidentally deleted. Noticed by Caio. Remove is_not_zero function as it is no longer used. Bugzilla: https://bugs.freedesktop.org/show_bug.cgi?id=111308 Fixes: fa116ce357b ("nir/range-analysis: Range tracking for ffma and flrp") Fixes: 405de7ccb6c ("nir/range-analysis: Rudimentary value range analysis pass") Reviewed-by: Caio Marcelo de Oliveira Filho <caio.oliveira@intel.com> All Gen7+ platforms** had similar results. (Ice Lake shown) total instructions in shared programs: 16278465 -> 16279492 (<.01%) instructions in affected programs: 16765 -> 17792 (6.13%) helped: 0 HURT: 23 HURT stats (abs) min: 7 max: 275 x̄: 44.65 x̃: 8 HURT stats (rel) min: 1.15% max: 17.51% x̄: 4.23% x̃: 1.62% 95% mean confidence interval for instructions value: 9.57 79.74 95% mean confidence interval for instructions %-change: 1.85% 6.61% Instructions are HURT. total cycles in shared programs: 367135159 -> 367154270 (<.01%) cycles in affected programs: 279306 -> 298417 (6.84%) helped: 0 HURT: 23 HURT stats (abs) min: 13 max: 6029 x̄: 830.91 x̃: 54 HURT stats (rel) min: 0.17% max: 45.67% x̄: 7.33% x̃: 0.49% 95% mean confidence interval for cycles value: 100.89 1560.94 95% mean confidence interval for cycles %-change: 0.94% 13.71% Cycles are HURT. total spills in shared programs: 8870 -> 8869 (-0.01%) spills in affected programs: 19 -> 18 (-5.26%) helped: 1 HURT: 0 total fills in shared programs: 21904 -> 21901 (-0.01%) fills in affected programs: 81 -> 78 (-3.70%) helped: 1 HURT: 0 LOST: 0 GAINED: 1 ** On Broadwell, a shader was hurt for spills / fills instead of helped. No changes on any earlier platforms.
2019-08-09 10:55:49 -07:00
/* gt_zero */ { _______, le_zero, le_zero, ge_zero, ge_zero, _______, eq_zero },
/* ge_zero */ { _______, le_zero, le_zero, ge_zero, ge_zero, _______, eq_zero },
nir/range-analysis: Adjust result range of multiplication to account for flush-to-zero Fixes piglit tests (new in piglit!110): - fs-underflow-fma-compare-zero.shader_test - fs-underflow-mul-compare-zero.shader_test v2: Add back part of comment accidentally deleted. Noticed by Caio. Remove is_not_zero function as it is no longer used. Bugzilla: https://bugs.freedesktop.org/show_bug.cgi?id=111308 Fixes: fa116ce357b ("nir/range-analysis: Range tracking for ffma and flrp") Fixes: 405de7ccb6c ("nir/range-analysis: Rudimentary value range analysis pass") Reviewed-by: Caio Marcelo de Oliveira Filho <caio.oliveira@intel.com> All Gen7+ platforms** had similar results. (Ice Lake shown) total instructions in shared programs: 16278465 -> 16279492 (<.01%) instructions in affected programs: 16765 -> 17792 (6.13%) helped: 0 HURT: 23 HURT stats (abs) min: 7 max: 275 x̄: 44.65 x̃: 8 HURT stats (rel) min: 1.15% max: 17.51% x̄: 4.23% x̃: 1.62% 95% mean confidence interval for instructions value: 9.57 79.74 95% mean confidence interval for instructions %-change: 1.85% 6.61% Instructions are HURT. total cycles in shared programs: 367135159 -> 367154270 (<.01%) cycles in affected programs: 279306 -> 298417 (6.84%) helped: 0 HURT: 23 HURT stats (abs) min: 13 max: 6029 x̄: 830.91 x̃: 54 HURT stats (rel) min: 0.17% max: 45.67% x̄: 7.33% x̃: 0.49% 95% mean confidence interval for cycles value: 100.89 1560.94 95% mean confidence interval for cycles %-change: 0.94% 13.71% Cycles are HURT. total spills in shared programs: 8870 -> 8869 (-0.01%) spills in affected programs: 19 -> 18 (-5.26%) helped: 1 HURT: 0 total fills in shared programs: 21904 -> 21901 (-0.01%) fills in affected programs: 81 -> 78 (-3.70%) helped: 1 HURT: 0 LOST: 0 GAINED: 1 ** On Broadwell, a shader was hurt for spills / fills instead of helped. No changes on any earlier platforms.
2019-08-09 10:55:49 -07:00
/* ne_zero */ { _______, _______, _______, _______, _______, _______, eq_zero },
/* eq_zero */ { eq_zero, eq_zero, eq_zero, eq_zero, eq_zero, eq_zero, eq_zero }
};
ASSERT_TABLE_IS_COMMUTATIVE(fmul_table);
ASSERT_UNION_OF_DISJOINT_MATCHES_UNKNOWN_2_SOURCE(fmul_table);
ASSERT_UNION_OF_EQ_AND_STRICT_INEQ_MATCHES_NONSTRICT_2_SOURCE(fmul_table);
static const enum ssa_ranges fneg_table[last_range + 1] = {
/* unknown lt_zero le_zero gt_zero ge_zero ne_zero eq_zero */
_______, gt_zero, ge_zero, lt_zero, le_zero, ne_zero, eq_zero
};
ASSERT_UNION_OF_DISJOINT_MATCHES_UNKNOWN_1_SOURCE(fneg_table);
ASSERT_UNION_OF_EQ_AND_STRICT_INEQ_MATCHES_NONSTRICT_1_SOURCE(fneg_table);
switch (alu->op) {
case nir_op_b2f32:
case nir_op_b2i32:
/* b2f32 will generate either 0.0 or 1.0. This case is trivial.
*
* b2i32 will generate either 0x00000000 or 0x00000001. When those bit
* patterns are interpreted as floating point, they are 0.0 and
* 1.401298464324817e-45. The latter is subnormal, but it is finite and
* a number.
*/
r = (struct ssa_result_range){ ge_zero, alu->op == nir_op_b2f32, true, true };
break;
case nir_op_bcsel: {
const struct ssa_result_range left = unpack_data(src_res[0]);
const struct ssa_result_range right = unpack_data(src_res[1]);
r.is_integral = left.is_integral && right.is_integral;
/* This could be better, but it would require a lot of work. For
* example, the result of the following is a number:
*
* bcsel(a > 0.0, a, 38.6)
*
* If the result of 'a > 0.0' is true, then the use of 'a' in the true
* part of the bcsel must be a number.
*
* Other cases are even more challenging.
*
* bcsel(a > 0.5, a - 0.5, 0.0)
*/
r.is_a_number = left.is_a_number && right.is_a_number;
r.is_finite = left.is_finite && right.is_finite;
r.range = union_ranges(left.range, right.range);
break;
}
case nir_op_i2f32:
case nir_op_u2f32:
r = unpack_data(src_res[0]);
r.is_integral = true;
r.is_a_number = true;
r.is_finite = true;
if (r.range == unknown && alu->op == nir_op_u2f32)
r.range = ge_zero;
break;
case nir_op_fabs:
r = unpack_data(src_res[0]);
switch (r.range) {
case unknown:
case le_zero:
case ge_zero:
r.range = ge_zero;
break;
case lt_zero:
case gt_zero:
case ne_zero:
r.range = gt_zero;
break;
case eq_zero:
break;
}
break;
case nir_op_fadd: {
const struct ssa_result_range left = unpack_data(src_res[0]);
const struct ssa_result_range right = unpack_data(src_res[1]);
r.is_integral = left.is_integral && right.is_integral;
r.range = fadd_table[left.range][right.range];
/* X + Y is NaN if either operand is NaN or if one operand is +Inf and
* the other is -Inf. If neither operand is NaN and at least one of the
* operands is finite, then the result cannot be NaN.
*/
r.is_a_number = left.is_a_number && right.is_a_number &&
(left.is_finite || right.is_finite);
break;
}
nir/range-analysis: Adjust result range of exp2 to account for flush-to-zero Fixes piglit tests (new in piglit!110): - fs-underflow-exp2-compare-zero.shader_test Bugzilla: https://bugs.freedesktop.org/show_bug.cgi?id=111308 Fixes: 405de7ccb6c ("nir/range-analysis: Rudimentary value range analysis pass") Reviewed-by: Caio Marcelo de Oliveira Filho <caio.oliveira@intel.com> Most of the shaders affected are, unsurprisingly, in Unigine Heaven. All Gen6+ platforms had similar results. (Ice Lake shown) total instructions in shared programs: 16278207 -> 16278465 (<.01%) instructions in affected programs: 11374 -> 11632 (2.27%) helped: 0 HURT: 58 HURT stats (abs) min: 2 max: 13 x̄: 4.45 x̃: 4 HURT stats (rel) min: 0.54% max: 4.11% x̄: 2.42% x̃: 2.82% 95% mean confidence interval for instructions value: 3.77 5.13 95% mean confidence interval for instructions %-change: 2.19% 2.64% Instructions are HURT. total cycles in shared programs: 367134284 -> 367135159 (<.01%) cycles in affected programs: 81207 -> 82082 (1.08%) helped: 17 HURT: 36 helped stats (abs) min: 6 max: 356 x̄: 90.35 x̃: 6 helped stats (rel) min: 0.69% max: 21.45% x̄: 5.71% x̃: 0.78% HURT stats (abs) min: 4 max: 235 x̄: 66.97 x̃: 16 HURT stats (rel) min: 0.35% max: 27.58% x̄: 5.34% x̃: 1.09% 95% mean confidence interval for cycles value: -20.36 53.38 95% mean confidence interval for cycles %-change: -1.08% 4.67% Inconclusive result (value mean confidence interval includes 0). No changes on any earlier platforms.
2019-08-07 08:56:22 -07:00
case nir_op_fexp2: {
/* If the parameter might be less than zero, the mathematically result
* will be on (0, 1). For sufficiently large magnitude negative
* parameters, the result will flush to zero.
*/
static const enum ssa_ranges table[last_range + 1] = {
/* unknown lt_zero le_zero gt_zero ge_zero ne_zero eq_zero */
nir/range-analysis: Adjust result range of exp2 to account for flush-to-zero Fixes piglit tests (new in piglit!110): - fs-underflow-exp2-compare-zero.shader_test Bugzilla: https://bugs.freedesktop.org/show_bug.cgi?id=111308 Fixes: 405de7ccb6c ("nir/range-analysis: Rudimentary value range analysis pass") Reviewed-by: Caio Marcelo de Oliveira Filho <caio.oliveira@intel.com> Most of the shaders affected are, unsurprisingly, in Unigine Heaven. All Gen6+ platforms had similar results. (Ice Lake shown) total instructions in shared programs: 16278207 -> 16278465 (<.01%) instructions in affected programs: 11374 -> 11632 (2.27%) helped: 0 HURT: 58 HURT stats (abs) min: 2 max: 13 x̄: 4.45 x̃: 4 HURT stats (rel) min: 0.54% max: 4.11% x̄: 2.42% x̃: 2.82% 95% mean confidence interval for instructions value: 3.77 5.13 95% mean confidence interval for instructions %-change: 2.19% 2.64% Instructions are HURT. total cycles in shared programs: 367134284 -> 367135159 (<.01%) cycles in affected programs: 81207 -> 82082 (1.08%) helped: 17 HURT: 36 helped stats (abs) min: 6 max: 356 x̄: 90.35 x̃: 6 helped stats (rel) min: 0.69% max: 21.45% x̄: 5.71% x̃: 0.78% HURT stats (abs) min: 4 max: 235 x̄: 66.97 x̃: 16 HURT stats (rel) min: 0.35% max: 27.58% x̄: 5.34% x̃: 1.09% 95% mean confidence interval for cycles value: -20.36 53.38 95% mean confidence interval for cycles %-change: -1.08% 4.67% Inconclusive result (value mean confidence interval includes 0). No changes on any earlier platforms.
2019-08-07 08:56:22 -07:00
ge_zero, ge_zero, ge_zero, gt_zero, gt_zero, ge_zero, gt_zero
};
r = unpack_data(src_res[0]);
nir/range-analysis: Adjust result range of exp2 to account for flush-to-zero Fixes piglit tests (new in piglit!110): - fs-underflow-exp2-compare-zero.shader_test Bugzilla: https://bugs.freedesktop.org/show_bug.cgi?id=111308 Fixes: 405de7ccb6c ("nir/range-analysis: Rudimentary value range analysis pass") Reviewed-by: Caio Marcelo de Oliveira Filho <caio.oliveira@intel.com> Most of the shaders affected are, unsurprisingly, in Unigine Heaven. All Gen6+ platforms had similar results. (Ice Lake shown) total instructions in shared programs: 16278207 -> 16278465 (<.01%) instructions in affected programs: 11374 -> 11632 (2.27%) helped: 0 HURT: 58 HURT stats (abs) min: 2 max: 13 x̄: 4.45 x̃: 4 HURT stats (rel) min: 0.54% max: 4.11% x̄: 2.42% x̃: 2.82% 95% mean confidence interval for instructions value: 3.77 5.13 95% mean confidence interval for instructions %-change: 2.19% 2.64% Instructions are HURT. total cycles in shared programs: 367134284 -> 367135159 (<.01%) cycles in affected programs: 81207 -> 82082 (1.08%) helped: 17 HURT: 36 helped stats (abs) min: 6 max: 356 x̄: 90.35 x̃: 6 helped stats (rel) min: 0.69% max: 21.45% x̄: 5.71% x̃: 0.78% HURT stats (abs) min: 4 max: 235 x̄: 66.97 x̃: 16 HURT stats (rel) min: 0.35% max: 27.58% x̄: 5.34% x̃: 1.09% 95% mean confidence interval for cycles value: -20.36 53.38 95% mean confidence interval for cycles %-change: -1.08% 4.67% Inconclusive result (value mean confidence interval includes 0). No changes on any earlier platforms.
2019-08-07 08:56:22 -07:00
ASSERT_UNION_OF_DISJOINT_MATCHES_UNKNOWN_1_SOURCE(table);
ASSERT_UNION_OF_EQ_AND_STRICT_INEQ_MATCHES_NONSTRICT_1_SOURCE(table);
r.is_integral = r.is_integral && is_not_negative(r.range);
nir/range-analysis: Adjust result range of exp2 to account for flush-to-zero Fixes piglit tests (new in piglit!110): - fs-underflow-exp2-compare-zero.shader_test Bugzilla: https://bugs.freedesktop.org/show_bug.cgi?id=111308 Fixes: 405de7ccb6c ("nir/range-analysis: Rudimentary value range analysis pass") Reviewed-by: Caio Marcelo de Oliveira Filho <caio.oliveira@intel.com> Most of the shaders affected are, unsurprisingly, in Unigine Heaven. All Gen6+ platforms had similar results. (Ice Lake shown) total instructions in shared programs: 16278207 -> 16278465 (<.01%) instructions in affected programs: 11374 -> 11632 (2.27%) helped: 0 HURT: 58 HURT stats (abs) min: 2 max: 13 x̄: 4.45 x̃: 4 HURT stats (rel) min: 0.54% max: 4.11% x̄: 2.42% x̃: 2.82% 95% mean confidence interval for instructions value: 3.77 5.13 95% mean confidence interval for instructions %-change: 2.19% 2.64% Instructions are HURT. total cycles in shared programs: 367134284 -> 367135159 (<.01%) cycles in affected programs: 81207 -> 82082 (1.08%) helped: 17 HURT: 36 helped stats (abs) min: 6 max: 356 x̄: 90.35 x̃: 6 helped stats (rel) min: 0.69% max: 21.45% x̄: 5.71% x̃: 0.78% HURT stats (abs) min: 4 max: 235 x̄: 66.97 x̃: 16 HURT stats (rel) min: 0.35% max: 27.58% x̄: 5.34% x̃: 1.09% 95% mean confidence interval for cycles value: -20.36 53.38 95% mean confidence interval for cycles %-change: -1.08% 4.67% Inconclusive result (value mean confidence interval includes 0). No changes on any earlier platforms.
2019-08-07 08:56:22 -07:00
r.range = table[r.range];
/* Various cases can result in NaN, so assume the worst. */
r.is_finite = false;
r.is_a_number = false;
break;
nir/range-analysis: Adjust result range of exp2 to account for flush-to-zero Fixes piglit tests (new in piglit!110): - fs-underflow-exp2-compare-zero.shader_test Bugzilla: https://bugs.freedesktop.org/show_bug.cgi?id=111308 Fixes: 405de7ccb6c ("nir/range-analysis: Rudimentary value range analysis pass") Reviewed-by: Caio Marcelo de Oliveira Filho <caio.oliveira@intel.com> Most of the shaders affected are, unsurprisingly, in Unigine Heaven. All Gen6+ platforms had similar results. (Ice Lake shown) total instructions in shared programs: 16278207 -> 16278465 (<.01%) instructions in affected programs: 11374 -> 11632 (2.27%) helped: 0 HURT: 58 HURT stats (abs) min: 2 max: 13 x̄: 4.45 x̃: 4 HURT stats (rel) min: 0.54% max: 4.11% x̄: 2.42% x̃: 2.82% 95% mean confidence interval for instructions value: 3.77 5.13 95% mean confidence interval for instructions %-change: 2.19% 2.64% Instructions are HURT. total cycles in shared programs: 367134284 -> 367135159 (<.01%) cycles in affected programs: 81207 -> 82082 (1.08%) helped: 17 HURT: 36 helped stats (abs) min: 6 max: 356 x̄: 90.35 x̃: 6 helped stats (rel) min: 0.69% max: 21.45% x̄: 5.71% x̃: 0.78% HURT stats (abs) min: 4 max: 235 x̄: 66.97 x̃: 16 HURT stats (rel) min: 0.35% max: 27.58% x̄: 5.34% x̃: 1.09% 95% mean confidence interval for cycles value: -20.36 53.38 95% mean confidence interval for cycles %-change: -1.08% 4.67% Inconclusive result (value mean confidence interval includes 0). No changes on any earlier platforms.
2019-08-07 08:56:22 -07:00
}
case nir_op_fmax: {
const struct ssa_result_range left = unpack_data(src_res[0]);
const struct ssa_result_range right = unpack_data(src_res[1]);
r.is_integral = left.is_integral && right.is_integral;
/* This is conservative. It may be possible to determine that the
* result must be finite in more cases, but it would take some effort to
* work out all the corners. For example, fmax({lt_zero, finite},
* {lt_zero}) should result in {lt_zero, finite}.
*/
r.is_finite = left.is_finite && right.is_finite;
/* If one source is NaN, fmax always picks the other source. */
r.is_a_number = left.is_a_number || right.is_a_number;
/* gt_zero: fmax(gt_zero, *)
* | fmax(*, gt_zero) # Treat fmax as commutative
* ;
*
* ge_zero: fmax(ge_zero, ne_zero)
* | fmax(ge_zero, lt_zero)
* | fmax(ge_zero, le_zero)
* | fmax(ge_zero, eq_zero)
* | fmax(ne_zero, ge_zero) # Treat fmax as commutative
* | fmax(lt_zero, ge_zero) # Treat fmax as commutative
* | fmax(le_zero, ge_zero) # Treat fmax as commutative
* | fmax(eq_zero, ge_zero) # Treat fmax as commutative
* | fmax(ge_zero, ge_zero)
* ;
*
* le_zero: fmax(le_zero, lt_zero)
* | fmax(lt_zero, le_zero) # Treat fmax as commutative
* | fmax(le_zero, le_zero)
* ;
*
* lt_zero: fmax(lt_zero, lt_zero)
* ;
*
* ne_zero: fmax(ne_zero, lt_zero)
* | fmax(lt_zero, ne_zero) # Treat fmax as commutative
* | fmax(ne_zero, ne_zero)
* ;
*
* eq_zero: fmax(eq_zero, le_zero)
* | fmax(eq_zero, lt_zero)
* | fmax(le_zero, eq_zero) # Treat fmax as commutative
* | fmax(lt_zero, eq_zero) # Treat fmax as commutative
* | fmax(eq_zero, eq_zero)
* ;
*
* All other cases are 'unknown'.
*/
static const enum ssa_ranges table[last_range + 1][last_range + 1] = {
/* left\right unknown lt_zero le_zero gt_zero ge_zero ne_zero eq_zero */
/* unknown */ { _______, _______, _______, gt_zero, ge_zero, _______, _______ },
/* lt_zero */ { _______, lt_zero, le_zero, gt_zero, ge_zero, ne_zero, eq_zero },
/* le_zero */ { _______, le_zero, le_zero, gt_zero, ge_zero, _______, eq_zero },
/* gt_zero */ { gt_zero, gt_zero, gt_zero, gt_zero, gt_zero, gt_zero, gt_zero },
/* ge_zero */ { ge_zero, ge_zero, ge_zero, gt_zero, ge_zero, ge_zero, ge_zero },
/* ne_zero */ { _______, ne_zero, _______, gt_zero, ge_zero, ne_zero, _______ },
/* eq_zero */ { _______, eq_zero, eq_zero, gt_zero, ge_zero, _______, eq_zero }
};
/* Treat fmax as commutative. */
ASSERT_TABLE_IS_COMMUTATIVE(table);
ASSERT_TABLE_IS_DIAGONAL(table);
ASSERT_UNION_OF_OTHERS_MATCHES_UNKNOWN_2_SOURCE(table);
r.range = table[left.range][right.range];
nir/range_analysis: Fix analysis of fmin, fmax, or fsat with NaN source Recall that when either value is NaN, fmax will pick the other value. This means the result range of the fmax will either be the "ideal" result range (calculated above) or the range of the non-NaN value. Previously, something like fmax({gt_zero}, {lt_zero, is_a_number}) would return a range of gt_zero. However, if the "gt_zero" parameter is NaN, the actual result will be the "lt_zero" parameter. This analysis depends on the is_a_number analysis also added in this MR. Assuming this doesn't cause any unforeseen problems, I believe we should wait a bit, then nominate a subset of the series for the stable branches. This fixes the piglit tests tests/spec/glsl-1.30/execution/range_analysis_fmax_of_nan.shader_test tests/spec/glsl-1.30/execution/range_analysis_fmin_of_nan.shader_test from https://gitlab.freedesktop.org/mesa/piglit/-/merge_requests/463. Even with the added fsat fixes, range_analysis_fsat_of_nan.shader_test still fails. There are some other issues there that will be addressed in later commits (in another MR). v2: Add fsat fixes. Suggested by Rhys. Fixes: 405de7ccb6c ("nir/range-analysis: Rudimentary value range analysis pass") Reviewed-by: Rhys Perry <pendingchaos02@gmail.com> Shader-db results: All Intel platforms had similar results. (Tiger Lake shown) total instructions in shared programs: 21049290 -> 21049314 (<.01%) instructions in affected programs: 3175 -> 3199 (0.76%) helped: 0 HURT: 17 HURT stats (abs) min: 1 max: 3 x̄: 1.41 x̃: 1 HURT stats (rel) min: 0.20% max: 1.89% x̄: 0.97% x̃: 0.92% 95% mean confidence interval for instructions value: 1.09 1.73 95% mean confidence interval for instructions %-change: 0.75% 1.19% Instructions are HURT. total cycles in shared programs: 855136176 -> 855136406 (<.01%) cycles in affected programs: 37579 -> 37809 (0.61%) helped: 0 HURT: 17 HURT stats (abs) min: 12 max: 20 x̄: 13.53 x̃: 14 HURT stats (rel) min: 0.17% max: 1.13% x̄: 0.79% x̃: 0.91% 95% mean confidence interval for cycles value: 12.53 14.53 95% mean confidence interval for cycles %-change: 0.63% 0.94% Cycles are HURT. Fossil-db results: Tiger Lake Instructions in all programs: 160901033 -> 160902591 (+0.0%) SENDs in all programs: 6812270 -> 6812270 (+0.0%) Loops in all programs: 38225 -> 38225 (+0.0%) Cycles in all programs: 7430016795 -> 7429003266 (-0.0%) Spills in all programs: 192582 -> 192582 (+0.0%) Fills in all programs: 304539 -> 304539 (+0.0%) Ice Lake Instructions in all programs: 145299102 -> 145301634 (+0.0%) SENDs in all programs: 6863890 -> 6863890 (+0.0%) Loops in all programs: 38219 -> 38219 (+0.0%) Cycles in all programs: 8798390846 -> 8798589772 (+0.0%) Spills in all programs: 216880 -> 216880 (+0.0%) Fills in all programs: 334250 -> 334250 (+0.0%) Skylake Instructions in all programs: 135889478 -> 135892010 (+0.0%) SENDs in all programs: 6802916 -> 6802916 (+0.0%) Loops in all programs: 38216 -> 38216 (+0.0%) Cycles in all programs: 8442624166 -> 8442597324 (-0.0%) Spills in all programs: 194839 -> 194839 (+0.0%) Fills in all programs: 301116 -> 301116 (+0.0%) Part-of: <https://gitlab.freedesktop.org/mesa/mesa/-/merge_requests/9108>
2021-01-27 19:42:44 -08:00
/* Recall that when either value is NaN, fmax will pick the other value.
* This means the result range of the fmax will either be the "ideal"
* result range (calculated above) or the range of the non-NaN value.
*/
if (!left.is_a_number)
r.range = union_ranges(r.range, right.range);
if (!right.is_a_number)
r.range = union_ranges(r.range, left.range);
break;
}
case nir_op_fmin: {
const struct ssa_result_range left = unpack_data(src_res[0]);
const struct ssa_result_range right = unpack_data(src_res[1]);
r.is_integral = left.is_integral && right.is_integral;
/* This is conservative. It may be possible to determine that the
* result must be finite in more cases, but it would take some effort to
* work out all the corners. For example, fmin({gt_zero, finite},
* {gt_zero}) should result in {gt_zero, finite}.
*/
r.is_finite = left.is_finite && right.is_finite;
/* If one source is NaN, fmin always picks the other source. */
r.is_a_number = left.is_a_number || right.is_a_number;
/* lt_zero: fmin(lt_zero, *)
* | fmin(*, lt_zero) # Treat fmin as commutative
* ;
*
* le_zero: fmin(le_zero, ne_zero)
* | fmin(le_zero, gt_zero)
* | fmin(le_zero, ge_zero)
* | fmin(le_zero, eq_zero)
* | fmin(ne_zero, le_zero) # Treat fmin as commutative
* | fmin(gt_zero, le_zero) # Treat fmin as commutative
* | fmin(ge_zero, le_zero) # Treat fmin as commutative
* | fmin(eq_zero, le_zero) # Treat fmin as commutative
* | fmin(le_zero, le_zero)
* ;
*
* ge_zero: fmin(ge_zero, gt_zero)
* | fmin(gt_zero, ge_zero) # Treat fmin as commutative
* | fmin(ge_zero, ge_zero)
* ;
*
* gt_zero: fmin(gt_zero, gt_zero)
* ;
*
* ne_zero: fmin(ne_zero, gt_zero)
* | fmin(gt_zero, ne_zero) # Treat fmin as commutative
* | fmin(ne_zero, ne_zero)
* ;
*
* eq_zero: fmin(eq_zero, ge_zero)
* | fmin(eq_zero, gt_zero)
* | fmin(ge_zero, eq_zero) # Treat fmin as commutative
* | fmin(gt_zero, eq_zero) # Treat fmin as commutative
* | fmin(eq_zero, eq_zero)
* ;
*
* All other cases are 'unknown'.
*/
static const enum ssa_ranges table[last_range + 1][last_range + 1] = {
/* left\right unknown lt_zero le_zero gt_zero ge_zero ne_zero eq_zero */
/* unknown */ { _______, lt_zero, le_zero, _______, _______, _______, _______ },
/* lt_zero */ { lt_zero, lt_zero, lt_zero, lt_zero, lt_zero, lt_zero, lt_zero },
/* le_zero */ { le_zero, lt_zero, le_zero, le_zero, le_zero, le_zero, le_zero },
/* gt_zero */ { _______, lt_zero, le_zero, gt_zero, ge_zero, ne_zero, eq_zero },
/* ge_zero */ { _______, lt_zero, le_zero, ge_zero, ge_zero, _______, eq_zero },
/* ne_zero */ { _______, lt_zero, le_zero, ne_zero, _______, ne_zero, _______ },
/* eq_zero */ { _______, lt_zero, le_zero, eq_zero, eq_zero, _______, eq_zero }
};
/* Treat fmin as commutative. */
ASSERT_TABLE_IS_COMMUTATIVE(table);
ASSERT_TABLE_IS_DIAGONAL(table);
ASSERT_UNION_OF_OTHERS_MATCHES_UNKNOWN_2_SOURCE(table);
r.range = table[left.range][right.range];
nir/range_analysis: Fix analysis of fmin, fmax, or fsat with NaN source Recall that when either value is NaN, fmax will pick the other value. This means the result range of the fmax will either be the "ideal" result range (calculated above) or the range of the non-NaN value. Previously, something like fmax({gt_zero}, {lt_zero, is_a_number}) would return a range of gt_zero. However, if the "gt_zero" parameter is NaN, the actual result will be the "lt_zero" parameter. This analysis depends on the is_a_number analysis also added in this MR. Assuming this doesn't cause any unforeseen problems, I believe we should wait a bit, then nominate a subset of the series for the stable branches. This fixes the piglit tests tests/spec/glsl-1.30/execution/range_analysis_fmax_of_nan.shader_test tests/spec/glsl-1.30/execution/range_analysis_fmin_of_nan.shader_test from https://gitlab.freedesktop.org/mesa/piglit/-/merge_requests/463. Even with the added fsat fixes, range_analysis_fsat_of_nan.shader_test still fails. There are some other issues there that will be addressed in later commits (in another MR). v2: Add fsat fixes. Suggested by Rhys. Fixes: 405de7ccb6c ("nir/range-analysis: Rudimentary value range analysis pass") Reviewed-by: Rhys Perry <pendingchaos02@gmail.com> Shader-db results: All Intel platforms had similar results. (Tiger Lake shown) total instructions in shared programs: 21049290 -> 21049314 (<.01%) instructions in affected programs: 3175 -> 3199 (0.76%) helped: 0 HURT: 17 HURT stats (abs) min: 1 max: 3 x̄: 1.41 x̃: 1 HURT stats (rel) min: 0.20% max: 1.89% x̄: 0.97% x̃: 0.92% 95% mean confidence interval for instructions value: 1.09 1.73 95% mean confidence interval for instructions %-change: 0.75% 1.19% Instructions are HURT. total cycles in shared programs: 855136176 -> 855136406 (<.01%) cycles in affected programs: 37579 -> 37809 (0.61%) helped: 0 HURT: 17 HURT stats (abs) min: 12 max: 20 x̄: 13.53 x̃: 14 HURT stats (rel) min: 0.17% max: 1.13% x̄: 0.79% x̃: 0.91% 95% mean confidence interval for cycles value: 12.53 14.53 95% mean confidence interval for cycles %-change: 0.63% 0.94% Cycles are HURT. Fossil-db results: Tiger Lake Instructions in all programs: 160901033 -> 160902591 (+0.0%) SENDs in all programs: 6812270 -> 6812270 (+0.0%) Loops in all programs: 38225 -> 38225 (+0.0%) Cycles in all programs: 7430016795 -> 7429003266 (-0.0%) Spills in all programs: 192582 -> 192582 (+0.0%) Fills in all programs: 304539 -> 304539 (+0.0%) Ice Lake Instructions in all programs: 145299102 -> 145301634 (+0.0%) SENDs in all programs: 6863890 -> 6863890 (+0.0%) Loops in all programs: 38219 -> 38219 (+0.0%) Cycles in all programs: 8798390846 -> 8798589772 (+0.0%) Spills in all programs: 216880 -> 216880 (+0.0%) Fills in all programs: 334250 -> 334250 (+0.0%) Skylake Instructions in all programs: 135889478 -> 135892010 (+0.0%) SENDs in all programs: 6802916 -> 6802916 (+0.0%) Loops in all programs: 38216 -> 38216 (+0.0%) Cycles in all programs: 8442624166 -> 8442597324 (-0.0%) Spills in all programs: 194839 -> 194839 (+0.0%) Fills in all programs: 301116 -> 301116 (+0.0%) Part-of: <https://gitlab.freedesktop.org/mesa/mesa/-/merge_requests/9108>
2021-01-27 19:42:44 -08:00
/* Recall that when either value is NaN, fmin will pick the other value.
* This means the result range of the fmin will either be the "ideal"
* result range (calculated above) or the range of the non-NaN value.
*/
if (!left.is_a_number)
r.range = union_ranges(r.range, right.range);
if (!right.is_a_number)
r.range = union_ranges(r.range, left.range);
break;
}
case nir_op_fmul:
case nir_op_fmulz: {
const struct ssa_result_range left = unpack_data(src_res[0]);
const struct ssa_result_range right = unpack_data(src_res[1]);
r.is_integral = left.is_integral && right.is_integral;
/* x * x => ge_zero */
if (left.range != eq_zero && nir_alu_srcs_equal(alu, alu, 0, 1)) {
nir/range-analysis: Adjust result range of multiplication to account for flush-to-zero Fixes piglit tests (new in piglit!110): - fs-underflow-fma-compare-zero.shader_test - fs-underflow-mul-compare-zero.shader_test v2: Add back part of comment accidentally deleted. Noticed by Caio. Remove is_not_zero function as it is no longer used. Bugzilla: https://bugs.freedesktop.org/show_bug.cgi?id=111308 Fixes: fa116ce357b ("nir/range-analysis: Range tracking for ffma and flrp") Fixes: 405de7ccb6c ("nir/range-analysis: Rudimentary value range analysis pass") Reviewed-by: Caio Marcelo de Oliveira Filho <caio.oliveira@intel.com> All Gen7+ platforms** had similar results. (Ice Lake shown) total instructions in shared programs: 16278465 -> 16279492 (<.01%) instructions in affected programs: 16765 -> 17792 (6.13%) helped: 0 HURT: 23 HURT stats (abs) min: 7 max: 275 x̄: 44.65 x̃: 8 HURT stats (rel) min: 1.15% max: 17.51% x̄: 4.23% x̃: 1.62% 95% mean confidence interval for instructions value: 9.57 79.74 95% mean confidence interval for instructions %-change: 1.85% 6.61% Instructions are HURT. total cycles in shared programs: 367135159 -> 367154270 (<.01%) cycles in affected programs: 279306 -> 298417 (6.84%) helped: 0 HURT: 23 HURT stats (abs) min: 13 max: 6029 x̄: 830.91 x̃: 54 HURT stats (rel) min: 0.17% max: 45.67% x̄: 7.33% x̃: 0.49% 95% mean confidence interval for cycles value: 100.89 1560.94 95% mean confidence interval for cycles %-change: 0.94% 13.71% Cycles are HURT. total spills in shared programs: 8870 -> 8869 (-0.01%) spills in affected programs: 19 -> 18 (-5.26%) helped: 1 HURT: 0 total fills in shared programs: 21904 -> 21901 (-0.01%) fills in affected programs: 81 -> 78 (-3.70%) helped: 1 HURT: 0 LOST: 0 GAINED: 1 ** On Broadwell, a shader was hurt for spills / fills instead of helped. No changes on any earlier platforms.
2019-08-09 10:55:49 -07:00
/* Even if x > 0, the result of x*x can be zero when x is, for
* example, a subnormal number.
*/
r.range = ge_zero;
} else if (left.range != eq_zero && nir_alu_srcs_negative_equal(alu, alu, 0, 1)) {
nir/range-analysis: Adjust result range of multiplication to account for flush-to-zero Fixes piglit tests (new in piglit!110): - fs-underflow-fma-compare-zero.shader_test - fs-underflow-mul-compare-zero.shader_test v2: Add back part of comment accidentally deleted. Noticed by Caio. Remove is_not_zero function as it is no longer used. Bugzilla: https://bugs.freedesktop.org/show_bug.cgi?id=111308 Fixes: fa116ce357b ("nir/range-analysis: Range tracking for ffma and flrp") Fixes: 405de7ccb6c ("nir/range-analysis: Rudimentary value range analysis pass") Reviewed-by: Caio Marcelo de Oliveira Filho <caio.oliveira@intel.com> All Gen7+ platforms** had similar results. (Ice Lake shown) total instructions in shared programs: 16278465 -> 16279492 (<.01%) instructions in affected programs: 16765 -> 17792 (6.13%) helped: 0 HURT: 23 HURT stats (abs) min: 7 max: 275 x̄: 44.65 x̃: 8 HURT stats (rel) min: 1.15% max: 17.51% x̄: 4.23% x̃: 1.62% 95% mean confidence interval for instructions value: 9.57 79.74 95% mean confidence interval for instructions %-change: 1.85% 6.61% Instructions are HURT. total cycles in shared programs: 367135159 -> 367154270 (<.01%) cycles in affected programs: 279306 -> 298417 (6.84%) helped: 0 HURT: 23 HURT stats (abs) min: 13 max: 6029 x̄: 830.91 x̃: 54 HURT stats (rel) min: 0.17% max: 45.67% x̄: 7.33% x̃: 0.49% 95% mean confidence interval for cycles value: 100.89 1560.94 95% mean confidence interval for cycles %-change: 0.94% 13.71% Cycles are HURT. total spills in shared programs: 8870 -> 8869 (-0.01%) spills in affected programs: 19 -> 18 (-5.26%) helped: 1 HURT: 0 total fills in shared programs: 21904 -> 21901 (-0.01%) fills in affected programs: 81 -> 78 (-3.70%) helped: 1 HURT: 0 LOST: 0 GAINED: 1 ** On Broadwell, a shader was hurt for spills / fills instead of helped. No changes on any earlier platforms.
2019-08-09 10:55:49 -07:00
/* -x * x => le_zero. */
r.range = le_zero;
} else
r.range = fmul_table[left.range][right.range];
if (alu->op == nir_op_fmul) {
/* Mulitpliation produces NaN for X * NaN and for 0 * ±Inf. If both
* operands are numbers and either both are finite or one is finite and
* the other cannot be zero, then the result must be a number.
*/
r.is_a_number = (left.is_a_number && right.is_a_number) &&
((left.is_finite && right.is_finite) ||
(!is_not_zero(left.range) && right.is_finite) ||
(left.is_finite && !is_not_zero(right.range)));
} else {
/* nir_op_fmulz: unlike nir_op_fmul, 0 * ±Inf is a number. */
r.is_a_number = left.is_a_number && right.is_a_number;
}
break;
}
case nir_op_frcp:
r = (struct ssa_result_range){
unpack_data(src_res[0]).range,
false,
false, /* Various cases can result in NaN, so assume the worst. */
false /* " " " " " " " " " " */
};
break;
nir/range-analysis: Use types to provide better ranges from bcsel and mov Reviewed-by: Caio Marcelo de Oliveira Filho <caio.oliveira@intel.com> All Gen7+ platforms had similar results. (Ice Lake shown) total instructions in shared programs: 16328255 -> 16315391 (-0.08%) instructions in affected programs: 218318 -> 205454 (-5.89%) helped: 988 HURT: 0 helped stats (abs) min: 1 max: 72 x̄: 13.02 x̃: 10 helped stats (rel) min: 0.33% max: 16.04% x̄: 6.27% x̃: 4.88% 95% mean confidence interval for instructions value: -13.69 -12.35 95% mean confidence interval for instructions %-change: -6.55% -5.99% Instructions are helped. total cycles in shared programs: 363683977 -> 363615417 (-0.02%) cycles in affected programs: 1475193 -> 1406633 (-4.65%) helped: 923 HURT: 36 helped stats (abs) min: 1 max: 624 x̄: 75.78 x̃: 48 helped stats (rel) min: 0.08% max: 13.89% x̄: 5.20% x̃: 5.08% HURT stats (abs) min: 1 max: 179 x̄: 38.58 x̃: 4 HURT stats (rel) min: 0.06% max: 16.56% x̄: 3.33% x̃: 0.29% 95% mean confidence interval for cycles value: -75.88 -67.10 95% mean confidence interval for cycles %-change: -5.10% -4.66% Cycles are helped. Sandy Bridge total instructions in shared programs: 10785779 -> 10785654 (<.01%) instructions in affected programs: 13855 -> 13730 (-0.90%) helped: 67 HURT: 0 helped stats (abs) min: 1 max: 15 x̄: 1.87 x̃: 1 helped stats (rel) min: 0.20% max: 3.45% x̄: 0.97% x̃: 0.78% 95% mean confidence interval for instructions value: -2.47 -1.26 95% mean confidence interval for instructions %-change: -1.13% -0.81% Instructions are helped. total cycles in shared programs: 153704799 -> 153704481 (<.01%) cycles in affected programs: 101509 -> 101191 (-0.31%) helped: 38 HURT: 13 helped stats (abs) min: 1 max: 38 x̄: 12.53 x̃: 16 helped stats (rel) min: 0.07% max: 2.69% x̄: 0.87% x̃: 0.53% HURT stats (abs) min: 1 max: 36 x̄: 12.15 x̃: 7 HURT stats (rel) min: 0.06% max: 2.53% x̄: 0.73% x̃: 0.44% 95% mean confidence interval for cycles value: -10.24 -2.24 95% mean confidence interval for cycles %-change: -0.75% -0.17% Cycles are helped. LOST: 2 GAINED: 0 No shader-db change on Iron Lake or GM45.
2019-08-12 17:28:35 -07:00
case nir_op_mov:
r = unpack_data(src_res[0]);
break;
case nir_op_fneg:
r = unpack_data(src_res[0]);
r.range = fneg_table[r.range];
break;
case nir_op_fsat: {
const struct ssa_result_range left = unpack_data(src_res[0]);
/* fsat(NaN) = 0. */
r.is_a_number = true;
r.is_finite = true;
switch (left.range) {
case le_zero:
case lt_zero:
case eq_zero:
r.range = eq_zero;
r.is_integral = true;
break;
case gt_zero:
nir/range_analysis: Fix analysis of fmin, fmax, or fsat with NaN source Recall that when either value is NaN, fmax will pick the other value. This means the result range of the fmax will either be the "ideal" result range (calculated above) or the range of the non-NaN value. Previously, something like fmax({gt_zero}, {lt_zero, is_a_number}) would return a range of gt_zero. However, if the "gt_zero" parameter is NaN, the actual result will be the "lt_zero" parameter. This analysis depends on the is_a_number analysis also added in this MR. Assuming this doesn't cause any unforeseen problems, I believe we should wait a bit, then nominate a subset of the series for the stable branches. This fixes the piglit tests tests/spec/glsl-1.30/execution/range_analysis_fmax_of_nan.shader_test tests/spec/glsl-1.30/execution/range_analysis_fmin_of_nan.shader_test from https://gitlab.freedesktop.org/mesa/piglit/-/merge_requests/463. Even with the added fsat fixes, range_analysis_fsat_of_nan.shader_test still fails. There are some other issues there that will be addressed in later commits (in another MR). v2: Add fsat fixes. Suggested by Rhys. Fixes: 405de7ccb6c ("nir/range-analysis: Rudimentary value range analysis pass") Reviewed-by: Rhys Perry <pendingchaos02@gmail.com> Shader-db results: All Intel platforms had similar results. (Tiger Lake shown) total instructions in shared programs: 21049290 -> 21049314 (<.01%) instructions in affected programs: 3175 -> 3199 (0.76%) helped: 0 HURT: 17 HURT stats (abs) min: 1 max: 3 x̄: 1.41 x̃: 1 HURT stats (rel) min: 0.20% max: 1.89% x̄: 0.97% x̃: 0.92% 95% mean confidence interval for instructions value: 1.09 1.73 95% mean confidence interval for instructions %-change: 0.75% 1.19% Instructions are HURT. total cycles in shared programs: 855136176 -> 855136406 (<.01%) cycles in affected programs: 37579 -> 37809 (0.61%) helped: 0 HURT: 17 HURT stats (abs) min: 12 max: 20 x̄: 13.53 x̃: 14 HURT stats (rel) min: 0.17% max: 1.13% x̄: 0.79% x̃: 0.91% 95% mean confidence interval for cycles value: 12.53 14.53 95% mean confidence interval for cycles %-change: 0.63% 0.94% Cycles are HURT. Fossil-db results: Tiger Lake Instructions in all programs: 160901033 -> 160902591 (+0.0%) SENDs in all programs: 6812270 -> 6812270 (+0.0%) Loops in all programs: 38225 -> 38225 (+0.0%) Cycles in all programs: 7430016795 -> 7429003266 (-0.0%) Spills in all programs: 192582 -> 192582 (+0.0%) Fills in all programs: 304539 -> 304539 (+0.0%) Ice Lake Instructions in all programs: 145299102 -> 145301634 (+0.0%) SENDs in all programs: 6863890 -> 6863890 (+0.0%) Loops in all programs: 38219 -> 38219 (+0.0%) Cycles in all programs: 8798390846 -> 8798589772 (+0.0%) Spills in all programs: 216880 -> 216880 (+0.0%) Fills in all programs: 334250 -> 334250 (+0.0%) Skylake Instructions in all programs: 135889478 -> 135892010 (+0.0%) SENDs in all programs: 6802916 -> 6802916 (+0.0%) Loops in all programs: 38216 -> 38216 (+0.0%) Cycles in all programs: 8442624166 -> 8442597324 (-0.0%) Spills in all programs: 194839 -> 194839 (+0.0%) Fills in all programs: 301116 -> 301116 (+0.0%) Part-of: <https://gitlab.freedesktop.org/mesa/mesa/-/merge_requests/9108>
2021-01-27 19:42:44 -08:00
/* fsat is equivalent to fmin(fmax(X, 0.0), 1.0), so if X is not a
* number, the result will be 0.
*/
r.range = left.is_a_number ? gt_zero : ge_zero;
r.is_integral = left.is_integral;
break;
case ge_zero:
case ne_zero:
case unknown:
/* Since the result must be in [0, 1], the value must be >= 0. */
r.range = ge_zero;
r.is_integral = left.is_integral;
break;
}
break;
}
case nir_op_fsign:
r = (struct ssa_result_range){
unpack_data(src_res[0]).range,
true,
true, /* fsign is -1, 0, or 1, even for NaN, so it must be a number. */
true /* fsign is -1, 0, or 1, even for NaN, so it must be finite. */
};
break;
case nir_op_fsqrt:
case nir_op_frsq:
r = (struct ssa_result_range){ ge_zero, false, false, false };
break;
case nir_op_ffloor: {
const struct ssa_result_range left = unpack_data(src_res[0]);
r.is_integral = true;
/* In IEEE 754, floor(NaN) is NaN, and floor(±Inf) is ±Inf. See
* https://pubs.opengroup.org/onlinepubs/9699919799.2016edition/functions/floor.html
*/
r.is_a_number = left.is_a_number;
r.is_finite = left.is_finite;
if (left.is_integral || left.range == le_zero || left.range == lt_zero)
r.range = left.range;
else if (left.range == ge_zero || left.range == gt_zero)
r.range = ge_zero;
else if (left.range == ne_zero)
r.range = unknown;
break;
}
case nir_op_fceil: {
const struct ssa_result_range left = unpack_data(src_res[0]);
r.is_integral = true;
/* In IEEE 754, ceil(NaN) is NaN, and ceil(±Inf) is ±Inf. See
* https://pubs.opengroup.org/onlinepubs/9699919799.2016edition/functions/ceil.html
*/
r.is_a_number = left.is_a_number;
r.is_finite = left.is_finite;
if (left.is_integral || left.range == ge_zero || left.range == gt_zero)
r.range = left.range;
else if (left.range == le_zero || left.range == lt_zero)
r.range = le_zero;
else if (left.range == ne_zero)
r.range = unknown;
break;
}
case nir_op_ftrunc: {
const struct ssa_result_range left = unpack_data(src_res[0]);
r.is_integral = true;
/* In IEEE 754, trunc(NaN) is NaN, and trunc(±Inf) is ±Inf. See
* https://pubs.opengroup.org/onlinepubs/9699919799.2016edition/functions/trunc.html
*/
r.is_a_number = left.is_a_number;
r.is_finite = left.is_finite;
if (left.is_integral)
r.range = left.range;
else if (left.range == ge_zero || left.range == gt_zero)
r.range = ge_zero;
else if (left.range == le_zero || left.range == lt_zero)
r.range = le_zero;
else if (left.range == ne_zero)
r.range = unknown;
break;
}
case nir_op_flt:
case nir_op_fge:
case nir_op_feq:
case nir_op_fneu:
case nir_op_ilt:
case nir_op_ige:
case nir_op_ieq:
case nir_op_ine:
case nir_op_ult:
case nir_op_uge:
/* Boolean results are 0 or -1. */
r = (struct ssa_result_range){ le_zero, false, true, false };
break;
nir/range_analysis: Teach range analysis about fdot opcodes This really, really helps on platforms where fabs() isn't free. A great many shaders use a * frsq(fabs(fdot(a, a))) to normalize a vector. Since the result of the fdot must be non-negative, the fabs can be eliminated by an existing algebraic rule. shader-db results: r300 (run on R420 - X800XL) total instructions in shared programs: 1369807 -> 1368550 (-0.09%) instructions in affected programs: 59986 -> 58729 (-2.10%) helped: 609 HURT: 0 total vinst in shared programs: 512899 -> 512861 (<.01%) vinst in affected programs: 1522 -> 1484 (-2.50%) helped: 36 HURT: 0 total sinst in shared programs: 260690 -> 260570 (-0.05%) sinst in affected programs: 1419 -> 1299 (-8.46%) helped: 120 HURT: 0 total consts in shared programs: 957295 -> 957230 (<.01%) consts in affected programs: 849 -> 784 (-7.66%) helped: 65 HURT: 0 LOST: 0 GAINED: 3 The 3 gained shaders are all vertex shaders from XCom: Enemy Unknown. I'm guessing that game is never going to run on my X800XL. :) i915 total instructions in shared programs: 791121 -> 780843 (-1.30%) instructions in affected programs: 220170 -> 209892 (-4.67%) helped: 2085 HURT: 0 total temps in shared programs: 47765 -> 47766 (<.01%) temps in affected programs: 9 -> 10 (11.11%) helped: 0 HURT: 1 total const in shared programs: 93048 -> 92983 (-0.07%) const in affected programs: 784 -> 719 (-8.29%) helped: 65 HURT: 0 LOST: 0 GAINED: 36 Haswell, Ivy Bridge, and Sandy Bridge had similar results. (Haswell shown) total instructions in shared programs: 16702250 -> 16697908 (-0.03%) instructions in affected programs: 119277 -> 114935 (-3.64%) helped: 1065 HURT: 0 helped stats (abs) min: 1 max: 20 x̄: 4.08 x̃: 4 helped stats (rel) min: 0.48% max: 10.17% x̄: 3.66% x̃: 3.94% 95% mean confidence interval for instructions value: -4.26 -3.89 95% mean confidence interval for instructions %-change: -3.76% -3.56% Instructions are helped. total cycles in shared programs: 880772068 -> 880734134 (<.01%) cycles in affected programs: 2134456 -> 2096522 (-1.78%) helped: 941 HURT: 324 helped stats (abs) min: 2 max: 2180 x̄: 123.06 x̃: 44 helped stats (rel) min: 0.04% max: 49.96% x̄: 7.08% x̃: 3.81% HURT stats (abs) min: 2 max: 2098 x̄: 240.33 x̃: 35 HURT stats (rel) min: 0.04% max: 77.07% x̄: 12.34% x̃: 3.00% 95% mean confidence interval for cycles value: -47.93 -12.04 95% mean confidence interval for cycles %-change: -2.87% -1.34% Cycles are helped. No shader-db changes on any other Intel platform. Reviewed-by: Jason Ekstrand <jason.ekstrand@collabora.com> Reviewed-by: Emma Anholt <emma@anholt.net> Part-of: <https://gitlab.freedesktop.org/mesa/mesa/-/merge_requests/17181>
2022-06-21 16:47:31 -07:00
case nir_op_fdot2:
case nir_op_fdot3:
case nir_op_fdot4:
case nir_op_fdot8:
case nir_op_fdot16:
case nir_op_fdot2_replicated:
case nir_op_fdot3_replicated:
case nir_op_fdot4_replicated:
case nir_op_fdot8_replicated:
case nir_op_fdot16_replicated: {
const struct ssa_result_range left = unpack_data(src_res[0]);
nir/range_analysis: Teach range analysis about fdot opcodes This really, really helps on platforms where fabs() isn't free. A great many shaders use a * frsq(fabs(fdot(a, a))) to normalize a vector. Since the result of the fdot must be non-negative, the fabs can be eliminated by an existing algebraic rule. shader-db results: r300 (run on R420 - X800XL) total instructions in shared programs: 1369807 -> 1368550 (-0.09%) instructions in affected programs: 59986 -> 58729 (-2.10%) helped: 609 HURT: 0 total vinst in shared programs: 512899 -> 512861 (<.01%) vinst in affected programs: 1522 -> 1484 (-2.50%) helped: 36 HURT: 0 total sinst in shared programs: 260690 -> 260570 (-0.05%) sinst in affected programs: 1419 -> 1299 (-8.46%) helped: 120 HURT: 0 total consts in shared programs: 957295 -> 957230 (<.01%) consts in affected programs: 849 -> 784 (-7.66%) helped: 65 HURT: 0 LOST: 0 GAINED: 3 The 3 gained shaders are all vertex shaders from XCom: Enemy Unknown. I'm guessing that game is never going to run on my X800XL. :) i915 total instructions in shared programs: 791121 -> 780843 (-1.30%) instructions in affected programs: 220170 -> 209892 (-4.67%) helped: 2085 HURT: 0 total temps in shared programs: 47765 -> 47766 (<.01%) temps in affected programs: 9 -> 10 (11.11%) helped: 0 HURT: 1 total const in shared programs: 93048 -> 92983 (-0.07%) const in affected programs: 784 -> 719 (-8.29%) helped: 65 HURT: 0 LOST: 0 GAINED: 36 Haswell, Ivy Bridge, and Sandy Bridge had similar results. (Haswell shown) total instructions in shared programs: 16702250 -> 16697908 (-0.03%) instructions in affected programs: 119277 -> 114935 (-3.64%) helped: 1065 HURT: 0 helped stats (abs) min: 1 max: 20 x̄: 4.08 x̃: 4 helped stats (rel) min: 0.48% max: 10.17% x̄: 3.66% x̃: 3.94% 95% mean confidence interval for instructions value: -4.26 -3.89 95% mean confidence interval for instructions %-change: -3.76% -3.56% Instructions are helped. total cycles in shared programs: 880772068 -> 880734134 (<.01%) cycles in affected programs: 2134456 -> 2096522 (-1.78%) helped: 941 HURT: 324 helped stats (abs) min: 2 max: 2180 x̄: 123.06 x̃: 44 helped stats (rel) min: 0.04% max: 49.96% x̄: 7.08% x̃: 3.81% HURT stats (abs) min: 2 max: 2098 x̄: 240.33 x̃: 35 HURT stats (rel) min: 0.04% max: 77.07% x̄: 12.34% x̃: 3.00% 95% mean confidence interval for cycles value: -47.93 -12.04 95% mean confidence interval for cycles %-change: -2.87% -1.34% Cycles are helped. No shader-db changes on any other Intel platform. Reviewed-by: Jason Ekstrand <jason.ekstrand@collabora.com> Reviewed-by: Emma Anholt <emma@anholt.net> Part-of: <https://gitlab.freedesktop.org/mesa/mesa/-/merge_requests/17181>
2022-06-21 16:47:31 -07:00
/* If the two sources are the same SSA value, then the result is either
* NaN or some number >= 0. If one source is the negation of the other,
* the result is either NaN or some number <= 0.
*
* In either of these two cases, if one source is a number, then the
* other must also be a number. Since it should not be possible to get
* Inf-Inf in the dot-product, the result must also be a number.
*/
if (nir_alu_srcs_equal(alu, alu, 0, 1)) {
r = (struct ssa_result_range){ ge_zero, false, left.is_a_number, false };
nir/range_analysis: Teach range analysis about fdot opcodes This really, really helps on platforms where fabs() isn't free. A great many shaders use a * frsq(fabs(fdot(a, a))) to normalize a vector. Since the result of the fdot must be non-negative, the fabs can be eliminated by an existing algebraic rule. shader-db results: r300 (run on R420 - X800XL) total instructions in shared programs: 1369807 -> 1368550 (-0.09%) instructions in affected programs: 59986 -> 58729 (-2.10%) helped: 609 HURT: 0 total vinst in shared programs: 512899 -> 512861 (<.01%) vinst in affected programs: 1522 -> 1484 (-2.50%) helped: 36 HURT: 0 total sinst in shared programs: 260690 -> 260570 (-0.05%) sinst in affected programs: 1419 -> 1299 (-8.46%) helped: 120 HURT: 0 total consts in shared programs: 957295 -> 957230 (<.01%) consts in affected programs: 849 -> 784 (-7.66%) helped: 65 HURT: 0 LOST: 0 GAINED: 3 The 3 gained shaders are all vertex shaders from XCom: Enemy Unknown. I'm guessing that game is never going to run on my X800XL. :) i915 total instructions in shared programs: 791121 -> 780843 (-1.30%) instructions in affected programs: 220170 -> 209892 (-4.67%) helped: 2085 HURT: 0 total temps in shared programs: 47765 -> 47766 (<.01%) temps in affected programs: 9 -> 10 (11.11%) helped: 0 HURT: 1 total const in shared programs: 93048 -> 92983 (-0.07%) const in affected programs: 784 -> 719 (-8.29%) helped: 65 HURT: 0 LOST: 0 GAINED: 36 Haswell, Ivy Bridge, and Sandy Bridge had similar results. (Haswell shown) total instructions in shared programs: 16702250 -> 16697908 (-0.03%) instructions in affected programs: 119277 -> 114935 (-3.64%) helped: 1065 HURT: 0 helped stats (abs) min: 1 max: 20 x̄: 4.08 x̃: 4 helped stats (rel) min: 0.48% max: 10.17% x̄: 3.66% x̃: 3.94% 95% mean confidence interval for instructions value: -4.26 -3.89 95% mean confidence interval for instructions %-change: -3.76% -3.56% Instructions are helped. total cycles in shared programs: 880772068 -> 880734134 (<.01%) cycles in affected programs: 2134456 -> 2096522 (-1.78%) helped: 941 HURT: 324 helped stats (abs) min: 2 max: 2180 x̄: 123.06 x̃: 44 helped stats (rel) min: 0.04% max: 49.96% x̄: 7.08% x̃: 3.81% HURT stats (abs) min: 2 max: 2098 x̄: 240.33 x̃: 35 HURT stats (rel) min: 0.04% max: 77.07% x̄: 12.34% x̃: 3.00% 95% mean confidence interval for cycles value: -47.93 -12.04 95% mean confidence interval for cycles %-change: -2.87% -1.34% Cycles are helped. No shader-db changes on any other Intel platform. Reviewed-by: Jason Ekstrand <jason.ekstrand@collabora.com> Reviewed-by: Emma Anholt <emma@anholt.net> Part-of: <https://gitlab.freedesktop.org/mesa/mesa/-/merge_requests/17181>
2022-06-21 16:47:31 -07:00
} else if (nir_alu_srcs_negative_equal(alu, alu, 0, 1)) {
r = (struct ssa_result_range){ le_zero, false, left.is_a_number, false };
nir/range_analysis: Teach range analysis about fdot opcodes This really, really helps on platforms where fabs() isn't free. A great many shaders use a * frsq(fabs(fdot(a, a))) to normalize a vector. Since the result of the fdot must be non-negative, the fabs can be eliminated by an existing algebraic rule. shader-db results: r300 (run on R420 - X800XL) total instructions in shared programs: 1369807 -> 1368550 (-0.09%) instructions in affected programs: 59986 -> 58729 (-2.10%) helped: 609 HURT: 0 total vinst in shared programs: 512899 -> 512861 (<.01%) vinst in affected programs: 1522 -> 1484 (-2.50%) helped: 36 HURT: 0 total sinst in shared programs: 260690 -> 260570 (-0.05%) sinst in affected programs: 1419 -> 1299 (-8.46%) helped: 120 HURT: 0 total consts in shared programs: 957295 -> 957230 (<.01%) consts in affected programs: 849 -> 784 (-7.66%) helped: 65 HURT: 0 LOST: 0 GAINED: 3 The 3 gained shaders are all vertex shaders from XCom: Enemy Unknown. I'm guessing that game is never going to run on my X800XL. :) i915 total instructions in shared programs: 791121 -> 780843 (-1.30%) instructions in affected programs: 220170 -> 209892 (-4.67%) helped: 2085 HURT: 0 total temps in shared programs: 47765 -> 47766 (<.01%) temps in affected programs: 9 -> 10 (11.11%) helped: 0 HURT: 1 total const in shared programs: 93048 -> 92983 (-0.07%) const in affected programs: 784 -> 719 (-8.29%) helped: 65 HURT: 0 LOST: 0 GAINED: 36 Haswell, Ivy Bridge, and Sandy Bridge had similar results. (Haswell shown) total instructions in shared programs: 16702250 -> 16697908 (-0.03%) instructions in affected programs: 119277 -> 114935 (-3.64%) helped: 1065 HURT: 0 helped stats (abs) min: 1 max: 20 x̄: 4.08 x̃: 4 helped stats (rel) min: 0.48% max: 10.17% x̄: 3.66% x̃: 3.94% 95% mean confidence interval for instructions value: -4.26 -3.89 95% mean confidence interval for instructions %-change: -3.76% -3.56% Instructions are helped. total cycles in shared programs: 880772068 -> 880734134 (<.01%) cycles in affected programs: 2134456 -> 2096522 (-1.78%) helped: 941 HURT: 324 helped stats (abs) min: 2 max: 2180 x̄: 123.06 x̃: 44 helped stats (rel) min: 0.04% max: 49.96% x̄: 7.08% x̃: 3.81% HURT stats (abs) min: 2 max: 2098 x̄: 240.33 x̃: 35 HURT stats (rel) min: 0.04% max: 77.07% x̄: 12.34% x̃: 3.00% 95% mean confidence interval for cycles value: -47.93 -12.04 95% mean confidence interval for cycles %-change: -2.87% -1.34% Cycles are helped. No shader-db changes on any other Intel platform. Reviewed-by: Jason Ekstrand <jason.ekstrand@collabora.com> Reviewed-by: Emma Anholt <emma@anholt.net> Part-of: <https://gitlab.freedesktop.org/mesa/mesa/-/merge_requests/17181>
2022-06-21 16:47:31 -07:00
} else {
r = (struct ssa_result_range){ unknown, false, false, false };
nir/range_analysis: Teach range analysis about fdot opcodes This really, really helps on platforms where fabs() isn't free. A great many shaders use a * frsq(fabs(fdot(a, a))) to normalize a vector. Since the result of the fdot must be non-negative, the fabs can be eliminated by an existing algebraic rule. shader-db results: r300 (run on R420 - X800XL) total instructions in shared programs: 1369807 -> 1368550 (-0.09%) instructions in affected programs: 59986 -> 58729 (-2.10%) helped: 609 HURT: 0 total vinst in shared programs: 512899 -> 512861 (<.01%) vinst in affected programs: 1522 -> 1484 (-2.50%) helped: 36 HURT: 0 total sinst in shared programs: 260690 -> 260570 (-0.05%) sinst in affected programs: 1419 -> 1299 (-8.46%) helped: 120 HURT: 0 total consts in shared programs: 957295 -> 957230 (<.01%) consts in affected programs: 849 -> 784 (-7.66%) helped: 65 HURT: 0 LOST: 0 GAINED: 3 The 3 gained shaders are all vertex shaders from XCom: Enemy Unknown. I'm guessing that game is never going to run on my X800XL. :) i915 total instructions in shared programs: 791121 -> 780843 (-1.30%) instructions in affected programs: 220170 -> 209892 (-4.67%) helped: 2085 HURT: 0 total temps in shared programs: 47765 -> 47766 (<.01%) temps in affected programs: 9 -> 10 (11.11%) helped: 0 HURT: 1 total const in shared programs: 93048 -> 92983 (-0.07%) const in affected programs: 784 -> 719 (-8.29%) helped: 65 HURT: 0 LOST: 0 GAINED: 36 Haswell, Ivy Bridge, and Sandy Bridge had similar results. (Haswell shown) total instructions in shared programs: 16702250 -> 16697908 (-0.03%) instructions in affected programs: 119277 -> 114935 (-3.64%) helped: 1065 HURT: 0 helped stats (abs) min: 1 max: 20 x̄: 4.08 x̃: 4 helped stats (rel) min: 0.48% max: 10.17% x̄: 3.66% x̃: 3.94% 95% mean confidence interval for instructions value: -4.26 -3.89 95% mean confidence interval for instructions %-change: -3.76% -3.56% Instructions are helped. total cycles in shared programs: 880772068 -> 880734134 (<.01%) cycles in affected programs: 2134456 -> 2096522 (-1.78%) helped: 941 HURT: 324 helped stats (abs) min: 2 max: 2180 x̄: 123.06 x̃: 44 helped stats (rel) min: 0.04% max: 49.96% x̄: 7.08% x̃: 3.81% HURT stats (abs) min: 2 max: 2098 x̄: 240.33 x̃: 35 HURT stats (rel) min: 0.04% max: 77.07% x̄: 12.34% x̃: 3.00% 95% mean confidence interval for cycles value: -47.93 -12.04 95% mean confidence interval for cycles %-change: -2.87% -1.34% Cycles are helped. No shader-db changes on any other Intel platform. Reviewed-by: Jason Ekstrand <jason.ekstrand@collabora.com> Reviewed-by: Emma Anholt <emma@anholt.net> Part-of: <https://gitlab.freedesktop.org/mesa/mesa/-/merge_requests/17181>
2022-06-21 16:47:31 -07:00
}
break;
}
nir/range-analysis: Range tracking for fpow One shader from Metro Last Light and the rest from Rochard. In the Rochard cases, something like: min(1.0, max(pow(saturate(x), y), z)) was transformed to saturate(max(pow(saturate(x), y), z)) because the result of the pow must be >= 0. The Metro Last Light case was similar. An instance of min(pow(abs(x), y), 1.0) became saturate(pow(abs(x), y)) v2: Fix some comments. Suggested by Caio. v3: Fix setting is_intgral when the exponent might be negative. See also Mesa MR !1778. Reviewed-by: Caio Marcelo de Oliveira Filho <caio.oliveira@intel.com> All Intel platforms had similar results. (Ice Lake shown) total instructions in shared programs: 16280670 -> 16280659 (<.01%) instructions in affected programs: 1130 -> 1119 (-0.97%) helped: 11 HURT: 0 helped stats (abs) min: 1 max: 1 x̄: 1.00 x̃: 1 helped stats (rel) min: 0.72% max: 1.43% x̄: 1.03% x̃: 0.97% 95% mean confidence interval for instructions value: -1.00 -1.00 95% mean confidence interval for instructions %-change: -1.19% -0.86% Instructions are helped. total cycles in shared programs: 367168430 -> 367168270 (<.01%) cycles in affected programs: 10281 -> 10121 (-1.56%) helped: 10 HURT: 1 helped stats (abs) min: 16 max: 18 x̄: 17.00 x̃: 17 helped stats (rel) min: 1.31% max: 2.43% x̄: 1.79% x̃: 1.70% HURT stats (abs) min: 10 max: 10 x̄: 10.00 x̃: 10 HURT stats (rel) min: 3.10% max: 3.10% x̄: 3.10% x̃: 3.10% 95% mean confidence interval for cycles value: -20.06 -9.04 95% mean confidence interval for cycles %-change: -2.36% -0.32% Cycles are helped.
2019-08-09 12:48:27 -07:00
case nir_op_fpow: {
/* Due to flush-to-zero semanatics of floating-point numbers with very
* small mangnitudes, we can never really be sure a result will be
* non-zero.
*
* NIR uses pow() and powf() to constant evaluate nir_op_fpow. The man
* page for that function says:
*
* If y is 0, the result is 1.0 (even if x is a NaN).
*
* gt_zero: pow(*, eq_zero)
* | pow(eq_zero, lt_zero) # 0^-y = +inf
* | pow(eq_zero, le_zero) # 0^-y = +inf or 0^0 = 1.0
* ;
*
* eq_zero: pow(eq_zero, gt_zero)
* ;
*
* ge_zero: pow(gt_zero, gt_zero)
* | pow(gt_zero, ge_zero)
* | pow(gt_zero, lt_zero)
* | pow(gt_zero, le_zero)
* | pow(gt_zero, ne_zero)
* | pow(gt_zero, unknown)
* | pow(ge_zero, gt_zero)
* | pow(ge_zero, ge_zero)
* | pow(ge_zero, lt_zero)
* | pow(ge_zero, le_zero)
* | pow(ge_zero, ne_zero)
* | pow(ge_zero, unknown)
* | pow(eq_zero, ge_zero) # 0^0 = 1.0 or 0^+y = 0.0
* | pow(eq_zero, ne_zero) # 0^-y = +inf or 0^+y = 0.0
* | pow(eq_zero, unknown) # union of all other y cases
* ;
*
* All other cases are unknown.
*
* We could do better if the right operand is a constant, integral
* value.
*/
static const enum ssa_ranges table[last_range + 1][last_range + 1] = {
/* left\right unknown lt_zero le_zero gt_zero ge_zero ne_zero eq_zero */
/* unknown */ { _______, _______, _______, _______, _______, _______, gt_zero },
/* lt_zero */ { _______, _______, _______, _______, _______, _______, gt_zero },
/* le_zero */ { _______, _______, _______, _______, _______, _______, gt_zero },
/* gt_zero */ { ge_zero, ge_zero, ge_zero, ge_zero, ge_zero, ge_zero, gt_zero },
/* ge_zero */ { ge_zero, ge_zero, ge_zero, ge_zero, ge_zero, ge_zero, gt_zero },
/* ne_zero */ { _______, _______, _______, _______, _______, _______, gt_zero },
/* eq_zero */ { ge_zero, gt_zero, gt_zero, eq_zero, ge_zero, ge_zero, gt_zero },
};
const struct ssa_result_range left = unpack_data(src_res[0]);
const struct ssa_result_range right = unpack_data(src_res[1]);
nir/range-analysis: Range tracking for fpow One shader from Metro Last Light and the rest from Rochard. In the Rochard cases, something like: min(1.0, max(pow(saturate(x), y), z)) was transformed to saturate(max(pow(saturate(x), y), z)) because the result of the pow must be >= 0. The Metro Last Light case was similar. An instance of min(pow(abs(x), y), 1.0) became saturate(pow(abs(x), y)) v2: Fix some comments. Suggested by Caio. v3: Fix setting is_intgral when the exponent might be negative. See also Mesa MR !1778. Reviewed-by: Caio Marcelo de Oliveira Filho <caio.oliveira@intel.com> All Intel platforms had similar results. (Ice Lake shown) total instructions in shared programs: 16280670 -> 16280659 (<.01%) instructions in affected programs: 1130 -> 1119 (-0.97%) helped: 11 HURT: 0 helped stats (abs) min: 1 max: 1 x̄: 1.00 x̃: 1 helped stats (rel) min: 0.72% max: 1.43% x̄: 1.03% x̃: 0.97% 95% mean confidence interval for instructions value: -1.00 -1.00 95% mean confidence interval for instructions %-change: -1.19% -0.86% Instructions are helped. total cycles in shared programs: 367168430 -> 367168270 (<.01%) cycles in affected programs: 10281 -> 10121 (-1.56%) helped: 10 HURT: 1 helped stats (abs) min: 16 max: 18 x̄: 17.00 x̃: 17 helped stats (rel) min: 1.31% max: 2.43% x̄: 1.79% x̃: 1.70% HURT stats (abs) min: 10 max: 10 x̄: 10.00 x̃: 10 HURT stats (rel) min: 3.10% max: 3.10% x̄: 3.10% x̃: 3.10% 95% mean confidence interval for cycles value: -20.06 -9.04 95% mean confidence interval for cycles %-change: -2.36% -0.32% Cycles are helped.
2019-08-09 12:48:27 -07:00
ASSERT_UNION_OF_DISJOINT_MATCHES_UNKNOWN_2_SOURCE(table);
ASSERT_UNION_OF_EQ_AND_STRICT_INEQ_MATCHES_NONSTRICT_2_SOURCE(table);
nir/range-analysis: Range tracking for fpow One shader from Metro Last Light and the rest from Rochard. In the Rochard cases, something like: min(1.0, max(pow(saturate(x), y), z)) was transformed to saturate(max(pow(saturate(x), y), z)) because the result of the pow must be >= 0. The Metro Last Light case was similar. An instance of min(pow(abs(x), y), 1.0) became saturate(pow(abs(x), y)) v2: Fix some comments. Suggested by Caio. v3: Fix setting is_intgral when the exponent might be negative. See also Mesa MR !1778. Reviewed-by: Caio Marcelo de Oliveira Filho <caio.oliveira@intel.com> All Intel platforms had similar results. (Ice Lake shown) total instructions in shared programs: 16280670 -> 16280659 (<.01%) instructions in affected programs: 1130 -> 1119 (-0.97%) helped: 11 HURT: 0 helped stats (abs) min: 1 max: 1 x̄: 1.00 x̃: 1 helped stats (rel) min: 0.72% max: 1.43% x̄: 1.03% x̃: 0.97% 95% mean confidence interval for instructions value: -1.00 -1.00 95% mean confidence interval for instructions %-change: -1.19% -0.86% Instructions are helped. total cycles in shared programs: 367168430 -> 367168270 (<.01%) cycles in affected programs: 10281 -> 10121 (-1.56%) helped: 10 HURT: 1 helped stats (abs) min: 16 max: 18 x̄: 17.00 x̃: 17 helped stats (rel) min: 1.31% max: 2.43% x̄: 1.79% x̃: 1.70% HURT stats (abs) min: 10 max: 10 x̄: 10.00 x̃: 10 HURT stats (rel) min: 3.10% max: 3.10% x̄: 3.10% x̃: 3.10% 95% mean confidence interval for cycles value: -20.06 -9.04 95% mean confidence interval for cycles %-change: -2.36% -0.32% Cycles are helped.
2019-08-09 12:48:27 -07:00
r.is_integral = left.is_integral && right.is_integral &&
is_not_negative(right.range);
r.range = table[left.range][right.range];
/* Various cases can result in NaN, so assume the worst. */
r.is_a_number = false;
nir/range-analysis: Range tracking for fpow One shader from Metro Last Light and the rest from Rochard. In the Rochard cases, something like: min(1.0, max(pow(saturate(x), y), z)) was transformed to saturate(max(pow(saturate(x), y), z)) because the result of the pow must be >= 0. The Metro Last Light case was similar. An instance of min(pow(abs(x), y), 1.0) became saturate(pow(abs(x), y)) v2: Fix some comments. Suggested by Caio. v3: Fix setting is_intgral when the exponent might be negative. See also Mesa MR !1778. Reviewed-by: Caio Marcelo de Oliveira Filho <caio.oliveira@intel.com> All Intel platforms had similar results. (Ice Lake shown) total instructions in shared programs: 16280670 -> 16280659 (<.01%) instructions in affected programs: 1130 -> 1119 (-0.97%) helped: 11 HURT: 0 helped stats (abs) min: 1 max: 1 x̄: 1.00 x̃: 1 helped stats (rel) min: 0.72% max: 1.43% x̄: 1.03% x̃: 0.97% 95% mean confidence interval for instructions value: -1.00 -1.00 95% mean confidence interval for instructions %-change: -1.19% -0.86% Instructions are helped. total cycles in shared programs: 367168430 -> 367168270 (<.01%) cycles in affected programs: 10281 -> 10121 (-1.56%) helped: 10 HURT: 1 helped stats (abs) min: 16 max: 18 x̄: 17.00 x̃: 17 helped stats (rel) min: 1.31% max: 2.43% x̄: 1.79% x̃: 1.70% HURT stats (abs) min: 10 max: 10 x̄: 10.00 x̃: 10 HURT stats (rel) min: 3.10% max: 3.10% x̄: 3.10% x̃: 3.10% 95% mean confidence interval for cycles value: -20.06 -9.04 95% mean confidence interval for cycles %-change: -2.36% -0.32% Cycles are helped.
2019-08-09 12:48:27 -07:00
break;
}
case nir_op_ffma: {
const struct ssa_result_range first = unpack_data(src_res[0]);
const struct ssa_result_range second = unpack_data(src_res[1]);
const struct ssa_result_range third = unpack_data(src_res[2]);
r.is_integral = first.is_integral && second.is_integral &&
third.is_integral;
/* Various cases can result in NaN, so assume the worst. */
r.is_a_number = false;
enum ssa_ranges fmul_range;
if (first.range != eq_zero && nir_alu_srcs_equal(alu, alu, 0, 1)) {
nir/range-analysis: Adjust result range of multiplication to account for flush-to-zero Fixes piglit tests (new in piglit!110): - fs-underflow-fma-compare-zero.shader_test - fs-underflow-mul-compare-zero.shader_test v2: Add back part of comment accidentally deleted. Noticed by Caio. Remove is_not_zero function as it is no longer used. Bugzilla: https://bugs.freedesktop.org/show_bug.cgi?id=111308 Fixes: fa116ce357b ("nir/range-analysis: Range tracking for ffma and flrp") Fixes: 405de7ccb6c ("nir/range-analysis: Rudimentary value range analysis pass") Reviewed-by: Caio Marcelo de Oliveira Filho <caio.oliveira@intel.com> All Gen7+ platforms** had similar results. (Ice Lake shown) total instructions in shared programs: 16278465 -> 16279492 (<.01%) instructions in affected programs: 16765 -> 17792 (6.13%) helped: 0 HURT: 23 HURT stats (abs) min: 7 max: 275 x̄: 44.65 x̃: 8 HURT stats (rel) min: 1.15% max: 17.51% x̄: 4.23% x̃: 1.62% 95% mean confidence interval for instructions value: 9.57 79.74 95% mean confidence interval for instructions %-change: 1.85% 6.61% Instructions are HURT. total cycles in shared programs: 367135159 -> 367154270 (<.01%) cycles in affected programs: 279306 -> 298417 (6.84%) helped: 0 HURT: 23 HURT stats (abs) min: 13 max: 6029 x̄: 830.91 x̃: 54 HURT stats (rel) min: 0.17% max: 45.67% x̄: 7.33% x̃: 0.49% 95% mean confidence interval for cycles value: 100.89 1560.94 95% mean confidence interval for cycles %-change: 0.94% 13.71% Cycles are HURT. total spills in shared programs: 8870 -> 8869 (-0.01%) spills in affected programs: 19 -> 18 (-5.26%) helped: 1 HURT: 0 total fills in shared programs: 21904 -> 21901 (-0.01%) fills in affected programs: 81 -> 78 (-3.70%) helped: 1 HURT: 0 LOST: 0 GAINED: 1 ** On Broadwell, a shader was hurt for spills / fills instead of helped. No changes on any earlier platforms.
2019-08-09 10:55:49 -07:00
/* See handling of nir_op_fmul for explanation of why ge_zero is the
* range.
*/
fmul_range = ge_zero;
} else if (first.range != eq_zero && nir_alu_srcs_negative_equal(alu, alu, 0, 1)) {
nir/range-analysis: Adjust result range of multiplication to account for flush-to-zero Fixes piglit tests (new in piglit!110): - fs-underflow-fma-compare-zero.shader_test - fs-underflow-mul-compare-zero.shader_test v2: Add back part of comment accidentally deleted. Noticed by Caio. Remove is_not_zero function as it is no longer used. Bugzilla: https://bugs.freedesktop.org/show_bug.cgi?id=111308 Fixes: fa116ce357b ("nir/range-analysis: Range tracking for ffma and flrp") Fixes: 405de7ccb6c ("nir/range-analysis: Rudimentary value range analysis pass") Reviewed-by: Caio Marcelo de Oliveira Filho <caio.oliveira@intel.com> All Gen7+ platforms** had similar results. (Ice Lake shown) total instructions in shared programs: 16278465 -> 16279492 (<.01%) instructions in affected programs: 16765 -> 17792 (6.13%) helped: 0 HURT: 23 HURT stats (abs) min: 7 max: 275 x̄: 44.65 x̃: 8 HURT stats (rel) min: 1.15% max: 17.51% x̄: 4.23% x̃: 1.62% 95% mean confidence interval for instructions value: 9.57 79.74 95% mean confidence interval for instructions %-change: 1.85% 6.61% Instructions are HURT. total cycles in shared programs: 367135159 -> 367154270 (<.01%) cycles in affected programs: 279306 -> 298417 (6.84%) helped: 0 HURT: 23 HURT stats (abs) min: 13 max: 6029 x̄: 830.91 x̃: 54 HURT stats (rel) min: 0.17% max: 45.67% x̄: 7.33% x̃: 0.49% 95% mean confidence interval for cycles value: 100.89 1560.94 95% mean confidence interval for cycles %-change: 0.94% 13.71% Cycles are HURT. total spills in shared programs: 8870 -> 8869 (-0.01%) spills in affected programs: 19 -> 18 (-5.26%) helped: 1 HURT: 0 total fills in shared programs: 21904 -> 21901 (-0.01%) fills in affected programs: 81 -> 78 (-3.70%) helped: 1 HURT: 0 LOST: 0 GAINED: 1 ** On Broadwell, a shader was hurt for spills / fills instead of helped. No changes on any earlier platforms.
2019-08-09 10:55:49 -07:00
/* -x * x => le_zero */
fmul_range = le_zero;
} else
fmul_range = fmul_table[first.range][second.range];
r.range = fadd_table[fmul_range][third.range];
break;
}
case nir_op_flrp: {
const struct ssa_result_range first = unpack_data(src_res[0]);
const struct ssa_result_range second = unpack_data(src_res[1]);
const struct ssa_result_range third = unpack_data(src_res[2]);
r.is_integral = first.is_integral && second.is_integral &&
third.is_integral;
/* Various cases can result in NaN, so assume the worst. */
r.is_a_number = false;
/* Decompose the flrp to first + third * (second + -first) */
const enum ssa_ranges inner_fadd_range =
fadd_table[second.range][fneg_table[first.range]];
const enum ssa_ranges fmul_range =
fmul_table[third.range][inner_fadd_range];
r.range = fadd_table[first.range][fmul_range];
break;
}
default:
r = (struct ssa_result_range){ unknown, false, false, false };
break;
}
if (r.range == eq_zero)
r.is_integral = true;
/* Just like isfinite(), the is_finite flag implies the value is a number. */
assert((int)r.is_finite <= (int)r.is_a_number);
*result = pack_data(r);
}
#undef _______
struct ssa_result_range
nir_analyze_range(struct hash_table *range_ht,
const nir_alu_instr *alu, unsigned src)
{
struct fp_query query_alloc[64];
uint32_t result_alloc[64];
struct analysis_state state;
state.range_ht = range_ht;
util_dynarray_init_from_stack(&state.query_stack, query_alloc, sizeof(query_alloc));
util_dynarray_init_from_stack(&state.result_stack, result_alloc, sizeof(result_alloc));
state.query_size = sizeof(struct fp_query);
state.get_key = &get_fp_key;
state.process_query = &process_fp_query;
push_fp_query(&state, alu, src, nir_type_invalid);
return unpack_data(perform_analysis(&state));
}
static uint32_t
bitmask(uint32_t size)
{
return size >= 32 ? 0xffffffffu : ((uint32_t)1 << size) - 1u;
}
static uint64_t
mul_clamp(uint32_t a, uint32_t b)
{
if (a != 0 && (a * b) / a != b)
return (uint64_t)UINT32_MAX + 1;
else
return a * b;
}
/* recursively gather at most "buf_size" phi/bcsel sources */
static unsigned
search_phi_bcsel(nir_ssa_scalar scalar, nir_ssa_scalar *buf, unsigned buf_size, struct set *visited)
{
if (_mesa_set_search(visited, scalar.def))
return 0;
_mesa_set_add(visited, scalar.def);
if (scalar.def->parent_instr->type == nir_instr_type_phi) {
nir_phi_instr *phi = nir_instr_as_phi(scalar.def->parent_instr);
unsigned num_sources_left = exec_list_length(&phi->srcs);
if (buf_size >= num_sources_left) {
unsigned total_added = 0;
nir_foreach_phi_src(src, phi) {
num_sources_left--;
unsigned added = search_phi_bcsel(nir_get_ssa_scalar(src->src.ssa, scalar.comp),
buf + total_added, buf_size - num_sources_left, visited);
assert(added <= buf_size);
buf_size -= added;
total_added += added;
}
return total_added;
}
}
if (nir_ssa_scalar_is_alu(scalar)) {
nir_op op = nir_ssa_scalar_alu_op(scalar);
if ((op == nir_op_bcsel || op == nir_op_b32csel) && buf_size >= 2) {
nir_ssa_scalar src1 = nir_ssa_scalar_chase_alu_src(scalar, 1);
nir_ssa_scalar src2 = nir_ssa_scalar_chase_alu_src(scalar, 2);
unsigned added = search_phi_bcsel(src1, buf, buf_size - 1, visited);
buf_size -= added;
added += search_phi_bcsel(src2, buf + added, buf_size, visited);
return added;
}
}
buf[0] = scalar;
return 1;
}
static nir_variable *
lookup_input(nir_shader *shader, unsigned driver_location)
{
return nir_find_variable_with_driver_location(shader, nir_var_shader_in,
driver_location);
}
/* The config here should be generic enough to be correct on any HW. */
static const nir_unsigned_upper_bound_config default_ub_config = {
.min_subgroup_size = 1u,
.max_subgroup_size = UINT16_MAX,
.max_workgroup_invocations = UINT16_MAX,
/* max_workgroup_count represents the maximum compute shader / kernel
* dispatchable work size. On most hardware, this is essentially
* unbounded. On some hardware max_workgroup_count[1] and
* max_workgroup_count[2] may be smaller.
*/
.max_workgroup_count = { UINT32_MAX, UINT32_MAX, UINT32_MAX },
/* max_workgroup_size is the local invocation maximum. This is generally
* small the OpenGL 4.2 minimum maximum is 1024.
*/
.max_workgroup_size = { UINT16_MAX, UINT16_MAX, UINT16_MAX },
.vertex_attrib_max = {
UINT32_MAX,
UINT32_MAX,
UINT32_MAX,
UINT32_MAX,
UINT32_MAX,
UINT32_MAX,
UINT32_MAX,
UINT32_MAX,
UINT32_MAX,
UINT32_MAX,
UINT32_MAX,
UINT32_MAX,
UINT32_MAX,
UINT32_MAX,
UINT32_MAX,
UINT32_MAX,
UINT32_MAX,
UINT32_MAX,
UINT32_MAX,
UINT32_MAX,
UINT32_MAX,
UINT32_MAX,
UINT32_MAX,
UINT32_MAX,
UINT32_MAX,
UINT32_MAX,
UINT32_MAX,
UINT32_MAX,
UINT32_MAX,
UINT32_MAX,
UINT32_MAX,
UINT32_MAX,
},
};
struct uub_query {
struct analysis_query head;
nir_ssa_scalar scalar;
};
static void
push_uub_query(struct analysis_state *state, nir_ssa_scalar scalar)
{
struct uub_query *pushed_q = push_analysis_query(state, sizeof(struct uub_query));
pushed_q->scalar = scalar;
}
static uintptr_t
get_uub_key(struct analysis_query *q)
{
nir_ssa_scalar scalar = ((struct uub_query *)q)->scalar;
/* keys can't be 0, so we have to add 1 to the index */
unsigned shift_amount = ffs(NIR_MAX_VEC_COMPONENTS) - 1;
return nir_ssa_scalar_is_const(scalar)
? 0
: ((uintptr_t)(scalar.def->index + 1) << shift_amount) | scalar.comp;
}
static void
get_intrinsic_uub(struct analysis_state *state, struct uub_query q, uint32_t *result,
const uint32_t *src)
{
nir_shader *shader = state->shader;
const nir_unsigned_upper_bound_config *config = state->config;
nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(q.scalar.def->parent_instr);
switch (intrin->intrinsic) {
case nir_intrinsic_load_local_invocation_index:
/* The local invocation index is used under the hood by RADV for
* some non-compute-like shaders (eg. LS and NGG). These technically
* run in workgroups on the HW, even though this fact is not exposed
* by the API.
* They can safely use the same code path here as variable sized
* compute-like shader stages.
*/
if (!gl_shader_stage_uses_workgroup(shader->info.stage) ||
shader->info.workgroup_size_variable) {
*result = config->max_workgroup_invocations - 1;
} else {
*result = (shader->info.workgroup_size[0] *
shader->info.workgroup_size[1] *
shader->info.workgroup_size[2]) -
1u;
}
break;
case nir_intrinsic_load_local_invocation_id:
if (shader->info.workgroup_size_variable)
*result = config->max_workgroup_size[q.scalar.comp] - 1u;
else
*result = shader->info.workgroup_size[q.scalar.comp] - 1u;
break;
case nir_intrinsic_load_workgroup_id:
*result = config->max_workgroup_count[q.scalar.comp] - 1u;
break;
case nir_intrinsic_load_num_workgroups:
*result = config->max_workgroup_count[q.scalar.comp];
break;
case nir_intrinsic_load_global_invocation_id:
if (shader->info.workgroup_size_variable) {
*result = mul_clamp(config->max_workgroup_size[q.scalar.comp],
config->max_workgroup_count[q.scalar.comp]) -
1u;
} else {
*result = (shader->info.workgroup_size[q.scalar.comp] *
config->max_workgroup_count[q.scalar.comp]) -
1u;
}
break;
case nir_intrinsic_load_invocation_id:
if (shader->info.stage == MESA_SHADER_TESS_CTRL)
*result = shader->info.tess.tcs_vertices_out
? (shader->info.tess.tcs_vertices_out - 1)
: 511; /* Generous maximum output patch size of 512 */
break;
case nir_intrinsic_load_subgroup_invocation:
case nir_intrinsic_first_invocation:
*result = config->max_subgroup_size - 1;
break;
case nir_intrinsic_mbcnt_amd: {
if (!q.head.pushed_queries) {
push_uub_query(state, nir_get_ssa_scalar(intrin->src[1].ssa, 0));
return;
} else {
uint32_t src0 = config->max_subgroup_size - 1;
uint32_t src1 = src[0];
if (src0 + src1 >= src0) /* check overflow */
*result = src0 + src1;
}
break;
}
case nir_intrinsic_load_subgroup_size:
*result = config->max_subgroup_size;
break;
case nir_intrinsic_load_subgroup_id:
case nir_intrinsic_load_num_subgroups: {
uint32_t workgroup_size = config->max_workgroup_invocations;
if (gl_shader_stage_uses_workgroup(shader->info.stage) &&
!shader->info.workgroup_size_variable) {
workgroup_size = shader->info.workgroup_size[0] *
shader->info.workgroup_size[1] *
shader->info.workgroup_size[2];
}
*result = DIV_ROUND_UP(workgroup_size, config->min_subgroup_size);
if (intrin->intrinsic == nir_intrinsic_load_subgroup_id)
(*result)--;
break;
}
case nir_intrinsic_load_input: {
if (shader->info.stage == MESA_SHADER_VERTEX && nir_src_is_const(intrin->src[0])) {
nir_variable *var = lookup_input(shader, nir_intrinsic_base(intrin));
if (var) {
int loc = var->data.location - VERT_ATTRIB_GENERIC0;
if (loc >= 0)
*result = config->vertex_attrib_max[loc];
}
}
break;
}
case nir_intrinsic_reduce:
case nir_intrinsic_inclusive_scan:
case nir_intrinsic_exclusive_scan: {
nir_op op = nir_intrinsic_reduction_op(intrin);
if (op == nir_op_umin || op == nir_op_umax || op == nir_op_imin || op == nir_op_imax) {
if (!q.head.pushed_queries) {
push_uub_query(state, nir_get_ssa_scalar(intrin->src[0].ssa, q.scalar.comp));
return;
} else {
*result = src[0];
}
}
break;
}
case nir_intrinsic_read_first_invocation:
case nir_intrinsic_read_invocation:
case nir_intrinsic_shuffle:
case nir_intrinsic_shuffle_xor:
case nir_intrinsic_shuffle_up:
case nir_intrinsic_shuffle_down:
case nir_intrinsic_quad_broadcast:
case nir_intrinsic_quad_swap_horizontal:
case nir_intrinsic_quad_swap_vertical:
case nir_intrinsic_quad_swap_diagonal:
case nir_intrinsic_quad_swizzle_amd:
case nir_intrinsic_masked_swizzle_amd:
if (!q.head.pushed_queries) {
push_uub_query(state, nir_get_ssa_scalar(intrin->src[0].ssa, q.scalar.comp));
return;
} else {
*result = src[0];
}
break;
case nir_intrinsic_write_invocation_amd:
if (!q.head.pushed_queries) {
push_uub_query(state, nir_get_ssa_scalar(intrin->src[0].ssa, q.scalar.comp));
push_uub_query(state, nir_get_ssa_scalar(intrin->src[1].ssa, q.scalar.comp));
return;
} else {
*result = MAX2(src[0], src[1]);
}
break;
case nir_intrinsic_load_tess_rel_patch_id_amd:
case nir_intrinsic_load_tcs_num_patches_amd:
/* Very generous maximum: TCS/TES executed by largest possible workgroup */
*result = config->max_workgroup_invocations / MAX2(shader->info.tess.tcs_vertices_out, 1u);
break;
case nir_intrinsic_load_typed_buffer_amd: {
const enum pipe_format format = nir_intrinsic_format(intrin);
if (format == PIPE_FORMAT_NONE)
break;
const struct util_format_description *desc = util_format_description(format);
if (desc->channel[q.scalar.comp].type != UTIL_FORMAT_TYPE_UNSIGNED)
break;
if (desc->channel[q.scalar.comp].normalized) {
*result = fui(1.0);
break;
}
const uint32_t chan_max = u_uintN_max(desc->channel[q.scalar.comp].size);
*result = desc->channel[q.scalar.comp].pure_integer ? chan_max : fui(chan_max);
break;
}
case nir_intrinsic_load_scalar_arg_amd:
case nir_intrinsic_load_vector_arg_amd: {
uint32_t upper_bound = nir_intrinsic_arg_upper_bound_u32_amd(intrin);
if (upper_bound)
*result = upper_bound;
break;
}
default:
break;
}
}
static void
get_alu_uub(struct analysis_state *state, struct uub_query q, uint32_t *result, const uint32_t *src)
{
nir_op op = nir_ssa_scalar_alu_op(q.scalar);
/* Early exit for unsupported ALU opcodes. */
switch (op) {
case nir_op_umin:
case nir_op_imin:
case nir_op_imax:
case nir_op_umax:
case nir_op_iand:
case nir_op_ior:
case nir_op_ixor:
case nir_op_ishl:
case nir_op_imul:
case nir_op_ushr:
case nir_op_ishr:
case nir_op_iadd:
case nir_op_umod:
case nir_op_udiv:
case nir_op_bcsel:
case nir_op_b32csel:
case nir_op_ubfe:
case nir_op_bfm:
case nir_op_fmul:
case nir_op_fmulz:
case nir_op_extract_u8:
case nir_op_extract_i8:
case nir_op_extract_u16:
case nir_op_extract_i16:
case nir_op_b2i8:
case nir_op_b2i16:
case nir_op_b2i32:
break;
case nir_op_u2u1:
case nir_op_u2u8:
case nir_op_u2u16:
case nir_op_u2u32:
case nir_op_f2u32:
if (nir_ssa_scalar_chase_alu_src(q.scalar, 0).def->bit_size > 32) {
/* If src is >32 bits, return max */
return;
}
break;
default:
return;
}
if (!q.head.pushed_queries) {
for (unsigned i = 0; i < nir_op_infos[op].num_inputs; i++)
push_uub_query(state, nir_ssa_scalar_chase_alu_src(q.scalar, i));
return;
}
uint32_t max = bitmask(q.scalar.def->bit_size);
switch (op) {
case nir_op_umin:
*result = src[0] < src[1] ? src[0] : src[1];
break;
case nir_op_imin:
case nir_op_imax:
case nir_op_umax:
*result = src[0] > src[1] ? src[0] : src[1];
break;
case nir_op_iand:
*result = bitmask(util_last_bit64(src[0])) & bitmask(util_last_bit64(src[1]));
break;
case nir_op_ior:
case nir_op_ixor:
*result = bitmask(util_last_bit64(src[0])) | bitmask(util_last_bit64(src[1]));
break;
case nir_op_ishl: {
uint32_t src1 = MIN2(src[1], q.scalar.def->bit_size - 1u);
if (util_last_bit64(src[0]) + src1 <= q.scalar.def->bit_size) /* check overflow */
*result = src[0] << src1;
break;
}
case nir_op_imul:
if (src[0] == 0 || (src[0] * src[1]) / src[0] == src[1]) /* check overflow */
*result = src[0] * src[1];
break;
case nir_op_ushr: {
nir_ssa_scalar src1_scalar = nir_ssa_scalar_chase_alu_src(q.scalar, 1);
uint32_t mask = q.scalar.def->bit_size - 1u;
if (nir_ssa_scalar_is_const(src1_scalar))
*result = src[0] >> (nir_ssa_scalar_as_uint(src1_scalar) & mask);
else
*result = src[0];
break;
}
case nir_op_ishr: {
nir_ssa_scalar src1_scalar = nir_ssa_scalar_chase_alu_src(q.scalar, 1);
uint32_t mask = q.scalar.def->bit_size - 1u;
if (src[0] <= 2147483647 && nir_ssa_scalar_is_const(src1_scalar))
*result = src[0] >> (nir_ssa_scalar_as_uint(src1_scalar) & mask);
else
*result = src[0];
break;
}
case nir_op_iadd:
if (src[0] + src[1] >= src[0]) /* check overflow */
*result = src[0] + src[1];
break;
case nir_op_umod:
*result = src[1] ? src[1] - 1 : 0;
break;
case nir_op_udiv: {
nir_ssa_scalar src1_scalar = nir_ssa_scalar_chase_alu_src(q.scalar, 1);
if (nir_ssa_scalar_is_const(src1_scalar))
*result = nir_ssa_scalar_as_uint(src1_scalar)
? src[0] / nir_ssa_scalar_as_uint(src1_scalar)
: 0;
else
*result = src[0];
break;
}
case nir_op_bcsel:
case nir_op_b32csel:
*result = src[1] > src[2] ? src[1] : src[2];
break;
case nir_op_ubfe:
*result = bitmask(MIN2(src[2], q.scalar.def->bit_size));
break;
case nir_op_bfm: {
nir_ssa_scalar src1_scalar = nir_ssa_scalar_chase_alu_src(q.scalar, 1);
if (nir_ssa_scalar_is_const(src1_scalar)) {
uint32_t src0 = MIN2(src[0], 31);
uint32_t src1 = nir_ssa_scalar_as_uint(src1_scalar) & 0x1fu;
*result = bitmask(src0) << src1;
} else {
uint32_t src0 = MIN2(src[0], 31);
uint32_t src1 = MIN2(src[1], 31);
*result = bitmask(MIN2(src0 + src1, 32));
}
break;
}
/* limited floating-point support for f2u32(fmul(load_input(), <constant>)) */
case nir_op_f2u32:
/* infinity/NaN starts at 0x7f800000u, negative numbers at 0x80000000 */
if (src[0] < 0x7f800000u) {
float val;
memcpy(&val, &src[0], 4);
*result = (uint32_t)val;
}
break;
case nir_op_fmul:
case nir_op_fmulz:
/* infinity/NaN starts at 0x7f800000u, negative numbers at 0x80000000 */
if (src[0] < 0x7f800000u && src[1] < 0x7f800000u) {
float src0_f, src1_f;
memcpy(&src0_f, &src[0], 4);
memcpy(&src1_f, &src[1], 4);
/* not a proper rounding-up multiplication, but should be good enough */
float max_f = ceilf(src0_f) * ceilf(src1_f);
memcpy(result, &max_f, 4);
}
break;
case nir_op_u2u1:
case nir_op_u2u8:
case nir_op_u2u16:
case nir_op_u2u32:
*result = MIN2(src[0], max);
break;
case nir_op_b2i8:
case nir_op_b2i16:
case nir_op_b2i32:
*result = 1;
break;
case nir_op_sad_u8x4:
*result = src[2] + 4 * 255;
break;
case nir_op_extract_u8:
*result = MIN2(src[0], UINT8_MAX);
break;
case nir_op_extract_i8:
*result = (src[0] >= 0x80) ? max : MIN2(src[0], INT8_MAX);
break;
case nir_op_extract_u16:
*result = MIN2(src[0], UINT16_MAX);
break;
case nir_op_extract_i16:
*result = (src[0] >= 0x8000) ? max : MIN2(src[0], INT16_MAX);
break;
default:
break;
}
}
static void
get_phi_uub(struct analysis_state *state, struct uub_query q, uint32_t *result, const uint32_t *src)
{
nir_phi_instr *phi = nir_instr_as_phi(q.scalar.def->parent_instr);
if (exec_list_is_empty(&phi->srcs))
return;
if (q.head.pushed_queries) {
*result = src[0];
for (unsigned i = 1; i < q.head.pushed_queries; i++)
*result = MAX2(*result, src[i]);
return;
}
nir_cf_node *prev = nir_cf_node_prev(&phi->instr.block->cf_node);
if (!prev || prev->type == nir_cf_node_block) {
/* Resolve cycles by inserting max into range_ht. */
uint32_t max = bitmask(q.scalar.def->bit_size);
_mesa_hash_table_insert(state->range_ht, (void *)get_uub_key(&q.head), (void *)(uintptr_t)max);
struct set *visited = _mesa_pointer_set_create(NULL);
nir_ssa_scalar *defs = alloca(sizeof(nir_ssa_scalar) * 64);
unsigned def_count = search_phi_bcsel(q.scalar, defs, 64, visited);
_mesa_set_destroy(visited, NULL);
for (unsigned i = 0; i < def_count; i++)
push_uub_query(state, defs[i]);
} else {
nir_foreach_phi_src(src, phi)
push_uub_query(state, nir_get_ssa_scalar(src->src.ssa, q.scalar.comp));
}
}
static void
process_uub_query(struct analysis_state *state, struct analysis_query *aq, uint32_t *result,
const uint32_t *src)
{
struct uub_query q = *(struct uub_query *)aq;
*result = bitmask(q.scalar.def->bit_size);
if (nir_ssa_scalar_is_const(q.scalar))
*result = nir_ssa_scalar_as_uint(q.scalar);
else if (q.scalar.def->parent_instr->type == nir_instr_type_intrinsic)
get_intrinsic_uub(state, q, result, src);
else if (nir_ssa_scalar_is_alu(q.scalar))
get_alu_uub(state, q, result, src);
else if (q.scalar.def->parent_instr->type == nir_instr_type_phi)
get_phi_uub(state, q, result, src);
}
uint32_t
nir_unsigned_upper_bound(nir_shader *shader, struct hash_table *range_ht,
nir_ssa_scalar scalar,
const nir_unsigned_upper_bound_config *config)
{
if (!config)
config = &default_ub_config;
struct uub_query query_alloc[16];
uint32_t result_alloc[16];
struct analysis_state state;
state.shader = shader;
state.config = config;
state.range_ht = range_ht;
util_dynarray_init_from_stack(&state.query_stack, query_alloc, sizeof(query_alloc));
util_dynarray_init_from_stack(&state.result_stack, result_alloc, sizeof(result_alloc));
state.query_size = sizeof(struct uub_query);
state.get_key = &get_uub_key;
state.process_query = &process_uub_query;
push_uub_query(&state, scalar);
return perform_analysis(&state);
}
bool
nir_addition_might_overflow(nir_shader *shader, struct hash_table *range_ht,
nir_ssa_scalar ssa, unsigned const_val,
const nir_unsigned_upper_bound_config *config)
{
if (nir_ssa_scalar_is_alu(ssa)) {
nir_op alu_op = nir_ssa_scalar_alu_op(ssa);
/* iadd(imul(a, #b), #c) */
if (alu_op == nir_op_imul || alu_op == nir_op_ishl) {
nir_ssa_scalar mul_src0 = nir_ssa_scalar_chase_alu_src(ssa, 0);
nir_ssa_scalar mul_src1 = nir_ssa_scalar_chase_alu_src(ssa, 1);
uint32_t stride = 1;
if (nir_ssa_scalar_is_const(mul_src0))
stride = nir_ssa_scalar_as_uint(mul_src0);
else if (nir_ssa_scalar_is_const(mul_src1))
stride = nir_ssa_scalar_as_uint(mul_src1);
if (alu_op == nir_op_ishl)
stride = 1u << (stride % 32u);
if (!stride || const_val <= UINT32_MAX - (UINT32_MAX / stride * stride))
return false;
}
/* iadd(iand(a, #b), #c) */
if (alu_op == nir_op_iand) {
nir_ssa_scalar and_src0 = nir_ssa_scalar_chase_alu_src(ssa, 0);
nir_ssa_scalar and_src1 = nir_ssa_scalar_chase_alu_src(ssa, 1);
uint32_t mask = 0xffffffff;
if (nir_ssa_scalar_is_const(and_src0))
mask = nir_ssa_scalar_as_uint(and_src0);
else if (nir_ssa_scalar_is_const(and_src1))
mask = nir_ssa_scalar_as_uint(and_src1);
if (mask == 0 || const_val < (1u << (ffs(mask) - 1)))
return false;
}
}
uint32_t ub = nir_unsigned_upper_bound(shader, range_ht, ssa, config);
return const_val + ub < const_val;
}
static uint64_t
ssa_def_bits_used(const nir_ssa_def *def, int recur)
{
uint64_t bits_used = 0;
uint64_t all_bits = BITFIELD64_MASK(def->bit_size);
/* Querying the bits used from a vector is too hard of a question to
* answer. Return the conservative answer that all bits are used. To
* handle this, the function would need to be extended to be a query of a
* single component of the vector. That would also necessary to fully
* handle the 'num_components > 1' inside the loop below.
*
* FINISHME: This restriction will eventually need to be restricted to be
* useful for hardware that uses u16vec2 as the native 16-bit integer type.
*/
if (def->num_components > 1)
return all_bits;
/* Limit recursion */
if (recur-- <= 0)
return all_bits;
nir_foreach_use(src, def) {
switch (src->parent_instr->type) {
case nir_instr_type_alu: {
nir_alu_instr *use_alu = nir_instr_as_alu(src->parent_instr);
unsigned src_idx = container_of(src, nir_alu_src, src) - use_alu->src;
/* If a user of the value produces a vector result, return the
* conservative answer that all bits are used. It is possible to
* answer this query by looping over the components used. For example,
*
* vec4 32 ssa_5 = load_const(0x0000f000, 0x00000f00, 0x000000f0, 0x0000000f)
* ...
* vec4 32 ssa_8 = iand ssa_7.xxxx, ssa_5
*
* could conceivably return 0x0000ffff when queyring the bits used of
* ssa_7. This is unlikely to be worth the effort because the
* question can eventually answered after the shader has been
* scalarized.
*/
if (use_alu->dest.dest.ssa.num_components > 1)
return all_bits;
switch (use_alu->op) {
case nir_op_u2u8:
case nir_op_i2i8:
bits_used |= 0xff;
break;
case nir_op_u2u16:
case nir_op_i2i16:
bits_used |= all_bits & 0xffff;
break;
case nir_op_u2u32:
case nir_op_i2i32:
bits_used |= all_bits & 0xffffffff;
break;
case nir_op_extract_u8:
case nir_op_extract_i8:
if (src_idx == 0 && nir_src_is_const(use_alu->src[1].src)) {
unsigned chunk = nir_src_comp_as_uint(use_alu->src[1].src,
use_alu->src[1].swizzle[0]);
bits_used |= 0xffull << (chunk * 8);
break;
} else {
return all_bits;
}
case nir_op_extract_u16:
case nir_op_extract_i16:
if (src_idx == 0 && nir_src_is_const(use_alu->src[1].src)) {
unsigned chunk = nir_src_comp_as_uint(use_alu->src[1].src,
use_alu->src[1].swizzle[0]);
bits_used |= 0xffffull << (chunk * 16);
break;
} else {
return all_bits;
}
case nir_op_ishl:
case nir_op_ishr:
case nir_op_ushr:
if (src_idx == 1) {
bits_used |= (nir_src_bit_size(use_alu->src[0].src) - 1);
break;
} else {
return all_bits;
}
case nir_op_iand:
assert(src_idx < 2);
if (nir_src_is_const(use_alu->src[1 - src_idx].src)) {
uint64_t u64 = nir_src_comp_as_uint(use_alu->src[1 - src_idx].src,
use_alu->src[1 - src_idx].swizzle[0]);
bits_used |= u64;
break;
} else {
return all_bits;
}
case nir_op_ior:
assert(src_idx < 2);
if (nir_src_is_const(use_alu->src[1 - src_idx].src)) {
uint64_t u64 = nir_src_comp_as_uint(use_alu->src[1 - src_idx].src,
use_alu->src[1 - src_idx].swizzle[0]);
bits_used |= all_bits & ~u64;
break;
} else {
return all_bits;
}
default:
/* We don't know what this op does */
return all_bits;
}
break;
}
case nir_instr_type_intrinsic: {
nir_intrinsic_instr *use_intrin =
nir_instr_as_intrinsic(src->parent_instr);
unsigned src_idx = src - use_intrin->src;
switch (use_intrin->intrinsic) {
case nir_intrinsic_read_invocation:
case nir_intrinsic_shuffle:
case nir_intrinsic_shuffle_up:
case nir_intrinsic_shuffle_down:
case nir_intrinsic_shuffle_xor:
case nir_intrinsic_quad_broadcast:
case nir_intrinsic_quad_swap_horizontal:
case nir_intrinsic_quad_swap_vertical:
case nir_intrinsic_quad_swap_diagonal:
if (src_idx == 0) {
bits_used |= ssa_def_bits_used(&use_intrin->dest.ssa, recur);
} else {
if (use_intrin->intrinsic == nir_intrinsic_quad_broadcast) {
bits_used |= 3;
} else {
/* Subgroups larger than 128 are not a thing */
bits_used |= 127;
}
}
break;
case nir_intrinsic_reduce:
case nir_intrinsic_inclusive_scan:
case nir_intrinsic_exclusive_scan:
assert(src_idx == 0);
switch (nir_intrinsic_reduction_op(use_intrin)) {
case nir_op_iadd:
case nir_op_imul:
case nir_op_ior:
case nir_op_iand:
case nir_op_ixor:
bits_used |= ssa_def_bits_used(&use_intrin->dest.ssa, recur);
break;
default:
return all_bits;
}
break;
default:
/* We don't know what this op does */
return all_bits;
}
break;
}
case nir_instr_type_phi: {
nir_phi_instr *use_phi = nir_instr_as_phi(src->parent_instr);
bits_used |= ssa_def_bits_used(&use_phi->dest.ssa, recur);
break;
}
default:
return all_bits;
}
/* If we've somehow shown that all our bits are used, we're done */
assert((bits_used & ~all_bits) == 0);
if (bits_used == all_bits)
return all_bits;
}
return bits_used;
}
uint64_t
nir_ssa_def_bits_used(const nir_ssa_def *def)
{
return ssa_def_bits_used(def, 2);
}