mesa/src/amd/compiler/aco_interface.cpp

337 lines
12 KiB
C++
Raw Normal View History

/*
* Copyright © 2018 Google
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
*/
#include "aco_interface.h"
#include "aco_ir.h"
#include "vulkan/radv_shader.h"
#include "vulkan/radv_shader_args.h"
#include "util/memstream.h"
#include <array>
#include <iostream>
#include <vector>
static const std::array<aco_compiler_statistic_info, aco::num_statistics> statistic_infos = []()
{
std::array<aco_compiler_statistic_info, aco::num_statistics> ret{};
ret[aco::statistic_hash] =
aco_compiler_statistic_info{"Hash", "CRC32 hash of code and constant data"};
ret[aco::statistic_instructions] =
aco_compiler_statistic_info{"Instructions", "Instruction count"};
ret[aco::statistic_copies] =
aco_compiler_statistic_info{"Copies", "Copy instructions created for pseudo-instructions"};
ret[aco::statistic_branches] = aco_compiler_statistic_info{"Branches", "Branch instructions"};
ret[aco::statistic_latency] =
aco_compiler_statistic_info{"Latency", "Issue cycles plus stall cycles"};
ret[aco::statistic_inv_throughput] = aco_compiler_statistic_info{
"Inverse Throughput", "Estimated busy cycles to execute one wave"};
ret[aco::statistic_vmem_clauses] = aco_compiler_statistic_info{
"VMEM Clause", "Number of VMEM clauses (includes 1-sized clauses)"};
ret[aco::statistic_smem_clauses] = aco_compiler_statistic_info{
"SMEM Clause", "Number of SMEM clauses (includes 1-sized clauses)"};
ret[aco::statistic_sgpr_presched] =
aco_compiler_statistic_info{"Pre-Sched SGPRs", "SGPR usage before scheduling"};
ret[aco::statistic_vgpr_presched] =
aco_compiler_statistic_info{"Pre-Sched VGPRs", "VGPR usage before scheduling"};
return ret;
}();
const unsigned aco_num_statistics = aco::num_statistics;
const aco_compiler_statistic_info* aco_statistic_infos = statistic_infos.data();
static void
validate(aco::Program* program)
{
if (!(aco::debug_flags & aco::DEBUG_VALIDATE_IR))
return;
ASSERTED bool is_valid = aco::validate_ir(program);
assert(is_valid);
}
static std::string
get_disasm_string(aco::Program* program, std::vector<uint32_t>& code,
unsigned exec_size)
{
std::string disasm;
if (check_print_asm_support(program)) {
char* data = NULL;
size_t disasm_size = 0;
struct u_memstream mem;
if (u_memstream_open(&mem, &data, &disasm_size)) {
FILE* const memf = u_memstream_get(&mem);
aco::print_asm(program, code, exec_size / 4u, memf);
fputc(0, memf);
u_memstream_close(&mem);
}
disasm = std::string(data, data + disasm_size);
free(data);
} else {
disasm = "Shader disassembly is not supported in the current configuration"
#ifndef LLVM_AVAILABLE
" (LLVM not available)"
#endif
".\n";
}
return disasm;
}
void
aco_compile_shader(const struct radv_nir_compiler_options* options,
const struct radv_shader_info* info,
unsigned shader_count, struct nir_shader* const* shaders,
const struct radv_shader_args *args,
struct radv_shader_binary** binary)
{
aco::init();
ac_shader_config config = {0};
std::unique_ptr<aco::Program> program{new aco::Program};
program->collect_statistics = options->record_stats;
if (program->collect_statistics)
memset(program->statistics, 0, sizeof(program->statistics));
program->debug.func = options->debug.func;
program->debug.private_data = options->debug.private_data;
/* Instruction Selection */
if (args->is_gs_copy_shader)
aco::select_gs_copy_shader(program.get(), shaders[0], &config, options, info, args);
else if (args->is_trap_handler_shader)
aco::select_trap_handler_shader(program.get(), shaders[0], &config, options, info, args);
else
aco::select_program(program.get(), shader_count, shaders, &config, options, info, args);
if (options->dump_preoptir)
aco_print_program(program.get(), stderr);
aco::live live_vars;
if (!args->is_trap_handler_shader) {
/* Phi lowering */
aco::lower_phis(program.get());
aco::dominator_tree(program.get());
validate(program.get());
/* Optimization */
if (!options->key.optimisations_disabled) {
if (!(aco::debug_flags & aco::DEBUG_NO_VN))
aco::value_numbering(program.get());
if (!(aco::debug_flags & aco::DEBUG_NO_OPT))
aco::optimize(program.get());
}
/* cleanup and exec mask handling */
aco::setup_reduce_temp(program.get());
aco::insert_exec_mask(program.get());
validate(program.get());
/* spilling and scheduling */
live_vars = aco::live_var_analysis(program.get());
aco::spill(program.get(), live_vars);
}
std::string llvm_ir;
if (options->record_ir) {
char* data = NULL;
size_t size = 0;
u_memstream mem;
if (u_memstream_open(&mem, &data, &size)) {
FILE* const memf = u_memstream_get(&mem);
aco_print_program(program.get(), memf);
fputc(0, memf);
u_memstream_close(&mem);
}
llvm_ir = std::string(data, data + size);
free(data);
}
if (program->collect_statistics)
aco::collect_presched_stats(program.get());
if ((aco::debug_flags & aco::DEBUG_LIVE_INFO) && options->dump_shader)
aco_print_program(program.get(), stderr, live_vars, aco::print_live_vars | aco::print_kill);
if (!args->is_trap_handler_shader) {
if (!options->key.optimisations_disabled && !(aco::debug_flags & aco::DEBUG_NO_SCHED))
aco::schedule_program(program.get(), live_vars);
validate(program.get());
/* Register Allocation */
aco::register_allocation(program.get(), live_vars.live_out);
if (aco::validate_ra(program.get())) {
aco_print_program(program.get(), stderr);
abort();
} else if (options->dump_shader) {
aco_print_program(program.get(), stderr);
}
validate(program.get());
/* Optimization */
if (!options->key.optimisations_disabled && !(aco::debug_flags & aco::DEBUG_NO_OPT)) {
aco::optimize_postRA(program.get());
validate(program.get());
}
aco::ssa_elimination(program.get());
}
/* Lower to HW Instructions */
aco::lower_to_hw_instr(program.get());
/* Insert Waitcnt */
aco::insert_wait_states(program.get());
aco::insert_NOPs(program.get());
if (program->chip_class >= GFX10)
aco::form_hard_clauses(program.get());
if (program->collect_statistics || (aco::debug_flags & aco::DEBUG_PERF_INFO))
aco::collect_preasm_stats(program.get());
/* Assembly */
std::vector<uint32_t> code;
unsigned exec_size = aco::emit_program(program.get(), code);
if (program->collect_statistics)
aco::collect_postasm_stats(program.get(), code);
bool get_disasm = options->dump_shader || options->record_ir;
size_t size = llvm_ir.size();
std::string disasm;
if (get_disasm) {
disasm = get_disasm_string(program.get(), code, exec_size);
size += disasm.size();
}
size_t stats_size = 0;
if (program->collect_statistics)
stats_size = aco::num_statistics * sizeof(uint32_t);
size += stats_size;
size += code.size() * sizeof(uint32_t) + sizeof(radv_shader_binary_legacy);
/* We need to calloc to prevent unintialized data because this will be used
* directly for the disk cache. Uninitialized data can appear because of
* padding in the struct or because legacy_binary->data can be at an offset
* from the start less than sizeof(radv_shader_binary_legacy). */
radv_shader_binary_legacy* legacy_binary = (radv_shader_binary_legacy*)calloc(size, 1);
legacy_binary->base.type = RADV_BINARY_TYPE_LEGACY;
legacy_binary->base.stage = shaders[shader_count - 1]->info.stage;
legacy_binary->base.is_gs_copy_shader = args->is_gs_copy_shader;
legacy_binary->base.total_size = size;
if (program->collect_statistics)
memcpy(legacy_binary->data, program->statistics, aco::num_statistics * sizeof(uint32_t));
legacy_binary->stats_size = stats_size;
memcpy(legacy_binary->data + legacy_binary->stats_size, code.data(),
code.size() * sizeof(uint32_t));
legacy_binary->exec_size = exec_size;
legacy_binary->code_size = code.size() * sizeof(uint32_t);
legacy_binary->base.config = config;
legacy_binary->disasm_size = 0;
legacy_binary->ir_size = llvm_ir.size();
llvm_ir.copy((char*)legacy_binary->data + legacy_binary->stats_size + legacy_binary->code_size,
llvm_ir.size());
if (get_disasm) {
disasm.copy((char*)legacy_binary->data + legacy_binary->stats_size +
legacy_binary->code_size + llvm_ir.size(),
disasm.size());
legacy_binary->disasm_size = disasm.size();
}
*binary = (radv_shader_binary*)legacy_binary;
}
void
aco_compile_vs_prolog(const struct radv_nir_compiler_options* options,
const struct radv_shader_info* info,
const struct radv_vs_prolog_key* key,
const struct radv_shader_args* args,
struct radv_prolog_binary** binary)
{
aco::init();
/* create program */
ac_shader_config config = {0};
std::unique_ptr<aco::Program> program{new aco::Program};
program->collect_statistics = false;
program->debug.func = NULL;
program->debug.private_data = NULL;
/* create IR */
unsigned num_preserved_sgprs;
aco::select_vs_prolog(program.get(), key, &config, options, info, args, &num_preserved_sgprs);
aco::insert_NOPs(program.get());
if (options->dump_shader)
aco_print_program(program.get(), stderr);
/* assembly */
std::vector<uint32_t> code;
code.reserve(align(program->blocks[0].instructions.size() * 2, 16));
unsigned exec_size = aco::emit_program(program.get(), code);
/* copy into binary */
size_t size = code.size() * sizeof(uint32_t) + sizeof(radv_prolog_binary);
bool get_disasm = options->dump_shader || options->record_ir;
std::string disasm;
if (get_disasm) {
disasm = get_disasm_string(program.get(), code, exec_size);
size += disasm.size();
}
radv_prolog_binary* prolog_binary = (radv_prolog_binary*)calloc(size, 1);
prolog_binary->num_sgprs = config.num_sgprs;
prolog_binary->num_vgprs = config.num_vgprs;
prolog_binary->num_preserved_sgprs = num_preserved_sgprs;
prolog_binary->code_size = code.size() * sizeof(uint32_t);
memcpy(prolog_binary->data, code.data(), prolog_binary->code_size);
if (get_disasm) {
disasm.copy((char*)prolog_binary->data + prolog_binary->code_size,
disasm.size());
prolog_binary->disasm_size = disasm.size();
}
*binary = prolog_binary;
}