libinput/src/libinput.c

3962 lines
100 KiB
C
Raw Normal View History

/*
* Copyright © 2013 Jonas Ådahl
* Copyright © 2013-2015 Red Hat, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
#include "config.h"
#include <errno.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/epoll.h>
#include <unistd.h>
#include <assert.h>
#include "libinput.h"
#include "libinput-private.h"
Port udev-seat to be used in libinput This patch ports udev-seat from weston to libinput, including adapting libinput internals and API to provide seat and device discovery. The public API is extended with device discovery, object reference, a seat object. As libinput takes care of creating and destroying its objects user data getter/setter is added in order to make it possible for the client to directly associate an object application side with an object library side. Device discovery API is made up of the 'seat added', 'seat removed', 'device added' and 'device removed' events. The seat added/removed events contains a pointer to a libinput_seat struct, while the device added/removed events contains a pointer to a libinput_device event. The objects are reference counted with libinput holding one reference by default. The application can increase the reference count with libinput_seat_ref() and libinput_device_ref() and decrease the reference count with libinput_seat_unref() and libinput_device_unref(). The basic event struct is changed to have a 'target' union parameter that can be either a libinput, libinput_seat or libinput_device struct pointer. There is one known problem with the current API that is the potentially racy initialization. The problem is when a device is both discovered and lost during initial dispatchig, causing libinput to first queue a 'added' message, creating the device with default reference count 1, then before going back to the application queuing a 'removed' message, while at same time decreasing reference count of the device to 0, causing it o be destroyed. The queue will at this state contain two messages with pointers to free:ed memory. Signed-off-by: Jonas Ådahl <jadahl@gmail.com>
2013-11-23 13:04:32 +01:00
#include "evdev.h"
#include "timer.h"
#define require_event_type(li_, type_, retval_, ...) \
if (type_ == LIBINPUT_EVENT_NONE) abort(); \
if (!check_event_type(li_, __func__, type_, __VA_ARGS__, -1)) \
return retval_; \
static inline bool
check_event_type(struct libinput *libinput,
const char *function_name,
enum libinput_event_type type_in,
...)
{
bool rc = false;
va_list args;
unsigned int type_permitted;
va_start(args, type_in);
type_permitted = va_arg(args, unsigned int);
while (type_permitted != (unsigned int)-1) {
if (type_permitted == type_in) {
rc = true;
break;
}
type_permitted = va_arg(args, unsigned int);
}
va_end(args);
if (!rc)
log_bug_client(libinput,
"Invalid event type %d passed to %s()\n",
type_in, function_name);
return rc;
}
struct libinput_source {
libinput_source_dispatch_t dispatch;
void *user_data;
int fd;
struct list link;
};
struct libinput_event_device_notify {
struct libinput_event base;
};
struct libinput_event_keyboard {
struct libinput_event base;
uint64_t time;
uint32_t key;
uint32_t seat_key_count;
enum libinput_key_state state;
};
struct libinput_event_pointer {
struct libinput_event base;
uint64_t time;
struct normalized_coords delta;
struct device_float_coords delta_raw;
struct device_coords absolute;
struct discrete_coords discrete;
uint32_t button;
uint32_t seat_button_count;
enum libinput_button_state state;
Add pointer axis sources to the API For a caller to implement/provide kinetic scrolling ("inertial scrolling", "fling scrolling"), it needs to know how the scrolling motion was implemented, and what to expect in the future. Add this information to the pointer axis event. The three scroll sources we have are: * wheels: scrolling is in discreet steps, you don't know when it ends, the wheel will just stop sending events * fingers: scrolling is continuous coordinate space, we know when it stops and we can tell the caller * continuous: scrolling is in continuous coordinate space but we may or may not know when it stops. if scroll lock is used, the device may never technically get out of scroll mode even if it doesn't send events at any given moment Use case: trackpoint/trackball scroll emulation on button press The stop event is now codified in the API documentation, so callers can use that for kinetic scrolling. libinput does not implement kinetic scrolling itself. Not covered by this patch: * The wheel event is currently defined as "typical mouse wheel step", this is different to Qt where the step value is 1/8 of a degree. Some better definition here may help. * It is unclear how an absolute device would map into relative motion if the device itself is not controlling absolute motion. * For diagonal scrolling, the vertical/horizontal terminator events would come in separately. The caller would have to deal with that somehow. Signed-off-by: Peter Hutterer <peter.hutterer@who-t.net> Original patch, before the rebase onto today's master: Reviewed-by: Hans de Goede <hdegoede@redhat.com>
2014-11-05 16:22:07 +10:00
enum libinput_pointer_axis_source source;
uint32_t axes;
};
struct libinput_event_touch {
struct libinput_event base;
uint64_t time;
int32_t slot;
int32_t seat_slot;
struct device_coords point;
};
2015-01-22 16:41:50 +01:00
struct libinput_event_gesture {
struct libinput_event base;
uint64_t time;
2015-01-22 16:41:50 +01:00
int finger_count;
int cancelled;
2015-01-22 16:41:50 +01:00
struct normalized_coords delta;
struct normalized_coords delta_unaccel;
double scale;
double angle;
2015-01-22 16:41:50 +01:00
};
struct libinput_event_tablet_tool {
struct libinput_event base;
uint32_t button;
enum libinput_button_state state;
uint32_t seat_button_count;
uint64_t time;
struct tablet_axes axes;
unsigned char changed_axes[NCHARS(LIBINPUT_TABLET_TOOL_AXIS_MAX + 1)];
struct libinput_tablet_tool *tool;
enum libinput_tablet_tool_proximity_state proximity_state;
enum libinput_tablet_tool_tip_state tip_state;
};
struct libinput_event_tablet_pad {
struct libinput_event base;
unsigned int mode;
struct libinput_tablet_pad_mode_group *mode_group;
uint64_t time;
struct {
uint32_t number;
enum libinput_button_state state;
} button;
struct {
enum libinput_tablet_pad_ring_axis_source source;
double position;
int number;
} ring;
struct {
enum libinput_tablet_pad_strip_axis_source source;
double position;
int number;
} strip;
};
LIBINPUT_ATTRIBUTE_PRINTF(3, 0)
static void
libinput_default_log_func(struct libinput *libinput,
enum libinput_log_priority priority,
const char *format, va_list args)
{
const char *prefix;
switch(priority) {
case LIBINPUT_LOG_PRIORITY_DEBUG: prefix = "debug"; break;
case LIBINPUT_LOG_PRIORITY_INFO: prefix = "info"; break;
case LIBINPUT_LOG_PRIORITY_ERROR: prefix = "error"; break;
default: prefix="<invalid priority>"; break;
}
fprintf(stderr, "libinput %s: ", prefix);
vfprintf(stderr, format, args);
}
void
log_msg_va(struct libinput *libinput,
enum libinput_log_priority priority,
const char *format,
va_list args)
{
if (libinput->log_handler &&
libinput->log_priority <= priority)
libinput->log_handler(libinput, priority, format, args);
}
void
log_msg(struct libinput *libinput,
enum libinput_log_priority priority,
const char *format, ...)
{
va_list args;
va_start(args, format);
log_msg_va(libinput, priority, format, args);
va_end(args);
}
void
log_msg_ratelimit(struct libinput *libinput,
struct ratelimit *ratelimit,
enum libinput_log_priority priority,
const char *format, ...)
{
va_list args;
enum ratelimit_state state;
state = ratelimit_test(ratelimit);
if (state == RATELIMIT_EXCEEDED)
return;
va_start(args, format);
log_msg_va(libinput, priority, format, args);
va_end(args);
if (state == RATELIMIT_THRESHOLD)
log_msg(libinput,
priority,
"WARNING: log rate limit exceeded (%d msgs per %dms). Discarding future messages.\n",
ratelimit->burst,
us2ms(ratelimit->interval));
}
LIBINPUT_EXPORT void
libinput_log_set_priority(struct libinput *libinput,
enum libinput_log_priority priority)
{
libinput->log_priority = priority;
}
LIBINPUT_EXPORT enum libinput_log_priority
libinput_log_get_priority(const struct libinput *libinput)
{
return libinput->log_priority;
}
LIBINPUT_EXPORT void
libinput_log_set_handler(struct libinput *libinput,
libinput_log_handler log_handler)
{
libinput->log_handler = log_handler;
}
static void
libinput_device_group_destroy(struct libinput_device_group *group);
Port udev-seat to be used in libinput This patch ports udev-seat from weston to libinput, including adapting libinput internals and API to provide seat and device discovery. The public API is extended with device discovery, object reference, a seat object. As libinput takes care of creating and destroying its objects user data getter/setter is added in order to make it possible for the client to directly associate an object application side with an object library side. Device discovery API is made up of the 'seat added', 'seat removed', 'device added' and 'device removed' events. The seat added/removed events contains a pointer to a libinput_seat struct, while the device added/removed events contains a pointer to a libinput_device event. The objects are reference counted with libinput holding one reference by default. The application can increase the reference count with libinput_seat_ref() and libinput_device_ref() and decrease the reference count with libinput_seat_unref() and libinput_device_unref(). The basic event struct is changed to have a 'target' union parameter that can be either a libinput, libinput_seat or libinput_device struct pointer. There is one known problem with the current API that is the potentially racy initialization. The problem is when a device is both discovered and lost during initial dispatchig, causing libinput to first queue a 'added' message, creating the device with default reference count 1, then before going back to the application queuing a 'removed' message, while at same time decreasing reference count of the device to 0, causing it o be destroyed. The queue will at this state contain two messages with pointers to free:ed memory. Signed-off-by: Jonas Ådahl <jadahl@gmail.com>
2013-11-23 13:04:32 +01:00
static void
libinput_post_event(struct libinput *libinput,
struct libinput_event *event);
LIBINPUT_EXPORT enum libinput_event_type
libinput_event_get_type(struct libinput_event *event)
{
return event->type;
}
LIBINPUT_EXPORT struct libinput *
libinput_event_get_context(struct libinput_event *event)
{
return event->device->seat->libinput;
}
LIBINPUT_EXPORT struct libinput_device *
libinput_event_get_device(struct libinput_event *event)
{
return event->device;
}
LIBINPUT_EXPORT struct libinput_event_pointer *
libinput_event_get_pointer_event(struct libinput_event *event)
{
require_event_type(libinput_event_get_context(event),
event->type,
NULL,
LIBINPUT_EVENT_POINTER_MOTION,
LIBINPUT_EVENT_POINTER_MOTION_ABSOLUTE,
LIBINPUT_EVENT_POINTER_BUTTON,
LIBINPUT_EVENT_POINTER_AXIS);
return (struct libinput_event_pointer *) event;
}
LIBINPUT_EXPORT struct libinput_event_keyboard *
libinput_event_get_keyboard_event(struct libinput_event *event)
{
require_event_type(libinput_event_get_context(event),
event->type,
NULL,
LIBINPUT_EVENT_KEYBOARD_KEY);
return (struct libinput_event_keyboard *) event;
}
LIBINPUT_EXPORT struct libinput_event_touch *
libinput_event_get_touch_event(struct libinput_event *event)
{
require_event_type(libinput_event_get_context(event),
event->type,
NULL,
LIBINPUT_EVENT_TOUCH_DOWN,
LIBINPUT_EVENT_TOUCH_UP,
LIBINPUT_EVENT_TOUCH_MOTION,
LIBINPUT_EVENT_TOUCH_CANCEL,
LIBINPUT_EVENT_TOUCH_FRAME);
return (struct libinput_event_touch *) event;
}
2015-01-22 16:41:50 +01:00
LIBINPUT_EXPORT struct libinput_event_gesture *
libinput_event_get_gesture_event(struct libinput_event *event)
{
require_event_type(libinput_event_get_context(event),
event->type,
NULL,
LIBINPUT_EVENT_GESTURE_SWIPE_BEGIN,
LIBINPUT_EVENT_GESTURE_SWIPE_UPDATE,
LIBINPUT_EVENT_GESTURE_SWIPE_END,
LIBINPUT_EVENT_GESTURE_PINCH_BEGIN,
LIBINPUT_EVENT_GESTURE_PINCH_UPDATE,
LIBINPUT_EVENT_GESTURE_PINCH_END);
2015-01-22 16:41:50 +01:00
return (struct libinput_event_gesture *) event;
}
LIBINPUT_EXPORT struct libinput_event_tablet_tool *
libinput_event_get_tablet_tool_event(struct libinput_event *event)
{
require_event_type(libinput_event_get_context(event),
event->type,
NULL,
LIBINPUT_EVENT_TABLET_TOOL_AXIS,
LIBINPUT_EVENT_TABLET_TOOL_PROXIMITY,
LIBINPUT_EVENT_TABLET_TOOL_TIP,
LIBINPUT_EVENT_TABLET_TOOL_BUTTON);
return (struct libinput_event_tablet_tool *) event;
}
LIBINPUT_EXPORT struct libinput_event_tablet_pad *
libinput_event_get_tablet_pad_event(struct libinput_event *event)
{
require_event_type(libinput_event_get_context(event),
event->type,
NULL,
LIBINPUT_EVENT_TABLET_PAD_RING,
LIBINPUT_EVENT_TABLET_PAD_STRIP,
LIBINPUT_EVENT_TABLET_PAD_BUTTON);
return (struct libinput_event_tablet_pad *) event;
}
LIBINPUT_EXPORT struct libinput_event_device_notify *
libinput_event_get_device_notify_event(struct libinput_event *event)
{
require_event_type(libinput_event_get_context(event),
event->type,
NULL,
LIBINPUT_EVENT_DEVICE_ADDED,
LIBINPUT_EVENT_DEVICE_REMOVED);
return (struct libinput_event_device_notify *) event;
}
LIBINPUT_EXPORT uint32_t
libinput_event_keyboard_get_time(struct libinput_event_keyboard *event)
{
require_event_type(libinput_event_get_context(&event->base),
event->base.type,
0,
LIBINPUT_EVENT_KEYBOARD_KEY);
return us2ms(event->time);
}
LIBINPUT_EXPORT uint64_t
libinput_event_keyboard_get_time_usec(struct libinput_event_keyboard *event)
{
require_event_type(libinput_event_get_context(&event->base),
event->base.type,
0,
LIBINPUT_EVENT_KEYBOARD_KEY);
return event->time;
}
LIBINPUT_EXPORT uint32_t
libinput_event_keyboard_get_key(struct libinput_event_keyboard *event)
{
require_event_type(libinput_event_get_context(&event->base),
event->base.type,
0,
LIBINPUT_EVENT_KEYBOARD_KEY);
return event->key;
}
LIBINPUT_EXPORT enum libinput_key_state
libinput_event_keyboard_get_key_state(struct libinput_event_keyboard *event)
{
require_event_type(libinput_event_get_context(&event->base),
event->base.type,
0,
LIBINPUT_EVENT_KEYBOARD_KEY);
return event->state;
}
LIBINPUT_EXPORT uint32_t
libinput_event_keyboard_get_seat_key_count(
struct libinput_event_keyboard *event)
{
require_event_type(libinput_event_get_context(&event->base),
event->base.type,
0,
LIBINPUT_EVENT_KEYBOARD_KEY);
return event->seat_key_count;
}
LIBINPUT_EXPORT uint32_t
libinput_event_pointer_get_time(struct libinput_event_pointer *event)
{
require_event_type(libinput_event_get_context(&event->base),
event->base.type,
0,
LIBINPUT_EVENT_POINTER_MOTION,
LIBINPUT_EVENT_POINTER_MOTION_ABSOLUTE,
LIBINPUT_EVENT_POINTER_BUTTON,
LIBINPUT_EVENT_POINTER_AXIS);
return us2ms(event->time);
}
LIBINPUT_EXPORT uint64_t
libinput_event_pointer_get_time_usec(struct libinput_event_pointer *event)
{
require_event_type(libinput_event_get_context(&event->base),
event->base.type,
0,
LIBINPUT_EVENT_POINTER_MOTION,
LIBINPUT_EVENT_POINTER_MOTION_ABSOLUTE,
LIBINPUT_EVENT_POINTER_BUTTON,
LIBINPUT_EVENT_POINTER_AXIS);
return event->time;
}
LIBINPUT_EXPORT double
libinput_event_pointer_get_dx(struct libinput_event_pointer *event)
{
require_event_type(libinput_event_get_context(&event->base),
event->base.type,
0,
LIBINPUT_EVENT_POINTER_MOTION);
return event->delta.x;
}
LIBINPUT_EXPORT double
libinput_event_pointer_get_dy(struct libinput_event_pointer *event)
{
require_event_type(libinput_event_get_context(&event->base),
event->base.type,
0,
LIBINPUT_EVENT_POINTER_MOTION);
return event->delta.y;
}
LIBINPUT_EXPORT double
libinput_event_pointer_get_dx_unaccelerated(
struct libinput_event_pointer *event)
{
require_event_type(libinput_event_get_context(&event->base),
event->base.type,
0,
LIBINPUT_EVENT_POINTER_MOTION);
return event->delta_raw.x;
}
LIBINPUT_EXPORT double
libinput_event_pointer_get_dy_unaccelerated(
struct libinput_event_pointer *event)
{
require_event_type(libinput_event_get_context(&event->base),
event->base.type,
0,
LIBINPUT_EVENT_POINTER_MOTION);
return event->delta_raw.y;
}
LIBINPUT_EXPORT double
libinput_event_pointer_get_absolute_x(struct libinput_event_pointer *event)
{
struct evdev_device *device =
(struct evdev_device *) event->base.device;
require_event_type(libinput_event_get_context(&event->base),
event->base.type,
0,
LIBINPUT_EVENT_POINTER_MOTION_ABSOLUTE);
return evdev_convert_to_mm(device->abs.absinfo_x, event->absolute.x);
}
LIBINPUT_EXPORT double
libinput_event_pointer_get_absolute_y(struct libinput_event_pointer *event)
{
struct evdev_device *device =
(struct evdev_device *) event->base.device;
require_event_type(libinput_event_get_context(&event->base),
event->base.type,
0,
LIBINPUT_EVENT_POINTER_MOTION_ABSOLUTE);
return evdev_convert_to_mm(device->abs.absinfo_y, event->absolute.y);
}
LIBINPUT_EXPORT double
libinput_event_pointer_get_absolute_x_transformed(
struct libinput_event_pointer *event,
uint32_t width)
{
struct evdev_device *device =
(struct evdev_device *) event->base.device;
require_event_type(libinput_event_get_context(&event->base),
event->base.type,
0,
LIBINPUT_EVENT_POINTER_MOTION_ABSOLUTE);
return evdev_device_transform_x(device, event->absolute.x, width);
}
LIBINPUT_EXPORT double
libinput_event_pointer_get_absolute_y_transformed(
struct libinput_event_pointer *event,
uint32_t height)
{
struct evdev_device *device =
(struct evdev_device *) event->base.device;
require_event_type(libinput_event_get_context(&event->base),
event->base.type,
0,
LIBINPUT_EVENT_POINTER_MOTION_ABSOLUTE);
return evdev_device_transform_y(device, event->absolute.y, height);
}
LIBINPUT_EXPORT uint32_t
libinput_event_pointer_get_button(struct libinput_event_pointer *event)
{
require_event_type(libinput_event_get_context(&event->base),
event->base.type,
0,
LIBINPUT_EVENT_POINTER_BUTTON);
return event->button;
}
LIBINPUT_EXPORT enum libinput_button_state
libinput_event_pointer_get_button_state(struct libinput_event_pointer *event)
{
require_event_type(libinput_event_get_context(&event->base),
event->base.type,
0,
LIBINPUT_EVENT_POINTER_BUTTON);
return event->state;
}
LIBINPUT_EXPORT uint32_t
libinput_event_pointer_get_seat_button_count(
struct libinput_event_pointer *event)
{
require_event_type(libinput_event_get_context(&event->base),
event->base.type,
0,
LIBINPUT_EVENT_POINTER_BUTTON);
return event->seat_button_count;
}
LIBINPUT_EXPORT int
libinput_event_pointer_has_axis(struct libinput_event_pointer *event,
enum libinput_pointer_axis axis)
{
require_event_type(libinput_event_get_context(&event->base),
event->base.type,
0,
LIBINPUT_EVENT_POINTER_AXIS);
switch (axis) {
case LIBINPUT_POINTER_AXIS_SCROLL_HORIZONTAL:
case LIBINPUT_POINTER_AXIS_SCROLL_VERTICAL:
return !!(event->axes & AS_MASK(axis));
}
return 0;
}
LIBINPUT_EXPORT double
libinput_event_pointer_get_axis_value(struct libinput_event_pointer *event,
enum libinput_pointer_axis axis)
{
struct libinput *libinput = event->base.device->seat->libinput;
double value = 0;
require_event_type(libinput_event_get_context(&event->base),
event->base.type,
0.0,
LIBINPUT_EVENT_POINTER_AXIS);
if (!libinput_event_pointer_has_axis(event, axis)) {
log_bug_client(libinput, "value requested for unset axis\n");
} else {
switch (axis) {
case LIBINPUT_POINTER_AXIS_SCROLL_HORIZONTAL:
value = event->delta.x;
break;
case LIBINPUT_POINTER_AXIS_SCROLL_VERTICAL:
value = event->delta.y;
break;
}
}
return value;
}
LIBINPUT_EXPORT double
libinput_event_pointer_get_axis_value_discrete(struct libinput_event_pointer *event,
enum libinput_pointer_axis axis)
{
struct libinput *libinput = event->base.device->seat->libinput;
double value = 0;
require_event_type(libinput_event_get_context(&event->base),
event->base.type,
0.0,
LIBINPUT_EVENT_POINTER_AXIS);
if (!libinput_event_pointer_has_axis(event, axis)) {
log_bug_client(libinput, "value requested for unset axis\n");
} else {
switch (axis) {
case LIBINPUT_POINTER_AXIS_SCROLL_HORIZONTAL:
value = event->discrete.x;
break;
case LIBINPUT_POINTER_AXIS_SCROLL_VERTICAL:
value = event->discrete.y;
break;
}
}
return value;
}
Add pointer axis sources to the API For a caller to implement/provide kinetic scrolling ("inertial scrolling", "fling scrolling"), it needs to know how the scrolling motion was implemented, and what to expect in the future. Add this information to the pointer axis event. The three scroll sources we have are: * wheels: scrolling is in discreet steps, you don't know when it ends, the wheel will just stop sending events * fingers: scrolling is continuous coordinate space, we know when it stops and we can tell the caller * continuous: scrolling is in continuous coordinate space but we may or may not know when it stops. if scroll lock is used, the device may never technically get out of scroll mode even if it doesn't send events at any given moment Use case: trackpoint/trackball scroll emulation on button press The stop event is now codified in the API documentation, so callers can use that for kinetic scrolling. libinput does not implement kinetic scrolling itself. Not covered by this patch: * The wheel event is currently defined as "typical mouse wheel step", this is different to Qt where the step value is 1/8 of a degree. Some better definition here may help. * It is unclear how an absolute device would map into relative motion if the device itself is not controlling absolute motion. * For diagonal scrolling, the vertical/horizontal terminator events would come in separately. The caller would have to deal with that somehow. Signed-off-by: Peter Hutterer <peter.hutterer@who-t.net> Original patch, before the rebase onto today's master: Reviewed-by: Hans de Goede <hdegoede@redhat.com>
2014-11-05 16:22:07 +10:00
LIBINPUT_EXPORT enum libinput_pointer_axis_source
libinput_event_pointer_get_axis_source(struct libinput_event_pointer *event)
{
require_event_type(libinput_event_get_context(&event->base),
event->base.type,
0,
LIBINPUT_EVENT_POINTER_AXIS);
Add pointer axis sources to the API For a caller to implement/provide kinetic scrolling ("inertial scrolling", "fling scrolling"), it needs to know how the scrolling motion was implemented, and what to expect in the future. Add this information to the pointer axis event. The three scroll sources we have are: * wheels: scrolling is in discreet steps, you don't know when it ends, the wheel will just stop sending events * fingers: scrolling is continuous coordinate space, we know when it stops and we can tell the caller * continuous: scrolling is in continuous coordinate space but we may or may not know when it stops. if scroll lock is used, the device may never technically get out of scroll mode even if it doesn't send events at any given moment Use case: trackpoint/trackball scroll emulation on button press The stop event is now codified in the API documentation, so callers can use that for kinetic scrolling. libinput does not implement kinetic scrolling itself. Not covered by this patch: * The wheel event is currently defined as "typical mouse wheel step", this is different to Qt where the step value is 1/8 of a degree. Some better definition here may help. * It is unclear how an absolute device would map into relative motion if the device itself is not controlling absolute motion. * For diagonal scrolling, the vertical/horizontal terminator events would come in separately. The caller would have to deal with that somehow. Signed-off-by: Peter Hutterer <peter.hutterer@who-t.net> Original patch, before the rebase onto today's master: Reviewed-by: Hans de Goede <hdegoede@redhat.com>
2014-11-05 16:22:07 +10:00
return event->source;
}
LIBINPUT_EXPORT uint32_t
libinput_event_touch_get_time(struct libinput_event_touch *event)
{
require_event_type(libinput_event_get_context(&event->base),
event->base.type,
0,
LIBINPUT_EVENT_TOUCH_DOWN,
LIBINPUT_EVENT_TOUCH_UP,
LIBINPUT_EVENT_TOUCH_MOTION,
LIBINPUT_EVENT_TOUCH_CANCEL,
LIBINPUT_EVENT_TOUCH_FRAME);
return us2ms(event->time);
}
LIBINPUT_EXPORT uint64_t
libinput_event_touch_get_time_usec(struct libinput_event_touch *event)
{
require_event_type(libinput_event_get_context(&event->base),
event->base.type,
0,
LIBINPUT_EVENT_TOUCH_DOWN,
LIBINPUT_EVENT_TOUCH_UP,
LIBINPUT_EVENT_TOUCH_MOTION,
LIBINPUT_EVENT_TOUCH_CANCEL,
LIBINPUT_EVENT_TOUCH_FRAME);
return event->time;
}
LIBINPUT_EXPORT int32_t
libinput_event_touch_get_slot(struct libinput_event_touch *event)
{
require_event_type(libinput_event_get_context(&event->base),
event->base.type,
0,
LIBINPUT_EVENT_TOUCH_DOWN,
LIBINPUT_EVENT_TOUCH_UP,
LIBINPUT_EVENT_TOUCH_MOTION,
LIBINPUT_EVENT_TOUCH_CANCEL);
return event->slot;
}
LIBINPUT_EXPORT int32_t
libinput_event_touch_get_seat_slot(struct libinput_event_touch *event)
{
require_event_type(libinput_event_get_context(&event->base),
event->base.type,
0,
LIBINPUT_EVENT_TOUCH_DOWN,
LIBINPUT_EVENT_TOUCH_UP,
LIBINPUT_EVENT_TOUCH_MOTION,
LIBINPUT_EVENT_TOUCH_CANCEL);
return event->seat_slot;
}
LIBINPUT_EXPORT double
libinput_event_touch_get_x(struct libinput_event_touch *event)
{
struct evdev_device *device =
(struct evdev_device *) event->base.device;
require_event_type(libinput_event_get_context(&event->base),
event->base.type,
0,
LIBINPUT_EVENT_TOUCH_DOWN,
LIBINPUT_EVENT_TOUCH_MOTION);
return evdev_convert_to_mm(device->abs.absinfo_x, event->point.x);
}
LIBINPUT_EXPORT double
libinput_event_touch_get_x_transformed(struct libinput_event_touch *event,
uint32_t width)
{
struct evdev_device *device =
(struct evdev_device *) event->base.device;
require_event_type(libinput_event_get_context(&event->base),
event->base.type,
0,
LIBINPUT_EVENT_TOUCH_DOWN,
LIBINPUT_EVENT_TOUCH_MOTION);
return evdev_device_transform_x(device, event->point.x, width);
}
LIBINPUT_EXPORT double
libinput_event_touch_get_y_transformed(struct libinput_event_touch *event,
uint32_t height)
{
struct evdev_device *device =
(struct evdev_device *) event->base.device;
require_event_type(libinput_event_get_context(&event->base),
event->base.type,
0,
LIBINPUT_EVENT_TOUCH_DOWN,
LIBINPUT_EVENT_TOUCH_MOTION);
return evdev_device_transform_y(device, event->point.y, height);
}
LIBINPUT_EXPORT double
libinput_event_touch_get_y(struct libinput_event_touch *event)
{
struct evdev_device *device =
(struct evdev_device *) event->base.device;
require_event_type(libinput_event_get_context(&event->base),
event->base.type,
0,
LIBINPUT_EVENT_TOUCH_DOWN,
LIBINPUT_EVENT_TOUCH_MOTION);
return evdev_convert_to_mm(device->abs.absinfo_y, event->point.y);
}
2015-01-22 16:41:50 +01:00
LIBINPUT_EXPORT uint32_t
libinput_event_gesture_get_time(struct libinput_event_gesture *event)
{
require_event_type(libinput_event_get_context(&event->base),
event->base.type,
0,
LIBINPUT_EVENT_GESTURE_PINCH_BEGIN,
LIBINPUT_EVENT_GESTURE_PINCH_UPDATE,
LIBINPUT_EVENT_GESTURE_PINCH_END,
LIBINPUT_EVENT_GESTURE_SWIPE_BEGIN,
LIBINPUT_EVENT_GESTURE_SWIPE_UPDATE,
LIBINPUT_EVENT_GESTURE_SWIPE_END);
return us2ms(event->time);
}
LIBINPUT_EXPORT uint64_t
libinput_event_gesture_get_time_usec(struct libinput_event_gesture *event)
2015-01-22 16:41:50 +01:00
{
require_event_type(libinput_event_get_context(&event->base),
event->base.type,
0,
LIBINPUT_EVENT_GESTURE_PINCH_BEGIN,
LIBINPUT_EVENT_GESTURE_PINCH_UPDATE,
LIBINPUT_EVENT_GESTURE_PINCH_END,
LIBINPUT_EVENT_GESTURE_SWIPE_BEGIN,
LIBINPUT_EVENT_GESTURE_SWIPE_UPDATE,
LIBINPUT_EVENT_GESTURE_SWIPE_END);
2015-01-22 16:41:50 +01:00
return event->time;
}
LIBINPUT_EXPORT int
libinput_event_gesture_get_finger_count(struct libinput_event_gesture *event)
{
require_event_type(libinput_event_get_context(&event->base),
event->base.type,
0,
LIBINPUT_EVENT_GESTURE_PINCH_BEGIN,
LIBINPUT_EVENT_GESTURE_PINCH_UPDATE,
LIBINPUT_EVENT_GESTURE_PINCH_END,
LIBINPUT_EVENT_GESTURE_SWIPE_BEGIN,
LIBINPUT_EVENT_GESTURE_SWIPE_UPDATE,
LIBINPUT_EVENT_GESTURE_SWIPE_END);
2015-01-22 16:41:50 +01:00
return event->finger_count;
}
LIBINPUT_EXPORT int
libinput_event_gesture_get_cancelled(struct libinput_event_gesture *event)
{
require_event_type(libinput_event_get_context(&event->base),
event->base.type,
0,
LIBINPUT_EVENT_GESTURE_PINCH_END,
LIBINPUT_EVENT_GESTURE_SWIPE_END);
return event->cancelled;
}
2015-01-22 16:41:50 +01:00
LIBINPUT_EXPORT double
libinput_event_gesture_get_dx(struct libinput_event_gesture *event)
{
require_event_type(libinput_event_get_context(&event->base),
event->base.type,
0.0,
LIBINPUT_EVENT_GESTURE_PINCH_BEGIN,
LIBINPUT_EVENT_GESTURE_PINCH_UPDATE,
LIBINPUT_EVENT_GESTURE_PINCH_END,
LIBINPUT_EVENT_GESTURE_SWIPE_BEGIN,
LIBINPUT_EVENT_GESTURE_SWIPE_UPDATE,
LIBINPUT_EVENT_GESTURE_SWIPE_END);
2015-01-22 16:41:50 +01:00
return event->delta.x;
}
LIBINPUT_EXPORT double
libinput_event_gesture_get_dy(struct libinput_event_gesture *event)
{
require_event_type(libinput_event_get_context(&event->base),
event->base.type,
0.0,
LIBINPUT_EVENT_GESTURE_PINCH_BEGIN,
LIBINPUT_EVENT_GESTURE_PINCH_UPDATE,
LIBINPUT_EVENT_GESTURE_PINCH_END,
LIBINPUT_EVENT_GESTURE_SWIPE_BEGIN,
LIBINPUT_EVENT_GESTURE_SWIPE_UPDATE,
LIBINPUT_EVENT_GESTURE_SWIPE_END);
2015-01-22 16:41:50 +01:00
return event->delta.y;
}
LIBINPUT_EXPORT double
libinput_event_gesture_get_dx_unaccelerated(
struct libinput_event_gesture *event)
{
require_event_type(libinput_event_get_context(&event->base),
event->base.type,
0.0,
LIBINPUT_EVENT_GESTURE_PINCH_BEGIN,
LIBINPUT_EVENT_GESTURE_PINCH_UPDATE,
LIBINPUT_EVENT_GESTURE_PINCH_END,
LIBINPUT_EVENT_GESTURE_SWIPE_BEGIN,
LIBINPUT_EVENT_GESTURE_SWIPE_UPDATE,
LIBINPUT_EVENT_GESTURE_SWIPE_END);
2015-01-22 16:41:50 +01:00
return event->delta_unaccel.x;
}
LIBINPUT_EXPORT double
libinput_event_gesture_get_dy_unaccelerated(
struct libinput_event_gesture *event)
{
require_event_type(libinput_event_get_context(&event->base),
event->base.type,
0.0,
LIBINPUT_EVENT_GESTURE_PINCH_BEGIN,
LIBINPUT_EVENT_GESTURE_PINCH_UPDATE,
LIBINPUT_EVENT_GESTURE_PINCH_END,
LIBINPUT_EVENT_GESTURE_SWIPE_BEGIN,
LIBINPUT_EVENT_GESTURE_SWIPE_UPDATE,
LIBINPUT_EVENT_GESTURE_SWIPE_END);
2015-01-22 16:41:50 +01:00
return event->delta_unaccel.y;
}
LIBINPUT_EXPORT double
libinput_event_gesture_get_scale(struct libinput_event_gesture *event)
{
require_event_type(libinput_event_get_context(&event->base),
event->base.type,
0.0,
LIBINPUT_EVENT_GESTURE_PINCH_BEGIN,
LIBINPUT_EVENT_GESTURE_PINCH_UPDATE,
LIBINPUT_EVENT_GESTURE_PINCH_END);
return event->scale;
}
LIBINPUT_EXPORT double
libinput_event_gesture_get_angle_delta(struct libinput_event_gesture *event)
{
require_event_type(libinput_event_get_context(&event->base),
event->base.type,
0.0,
LIBINPUT_EVENT_GESTURE_PINCH_BEGIN,
LIBINPUT_EVENT_GESTURE_PINCH_UPDATE,
LIBINPUT_EVENT_GESTURE_PINCH_END);
return event->angle;
}
LIBINPUT_EXPORT int
libinput_event_tablet_tool_x_has_changed(
struct libinput_event_tablet_tool *event)
{
require_event_type(libinput_event_get_context(&event->base),
event->base.type,
0,
LIBINPUT_EVENT_TABLET_TOOL_AXIS,
LIBINPUT_EVENT_TABLET_TOOL_TIP,
LIBINPUT_EVENT_TABLET_TOOL_BUTTON,
LIBINPUT_EVENT_TABLET_TOOL_PROXIMITY);
return bit_is_set(event->changed_axes,
LIBINPUT_TABLET_TOOL_AXIS_X);
}
LIBINPUT_EXPORT int
libinput_event_tablet_tool_y_has_changed(
struct libinput_event_tablet_tool *event)
{
require_event_type(libinput_event_get_context(&event->base),
event->base.type,
0,
LIBINPUT_EVENT_TABLET_TOOL_AXIS,
LIBINPUT_EVENT_TABLET_TOOL_TIP,
LIBINPUT_EVENT_TABLET_TOOL_BUTTON,
LIBINPUT_EVENT_TABLET_TOOL_PROXIMITY);
return bit_is_set(event->changed_axes,
LIBINPUT_TABLET_TOOL_AXIS_Y);
}
LIBINPUT_EXPORT int
libinput_event_tablet_tool_pressure_has_changed(
struct libinput_event_tablet_tool *event)
{
require_event_type(libinput_event_get_context(&event->base),
event->base.type,
0,
LIBINPUT_EVENT_TABLET_TOOL_AXIS,
LIBINPUT_EVENT_TABLET_TOOL_TIP,
LIBINPUT_EVENT_TABLET_TOOL_BUTTON,
LIBINPUT_EVENT_TABLET_TOOL_PROXIMITY);
return bit_is_set(event->changed_axes,
LIBINPUT_TABLET_TOOL_AXIS_PRESSURE);
}
LIBINPUT_EXPORT int
libinput_event_tablet_tool_distance_has_changed(
struct libinput_event_tablet_tool *event)
{
require_event_type(libinput_event_get_context(&event->base),
event->base.type,
0,
LIBINPUT_EVENT_TABLET_TOOL_AXIS,
LIBINPUT_EVENT_TABLET_TOOL_TIP,
LIBINPUT_EVENT_TABLET_TOOL_BUTTON,
LIBINPUT_EVENT_TABLET_TOOL_PROXIMITY);
return bit_is_set(event->changed_axes,
LIBINPUT_TABLET_TOOL_AXIS_DISTANCE);
}
LIBINPUT_EXPORT int
libinput_event_tablet_tool_tilt_x_has_changed(
struct libinput_event_tablet_tool *event)
{
require_event_type(libinput_event_get_context(&event->base),
event->base.type,
0,
LIBINPUT_EVENT_TABLET_TOOL_AXIS,
LIBINPUT_EVENT_TABLET_TOOL_TIP,
LIBINPUT_EVENT_TABLET_TOOL_BUTTON,
LIBINPUT_EVENT_TABLET_TOOL_PROXIMITY);
return bit_is_set(event->changed_axes,
LIBINPUT_TABLET_TOOL_AXIS_TILT_X);
}
LIBINPUT_EXPORT int
libinput_event_tablet_tool_tilt_y_has_changed(
struct libinput_event_tablet_tool *event)
{
require_event_type(libinput_event_get_context(&event->base),
event->base.type,
0,
LIBINPUT_EVENT_TABLET_TOOL_AXIS,
LIBINPUT_EVENT_TABLET_TOOL_TIP,
LIBINPUT_EVENT_TABLET_TOOL_BUTTON,
LIBINPUT_EVENT_TABLET_TOOL_PROXIMITY);
return bit_is_set(event->changed_axes,
LIBINPUT_TABLET_TOOL_AXIS_TILT_Y);
}
LIBINPUT_EXPORT int
libinput_event_tablet_tool_rotation_has_changed(
struct libinput_event_tablet_tool *event)
{
require_event_type(libinput_event_get_context(&event->base),
event->base.type,
0,
LIBINPUT_EVENT_TABLET_TOOL_AXIS,
LIBINPUT_EVENT_TABLET_TOOL_TIP,
LIBINPUT_EVENT_TABLET_TOOL_BUTTON,
LIBINPUT_EVENT_TABLET_TOOL_PROXIMITY);
return bit_is_set(event->changed_axes,
LIBINPUT_TABLET_TOOL_AXIS_ROTATION_Z);
}
LIBINPUT_EXPORT int
libinput_event_tablet_tool_slider_has_changed(
struct libinput_event_tablet_tool *event)
{
require_event_type(libinput_event_get_context(&event->base),
event->base.type,
0,
LIBINPUT_EVENT_TABLET_TOOL_AXIS,
LIBINPUT_EVENT_TABLET_TOOL_TIP,
LIBINPUT_EVENT_TABLET_TOOL_BUTTON,
LIBINPUT_EVENT_TABLET_TOOL_PROXIMITY);
return bit_is_set(event->changed_axes,
LIBINPUT_TABLET_TOOL_AXIS_SLIDER);
}
LIBINPUT_EXPORT int
libinput_event_tablet_tool_wheel_has_changed(
struct libinput_event_tablet_tool *event)
{
require_event_type(libinput_event_get_context(&event->base),
event->base.type,
0,
LIBINPUT_EVENT_TABLET_TOOL_AXIS,
LIBINPUT_EVENT_TABLET_TOOL_TIP,
LIBINPUT_EVENT_TABLET_TOOL_BUTTON,
LIBINPUT_EVENT_TABLET_TOOL_PROXIMITY);
return bit_is_set(event->changed_axes,
LIBINPUT_TABLET_TOOL_AXIS_REL_WHEEL);
}
LIBINPUT_EXPORT double
libinput_event_tablet_tool_get_x(struct libinput_event_tablet_tool *event)
{
struct evdev_device *device =
(struct evdev_device *) event->base.device;
require_event_type(libinput_event_get_context(&event->base),
event->base.type,
0,
LIBINPUT_EVENT_TABLET_TOOL_AXIS,
LIBINPUT_EVENT_TABLET_TOOL_TIP,
LIBINPUT_EVENT_TABLET_TOOL_BUTTON,
LIBINPUT_EVENT_TABLET_TOOL_PROXIMITY);
return evdev_convert_to_mm(device->abs.absinfo_x,
event->axes.point.x);
}
LIBINPUT_EXPORT double
libinput_event_tablet_tool_get_y(struct libinput_event_tablet_tool *event)
{
struct evdev_device *device =
(struct evdev_device *) event->base.device;
require_event_type(libinput_event_get_context(&event->base),
event->base.type,
0,
LIBINPUT_EVENT_TABLET_TOOL_AXIS,
LIBINPUT_EVENT_TABLET_TOOL_TIP,
LIBINPUT_EVENT_TABLET_TOOL_PROXIMITY);
return evdev_convert_to_mm(device->abs.absinfo_y,
event->axes.point.y);
}
LIBINPUT_EXPORT double
libinput_event_tablet_tool_get_dx(struct libinput_event_tablet_tool *event)
{
require_event_type(libinput_event_get_context(&event->base),
event->base.type,
0,
LIBINPUT_EVENT_TABLET_TOOL_AXIS,
LIBINPUT_EVENT_TABLET_TOOL_TIP,
LIBINPUT_EVENT_TABLET_TOOL_PROXIMITY);
return event->axes.delta.x;
}
LIBINPUT_EXPORT double
libinput_event_tablet_tool_get_dy(struct libinput_event_tablet_tool *event)
{
require_event_type(libinput_event_get_context(&event->base),
event->base.type,
0,
LIBINPUT_EVENT_TABLET_TOOL_AXIS,
LIBINPUT_EVENT_TABLET_TOOL_TIP,
LIBINPUT_EVENT_TABLET_TOOL_PROXIMITY);
return event->axes.delta.y;
}
LIBINPUT_EXPORT double
libinput_event_tablet_tool_get_pressure(struct libinput_event_tablet_tool *event)
{
require_event_type(libinput_event_get_context(&event->base),
event->base.type,
0,
LIBINPUT_EVENT_TABLET_TOOL_AXIS,
LIBINPUT_EVENT_TABLET_TOOL_TIP,
LIBINPUT_EVENT_TABLET_TOOL_PROXIMITY);
return event->axes.pressure;
}
LIBINPUT_EXPORT double
libinput_event_tablet_tool_get_distance(struct libinput_event_tablet_tool *event)
{
require_event_type(libinput_event_get_context(&event->base),
event->base.type,
0,
LIBINPUT_EVENT_TABLET_TOOL_AXIS,
LIBINPUT_EVENT_TABLET_TOOL_TIP,
LIBINPUT_EVENT_TABLET_TOOL_PROXIMITY);
return event->axes.distance;
}
LIBINPUT_EXPORT double
libinput_event_tablet_tool_get_tilt_x(struct libinput_event_tablet_tool *event)
{
require_event_type(libinput_event_get_context(&event->base),
event->base.type,
0,
LIBINPUT_EVENT_TABLET_TOOL_AXIS,
LIBINPUT_EVENT_TABLET_TOOL_TIP,
LIBINPUT_EVENT_TABLET_TOOL_PROXIMITY);
return event->axes.tilt.x;
}
LIBINPUT_EXPORT double
libinput_event_tablet_tool_get_tilt_y(struct libinput_event_tablet_tool *event)
{
require_event_type(libinput_event_get_context(&event->base),
event->base.type,
0,
LIBINPUT_EVENT_TABLET_TOOL_AXIS,
LIBINPUT_EVENT_TABLET_TOOL_TIP,
LIBINPUT_EVENT_TABLET_TOOL_PROXIMITY);
return event->axes.tilt.y;
}
LIBINPUT_EXPORT double
libinput_event_tablet_tool_get_rotation(struct libinput_event_tablet_tool *event)
{
require_event_type(libinput_event_get_context(&event->base),
event->base.type,
0,
LIBINPUT_EVENT_TABLET_TOOL_AXIS,
LIBINPUT_EVENT_TABLET_TOOL_TIP,
LIBINPUT_EVENT_TABLET_TOOL_PROXIMITY);
return event->axes.rotation;
}
LIBINPUT_EXPORT double
libinput_event_tablet_tool_get_slider_position(struct libinput_event_tablet_tool *event)
{
require_event_type(libinput_event_get_context(&event->base),
event->base.type,
0,
LIBINPUT_EVENT_TABLET_TOOL_AXIS,
LIBINPUT_EVENT_TABLET_TOOL_TIP,
LIBINPUT_EVENT_TABLET_TOOL_PROXIMITY);
return event->axes.slider;
}
LIBINPUT_EXPORT double
libinput_event_tablet_tool_get_wheel_delta(struct libinput_event_tablet_tool *event)
{
require_event_type(libinput_event_get_context(&event->base),
event->base.type,
0,
LIBINPUT_EVENT_TABLET_TOOL_AXIS,
LIBINPUT_EVENT_TABLET_TOOL_TIP,
LIBINPUT_EVENT_TABLET_TOOL_PROXIMITY);
return event->axes.wheel;
}
LIBINPUT_EXPORT int
libinput_event_tablet_tool_get_wheel_delta_discrete(
struct libinput_event_tablet_tool *event)
{
require_event_type(libinput_event_get_context(&event->base),
event->base.type,
0,
LIBINPUT_EVENT_TABLET_TOOL_AXIS,
LIBINPUT_EVENT_TABLET_TOOL_TIP,
LIBINPUT_EVENT_TABLET_TOOL_PROXIMITY);
return event->axes.wheel_discrete;
}
LIBINPUT_EXPORT double
libinput_event_tablet_tool_get_x_transformed(struct libinput_event_tablet_tool *event,
uint32_t width)
{
struct evdev_device *device =
(struct evdev_device *) event->base.device;
require_event_type(libinput_event_get_context(&event->base),
event->base.type,
0,
LIBINPUT_EVENT_TABLET_TOOL_AXIS,
LIBINPUT_EVENT_TABLET_TOOL_TIP,
LIBINPUT_EVENT_TABLET_TOOL_BUTTON,
LIBINPUT_EVENT_TABLET_TOOL_PROXIMITY);
return evdev_device_transform_x(device,
event->axes.point.x,
width);
}
LIBINPUT_EXPORT double
libinput_event_tablet_tool_get_y_transformed(struct libinput_event_tablet_tool *event,
uint32_t height)
{
struct evdev_device *device =
(struct evdev_device *) event->base.device;
require_event_type(libinput_event_get_context(&event->base),
event->base.type,
0,
LIBINPUT_EVENT_TABLET_TOOL_AXIS,
LIBINPUT_EVENT_TABLET_TOOL_TIP,
LIBINPUT_EVENT_TABLET_TOOL_BUTTON,
LIBINPUT_EVENT_TABLET_TOOL_PROXIMITY);
return evdev_device_transform_y(device,
event->axes.point.y,
height);
}
LIBINPUT_EXPORT struct libinput_tablet_tool *
libinput_event_tablet_tool_get_tool(struct libinput_event_tablet_tool *event)
{
require_event_type(libinput_event_get_context(&event->base),
event->base.type,
0,
LIBINPUT_EVENT_TABLET_TOOL_AXIS,
LIBINPUT_EVENT_TABLET_TOOL_TIP,
LIBINPUT_EVENT_TABLET_TOOL_BUTTON,
LIBINPUT_EVENT_TABLET_TOOL_PROXIMITY);
return event->tool;
}
LIBINPUT_EXPORT enum libinput_tablet_tool_proximity_state
libinput_event_tablet_tool_get_proximity_state(struct libinput_event_tablet_tool *event)
{
require_event_type(libinput_event_get_context(&event->base),
event->base.type,
0,
LIBINPUT_EVENT_TABLET_TOOL_AXIS,
LIBINPUT_EVENT_TABLET_TOOL_TIP,
LIBINPUT_EVENT_TABLET_TOOL_BUTTON,
LIBINPUT_EVENT_TABLET_TOOL_PROXIMITY);
return event->proximity_state;
}
LIBINPUT_EXPORT enum libinput_tablet_tool_tip_state
libinput_event_tablet_tool_get_tip_state(struct libinput_event_tablet_tool *event)
{
require_event_type(libinput_event_get_context(&event->base),
event->base.type,
0,
LIBINPUT_EVENT_TABLET_TOOL_AXIS,
LIBINPUT_EVENT_TABLET_TOOL_TIP,
LIBINPUT_EVENT_TABLET_TOOL_BUTTON,
LIBINPUT_EVENT_TABLET_TOOL_PROXIMITY);
return event->tip_state;
}
LIBINPUT_EXPORT uint32_t
libinput_event_tablet_tool_get_time(struct libinput_event_tablet_tool *event)
{
require_event_type(libinput_event_get_context(&event->base),
event->base.type,
0,
LIBINPUT_EVENT_TABLET_TOOL_AXIS,
LIBINPUT_EVENT_TABLET_TOOL_TIP,
LIBINPUT_EVENT_TABLET_TOOL_BUTTON,
LIBINPUT_EVENT_TABLET_TOOL_PROXIMITY);
return us2ms(event->time);
}
LIBINPUT_EXPORT uint64_t
libinput_event_tablet_tool_get_time_usec(struct libinput_event_tablet_tool *event)
{
require_event_type(libinput_event_get_context(&event->base),
event->base.type,
0,
LIBINPUT_EVENT_TABLET_TOOL_AXIS,
LIBINPUT_EVENT_TABLET_TOOL_TIP,
LIBINPUT_EVENT_TABLET_TOOL_BUTTON,
LIBINPUT_EVENT_TABLET_TOOL_PROXIMITY);
return event->time;
}
LIBINPUT_EXPORT uint32_t
libinput_event_tablet_tool_get_button(struct libinput_event_tablet_tool *event)
{
require_event_type(libinput_event_get_context(&event->base),
event->base.type,
0,
LIBINPUT_EVENT_TABLET_TOOL_BUTTON);
return event->button;
}
LIBINPUT_EXPORT enum libinput_button_state
libinput_event_tablet_tool_get_button_state(struct libinput_event_tablet_tool *event)
{
require_event_type(libinput_event_get_context(&event->base),
event->base.type,
0,
LIBINPUT_EVENT_TABLET_TOOL_BUTTON);
return event->state;
}
LIBINPUT_EXPORT uint32_t
libinput_event_tablet_tool_get_seat_button_count(struct libinput_event_tablet_tool *event)
{
require_event_type(libinput_event_get_context(&event->base),
event->base.type,
0,
LIBINPUT_EVENT_TABLET_TOOL_BUTTON);
return event->seat_button_count;
}
LIBINPUT_EXPORT enum libinput_tablet_tool_type
libinput_tablet_tool_get_type(struct libinput_tablet_tool *tool)
{
return tool->type;
}
LIBINPUT_EXPORT uint64_t
libinput_tablet_tool_get_tool_id(struct libinput_tablet_tool *tool)
{
return tool->tool_id;
}
LIBINPUT_EXPORT int
libinput_tablet_tool_is_unique(struct libinput_tablet_tool *tool)
{
return tool->serial != 0;
}
LIBINPUT_EXPORT uint64_t
libinput_tablet_tool_get_serial(struct libinput_tablet_tool *tool)
{
return tool->serial;
}
LIBINPUT_EXPORT int
libinput_tablet_tool_has_pressure(struct libinput_tablet_tool *tool)
{
return bit_is_set(tool->axis_caps,
LIBINPUT_TABLET_TOOL_AXIS_PRESSURE);
}
LIBINPUT_EXPORT int
libinput_tablet_tool_has_distance(struct libinput_tablet_tool *tool)
{
return bit_is_set(tool->axis_caps,
LIBINPUT_TABLET_TOOL_AXIS_DISTANCE);
}
LIBINPUT_EXPORT int
libinput_tablet_tool_has_tilt(struct libinput_tablet_tool *tool)
{
return bit_is_set(tool->axis_caps,
LIBINPUT_TABLET_TOOL_AXIS_TILT_X);
}
LIBINPUT_EXPORT int
libinput_tablet_tool_has_rotation(struct libinput_tablet_tool *tool)
{
return bit_is_set(tool->axis_caps,
LIBINPUT_TABLET_TOOL_AXIS_ROTATION_Z);
}
LIBINPUT_EXPORT int
libinput_tablet_tool_has_slider(struct libinput_tablet_tool *tool)
{
return bit_is_set(tool->axis_caps,
LIBINPUT_TABLET_TOOL_AXIS_SLIDER);
}
LIBINPUT_EXPORT int
libinput_tablet_tool_has_wheel(struct libinput_tablet_tool *tool)
{
return bit_is_set(tool->axis_caps,
LIBINPUT_TABLET_TOOL_AXIS_REL_WHEEL);
}
LIBINPUT_EXPORT int
libinput_tablet_tool_has_button(struct libinput_tablet_tool *tool,
uint32_t code)
{
if (NCHARS(code) > sizeof(tool->buttons))
return 0;
return bit_is_set(tool->buttons, code);
}
LIBINPUT_EXPORT void
libinput_tablet_tool_set_user_data(struct libinput_tablet_tool *tool,
void *user_data)
{
tool->user_data = user_data;
}
LIBINPUT_EXPORT void *
libinput_tablet_tool_get_user_data(struct libinput_tablet_tool *tool)
{
return tool->user_data;
}
LIBINPUT_EXPORT struct libinput_tablet_tool *
libinput_tablet_tool_ref(struct libinput_tablet_tool *tool)
{
tool->refcount++;
return tool;
}
LIBINPUT_EXPORT struct libinput_tablet_tool *
libinput_tablet_tool_unref(struct libinput_tablet_tool *tool)
{
assert(tool->refcount > 0);
tool->refcount--;
if (tool->refcount > 0)
return tool;
list_remove(&tool->link);
free(tool);
return NULL;
}
struct libinput_source *
libinput_add_fd(struct libinput *libinput,
int fd,
libinput_source_dispatch_t dispatch,
void *user_data)
{
struct libinput_source *source;
struct epoll_event ep;
source = zalloc(sizeof *source);
if (!source)
return NULL;
source->dispatch = dispatch;
source->user_data = user_data;
source->fd = fd;
memset(&ep, 0, sizeof ep);
ep.events = EPOLLIN;
ep.data.ptr = source;
if (epoll_ctl(libinput->epoll_fd, EPOLL_CTL_ADD, fd, &ep) < 0) {
free(source);
return NULL;
}
return source;
}
void
libinput_remove_source(struct libinput *libinput,
struct libinput_source *source)
{
epoll_ctl(libinput->epoll_fd, EPOLL_CTL_DEL, source->fd, NULL);
source->fd = -1;
list_insert(&libinput->source_destroy_list, &source->link);
}
Port udev-seat to be used in libinput This patch ports udev-seat from weston to libinput, including adapting libinput internals and API to provide seat and device discovery. The public API is extended with device discovery, object reference, a seat object. As libinput takes care of creating and destroying its objects user data getter/setter is added in order to make it possible for the client to directly associate an object application side with an object library side. Device discovery API is made up of the 'seat added', 'seat removed', 'device added' and 'device removed' events. The seat added/removed events contains a pointer to a libinput_seat struct, while the device added/removed events contains a pointer to a libinput_device event. The objects are reference counted with libinput holding one reference by default. The application can increase the reference count with libinput_seat_ref() and libinput_device_ref() and decrease the reference count with libinput_seat_unref() and libinput_device_unref(). The basic event struct is changed to have a 'target' union parameter that can be either a libinput, libinput_seat or libinput_device struct pointer. There is one known problem with the current API that is the potentially racy initialization. The problem is when a device is both discovered and lost during initial dispatchig, causing libinput to first queue a 'added' message, creating the device with default reference count 1, then before going back to the application queuing a 'removed' message, while at same time decreasing reference count of the device to 0, causing it o be destroyed. The queue will at this state contain two messages with pointers to free:ed memory. Signed-off-by: Jonas Ådahl <jadahl@gmail.com>
2013-11-23 13:04:32 +01:00
int
libinput_init(struct libinput *libinput,
const struct libinput_interface *interface,
const struct libinput_interface_backend *interface_backend,
Port udev-seat to be used in libinput This patch ports udev-seat from weston to libinput, including adapting libinput internals and API to provide seat and device discovery. The public API is extended with device discovery, object reference, a seat object. As libinput takes care of creating and destroying its objects user data getter/setter is added in order to make it possible for the client to directly associate an object application side with an object library side. Device discovery API is made up of the 'seat added', 'seat removed', 'device added' and 'device removed' events. The seat added/removed events contains a pointer to a libinput_seat struct, while the device added/removed events contains a pointer to a libinput_device event. The objects are reference counted with libinput holding one reference by default. The application can increase the reference count with libinput_seat_ref() and libinput_device_ref() and decrease the reference count with libinput_seat_unref() and libinput_device_unref(). The basic event struct is changed to have a 'target' union parameter that can be either a libinput, libinput_seat or libinput_device struct pointer. There is one known problem with the current API that is the potentially racy initialization. The problem is when a device is both discovered and lost during initial dispatchig, causing libinput to first queue a 'added' message, creating the device with default reference count 1, then before going back to the application queuing a 'removed' message, while at same time decreasing reference count of the device to 0, causing it o be destroyed. The queue will at this state contain two messages with pointers to free:ed memory. Signed-off-by: Jonas Ådahl <jadahl@gmail.com>
2013-11-23 13:04:32 +01:00
void *user_data)
{
assert(interface->open_restricted != NULL);
assert(interface->close_restricted != NULL);
Port udev-seat to be used in libinput This patch ports udev-seat from weston to libinput, including adapting libinput internals and API to provide seat and device discovery. The public API is extended with device discovery, object reference, a seat object. As libinput takes care of creating and destroying its objects user data getter/setter is added in order to make it possible for the client to directly associate an object application side with an object library side. Device discovery API is made up of the 'seat added', 'seat removed', 'device added' and 'device removed' events. The seat added/removed events contains a pointer to a libinput_seat struct, while the device added/removed events contains a pointer to a libinput_device event. The objects are reference counted with libinput holding one reference by default. The application can increase the reference count with libinput_seat_ref() and libinput_device_ref() and decrease the reference count with libinput_seat_unref() and libinput_device_unref(). The basic event struct is changed to have a 'target' union parameter that can be either a libinput, libinput_seat or libinput_device struct pointer. There is one known problem with the current API that is the potentially racy initialization. The problem is when a device is both discovered and lost during initial dispatchig, causing libinput to first queue a 'added' message, creating the device with default reference count 1, then before going back to the application queuing a 'removed' message, while at same time decreasing reference count of the device to 0, causing it o be destroyed. The queue will at this state contain two messages with pointers to free:ed memory. Signed-off-by: Jonas Ådahl <jadahl@gmail.com>
2013-11-23 13:04:32 +01:00
libinput->epoll_fd = epoll_create1(EPOLL_CLOEXEC);;
if (libinput->epoll_fd < 0)
return -1;
libinput->events_len = 4;
libinput->events = zalloc(libinput->events_len * sizeof(*libinput->events));
if (!libinput->events) {
close(libinput->epoll_fd);
return -1;
}
libinput->log_handler = libinput_default_log_func;
libinput->log_priority = LIBINPUT_LOG_PRIORITY_ERROR;
libinput->interface = interface;
libinput->interface_backend = interface_backend;
libinput->user_data = user_data;
libinput->refcount = 1;
Port udev-seat to be used in libinput This patch ports udev-seat from weston to libinput, including adapting libinput internals and API to provide seat and device discovery. The public API is extended with device discovery, object reference, a seat object. As libinput takes care of creating and destroying its objects user data getter/setter is added in order to make it possible for the client to directly associate an object application side with an object library side. Device discovery API is made up of the 'seat added', 'seat removed', 'device added' and 'device removed' events. The seat added/removed events contains a pointer to a libinput_seat struct, while the device added/removed events contains a pointer to a libinput_device event. The objects are reference counted with libinput holding one reference by default. The application can increase the reference count with libinput_seat_ref() and libinput_device_ref() and decrease the reference count with libinput_seat_unref() and libinput_device_unref(). The basic event struct is changed to have a 'target' union parameter that can be either a libinput, libinput_seat or libinput_device struct pointer. There is one known problem with the current API that is the potentially racy initialization. The problem is when a device is both discovered and lost during initial dispatchig, causing libinput to first queue a 'added' message, creating the device with default reference count 1, then before going back to the application queuing a 'removed' message, while at same time decreasing reference count of the device to 0, causing it o be destroyed. The queue will at this state contain two messages with pointers to free:ed memory. Signed-off-by: Jonas Ådahl <jadahl@gmail.com>
2013-11-23 13:04:32 +01:00
list_init(&libinput->source_destroy_list);
list_init(&libinput->seat_list);
list_init(&libinput->device_group_list);
list_init(&libinput->tool_list);
if (libinput_timer_subsys_init(libinput) != 0) {
free(libinput->events);
close(libinput->epoll_fd);
return -1;
}
Port udev-seat to be used in libinput This patch ports udev-seat from weston to libinput, including adapting libinput internals and API to provide seat and device discovery. The public API is extended with device discovery, object reference, a seat object. As libinput takes care of creating and destroying its objects user data getter/setter is added in order to make it possible for the client to directly associate an object application side with an object library side. Device discovery API is made up of the 'seat added', 'seat removed', 'device added' and 'device removed' events. The seat added/removed events contains a pointer to a libinput_seat struct, while the device added/removed events contains a pointer to a libinput_device event. The objects are reference counted with libinput holding one reference by default. The application can increase the reference count with libinput_seat_ref() and libinput_device_ref() and decrease the reference count with libinput_seat_unref() and libinput_device_unref(). The basic event struct is changed to have a 'target' union parameter that can be either a libinput, libinput_seat or libinput_device struct pointer. There is one known problem with the current API that is the potentially racy initialization. The problem is when a device is both discovered and lost during initial dispatchig, causing libinput to first queue a 'added' message, creating the device with default reference count 1, then before going back to the application queuing a 'removed' message, while at same time decreasing reference count of the device to 0, causing it o be destroyed. The queue will at this state contain two messages with pointers to free:ed memory. Signed-off-by: Jonas Ådahl <jadahl@gmail.com>
2013-11-23 13:04:32 +01:00
return 0;
}
static void
libinput_device_destroy(struct libinput_device *device);
static void
libinput_seat_destroy(struct libinput_seat *seat);
static void
libinput_drop_destroyed_sources(struct libinput *libinput)
{
struct libinput_source *source, *next;
list_for_each_safe(source, next, &libinput->source_destroy_list, link)
free(source);
list_init(&libinput->source_destroy_list);
}
LIBINPUT_EXPORT struct libinput *
libinput_ref(struct libinput *libinput)
{
libinput->refcount++;
return libinput;
}
LIBINPUT_EXPORT struct libinput *
libinput_unref(struct libinput *libinput)
{
struct libinput_event *event;
struct libinput_device *device, *next_device;
struct libinput_seat *seat, *next_seat;
struct libinput_tablet_tool *tool, *next_tool;
struct libinput_device_group *group, *next_group;
if (libinput == NULL)
return NULL;
assert(libinput->refcount > 0);
libinput->refcount--;
if (libinput->refcount > 0)
return libinput;
libinput_suspend(libinput);
libinput->interface_backend->destroy(libinput);
while ((event = libinput_get_event(libinput)))
libinput_event_destroy(event);
free(libinput->events);
list_for_each_safe(seat, next_seat, &libinput->seat_list, link) {
list_for_each_safe(device, next_device,
&seat->devices_list,
link)
libinput_device_destroy(device);
libinput_seat_destroy(seat);
}
list_for_each_safe(group,
next_group,
&libinput->device_group_list,
link) {
libinput_device_group_destroy(group);
}
list_for_each_safe(tool, next_tool, &libinput->tool_list, link) {
libinput_tablet_tool_unref(tool);
}
libinput_timer_subsys_destroy(libinput);
libinput_drop_destroyed_sources(libinput);
close(libinput->epoll_fd);
free(libinput);
return NULL;
}
static void
libinput_event_tablet_tool_destroy(struct libinput_event_tablet_tool *event)
{
libinput_tablet_tool_unref(event->tool);
}
static void
libinput_event_tablet_pad_destroy(struct libinput_event_tablet_pad *event)
{
libinput_tablet_pad_mode_group_unref(event->mode_group);
}
LIBINPUT_EXPORT void
libinput_event_destroy(struct libinput_event *event)
{
if (event == NULL)
return;
switch(event->type) {
case LIBINPUT_EVENT_TABLET_TOOL_PROXIMITY:
case LIBINPUT_EVENT_TABLET_TOOL_AXIS:
case LIBINPUT_EVENT_TABLET_TOOL_TIP:
case LIBINPUT_EVENT_TABLET_TOOL_BUTTON:
libinput_event_tablet_tool_destroy(
libinput_event_get_tablet_tool_event(event));
break;
case LIBINPUT_EVENT_TABLET_PAD_RING:
case LIBINPUT_EVENT_TABLET_PAD_STRIP:
case LIBINPUT_EVENT_TABLET_PAD_BUTTON:
libinput_event_tablet_pad_destroy(
libinput_event_get_tablet_pad_event(event));
break;
default:
break;
}
if (event->device)
libinput_device_unref(event->device);
free(event);
}
Port udev-seat to be used in libinput This patch ports udev-seat from weston to libinput, including adapting libinput internals and API to provide seat and device discovery. The public API is extended with device discovery, object reference, a seat object. As libinput takes care of creating and destroying its objects user data getter/setter is added in order to make it possible for the client to directly associate an object application side with an object library side. Device discovery API is made up of the 'seat added', 'seat removed', 'device added' and 'device removed' events. The seat added/removed events contains a pointer to a libinput_seat struct, while the device added/removed events contains a pointer to a libinput_device event. The objects are reference counted with libinput holding one reference by default. The application can increase the reference count with libinput_seat_ref() and libinput_device_ref() and decrease the reference count with libinput_seat_unref() and libinput_device_unref(). The basic event struct is changed to have a 'target' union parameter that can be either a libinput, libinput_seat or libinput_device struct pointer. There is one known problem with the current API that is the potentially racy initialization. The problem is when a device is both discovered and lost during initial dispatchig, causing libinput to first queue a 'added' message, creating the device with default reference count 1, then before going back to the application queuing a 'removed' message, while at same time decreasing reference count of the device to 0, causing it o be destroyed. The queue will at this state contain two messages with pointers to free:ed memory. Signed-off-by: Jonas Ådahl <jadahl@gmail.com>
2013-11-23 13:04:32 +01:00
int
open_restricted(struct libinput *libinput,
const char *path, int flags)
{
return libinput->interface->open_restricted(path,
flags,
libinput->user_data);
}
void
close_restricted(struct libinput *libinput, int fd)
{
return libinput->interface->close_restricted(fd, libinput->user_data);
}
bool
ignore_litest_test_suite_device(struct udev_device *device)
{
if (!getenv("LIBINPUT_RUNNING_TEST_SUITE") &&
udev_device_get_property_value(device, "LIBINPUT_TEST_DEVICE"))
return true;
return false;
}
Port udev-seat to be used in libinput This patch ports udev-seat from weston to libinput, including adapting libinput internals and API to provide seat and device discovery. The public API is extended with device discovery, object reference, a seat object. As libinput takes care of creating and destroying its objects user data getter/setter is added in order to make it possible for the client to directly associate an object application side with an object library side. Device discovery API is made up of the 'seat added', 'seat removed', 'device added' and 'device removed' events. The seat added/removed events contains a pointer to a libinput_seat struct, while the device added/removed events contains a pointer to a libinput_device event. The objects are reference counted with libinput holding one reference by default. The application can increase the reference count with libinput_seat_ref() and libinput_device_ref() and decrease the reference count with libinput_seat_unref() and libinput_device_unref(). The basic event struct is changed to have a 'target' union parameter that can be either a libinput, libinput_seat or libinput_device struct pointer. There is one known problem with the current API that is the potentially racy initialization. The problem is when a device is both discovered and lost during initial dispatchig, causing libinput to first queue a 'added' message, creating the device with default reference count 1, then before going back to the application queuing a 'removed' message, while at same time decreasing reference count of the device to 0, causing it o be destroyed. The queue will at this state contain two messages with pointers to free:ed memory. Signed-off-by: Jonas Ådahl <jadahl@gmail.com>
2013-11-23 13:04:32 +01:00
void
libinput_seat_init(struct libinput_seat *seat,
struct libinput *libinput,
const char *physical_name,
const char *logical_name,
libinput_seat_destroy_func destroy)
Port udev-seat to be used in libinput This patch ports udev-seat from weston to libinput, including adapting libinput internals and API to provide seat and device discovery. The public API is extended with device discovery, object reference, a seat object. As libinput takes care of creating and destroying its objects user data getter/setter is added in order to make it possible for the client to directly associate an object application side with an object library side. Device discovery API is made up of the 'seat added', 'seat removed', 'device added' and 'device removed' events. The seat added/removed events contains a pointer to a libinput_seat struct, while the device added/removed events contains a pointer to a libinput_device event. The objects are reference counted with libinput holding one reference by default. The application can increase the reference count with libinput_seat_ref() and libinput_device_ref() and decrease the reference count with libinput_seat_unref() and libinput_device_unref(). The basic event struct is changed to have a 'target' union parameter that can be either a libinput, libinput_seat or libinput_device struct pointer. There is one known problem with the current API that is the potentially racy initialization. The problem is when a device is both discovered and lost during initial dispatchig, causing libinput to first queue a 'added' message, creating the device with default reference count 1, then before going back to the application queuing a 'removed' message, while at same time decreasing reference count of the device to 0, causing it o be destroyed. The queue will at this state contain two messages with pointers to free:ed memory. Signed-off-by: Jonas Ådahl <jadahl@gmail.com>
2013-11-23 13:04:32 +01:00
{
seat->refcount = 1;
seat->libinput = libinput;
seat->physical_name = strdup(physical_name);
seat->logical_name = strdup(logical_name);
seat->destroy = destroy;
Port udev-seat to be used in libinput This patch ports udev-seat from weston to libinput, including adapting libinput internals and API to provide seat and device discovery. The public API is extended with device discovery, object reference, a seat object. As libinput takes care of creating and destroying its objects user data getter/setter is added in order to make it possible for the client to directly associate an object application side with an object library side. Device discovery API is made up of the 'seat added', 'seat removed', 'device added' and 'device removed' events. The seat added/removed events contains a pointer to a libinput_seat struct, while the device added/removed events contains a pointer to a libinput_device event. The objects are reference counted with libinput holding one reference by default. The application can increase the reference count with libinput_seat_ref() and libinput_device_ref() and decrease the reference count with libinput_seat_unref() and libinput_device_unref(). The basic event struct is changed to have a 'target' union parameter that can be either a libinput, libinput_seat or libinput_device struct pointer. There is one known problem with the current API that is the potentially racy initialization. The problem is when a device is both discovered and lost during initial dispatchig, causing libinput to first queue a 'added' message, creating the device with default reference count 1, then before going back to the application queuing a 'removed' message, while at same time decreasing reference count of the device to 0, causing it o be destroyed. The queue will at this state contain two messages with pointers to free:ed memory. Signed-off-by: Jonas Ådahl <jadahl@gmail.com>
2013-11-23 13:04:32 +01:00
list_init(&seat->devices_list);
list_insert(&libinput->seat_list, &seat->link);
Port udev-seat to be used in libinput This patch ports udev-seat from weston to libinput, including adapting libinput internals and API to provide seat and device discovery. The public API is extended with device discovery, object reference, a seat object. As libinput takes care of creating and destroying its objects user data getter/setter is added in order to make it possible for the client to directly associate an object application side with an object library side. Device discovery API is made up of the 'seat added', 'seat removed', 'device added' and 'device removed' events. The seat added/removed events contains a pointer to a libinput_seat struct, while the device added/removed events contains a pointer to a libinput_device event. The objects are reference counted with libinput holding one reference by default. The application can increase the reference count with libinput_seat_ref() and libinput_device_ref() and decrease the reference count with libinput_seat_unref() and libinput_device_unref(). The basic event struct is changed to have a 'target' union parameter that can be either a libinput, libinput_seat or libinput_device struct pointer. There is one known problem with the current API that is the potentially racy initialization. The problem is when a device is both discovered and lost during initial dispatchig, causing libinput to first queue a 'added' message, creating the device with default reference count 1, then before going back to the application queuing a 'removed' message, while at same time decreasing reference count of the device to 0, causing it o be destroyed. The queue will at this state contain two messages with pointers to free:ed memory. Signed-off-by: Jonas Ådahl <jadahl@gmail.com>
2013-11-23 13:04:32 +01:00
}
LIBINPUT_EXPORT struct libinput_seat *
Port udev-seat to be used in libinput This patch ports udev-seat from weston to libinput, including adapting libinput internals and API to provide seat and device discovery. The public API is extended with device discovery, object reference, a seat object. As libinput takes care of creating and destroying its objects user data getter/setter is added in order to make it possible for the client to directly associate an object application side with an object library side. Device discovery API is made up of the 'seat added', 'seat removed', 'device added' and 'device removed' events. The seat added/removed events contains a pointer to a libinput_seat struct, while the device added/removed events contains a pointer to a libinput_device event. The objects are reference counted with libinput holding one reference by default. The application can increase the reference count with libinput_seat_ref() and libinput_device_ref() and decrease the reference count with libinput_seat_unref() and libinput_device_unref(). The basic event struct is changed to have a 'target' union parameter that can be either a libinput, libinput_seat or libinput_device struct pointer. There is one known problem with the current API that is the potentially racy initialization. The problem is when a device is both discovered and lost during initial dispatchig, causing libinput to first queue a 'added' message, creating the device with default reference count 1, then before going back to the application queuing a 'removed' message, while at same time decreasing reference count of the device to 0, causing it o be destroyed. The queue will at this state contain two messages with pointers to free:ed memory. Signed-off-by: Jonas Ådahl <jadahl@gmail.com>
2013-11-23 13:04:32 +01:00
libinput_seat_ref(struct libinput_seat *seat)
{
seat->refcount++;
return seat;
Port udev-seat to be used in libinput This patch ports udev-seat from weston to libinput, including adapting libinput internals and API to provide seat and device discovery. The public API is extended with device discovery, object reference, a seat object. As libinput takes care of creating and destroying its objects user data getter/setter is added in order to make it possible for the client to directly associate an object application side with an object library side. Device discovery API is made up of the 'seat added', 'seat removed', 'device added' and 'device removed' events. The seat added/removed events contains a pointer to a libinput_seat struct, while the device added/removed events contains a pointer to a libinput_device event. The objects are reference counted with libinput holding one reference by default. The application can increase the reference count with libinput_seat_ref() and libinput_device_ref() and decrease the reference count with libinput_seat_unref() and libinput_device_unref(). The basic event struct is changed to have a 'target' union parameter that can be either a libinput, libinput_seat or libinput_device struct pointer. There is one known problem with the current API that is the potentially racy initialization. The problem is when a device is both discovered and lost during initial dispatchig, causing libinput to first queue a 'added' message, creating the device with default reference count 1, then before going back to the application queuing a 'removed' message, while at same time decreasing reference count of the device to 0, causing it o be destroyed. The queue will at this state contain two messages with pointers to free:ed memory. Signed-off-by: Jonas Ådahl <jadahl@gmail.com>
2013-11-23 13:04:32 +01:00
}
static void
libinput_seat_destroy(struct libinput_seat *seat)
{
list_remove(&seat->link);
free(seat->logical_name);
free(seat->physical_name);
seat->destroy(seat);
}
LIBINPUT_EXPORT struct libinput_seat *
Port udev-seat to be used in libinput This patch ports udev-seat from weston to libinput, including adapting libinput internals and API to provide seat and device discovery. The public API is extended with device discovery, object reference, a seat object. As libinput takes care of creating and destroying its objects user data getter/setter is added in order to make it possible for the client to directly associate an object application side with an object library side. Device discovery API is made up of the 'seat added', 'seat removed', 'device added' and 'device removed' events. The seat added/removed events contains a pointer to a libinput_seat struct, while the device added/removed events contains a pointer to a libinput_device event. The objects are reference counted with libinput holding one reference by default. The application can increase the reference count with libinput_seat_ref() and libinput_device_ref() and decrease the reference count with libinput_seat_unref() and libinput_device_unref(). The basic event struct is changed to have a 'target' union parameter that can be either a libinput, libinput_seat or libinput_device struct pointer. There is one known problem with the current API that is the potentially racy initialization. The problem is when a device is both discovered and lost during initial dispatchig, causing libinput to first queue a 'added' message, creating the device with default reference count 1, then before going back to the application queuing a 'removed' message, while at same time decreasing reference count of the device to 0, causing it o be destroyed. The queue will at this state contain two messages with pointers to free:ed memory. Signed-off-by: Jonas Ådahl <jadahl@gmail.com>
2013-11-23 13:04:32 +01:00
libinput_seat_unref(struct libinput_seat *seat)
{
assert(seat->refcount > 0);
Port udev-seat to be used in libinput This patch ports udev-seat from weston to libinput, including adapting libinput internals and API to provide seat and device discovery. The public API is extended with device discovery, object reference, a seat object. As libinput takes care of creating and destroying its objects user data getter/setter is added in order to make it possible for the client to directly associate an object application side with an object library side. Device discovery API is made up of the 'seat added', 'seat removed', 'device added' and 'device removed' events. The seat added/removed events contains a pointer to a libinput_seat struct, while the device added/removed events contains a pointer to a libinput_device event. The objects are reference counted with libinput holding one reference by default. The application can increase the reference count with libinput_seat_ref() and libinput_device_ref() and decrease the reference count with libinput_seat_unref() and libinput_device_unref(). The basic event struct is changed to have a 'target' union parameter that can be either a libinput, libinput_seat or libinput_device struct pointer. There is one known problem with the current API that is the potentially racy initialization. The problem is when a device is both discovered and lost during initial dispatchig, causing libinput to first queue a 'added' message, creating the device with default reference count 1, then before going back to the application queuing a 'removed' message, while at same time decreasing reference count of the device to 0, causing it o be destroyed. The queue will at this state contain two messages with pointers to free:ed memory. Signed-off-by: Jonas Ådahl <jadahl@gmail.com>
2013-11-23 13:04:32 +01:00
seat->refcount--;
if (seat->refcount == 0) {
libinput_seat_destroy(seat);
return NULL;
} else {
return seat;
}
Port udev-seat to be used in libinput This patch ports udev-seat from weston to libinput, including adapting libinput internals and API to provide seat and device discovery. The public API is extended with device discovery, object reference, a seat object. As libinput takes care of creating and destroying its objects user data getter/setter is added in order to make it possible for the client to directly associate an object application side with an object library side. Device discovery API is made up of the 'seat added', 'seat removed', 'device added' and 'device removed' events. The seat added/removed events contains a pointer to a libinput_seat struct, while the device added/removed events contains a pointer to a libinput_device event. The objects are reference counted with libinput holding one reference by default. The application can increase the reference count with libinput_seat_ref() and libinput_device_ref() and decrease the reference count with libinput_seat_unref() and libinput_device_unref(). The basic event struct is changed to have a 'target' union parameter that can be either a libinput, libinput_seat or libinput_device struct pointer. There is one known problem with the current API that is the potentially racy initialization. The problem is when a device is both discovered and lost during initial dispatchig, causing libinput to first queue a 'added' message, creating the device with default reference count 1, then before going back to the application queuing a 'removed' message, while at same time decreasing reference count of the device to 0, causing it o be destroyed. The queue will at this state contain two messages with pointers to free:ed memory. Signed-off-by: Jonas Ådahl <jadahl@gmail.com>
2013-11-23 13:04:32 +01:00
}
LIBINPUT_EXPORT void
libinput_seat_set_user_data(struct libinput_seat *seat, void *user_data)
{
seat->user_data = user_data;
}
LIBINPUT_EXPORT void *
libinput_seat_get_user_data(struct libinput_seat *seat)
{
return seat->user_data;
}
LIBINPUT_EXPORT struct libinput *
libinput_seat_get_context(struct libinput_seat *seat)
{
return seat->libinput;
}
Port udev-seat to be used in libinput This patch ports udev-seat from weston to libinput, including adapting libinput internals and API to provide seat and device discovery. The public API is extended with device discovery, object reference, a seat object. As libinput takes care of creating and destroying its objects user data getter/setter is added in order to make it possible for the client to directly associate an object application side with an object library side. Device discovery API is made up of the 'seat added', 'seat removed', 'device added' and 'device removed' events. The seat added/removed events contains a pointer to a libinput_seat struct, while the device added/removed events contains a pointer to a libinput_device event. The objects are reference counted with libinput holding one reference by default. The application can increase the reference count with libinput_seat_ref() and libinput_device_ref() and decrease the reference count with libinput_seat_unref() and libinput_device_unref(). The basic event struct is changed to have a 'target' union parameter that can be either a libinput, libinput_seat or libinput_device struct pointer. There is one known problem with the current API that is the potentially racy initialization. The problem is when a device is both discovered and lost during initial dispatchig, causing libinput to first queue a 'added' message, creating the device with default reference count 1, then before going back to the application queuing a 'removed' message, while at same time decreasing reference count of the device to 0, causing it o be destroyed. The queue will at this state contain two messages with pointers to free:ed memory. Signed-off-by: Jonas Ådahl <jadahl@gmail.com>
2013-11-23 13:04:32 +01:00
LIBINPUT_EXPORT const char *
libinput_seat_get_physical_name(struct libinput_seat *seat)
Port udev-seat to be used in libinput This patch ports udev-seat from weston to libinput, including adapting libinput internals and API to provide seat and device discovery. The public API is extended with device discovery, object reference, a seat object. As libinput takes care of creating and destroying its objects user data getter/setter is added in order to make it possible for the client to directly associate an object application side with an object library side. Device discovery API is made up of the 'seat added', 'seat removed', 'device added' and 'device removed' events. The seat added/removed events contains a pointer to a libinput_seat struct, while the device added/removed events contains a pointer to a libinput_device event. The objects are reference counted with libinput holding one reference by default. The application can increase the reference count with libinput_seat_ref() and libinput_device_ref() and decrease the reference count with libinput_seat_unref() and libinput_device_unref(). The basic event struct is changed to have a 'target' union parameter that can be either a libinput, libinput_seat or libinput_device struct pointer. There is one known problem with the current API that is the potentially racy initialization. The problem is when a device is both discovered and lost during initial dispatchig, causing libinput to first queue a 'added' message, creating the device with default reference count 1, then before going back to the application queuing a 'removed' message, while at same time decreasing reference count of the device to 0, causing it o be destroyed. The queue will at this state contain two messages with pointers to free:ed memory. Signed-off-by: Jonas Ådahl <jadahl@gmail.com>
2013-11-23 13:04:32 +01:00
{
return seat->physical_name;
}
LIBINPUT_EXPORT const char *
libinput_seat_get_logical_name(struct libinput_seat *seat)
{
return seat->logical_name;
Port udev-seat to be used in libinput This patch ports udev-seat from weston to libinput, including adapting libinput internals and API to provide seat and device discovery. The public API is extended with device discovery, object reference, a seat object. As libinput takes care of creating and destroying its objects user data getter/setter is added in order to make it possible for the client to directly associate an object application side with an object library side. Device discovery API is made up of the 'seat added', 'seat removed', 'device added' and 'device removed' events. The seat added/removed events contains a pointer to a libinput_seat struct, while the device added/removed events contains a pointer to a libinput_device event. The objects are reference counted with libinput holding one reference by default. The application can increase the reference count with libinput_seat_ref() and libinput_device_ref() and decrease the reference count with libinput_seat_unref() and libinput_device_unref(). The basic event struct is changed to have a 'target' union parameter that can be either a libinput, libinput_seat or libinput_device struct pointer. There is one known problem with the current API that is the potentially racy initialization. The problem is when a device is both discovered and lost during initial dispatchig, causing libinput to first queue a 'added' message, creating the device with default reference count 1, then before going back to the application queuing a 'removed' message, while at same time decreasing reference count of the device to 0, causing it o be destroyed. The queue will at this state contain two messages with pointers to free:ed memory. Signed-off-by: Jonas Ådahl <jadahl@gmail.com>
2013-11-23 13:04:32 +01:00
}
void
libinput_device_init(struct libinput_device *device,
struct libinput_seat *seat)
{
device->seat = seat;
device->refcount = 1;
list_init(&device->event_listeners);
Port udev-seat to be used in libinput This patch ports udev-seat from weston to libinput, including adapting libinput internals and API to provide seat and device discovery. The public API is extended with device discovery, object reference, a seat object. As libinput takes care of creating and destroying its objects user data getter/setter is added in order to make it possible for the client to directly associate an object application side with an object library side. Device discovery API is made up of the 'seat added', 'seat removed', 'device added' and 'device removed' events. The seat added/removed events contains a pointer to a libinput_seat struct, while the device added/removed events contains a pointer to a libinput_device event. The objects are reference counted with libinput holding one reference by default. The application can increase the reference count with libinput_seat_ref() and libinput_device_ref() and decrease the reference count with libinput_seat_unref() and libinput_device_unref(). The basic event struct is changed to have a 'target' union parameter that can be either a libinput, libinput_seat or libinput_device struct pointer. There is one known problem with the current API that is the potentially racy initialization. The problem is when a device is both discovered and lost during initial dispatchig, causing libinput to first queue a 'added' message, creating the device with default reference count 1, then before going back to the application queuing a 'removed' message, while at same time decreasing reference count of the device to 0, causing it o be destroyed. The queue will at this state contain two messages with pointers to free:ed memory. Signed-off-by: Jonas Ådahl <jadahl@gmail.com>
2013-11-23 13:04:32 +01:00
}
LIBINPUT_EXPORT struct libinput_device *
Port udev-seat to be used in libinput This patch ports udev-seat from weston to libinput, including adapting libinput internals and API to provide seat and device discovery. The public API is extended with device discovery, object reference, a seat object. As libinput takes care of creating and destroying its objects user data getter/setter is added in order to make it possible for the client to directly associate an object application side with an object library side. Device discovery API is made up of the 'seat added', 'seat removed', 'device added' and 'device removed' events. The seat added/removed events contains a pointer to a libinput_seat struct, while the device added/removed events contains a pointer to a libinput_device event. The objects are reference counted with libinput holding one reference by default. The application can increase the reference count with libinput_seat_ref() and libinput_device_ref() and decrease the reference count with libinput_seat_unref() and libinput_device_unref(). The basic event struct is changed to have a 'target' union parameter that can be either a libinput, libinput_seat or libinput_device struct pointer. There is one known problem with the current API that is the potentially racy initialization. The problem is when a device is both discovered and lost during initial dispatchig, causing libinput to first queue a 'added' message, creating the device with default reference count 1, then before going back to the application queuing a 'removed' message, while at same time decreasing reference count of the device to 0, causing it o be destroyed. The queue will at this state contain two messages with pointers to free:ed memory. Signed-off-by: Jonas Ådahl <jadahl@gmail.com>
2013-11-23 13:04:32 +01:00
libinput_device_ref(struct libinput_device *device)
{
device->refcount++;
return device;
Port udev-seat to be used in libinput This patch ports udev-seat from weston to libinput, including adapting libinput internals and API to provide seat and device discovery. The public API is extended with device discovery, object reference, a seat object. As libinput takes care of creating and destroying its objects user data getter/setter is added in order to make it possible for the client to directly associate an object application side with an object library side. Device discovery API is made up of the 'seat added', 'seat removed', 'device added' and 'device removed' events. The seat added/removed events contains a pointer to a libinput_seat struct, while the device added/removed events contains a pointer to a libinput_device event. The objects are reference counted with libinput holding one reference by default. The application can increase the reference count with libinput_seat_ref() and libinput_device_ref() and decrease the reference count with libinput_seat_unref() and libinput_device_unref(). The basic event struct is changed to have a 'target' union parameter that can be either a libinput, libinput_seat or libinput_device struct pointer. There is one known problem with the current API that is the potentially racy initialization. The problem is when a device is both discovered and lost during initial dispatchig, causing libinput to first queue a 'added' message, creating the device with default reference count 1, then before going back to the application queuing a 'removed' message, while at same time decreasing reference count of the device to 0, causing it o be destroyed. The queue will at this state contain two messages with pointers to free:ed memory. Signed-off-by: Jonas Ådahl <jadahl@gmail.com>
2013-11-23 13:04:32 +01:00
}
static void
libinput_device_destroy(struct libinput_device *device)
{
assert(list_empty(&device->event_listeners));
evdev_device_destroy((struct evdev_device *) device);
}
LIBINPUT_EXPORT struct libinput_device *
Port udev-seat to be used in libinput This patch ports udev-seat from weston to libinput, including adapting libinput internals and API to provide seat and device discovery. The public API is extended with device discovery, object reference, a seat object. As libinput takes care of creating and destroying its objects user data getter/setter is added in order to make it possible for the client to directly associate an object application side with an object library side. Device discovery API is made up of the 'seat added', 'seat removed', 'device added' and 'device removed' events. The seat added/removed events contains a pointer to a libinput_seat struct, while the device added/removed events contains a pointer to a libinput_device event. The objects are reference counted with libinput holding one reference by default. The application can increase the reference count with libinput_seat_ref() and libinput_device_ref() and decrease the reference count with libinput_seat_unref() and libinput_device_unref(). The basic event struct is changed to have a 'target' union parameter that can be either a libinput, libinput_seat or libinput_device struct pointer. There is one known problem with the current API that is the potentially racy initialization. The problem is when a device is both discovered and lost during initial dispatchig, causing libinput to first queue a 'added' message, creating the device with default reference count 1, then before going back to the application queuing a 'removed' message, while at same time decreasing reference count of the device to 0, causing it o be destroyed. The queue will at this state contain two messages with pointers to free:ed memory. Signed-off-by: Jonas Ådahl <jadahl@gmail.com>
2013-11-23 13:04:32 +01:00
libinput_device_unref(struct libinput_device *device)
{
assert(device->refcount > 0);
Port udev-seat to be used in libinput This patch ports udev-seat from weston to libinput, including adapting libinput internals and API to provide seat and device discovery. The public API is extended with device discovery, object reference, a seat object. As libinput takes care of creating and destroying its objects user data getter/setter is added in order to make it possible for the client to directly associate an object application side with an object library side. Device discovery API is made up of the 'seat added', 'seat removed', 'device added' and 'device removed' events. The seat added/removed events contains a pointer to a libinput_seat struct, while the device added/removed events contains a pointer to a libinput_device event. The objects are reference counted with libinput holding one reference by default. The application can increase the reference count with libinput_seat_ref() and libinput_device_ref() and decrease the reference count with libinput_seat_unref() and libinput_device_unref(). The basic event struct is changed to have a 'target' union parameter that can be either a libinput, libinput_seat or libinput_device struct pointer. There is one known problem with the current API that is the potentially racy initialization. The problem is when a device is both discovered and lost during initial dispatchig, causing libinput to first queue a 'added' message, creating the device with default reference count 1, then before going back to the application queuing a 'removed' message, while at same time decreasing reference count of the device to 0, causing it o be destroyed. The queue will at this state contain two messages with pointers to free:ed memory. Signed-off-by: Jonas Ådahl <jadahl@gmail.com>
2013-11-23 13:04:32 +01:00
device->refcount--;
if (device->refcount == 0) {
libinput_device_destroy(device);
return NULL;
} else {
return device;
}
Port udev-seat to be used in libinput This patch ports udev-seat from weston to libinput, including adapting libinput internals and API to provide seat and device discovery. The public API is extended with device discovery, object reference, a seat object. As libinput takes care of creating and destroying its objects user data getter/setter is added in order to make it possible for the client to directly associate an object application side with an object library side. Device discovery API is made up of the 'seat added', 'seat removed', 'device added' and 'device removed' events. The seat added/removed events contains a pointer to a libinput_seat struct, while the device added/removed events contains a pointer to a libinput_device event. The objects are reference counted with libinput holding one reference by default. The application can increase the reference count with libinput_seat_ref() and libinput_device_ref() and decrease the reference count with libinput_seat_unref() and libinput_device_unref(). The basic event struct is changed to have a 'target' union parameter that can be either a libinput, libinput_seat or libinput_device struct pointer. There is one known problem with the current API that is the potentially racy initialization. The problem is when a device is both discovered and lost during initial dispatchig, causing libinput to first queue a 'added' message, creating the device with default reference count 1, then before going back to the application queuing a 'removed' message, while at same time decreasing reference count of the device to 0, causing it o be destroyed. The queue will at this state contain two messages with pointers to free:ed memory. Signed-off-by: Jonas Ådahl <jadahl@gmail.com>
2013-11-23 13:04:32 +01:00
}
LIBINPUT_EXPORT int
libinput_get_fd(struct libinput *libinput)
{
return libinput->epoll_fd;
}
LIBINPUT_EXPORT int
libinput_dispatch(struct libinput *libinput)
{
struct libinput_source *source;
struct epoll_event ep[32];
int i, count;
count = epoll_wait(libinput->epoll_fd, ep, ARRAY_LENGTH(ep), 0);
if (count < 0)
return -errno;
for (i = 0; i < count; ++i) {
source = ep[i].data.ptr;
if (source->fd == -1)
continue;
source->dispatch(source->user_data);
}
libinput_drop_destroyed_sources(libinput);
return 0;
}
void
libinput_device_add_event_listener(struct libinput_device *device,
struct libinput_event_listener *listener,
void (*notify_func)(
uint64_t time,
struct libinput_event *event,
void *notify_func_data),
void *notify_func_data)
{
listener->notify_func = notify_func;
listener->notify_func_data = notify_func_data;
list_insert(&device->event_listeners, &listener->link);
}
void
libinput_device_remove_event_listener(struct libinput_event_listener *listener)
{
list_remove(&listener->link);
}
static uint32_t
update_seat_key_count(struct libinput_seat *seat,
int32_t key,
enum libinput_key_state state)
{
assert(key >= 0 && key <= KEY_MAX);
switch (state) {
case LIBINPUT_KEY_STATE_PRESSED:
return ++seat->button_count[key];
case LIBINPUT_KEY_STATE_RELEASED:
/* We might not have received the first PRESSED event. */
if (seat->button_count[key] == 0)
return 0;
return --seat->button_count[key];
}
return 0;
}
static uint32_t
update_seat_button_count(struct libinput_seat *seat,
int32_t button,
enum libinput_button_state state)
{
assert(button >= 0 && button <= KEY_MAX);
switch (state) {
case LIBINPUT_BUTTON_STATE_PRESSED:
return ++seat->button_count[button];
case LIBINPUT_BUTTON_STATE_RELEASED:
/* We might not have received the first PRESSED event. */
if (seat->button_count[button] == 0)
return 0;
return --seat->button_count[button];
}
return 0;
}
static void
init_event_base(struct libinput_event *event,
struct libinput_device *device,
enum libinput_event_type type)
{
event->type = type;
event->device = device;
}
Port udev-seat to be used in libinput This patch ports udev-seat from weston to libinput, including adapting libinput internals and API to provide seat and device discovery. The public API is extended with device discovery, object reference, a seat object. As libinput takes care of creating and destroying its objects user data getter/setter is added in order to make it possible for the client to directly associate an object application side with an object library side. Device discovery API is made up of the 'seat added', 'seat removed', 'device added' and 'device removed' events. The seat added/removed events contains a pointer to a libinput_seat struct, while the device added/removed events contains a pointer to a libinput_device event. The objects are reference counted with libinput holding one reference by default. The application can increase the reference count with libinput_seat_ref() and libinput_device_ref() and decrease the reference count with libinput_seat_unref() and libinput_device_unref(). The basic event struct is changed to have a 'target' union parameter that can be either a libinput, libinput_seat or libinput_device struct pointer. There is one known problem with the current API that is the potentially racy initialization. The problem is when a device is both discovered and lost during initial dispatchig, causing libinput to first queue a 'added' message, creating the device with default reference count 1, then before going back to the application queuing a 'removed' message, while at same time decreasing reference count of the device to 0, causing it o be destroyed. The queue will at this state contain two messages with pointers to free:ed memory. Signed-off-by: Jonas Ådahl <jadahl@gmail.com>
2013-11-23 13:04:32 +01:00
static void
post_base_event(struct libinput_device *device,
Port udev-seat to be used in libinput This patch ports udev-seat from weston to libinput, including adapting libinput internals and API to provide seat and device discovery. The public API is extended with device discovery, object reference, a seat object. As libinput takes care of creating and destroying its objects user data getter/setter is added in order to make it possible for the client to directly associate an object application side with an object library side. Device discovery API is made up of the 'seat added', 'seat removed', 'device added' and 'device removed' events. The seat added/removed events contains a pointer to a libinput_seat struct, while the device added/removed events contains a pointer to a libinput_device event. The objects are reference counted with libinput holding one reference by default. The application can increase the reference count with libinput_seat_ref() and libinput_device_ref() and decrease the reference count with libinput_seat_unref() and libinput_device_unref(). The basic event struct is changed to have a 'target' union parameter that can be either a libinput, libinput_seat or libinput_device struct pointer. There is one known problem with the current API that is the potentially racy initialization. The problem is when a device is both discovered and lost during initial dispatchig, causing libinput to first queue a 'added' message, creating the device with default reference count 1, then before going back to the application queuing a 'removed' message, while at same time decreasing reference count of the device to 0, causing it o be destroyed. The queue will at this state contain two messages with pointers to free:ed memory. Signed-off-by: Jonas Ådahl <jadahl@gmail.com>
2013-11-23 13:04:32 +01:00
enum libinput_event_type type,
struct libinput_event *event)
{
struct libinput *libinput = device->seat->libinput;
init_event_base(event, device, type);
Port udev-seat to be used in libinput This patch ports udev-seat from weston to libinput, including adapting libinput internals and API to provide seat and device discovery. The public API is extended with device discovery, object reference, a seat object. As libinput takes care of creating and destroying its objects user data getter/setter is added in order to make it possible for the client to directly associate an object application side with an object library side. Device discovery API is made up of the 'seat added', 'seat removed', 'device added' and 'device removed' events. The seat added/removed events contains a pointer to a libinput_seat struct, while the device added/removed events contains a pointer to a libinput_device event. The objects are reference counted with libinput holding one reference by default. The application can increase the reference count with libinput_seat_ref() and libinput_device_ref() and decrease the reference count with libinput_seat_unref() and libinput_device_unref(). The basic event struct is changed to have a 'target' union parameter that can be either a libinput, libinput_seat or libinput_device struct pointer. There is one known problem with the current API that is the potentially racy initialization. The problem is when a device is both discovered and lost during initial dispatchig, causing libinput to first queue a 'added' message, creating the device with default reference count 1, then before going back to the application queuing a 'removed' message, while at same time decreasing reference count of the device to 0, causing it o be destroyed. The queue will at this state contain two messages with pointers to free:ed memory. Signed-off-by: Jonas Ådahl <jadahl@gmail.com>
2013-11-23 13:04:32 +01:00
libinput_post_event(libinput, event);
}
static void
post_device_event(struct libinput_device *device,
uint64_t time,
enum libinput_event_type type,
struct libinput_event *event)
{
struct libinput_event_listener *listener, *tmp;
init_event_base(event, device, type);
list_for_each_safe(listener, tmp, &device->event_listeners, link)
listener->notify_func(time, event, listener->notify_func_data);
Port udev-seat to be used in libinput This patch ports udev-seat from weston to libinput, including adapting libinput internals and API to provide seat and device discovery. The public API is extended with device discovery, object reference, a seat object. As libinput takes care of creating and destroying its objects user data getter/setter is added in order to make it possible for the client to directly associate an object application side with an object library side. Device discovery API is made up of the 'seat added', 'seat removed', 'device added' and 'device removed' events. The seat added/removed events contains a pointer to a libinput_seat struct, while the device added/removed events contains a pointer to a libinput_device event. The objects are reference counted with libinput holding one reference by default. The application can increase the reference count with libinput_seat_ref() and libinput_device_ref() and decrease the reference count with libinput_seat_unref() and libinput_device_unref(). The basic event struct is changed to have a 'target' union parameter that can be either a libinput, libinput_seat or libinput_device struct pointer. There is one known problem with the current API that is the potentially racy initialization. The problem is when a device is both discovered and lost during initial dispatchig, causing libinput to first queue a 'added' message, creating the device with default reference count 1, then before going back to the application queuing a 'removed' message, while at same time decreasing reference count of the device to 0, causing it o be destroyed. The queue will at this state contain two messages with pointers to free:ed memory. Signed-off-by: Jonas Ådahl <jadahl@gmail.com>
2013-11-23 13:04:32 +01:00
libinput_post_event(device->seat->libinput, event);
}
void
notify_added_device(struct libinput_device *device)
{
struct libinput_event_device_notify *added_device_event;
Port udev-seat to be used in libinput This patch ports udev-seat from weston to libinput, including adapting libinput internals and API to provide seat and device discovery. The public API is extended with device discovery, object reference, a seat object. As libinput takes care of creating and destroying its objects user data getter/setter is added in order to make it possible for the client to directly associate an object application side with an object library side. Device discovery API is made up of the 'seat added', 'seat removed', 'device added' and 'device removed' events. The seat added/removed events contains a pointer to a libinput_seat struct, while the device added/removed events contains a pointer to a libinput_device event. The objects are reference counted with libinput holding one reference by default. The application can increase the reference count with libinput_seat_ref() and libinput_device_ref() and decrease the reference count with libinput_seat_unref() and libinput_device_unref(). The basic event struct is changed to have a 'target' union parameter that can be either a libinput, libinput_seat or libinput_device struct pointer. There is one known problem with the current API that is the potentially racy initialization. The problem is when a device is both discovered and lost during initial dispatchig, causing libinput to first queue a 'added' message, creating the device with default reference count 1, then before going back to the application queuing a 'removed' message, while at same time decreasing reference count of the device to 0, causing it o be destroyed. The queue will at this state contain two messages with pointers to free:ed memory. Signed-off-by: Jonas Ådahl <jadahl@gmail.com>
2013-11-23 13:04:32 +01:00
added_device_event = zalloc(sizeof *added_device_event);
Port udev-seat to be used in libinput This patch ports udev-seat from weston to libinput, including adapting libinput internals and API to provide seat and device discovery. The public API is extended with device discovery, object reference, a seat object. As libinput takes care of creating and destroying its objects user data getter/setter is added in order to make it possible for the client to directly associate an object application side with an object library side. Device discovery API is made up of the 'seat added', 'seat removed', 'device added' and 'device removed' events. The seat added/removed events contains a pointer to a libinput_seat struct, while the device added/removed events contains a pointer to a libinput_device event. The objects are reference counted with libinput holding one reference by default. The application can increase the reference count with libinput_seat_ref() and libinput_device_ref() and decrease the reference count with libinput_seat_unref() and libinput_device_unref(). The basic event struct is changed to have a 'target' union parameter that can be either a libinput, libinput_seat or libinput_device struct pointer. There is one known problem with the current API that is the potentially racy initialization. The problem is when a device is both discovered and lost during initial dispatchig, causing libinput to first queue a 'added' message, creating the device with default reference count 1, then before going back to the application queuing a 'removed' message, while at same time decreasing reference count of the device to 0, causing it o be destroyed. The queue will at this state contain two messages with pointers to free:ed memory. Signed-off-by: Jonas Ådahl <jadahl@gmail.com>
2013-11-23 13:04:32 +01:00
if (!added_device_event)
return;
post_base_event(device,
LIBINPUT_EVENT_DEVICE_ADDED,
Port udev-seat to be used in libinput This patch ports udev-seat from weston to libinput, including adapting libinput internals and API to provide seat and device discovery. The public API is extended with device discovery, object reference, a seat object. As libinput takes care of creating and destroying its objects user data getter/setter is added in order to make it possible for the client to directly associate an object application side with an object library side. Device discovery API is made up of the 'seat added', 'seat removed', 'device added' and 'device removed' events. The seat added/removed events contains a pointer to a libinput_seat struct, while the device added/removed events contains a pointer to a libinput_device event. The objects are reference counted with libinput holding one reference by default. The application can increase the reference count with libinput_seat_ref() and libinput_device_ref() and decrease the reference count with libinput_seat_unref() and libinput_device_unref(). The basic event struct is changed to have a 'target' union parameter that can be either a libinput, libinput_seat or libinput_device struct pointer. There is one known problem with the current API that is the potentially racy initialization. The problem is when a device is both discovered and lost during initial dispatchig, causing libinput to first queue a 'added' message, creating the device with default reference count 1, then before going back to the application queuing a 'removed' message, while at same time decreasing reference count of the device to 0, causing it o be destroyed. The queue will at this state contain two messages with pointers to free:ed memory. Signed-off-by: Jonas Ådahl <jadahl@gmail.com>
2013-11-23 13:04:32 +01:00
&added_device_event->base);
}
void
notify_removed_device(struct libinput_device *device)
{
struct libinput_event_device_notify *removed_device_event;
Port udev-seat to be used in libinput This patch ports udev-seat from weston to libinput, including adapting libinput internals and API to provide seat and device discovery. The public API is extended with device discovery, object reference, a seat object. As libinput takes care of creating and destroying its objects user data getter/setter is added in order to make it possible for the client to directly associate an object application side with an object library side. Device discovery API is made up of the 'seat added', 'seat removed', 'device added' and 'device removed' events. The seat added/removed events contains a pointer to a libinput_seat struct, while the device added/removed events contains a pointer to a libinput_device event. The objects are reference counted with libinput holding one reference by default. The application can increase the reference count with libinput_seat_ref() and libinput_device_ref() and decrease the reference count with libinput_seat_unref() and libinput_device_unref(). The basic event struct is changed to have a 'target' union parameter that can be either a libinput, libinput_seat or libinput_device struct pointer. There is one known problem with the current API that is the potentially racy initialization. The problem is when a device is both discovered and lost during initial dispatchig, causing libinput to first queue a 'added' message, creating the device with default reference count 1, then before going back to the application queuing a 'removed' message, while at same time decreasing reference count of the device to 0, causing it o be destroyed. The queue will at this state contain two messages with pointers to free:ed memory. Signed-off-by: Jonas Ådahl <jadahl@gmail.com>
2013-11-23 13:04:32 +01:00
removed_device_event = zalloc(sizeof *removed_device_event);
Port udev-seat to be used in libinput This patch ports udev-seat from weston to libinput, including adapting libinput internals and API to provide seat and device discovery. The public API is extended with device discovery, object reference, a seat object. As libinput takes care of creating and destroying its objects user data getter/setter is added in order to make it possible for the client to directly associate an object application side with an object library side. Device discovery API is made up of the 'seat added', 'seat removed', 'device added' and 'device removed' events. The seat added/removed events contains a pointer to a libinput_seat struct, while the device added/removed events contains a pointer to a libinput_device event. The objects are reference counted with libinput holding one reference by default. The application can increase the reference count with libinput_seat_ref() and libinput_device_ref() and decrease the reference count with libinput_seat_unref() and libinput_device_unref(). The basic event struct is changed to have a 'target' union parameter that can be either a libinput, libinput_seat or libinput_device struct pointer. There is one known problem with the current API that is the potentially racy initialization. The problem is when a device is both discovered and lost during initial dispatchig, causing libinput to first queue a 'added' message, creating the device with default reference count 1, then before going back to the application queuing a 'removed' message, while at same time decreasing reference count of the device to 0, causing it o be destroyed. The queue will at this state contain two messages with pointers to free:ed memory. Signed-off-by: Jonas Ådahl <jadahl@gmail.com>
2013-11-23 13:04:32 +01:00
if (!removed_device_event)
return;
post_base_event(device,
LIBINPUT_EVENT_DEVICE_REMOVED,
Port udev-seat to be used in libinput This patch ports udev-seat from weston to libinput, including adapting libinput internals and API to provide seat and device discovery. The public API is extended with device discovery, object reference, a seat object. As libinput takes care of creating and destroying its objects user data getter/setter is added in order to make it possible for the client to directly associate an object application side with an object library side. Device discovery API is made up of the 'seat added', 'seat removed', 'device added' and 'device removed' events. The seat added/removed events contains a pointer to a libinput_seat struct, while the device added/removed events contains a pointer to a libinput_device event. The objects are reference counted with libinput holding one reference by default. The application can increase the reference count with libinput_seat_ref() and libinput_device_ref() and decrease the reference count with libinput_seat_unref() and libinput_device_unref(). The basic event struct is changed to have a 'target' union parameter that can be either a libinput, libinput_seat or libinput_device struct pointer. There is one known problem with the current API that is the potentially racy initialization. The problem is when a device is both discovered and lost during initial dispatchig, causing libinput to first queue a 'added' message, creating the device with default reference count 1, then before going back to the application queuing a 'removed' message, while at same time decreasing reference count of the device to 0, causing it o be destroyed. The queue will at this state contain two messages with pointers to free:ed memory. Signed-off-by: Jonas Ådahl <jadahl@gmail.com>
2013-11-23 13:04:32 +01:00
&removed_device_event->base);
}
static inline bool
device_has_cap(struct libinput_device *device,
enum libinput_device_capability cap)
{
const char *capability;
if (libinput_device_has_capability(device, cap))
return true;
switch (cap) {
case LIBINPUT_DEVICE_CAP_POINTER:
capability = "CAP_POINTER";
break;
case LIBINPUT_DEVICE_CAP_KEYBOARD:
capability = "CAP_KEYBOARD";
break;
case LIBINPUT_DEVICE_CAP_TOUCH:
capability = "CAP_TOUCH";
break;
2015-01-22 16:41:50 +01:00
case LIBINPUT_DEVICE_CAP_GESTURE:
capability = "CAP_GESTURE";
break;
case LIBINPUT_DEVICE_CAP_TABLET_TOOL:
capability = "CAP_TABLET_TOOL";
break;
case LIBINPUT_DEVICE_CAP_TABLET_PAD:
capability = "CAP_TABLET_PAD";
break;
}
log_bug_libinput(device->seat->libinput,
"Event for missing capability %s on device \"%s\"\n",
capability,
libinput_device_get_name(device));
return false;
}
void
keyboard_notify_key(struct libinput_device *device,
uint64_t time,
uint32_t key,
enum libinput_key_state state)
{
struct libinput_event_keyboard *key_event;
uint32_t seat_key_count;
if (!device_has_cap(device, LIBINPUT_DEVICE_CAP_KEYBOARD))
return;
key_event = zalloc(sizeof *key_event);
if (!key_event)
return;
seat_key_count = update_seat_key_count(device->seat, key, state);
*key_event = (struct libinput_event_keyboard) {
.time = time,
.key = key,
.state = state,
.seat_key_count = seat_key_count,
};
post_device_event(device, time,
LIBINPUT_EVENT_KEYBOARD_KEY,
&key_event->base);
}
void
pointer_notify_motion(struct libinput_device *device,
uint64_t time,
const struct normalized_coords *delta,
const struct device_float_coords *raw)
{
struct libinput_event_pointer *motion_event;
if (!device_has_cap(device, LIBINPUT_DEVICE_CAP_POINTER))
return;
motion_event = zalloc(sizeof *motion_event);
if (!motion_event)
return;
*motion_event = (struct libinput_event_pointer) {
.time = time,
.delta = *delta,
.delta_raw = *raw,
};
post_device_event(device, time,
LIBINPUT_EVENT_POINTER_MOTION,
&motion_event->base);
}
void
pointer_notify_motion_absolute(struct libinput_device *device,
uint64_t time,
const struct device_coords *point)
{
struct libinput_event_pointer *motion_absolute_event;
if (!device_has_cap(device, LIBINPUT_DEVICE_CAP_POINTER))
return;
motion_absolute_event = zalloc(sizeof *motion_absolute_event);
if (!motion_absolute_event)
return;
*motion_absolute_event = (struct libinput_event_pointer) {
.time = time,
.absolute = *point,
};
post_device_event(device, time,
LIBINPUT_EVENT_POINTER_MOTION_ABSOLUTE,
&motion_absolute_event->base);
}
void
pointer_notify_button(struct libinput_device *device,
uint64_t time,
int32_t button,
enum libinput_button_state state)
{
struct libinput_event_pointer *button_event;
int32_t seat_button_count;
if (!device_has_cap(device, LIBINPUT_DEVICE_CAP_POINTER))
return;
button_event = zalloc(sizeof *button_event);
if (!button_event)
return;
seat_button_count = update_seat_button_count(device->seat,
button,
state);
*button_event = (struct libinput_event_pointer) {
.time = time,
.button = button,
.state = state,
.seat_button_count = seat_button_count,
};
post_device_event(device, time,
LIBINPUT_EVENT_POINTER_BUTTON,
&button_event->base);
}
void
pointer_notify_axis(struct libinput_device *device,
uint64_t time,
uint32_t axes,
Add pointer axis sources to the API For a caller to implement/provide kinetic scrolling ("inertial scrolling", "fling scrolling"), it needs to know how the scrolling motion was implemented, and what to expect in the future. Add this information to the pointer axis event. The three scroll sources we have are: * wheels: scrolling is in discreet steps, you don't know when it ends, the wheel will just stop sending events * fingers: scrolling is continuous coordinate space, we know when it stops and we can tell the caller * continuous: scrolling is in continuous coordinate space but we may or may not know when it stops. if scroll lock is used, the device may never technically get out of scroll mode even if it doesn't send events at any given moment Use case: trackpoint/trackball scroll emulation on button press The stop event is now codified in the API documentation, so callers can use that for kinetic scrolling. libinput does not implement kinetic scrolling itself. Not covered by this patch: * The wheel event is currently defined as "typical mouse wheel step", this is different to Qt where the step value is 1/8 of a degree. Some better definition here may help. * It is unclear how an absolute device would map into relative motion if the device itself is not controlling absolute motion. * For diagonal scrolling, the vertical/horizontal terminator events would come in separately. The caller would have to deal with that somehow. Signed-off-by: Peter Hutterer <peter.hutterer@who-t.net> Original patch, before the rebase onto today's master: Reviewed-by: Hans de Goede <hdegoede@redhat.com>
2014-11-05 16:22:07 +10:00
enum libinput_pointer_axis_source source,
const struct normalized_coords *delta,
const struct discrete_coords *discrete)
{
struct libinput_event_pointer *axis_event;
if (!device_has_cap(device, LIBINPUT_DEVICE_CAP_POINTER))
return;
axis_event = zalloc(sizeof *axis_event);
if (!axis_event)
return;
*axis_event = (struct libinput_event_pointer) {
.time = time,
.delta = *delta,
Add pointer axis sources to the API For a caller to implement/provide kinetic scrolling ("inertial scrolling", "fling scrolling"), it needs to know how the scrolling motion was implemented, and what to expect in the future. Add this information to the pointer axis event. The three scroll sources we have are: * wheels: scrolling is in discreet steps, you don't know when it ends, the wheel will just stop sending events * fingers: scrolling is continuous coordinate space, we know when it stops and we can tell the caller * continuous: scrolling is in continuous coordinate space but we may or may not know when it stops. if scroll lock is used, the device may never technically get out of scroll mode even if it doesn't send events at any given moment Use case: trackpoint/trackball scroll emulation on button press The stop event is now codified in the API documentation, so callers can use that for kinetic scrolling. libinput does not implement kinetic scrolling itself. Not covered by this patch: * The wheel event is currently defined as "typical mouse wheel step", this is different to Qt where the step value is 1/8 of a degree. Some better definition here may help. * It is unclear how an absolute device would map into relative motion if the device itself is not controlling absolute motion. * For diagonal scrolling, the vertical/horizontal terminator events would come in separately. The caller would have to deal with that somehow. Signed-off-by: Peter Hutterer <peter.hutterer@who-t.net> Original patch, before the rebase onto today's master: Reviewed-by: Hans de Goede <hdegoede@redhat.com>
2014-11-05 16:22:07 +10:00
.source = source,
.axes = axes,
.discrete = *discrete,
};
post_device_event(device, time,
LIBINPUT_EVENT_POINTER_AXIS,
&axis_event->base);
}
void
touch_notify_touch_down(struct libinput_device *device,
uint64_t time,
int32_t slot,
int32_t seat_slot,
const struct device_coords *point)
{
struct libinput_event_touch *touch_event;
if (!device_has_cap(device, LIBINPUT_DEVICE_CAP_TOUCH))
return;
touch_event = zalloc(sizeof *touch_event);
if (!touch_event)
return;
*touch_event = (struct libinput_event_touch) {
.time = time,
.slot = slot,
.seat_slot = seat_slot,
.point = *point,
};
post_device_event(device, time,
LIBINPUT_EVENT_TOUCH_DOWN,
&touch_event->base);
}
void
touch_notify_touch_motion(struct libinput_device *device,
uint64_t time,
int32_t slot,
int32_t seat_slot,
const struct device_coords *point)
{
struct libinput_event_touch *touch_event;
if (!device_has_cap(device, LIBINPUT_DEVICE_CAP_TOUCH))
return;
touch_event = zalloc(sizeof *touch_event);
if (!touch_event)
return;
*touch_event = (struct libinput_event_touch) {
.time = time,
.slot = slot,
.seat_slot = seat_slot,
.point = *point,
};
post_device_event(device, time,
LIBINPUT_EVENT_TOUCH_MOTION,
&touch_event->base);
}
void
touch_notify_touch_up(struct libinput_device *device,
uint64_t time,
int32_t slot,
int32_t seat_slot)
{
struct libinput_event_touch *touch_event;
if (!device_has_cap(device, LIBINPUT_DEVICE_CAP_TOUCH))
return;
touch_event = zalloc(sizeof *touch_event);
if (!touch_event)
return;
*touch_event = (struct libinput_event_touch) {
.time = time,
.slot = slot,
.seat_slot = seat_slot,
};
post_device_event(device, time,
LIBINPUT_EVENT_TOUCH_UP,
&touch_event->base);
}
void
touch_notify_frame(struct libinput_device *device,
uint64_t time)
{
struct libinput_event_touch *touch_event;
if (!device_has_cap(device, LIBINPUT_DEVICE_CAP_TOUCH))
return;
touch_event = zalloc(sizeof *touch_event);
if (!touch_event)
return;
*touch_event = (struct libinput_event_touch) {
.time = time,
};
post_device_event(device, time,
LIBINPUT_EVENT_TOUCH_FRAME,
&touch_event->base);
}
void
tablet_notify_axis(struct libinput_device *device,
uint64_t time,
struct libinput_tablet_tool *tool,
enum libinput_tablet_tool_tip_state tip_state,
unsigned char *changed_axes,
const struct tablet_axes *axes)
{
struct libinput_event_tablet_tool *axis_event;
axis_event = zalloc(sizeof *axis_event);
if (!axis_event)
return;
*axis_event = (struct libinput_event_tablet_tool) {
.time = time,
.tool = libinput_tablet_tool_ref(tool),
.proximity_state = LIBINPUT_TABLET_TOOL_PROXIMITY_STATE_IN,
.tip_state = tip_state,
.axes = *axes,
};
memcpy(axis_event->changed_axes,
changed_axes,
sizeof(axis_event->changed_axes));
post_device_event(device,
time,
LIBINPUT_EVENT_TABLET_TOOL_AXIS,
&axis_event->base);
}
void
tablet_notify_proximity(struct libinput_device *device,
uint64_t time,
struct libinput_tablet_tool *tool,
enum libinput_tablet_tool_proximity_state proximity_state,
unsigned char *changed_axes,
const struct tablet_axes *axes)
{
struct libinput_event_tablet_tool *proximity_event;
proximity_event = zalloc(sizeof *proximity_event);
if (!proximity_event)
return;
*proximity_event = (struct libinput_event_tablet_tool) {
.time = time,
.tool = libinput_tablet_tool_ref(tool),
.tip_state = LIBINPUT_TABLET_TOOL_TIP_UP,
.proximity_state = proximity_state,
.axes = *axes,
};
memcpy(proximity_event->changed_axes,
changed_axes,
sizeof(proximity_event->changed_axes));
post_device_event(device,
time,
LIBINPUT_EVENT_TABLET_TOOL_PROXIMITY,
&proximity_event->base);
}
void
tablet_notify_tip(struct libinput_device *device,
uint64_t time,
struct libinput_tablet_tool *tool,
enum libinput_tablet_tool_tip_state tip_state,
unsigned char *changed_axes,
const struct tablet_axes *axes)
{
struct libinput_event_tablet_tool *tip_event;
tip_event = zalloc(sizeof *tip_event);
if (!tip_event)
return;
*tip_event = (struct libinput_event_tablet_tool) {
.time = time,
.tool = libinput_tablet_tool_ref(tool),
.tip_state = tip_state,
.proximity_state = LIBINPUT_TABLET_TOOL_PROXIMITY_STATE_IN,
.axes = *axes,
};
memcpy(tip_event->changed_axes,
changed_axes,
sizeof(tip_event->changed_axes));
post_device_event(device,
time,
LIBINPUT_EVENT_TABLET_TOOL_TIP,
&tip_event->base);
}
void
tablet_notify_button(struct libinput_device *device,
uint64_t time,
struct libinput_tablet_tool *tool,
enum libinput_tablet_tool_tip_state tip_state,
const struct tablet_axes *axes,
int32_t button,
enum libinput_button_state state)
{
struct libinput_event_tablet_tool *button_event;
int32_t seat_button_count;
button_event = zalloc(sizeof *button_event);
if (!button_event)
return;
seat_button_count = update_seat_button_count(device->seat,
button,
state);
*button_event = (struct libinput_event_tablet_tool) {
.time = time,
.tool = libinput_tablet_tool_ref(tool),
.button = button,
.state = state,
.seat_button_count = seat_button_count,
.proximity_state = LIBINPUT_TABLET_TOOL_PROXIMITY_STATE_IN,
.tip_state = tip_state,
.axes = *axes,
};
post_device_event(device,
time,
LIBINPUT_EVENT_TABLET_TOOL_BUTTON,
&button_event->base);
}
void
tablet_pad_notify_button(struct libinput_device *device,
uint64_t time,
int32_t button,
enum libinput_button_state state,
struct libinput_tablet_pad_mode_group *group)
{
struct libinput_event_tablet_pad *button_event;
unsigned int mode;
button_event = zalloc(sizeof *button_event);
if (!button_event)
return;
mode = libinput_tablet_pad_mode_group_get_mode(group);
*button_event = (struct libinput_event_tablet_pad) {
.time = time,
.button.number = button,
.button.state = state,
.mode_group = libinput_tablet_pad_mode_group_ref(group),
.mode = mode,
};
post_device_event(device,
time,
LIBINPUT_EVENT_TABLET_PAD_BUTTON,
&button_event->base);
}
void
tablet_pad_notify_ring(struct libinput_device *device,
uint64_t time,
unsigned int number,
double value,
enum libinput_tablet_pad_ring_axis_source source,
struct libinput_tablet_pad_mode_group *group)
{
struct libinput_event_tablet_pad *ring_event;
unsigned int mode;
ring_event = zalloc(sizeof *ring_event);
if (!ring_event)
return;
mode = libinput_tablet_pad_mode_group_get_mode(group);
*ring_event = (struct libinput_event_tablet_pad) {
.time = time,
.ring.number = number,
.ring.position = value,
.ring.source = source,
.mode_group = libinput_tablet_pad_mode_group_ref(group),
.mode = mode,
};
post_device_event(device,
time,
LIBINPUT_EVENT_TABLET_PAD_RING,
&ring_event->base);
}
void
tablet_pad_notify_strip(struct libinput_device *device,
uint64_t time,
unsigned int number,
double value,
enum libinput_tablet_pad_strip_axis_source source,
struct libinput_tablet_pad_mode_group *group)
{
struct libinput_event_tablet_pad *strip_event;
unsigned int mode;
strip_event = zalloc(sizeof *strip_event);
if (!strip_event)
return;
mode = libinput_tablet_pad_mode_group_get_mode(group);
*strip_event = (struct libinput_event_tablet_pad) {
.time = time,
.strip.number = number,
.strip.position = value,
.strip.source = source,
.mode_group = libinput_tablet_pad_mode_group_ref(group),
.mode = mode,
};
post_device_event(device,
time,
LIBINPUT_EVENT_TABLET_PAD_STRIP,
&strip_event->base);
}
static void
gesture_notify(struct libinput_device *device,
uint64_t time,
enum libinput_event_type type,
int finger_count,
int cancelled,
const struct normalized_coords *delta,
const struct normalized_coords *unaccel,
double scale,
double angle)
2015-01-22 16:41:50 +01:00
{
struct libinput_event_gesture *gesture_event;
if (!device_has_cap(device, LIBINPUT_DEVICE_CAP_GESTURE))
return;
gesture_event = zalloc(sizeof *gesture_event);
if (!gesture_event)
return;
*gesture_event = (struct libinput_event_gesture) {
.time = time,
.finger_count = finger_count,
.cancelled = cancelled,
2015-01-22 16:41:50 +01:00
.delta = *delta,
.delta_unaccel = *unaccel,
.scale = scale,
.angle = angle,
2015-01-22 16:41:50 +01:00
};
post_device_event(device, time, type,
&gesture_event->base);
}
void
gesture_notify_swipe(struct libinput_device *device,
uint64_t time,
enum libinput_event_type type,
int finger_count,
const struct normalized_coords *delta,
const struct normalized_coords *unaccel)
{
gesture_notify(device, time, type, finger_count, 0, delta, unaccel,
0.0, 0.0);
}
void
gesture_notify_swipe_end(struct libinput_device *device,
uint64_t time,
int finger_count,
int cancelled)
{
const struct normalized_coords zero = { 0.0, 0.0 };
gesture_notify(device, time, LIBINPUT_EVENT_GESTURE_SWIPE_END,
finger_count, cancelled, &zero, &zero, 0.0, 0.0);
}
void
gesture_notify_pinch(struct libinput_device *device,
uint64_t time,
enum libinput_event_type type,
int finger_count,
const struct normalized_coords *delta,
const struct normalized_coords *unaccel,
double scale,
double angle)
{
gesture_notify(device, time, type, finger_count, 0,
delta, unaccel, scale, angle);
}
void
gesture_notify_pinch_end(struct libinput_device *device,
uint64_t time,
int finger_count,
double scale,
int cancelled)
{
const struct normalized_coords zero = { 0.0, 0.0 };
gesture_notify(device, time, LIBINPUT_EVENT_GESTURE_PINCH_END,
finger_count, cancelled, &zero, &zero, scale, 0.0);
}
static inline const char *
event_type_to_str(enum libinput_event_type type)
{
switch(type) {
CASE_RETURN_STRING(LIBINPUT_EVENT_DEVICE_ADDED);
CASE_RETURN_STRING(LIBINPUT_EVENT_DEVICE_REMOVED);
CASE_RETURN_STRING(LIBINPUT_EVENT_KEYBOARD_KEY);
CASE_RETURN_STRING(LIBINPUT_EVENT_POINTER_MOTION);
CASE_RETURN_STRING(LIBINPUT_EVENT_POINTER_MOTION_ABSOLUTE);
CASE_RETURN_STRING(LIBINPUT_EVENT_POINTER_BUTTON);
CASE_RETURN_STRING(LIBINPUT_EVENT_POINTER_AXIS);
CASE_RETURN_STRING(LIBINPUT_EVENT_TOUCH_DOWN);
CASE_RETURN_STRING(LIBINPUT_EVENT_TOUCH_UP);
CASE_RETURN_STRING(LIBINPUT_EVENT_TOUCH_MOTION);
CASE_RETURN_STRING(LIBINPUT_EVENT_TOUCH_CANCEL);
CASE_RETURN_STRING(LIBINPUT_EVENT_TOUCH_FRAME);
CASE_RETURN_STRING(LIBINPUT_EVENT_TABLET_TOOL_AXIS);
CASE_RETURN_STRING(LIBINPUT_EVENT_TABLET_TOOL_PROXIMITY);
CASE_RETURN_STRING(LIBINPUT_EVENT_TABLET_TOOL_TIP);
CASE_RETURN_STRING(LIBINPUT_EVENT_TABLET_TOOL_BUTTON);
CASE_RETURN_STRING(LIBINPUT_EVENT_TABLET_PAD_BUTTON);
CASE_RETURN_STRING(LIBINPUT_EVENT_TABLET_PAD_RING);
CASE_RETURN_STRING(LIBINPUT_EVENT_TABLET_PAD_STRIP);
CASE_RETURN_STRING(LIBINPUT_EVENT_GESTURE_SWIPE_BEGIN);
CASE_RETURN_STRING(LIBINPUT_EVENT_GESTURE_SWIPE_UPDATE);
CASE_RETURN_STRING(LIBINPUT_EVENT_GESTURE_SWIPE_END);
CASE_RETURN_STRING(LIBINPUT_EVENT_GESTURE_PINCH_BEGIN);
CASE_RETURN_STRING(LIBINPUT_EVENT_GESTURE_PINCH_UPDATE);
CASE_RETURN_STRING(LIBINPUT_EVENT_GESTURE_PINCH_END);
case LIBINPUT_EVENT_NONE:
abort();
}
return NULL;
}
Port udev-seat to be used in libinput This patch ports udev-seat from weston to libinput, including adapting libinput internals and API to provide seat and device discovery. The public API is extended with device discovery, object reference, a seat object. As libinput takes care of creating and destroying its objects user data getter/setter is added in order to make it possible for the client to directly associate an object application side with an object library side. Device discovery API is made up of the 'seat added', 'seat removed', 'device added' and 'device removed' events. The seat added/removed events contains a pointer to a libinput_seat struct, while the device added/removed events contains a pointer to a libinput_device event. The objects are reference counted with libinput holding one reference by default. The application can increase the reference count with libinput_seat_ref() and libinput_device_ref() and decrease the reference count with libinput_seat_unref() and libinput_device_unref(). The basic event struct is changed to have a 'target' union parameter that can be either a libinput, libinput_seat or libinput_device struct pointer. There is one known problem with the current API that is the potentially racy initialization. The problem is when a device is both discovered and lost during initial dispatchig, causing libinput to first queue a 'added' message, creating the device with default reference count 1, then before going back to the application queuing a 'removed' message, while at same time decreasing reference count of the device to 0, causing it o be destroyed. The queue will at this state contain two messages with pointers to free:ed memory. Signed-off-by: Jonas Ådahl <jadahl@gmail.com>
2013-11-23 13:04:32 +01:00
static void
libinput_post_event(struct libinput *libinput,
struct libinput_event *event)
{
struct libinput_event **events = libinput->events;
size_t events_len = libinput->events_len;
size_t events_count = libinput->events_count;
size_t move_len;
size_t new_out;
#if 0
log_debug(libinput, "Queuing %s\n", event_type_to_str(event->type));
#endif
events_count++;
if (events_count > events_len) {
events_len *= 2;
events = realloc(events, events_len * sizeof *events);
if (!events) {
log_error(libinput,
"Failed to reallocate event ring buffer. "
"Events may be discarded\n");
return;
}
if (libinput->events_count > 0 && libinput->events_in == 0) {
libinput->events_in = libinput->events_len;
} else if (libinput->events_count > 0 &&
libinput->events_out >= libinput->events_in) {
move_len = libinput->events_len - libinput->events_out;
new_out = events_len - move_len;
memmove(events + new_out,
events + libinput->events_out,
move_len * sizeof *events);
libinput->events_out = new_out;
}
libinput->events = events;
libinput->events_len = events_len;
}
if (event->device)
libinput_device_ref(event->device);
libinput->events_count = events_count;
events[libinput->events_in] = event;
libinput->events_in = (libinput->events_in + 1) % libinput->events_len;
}
LIBINPUT_EXPORT struct libinput_event *
libinput_get_event(struct libinput *libinput)
{
struct libinput_event *event;
if (libinput->events_count == 0)
return NULL;
event = libinput->events[libinput->events_out];
libinput->events_out =
(libinput->events_out + 1) % libinput->events_len;
libinput->events_count--;
return event;
}
LIBINPUT_EXPORT enum libinput_event_type
libinput_next_event_type(struct libinput *libinput)
{
struct libinput_event *event;
if (libinput->events_count == 0)
return LIBINPUT_EVENT_NONE;
event = libinput->events[libinput->events_out];
return event->type;
}
LIBINPUT_EXPORT void
libinput_set_user_data(struct libinput *libinput,
void *user_data)
{
libinput->user_data = user_data;
}
Port udev-seat to be used in libinput This patch ports udev-seat from weston to libinput, including adapting libinput internals and API to provide seat and device discovery. The public API is extended with device discovery, object reference, a seat object. As libinput takes care of creating and destroying its objects user data getter/setter is added in order to make it possible for the client to directly associate an object application side with an object library side. Device discovery API is made up of the 'seat added', 'seat removed', 'device added' and 'device removed' events. The seat added/removed events contains a pointer to a libinput_seat struct, while the device added/removed events contains a pointer to a libinput_device event. The objects are reference counted with libinput holding one reference by default. The application can increase the reference count with libinput_seat_ref() and libinput_device_ref() and decrease the reference count with libinput_seat_unref() and libinput_device_unref(). The basic event struct is changed to have a 'target' union parameter that can be either a libinput, libinput_seat or libinput_device struct pointer. There is one known problem with the current API that is the potentially racy initialization. The problem is when a device is both discovered and lost during initial dispatchig, causing libinput to first queue a 'added' message, creating the device with default reference count 1, then before going back to the application queuing a 'removed' message, while at same time decreasing reference count of the device to 0, causing it o be destroyed. The queue will at this state contain two messages with pointers to free:ed memory. Signed-off-by: Jonas Ådahl <jadahl@gmail.com>
2013-11-23 13:04:32 +01:00
LIBINPUT_EXPORT void *
libinput_get_user_data(struct libinput *libinput)
{
return libinput->user_data;
}
LIBINPUT_EXPORT int
libinput_resume(struct libinput *libinput)
{
return libinput->interface_backend->resume(libinput);
Port udev-seat to be used in libinput This patch ports udev-seat from weston to libinput, including adapting libinput internals and API to provide seat and device discovery. The public API is extended with device discovery, object reference, a seat object. As libinput takes care of creating and destroying its objects user data getter/setter is added in order to make it possible for the client to directly associate an object application side with an object library side. Device discovery API is made up of the 'seat added', 'seat removed', 'device added' and 'device removed' events. The seat added/removed events contains a pointer to a libinput_seat struct, while the device added/removed events contains a pointer to a libinput_device event. The objects are reference counted with libinput holding one reference by default. The application can increase the reference count with libinput_seat_ref() and libinput_device_ref() and decrease the reference count with libinput_seat_unref() and libinput_device_unref(). The basic event struct is changed to have a 'target' union parameter that can be either a libinput, libinput_seat or libinput_device struct pointer. There is one known problem with the current API that is the potentially racy initialization. The problem is when a device is both discovered and lost during initial dispatchig, causing libinput to first queue a 'added' message, creating the device with default reference count 1, then before going back to the application queuing a 'removed' message, while at same time decreasing reference count of the device to 0, causing it o be destroyed. The queue will at this state contain two messages with pointers to free:ed memory. Signed-off-by: Jonas Ådahl <jadahl@gmail.com>
2013-11-23 13:04:32 +01:00
}
LIBINPUT_EXPORT void
Port udev-seat to be used in libinput This patch ports udev-seat from weston to libinput, including adapting libinput internals and API to provide seat and device discovery. The public API is extended with device discovery, object reference, a seat object. As libinput takes care of creating and destroying its objects user data getter/setter is added in order to make it possible for the client to directly associate an object application side with an object library side. Device discovery API is made up of the 'seat added', 'seat removed', 'device added' and 'device removed' events. The seat added/removed events contains a pointer to a libinput_seat struct, while the device added/removed events contains a pointer to a libinput_device event. The objects are reference counted with libinput holding one reference by default. The application can increase the reference count with libinput_seat_ref() and libinput_device_ref() and decrease the reference count with libinput_seat_unref() and libinput_device_unref(). The basic event struct is changed to have a 'target' union parameter that can be either a libinput, libinput_seat or libinput_device struct pointer. There is one known problem with the current API that is the potentially racy initialization. The problem is when a device is both discovered and lost during initial dispatchig, causing libinput to first queue a 'added' message, creating the device with default reference count 1, then before going back to the application queuing a 'removed' message, while at same time decreasing reference count of the device to 0, causing it o be destroyed. The queue will at this state contain two messages with pointers to free:ed memory. Signed-off-by: Jonas Ådahl <jadahl@gmail.com>
2013-11-23 13:04:32 +01:00
libinput_suspend(struct libinput *libinput)
{
libinput->interface_backend->suspend(libinput);
}
LIBINPUT_EXPORT void
Port udev-seat to be used in libinput This patch ports udev-seat from weston to libinput, including adapting libinput internals and API to provide seat and device discovery. The public API is extended with device discovery, object reference, a seat object. As libinput takes care of creating and destroying its objects user data getter/setter is added in order to make it possible for the client to directly associate an object application side with an object library side. Device discovery API is made up of the 'seat added', 'seat removed', 'device added' and 'device removed' events. The seat added/removed events contains a pointer to a libinput_seat struct, while the device added/removed events contains a pointer to a libinput_device event. The objects are reference counted with libinput holding one reference by default. The application can increase the reference count with libinput_seat_ref() and libinput_device_ref() and decrease the reference count with libinput_seat_unref() and libinput_device_unref(). The basic event struct is changed to have a 'target' union parameter that can be either a libinput, libinput_seat or libinput_device struct pointer. There is one known problem with the current API that is the potentially racy initialization. The problem is when a device is both discovered and lost during initial dispatchig, causing libinput to first queue a 'added' message, creating the device with default reference count 1, then before going back to the application queuing a 'removed' message, while at same time decreasing reference count of the device to 0, causing it o be destroyed. The queue will at this state contain two messages with pointers to free:ed memory. Signed-off-by: Jonas Ådahl <jadahl@gmail.com>
2013-11-23 13:04:32 +01:00
libinput_device_set_user_data(struct libinput_device *device, void *user_data)
{
Port udev-seat to be used in libinput This patch ports udev-seat from weston to libinput, including adapting libinput internals and API to provide seat and device discovery. The public API is extended with device discovery, object reference, a seat object. As libinput takes care of creating and destroying its objects user data getter/setter is added in order to make it possible for the client to directly associate an object application side with an object library side. Device discovery API is made up of the 'seat added', 'seat removed', 'device added' and 'device removed' events. The seat added/removed events contains a pointer to a libinput_seat struct, while the device added/removed events contains a pointer to a libinput_device event. The objects are reference counted with libinput holding one reference by default. The application can increase the reference count with libinput_seat_ref() and libinput_device_ref() and decrease the reference count with libinput_seat_unref() and libinput_device_unref(). The basic event struct is changed to have a 'target' union parameter that can be either a libinput, libinput_seat or libinput_device struct pointer. There is one known problem with the current API that is the potentially racy initialization. The problem is when a device is both discovered and lost during initial dispatchig, causing libinput to first queue a 'added' message, creating the device with default reference count 1, then before going back to the application queuing a 'removed' message, while at same time decreasing reference count of the device to 0, causing it o be destroyed. The queue will at this state contain two messages with pointers to free:ed memory. Signed-off-by: Jonas Ådahl <jadahl@gmail.com>
2013-11-23 13:04:32 +01:00
device->user_data = user_data;
}
LIBINPUT_EXPORT void *
libinput_device_get_user_data(struct libinput_device *device)
{
return device->user_data;
}
LIBINPUT_EXPORT struct libinput *
libinput_device_get_context(struct libinput_device *device)
{
return libinput_seat_get_context(device->seat);
}
LIBINPUT_EXPORT struct libinput_device_group *
libinput_device_get_device_group(struct libinput_device *device)
{
return device->group;
}
LIBINPUT_EXPORT const char *
libinput_device_get_sysname(struct libinput_device *device)
{
return evdev_device_get_sysname((struct evdev_device *) device);
}
LIBINPUT_EXPORT const char *
libinput_device_get_name(struct libinput_device *device)
{
return evdev_device_get_name((struct evdev_device *) device);
}
LIBINPUT_EXPORT unsigned int
libinput_device_get_id_product(struct libinput_device *device)
{
return evdev_device_get_id_product((struct evdev_device *) device);
}
LIBINPUT_EXPORT unsigned int
libinput_device_get_id_vendor(struct libinput_device *device)
{
return evdev_device_get_id_vendor((struct evdev_device *) device);
}
Port udev-seat to be used in libinput This patch ports udev-seat from weston to libinput, including adapting libinput internals and API to provide seat and device discovery. The public API is extended with device discovery, object reference, a seat object. As libinput takes care of creating and destroying its objects user data getter/setter is added in order to make it possible for the client to directly associate an object application side with an object library side. Device discovery API is made up of the 'seat added', 'seat removed', 'device added' and 'device removed' events. The seat added/removed events contains a pointer to a libinput_seat struct, while the device added/removed events contains a pointer to a libinput_device event. The objects are reference counted with libinput holding one reference by default. The application can increase the reference count with libinput_seat_ref() and libinput_device_ref() and decrease the reference count with libinput_seat_unref() and libinput_device_unref(). The basic event struct is changed to have a 'target' union parameter that can be either a libinput, libinput_seat or libinput_device struct pointer. There is one known problem with the current API that is the potentially racy initialization. The problem is when a device is both discovered and lost during initial dispatchig, causing libinput to first queue a 'added' message, creating the device with default reference count 1, then before going back to the application queuing a 'removed' message, while at same time decreasing reference count of the device to 0, causing it o be destroyed. The queue will at this state contain two messages with pointers to free:ed memory. Signed-off-by: Jonas Ådahl <jadahl@gmail.com>
2013-11-23 13:04:32 +01:00
LIBINPUT_EXPORT const char *
libinput_device_get_output_name(struct libinput_device *device)
{
return evdev_device_get_output((struct evdev_device *) device);
}
LIBINPUT_EXPORT struct libinput_seat *
libinput_device_get_seat(struct libinput_device *device)
{
return device->seat;
}
LIBINPUT_EXPORT int
libinput_device_set_seat_logical_name(struct libinput_device *device,
const char *name)
{
struct libinput *libinput = device->seat->libinput;
if (name == NULL)
return -1;
return libinput->interface_backend->device_change_seat(device,
name);
}
LIBINPUT_EXPORT struct udev_device *
libinput_device_get_udev_device(struct libinput_device *device)
{
return evdev_device_get_udev_device((struct evdev_device *)device);
}
LIBINPUT_EXPORT void
libinput_device_led_update(struct libinput_device *device,
enum libinput_led leds)
{
evdev_device_led_update((struct evdev_device *) device, leds);
}
LIBINPUT_EXPORT int
libinput_device_has_capability(struct libinput_device *device,
enum libinput_device_capability capability)
{
return evdev_device_has_capability((struct evdev_device *) device,
capability);
}
LIBINPUT_EXPORT int
libinput_device_get_size(struct libinput_device *device,
double *width,
double *height)
{
return evdev_device_get_size((struct evdev_device *)device,
width,
height);
}
LIBINPUT_EXPORT int
libinput_device_pointer_has_button(struct libinput_device *device, uint32_t code)
{
return evdev_device_has_button((struct evdev_device *)device, code);
}
LIBINPUT_EXPORT int
libinput_device_keyboard_has_key(struct libinput_device *device, uint32_t code)
{
return evdev_device_has_key((struct evdev_device *)device, code);
}
LIBINPUT_EXPORT int
libinput_device_tablet_pad_get_num_buttons(struct libinput_device *device)
{
return evdev_device_tablet_pad_get_num_buttons((struct evdev_device *)device);
}
LIBINPUT_EXPORT int
libinput_device_tablet_pad_get_num_rings(struct libinput_device *device)
{
return evdev_device_tablet_pad_get_num_rings((struct evdev_device *)device);
}
LIBINPUT_EXPORT int
libinput_device_tablet_pad_get_num_strips(struct libinput_device *device)
{
return evdev_device_tablet_pad_get_num_strips((struct evdev_device *)device);
}
LIBINPUT_EXPORT int
libinput_device_tablet_pad_get_num_mode_groups(struct libinput_device *device)
{
return evdev_device_tablet_pad_get_num_mode_groups((struct evdev_device *)device);
}
LIBINPUT_EXPORT struct libinput_tablet_pad_mode_group*
libinput_device_tablet_pad_get_mode_group(struct libinput_device *device,
unsigned int index)
{
return evdev_device_tablet_pad_get_mode_group((struct evdev_device *)device,
index);
}
LIBINPUT_EXPORT unsigned int
libinput_tablet_pad_mode_group_get_num_modes(
struct libinput_tablet_pad_mode_group *group)
{
return group->num_modes;
}
LIBINPUT_EXPORT unsigned int
libinput_tablet_pad_mode_group_get_mode(struct libinput_tablet_pad_mode_group *group)
{
return group->current_mode;
}
LIBINPUT_EXPORT unsigned int
libinput_tablet_pad_mode_group_get_index(struct libinput_tablet_pad_mode_group *group)
{
return group->index;
}
LIBINPUT_EXPORT int
libinput_tablet_pad_mode_group_has_button(struct libinput_tablet_pad_mode_group *group,
unsigned int button)
{
if ((int)button >=
libinput_device_tablet_pad_get_num_buttons(group->device))
return 0;
return !!(group->button_mask & (1 << button));
}
LIBINPUT_EXPORT int
libinput_tablet_pad_mode_group_has_ring(struct libinput_tablet_pad_mode_group *group,
unsigned int ring)
{
if ((int)ring >=
libinput_device_tablet_pad_get_num_rings(group->device))
return 0;
return !!(group->ring_mask & (1 << ring));
}
LIBINPUT_EXPORT int
libinput_tablet_pad_mode_group_has_strip(struct libinput_tablet_pad_mode_group *group,
unsigned int strip)
{
if ((int)strip >=
libinput_device_tablet_pad_get_num_strips(group->device))
return 0;
return !!(group->strip_mask & (1 << strip));
}
LIBINPUT_EXPORT int
libinput_tablet_pad_mode_group_button_is_toggle(struct libinput_tablet_pad_mode_group *group,
unsigned int button)
{
if ((int)button >=
libinput_device_tablet_pad_get_num_buttons(group->device))
return 0;
return !!(group->toggle_button_mask & (1 << button));
}
LIBINPUT_EXPORT struct libinput_tablet_pad_mode_group *
libinput_tablet_pad_mode_group_ref(
struct libinput_tablet_pad_mode_group *group)
{
group->refcount++;
return group;
}
LIBINPUT_EXPORT struct libinput_tablet_pad_mode_group *
libinput_tablet_pad_mode_group_unref(
struct libinput_tablet_pad_mode_group *group)
{
assert(group->refcount > 0);
group->refcount--;
if (group->refcount > 0)
return group;
list_remove(&group->link);
group->destroy(group);
return NULL;
}
LIBINPUT_EXPORT void
libinput_tablet_pad_mode_group_set_user_data(
struct libinput_tablet_pad_mode_group *group,
void *user_data)
{
group->user_data = user_data;
}
LIBINPUT_EXPORT void *
libinput_tablet_pad_mode_group_get_user_data(
struct libinput_tablet_pad_mode_group *group)
{
return group->user_data;
}
LIBINPUT_EXPORT struct libinput_event *
libinput_event_device_notify_get_base_event(struct libinput_event_device_notify *event)
{
require_event_type(libinput_event_get_context(&event->base),
event->base.type,
NULL,
LIBINPUT_EVENT_DEVICE_ADDED,
LIBINPUT_EVENT_DEVICE_REMOVED);
return &event->base;
}
LIBINPUT_EXPORT struct libinput_event *
libinput_event_keyboard_get_base_event(struct libinput_event_keyboard *event)
{
require_event_type(libinput_event_get_context(&event->base),
event->base.type,
NULL,
LIBINPUT_EVENT_KEYBOARD_KEY);
return &event->base;
}
LIBINPUT_EXPORT struct libinput_event *
libinput_event_pointer_get_base_event(struct libinput_event_pointer *event)
{
require_event_type(libinput_event_get_context(&event->base),
event->base.type,
NULL,
LIBINPUT_EVENT_POINTER_MOTION,
LIBINPUT_EVENT_POINTER_MOTION_ABSOLUTE,
LIBINPUT_EVENT_POINTER_BUTTON,
LIBINPUT_EVENT_POINTER_AXIS);
return &event->base;
}
LIBINPUT_EXPORT struct libinput_event *
libinput_event_touch_get_base_event(struct libinput_event_touch *event)
{
require_event_type(libinput_event_get_context(&event->base),
event->base.type,
NULL,
LIBINPUT_EVENT_TOUCH_DOWN,
LIBINPUT_EVENT_TOUCH_UP,
LIBINPUT_EVENT_TOUCH_MOTION,
LIBINPUT_EVENT_TOUCH_CANCEL,
LIBINPUT_EVENT_TOUCH_FRAME);
return &event->base;
}
2015-01-22 16:41:50 +01:00
LIBINPUT_EXPORT struct libinput_event *
libinput_event_gesture_get_base_event(struct libinput_event_gesture *event)
{
return &event->base;
}
LIBINPUT_EXPORT struct libinput_event *
libinput_event_tablet_tool_get_base_event(struct libinput_event_tablet_tool *event)
{
require_event_type(libinput_event_get_context(&event->base),
event->base.type,
NULL,
LIBINPUT_EVENT_TABLET_TOOL_AXIS,
LIBINPUT_EVENT_TABLET_TOOL_TIP,
LIBINPUT_EVENT_TABLET_TOOL_PROXIMITY,
LIBINPUT_EVENT_TABLET_TOOL_BUTTON);
return &event->base;
}
LIBINPUT_EXPORT double
libinput_event_tablet_pad_get_ring_position(struct libinput_event_tablet_pad *event)
{
require_event_type(libinput_event_get_context(&event->base),
event->base.type,
0.0,
LIBINPUT_EVENT_TABLET_PAD_RING);
return event->ring.position;
}
LIBINPUT_EXPORT unsigned int
libinput_event_tablet_pad_get_ring_number(struct libinput_event_tablet_pad *event)
{
require_event_type(libinput_event_get_context(&event->base),
event->base.type,
0,
LIBINPUT_EVENT_TABLET_PAD_RING);
return event->ring.number;
}
LIBINPUT_EXPORT enum libinput_tablet_pad_ring_axis_source
libinput_event_tablet_pad_get_ring_source(struct libinput_event_tablet_pad *event)
{
require_event_type(libinput_event_get_context(&event->base),
event->base.type,
LIBINPUT_TABLET_PAD_RING_SOURCE_UNKNOWN,
LIBINPUT_EVENT_TABLET_PAD_RING);
return event->ring.source;
}
LIBINPUT_EXPORT double
libinput_event_tablet_pad_get_strip_position(struct libinput_event_tablet_pad *event)
{
require_event_type(libinput_event_get_context(&event->base),
event->base.type,
0.0,
LIBINPUT_EVENT_TABLET_PAD_STRIP);
return event->strip.position;
}
LIBINPUT_EXPORT unsigned int
libinput_event_tablet_pad_get_strip_number(struct libinput_event_tablet_pad *event)
{
require_event_type(libinput_event_get_context(&event->base),
event->base.type,
0,
LIBINPUT_EVENT_TABLET_PAD_STRIP);
return event->strip.number;
}
LIBINPUT_EXPORT enum libinput_tablet_pad_strip_axis_source
libinput_event_tablet_pad_get_strip_source(struct libinput_event_tablet_pad *event)
{
require_event_type(libinput_event_get_context(&event->base),
event->base.type,
LIBINPUT_TABLET_PAD_STRIP_SOURCE_UNKNOWN,
LIBINPUT_EVENT_TABLET_PAD_STRIP);
return event->strip.source;
}
LIBINPUT_EXPORT uint32_t
libinput_event_tablet_pad_get_button_number(struct libinput_event_tablet_pad *event)
{
require_event_type(libinput_event_get_context(&event->base),
event->base.type,
0,
LIBINPUT_EVENT_TABLET_PAD_BUTTON);
return event->button.number;
}
LIBINPUT_EXPORT enum libinput_button_state
libinput_event_tablet_pad_get_button_state(struct libinput_event_tablet_pad *event)
{
require_event_type(libinput_event_get_context(&event->base),
event->base.type,
LIBINPUT_BUTTON_STATE_RELEASED,
LIBINPUT_EVENT_TABLET_PAD_BUTTON);
return event->button.state;
}
LIBINPUT_EXPORT unsigned int
libinput_event_tablet_pad_get_mode(struct libinput_event_tablet_pad *event)
{
require_event_type(libinput_event_get_context(&event->base),
event->base.type,
0,
LIBINPUT_EVENT_TABLET_PAD_RING,
LIBINPUT_EVENT_TABLET_PAD_STRIP,
LIBINPUT_EVENT_TABLET_PAD_BUTTON);
return event->mode;
}
LIBINPUT_EXPORT struct libinput_tablet_pad_mode_group *
libinput_event_tablet_pad_get_mode_group(struct libinput_event_tablet_pad *event)
{
require_event_type(libinput_event_get_context(&event->base),
event->base.type,
NULL,
LIBINPUT_EVENT_TABLET_PAD_RING,
LIBINPUT_EVENT_TABLET_PAD_STRIP,
LIBINPUT_EVENT_TABLET_PAD_BUTTON);
return event->mode_group;
}
LIBINPUT_EXPORT uint32_t
libinput_event_tablet_pad_get_time(struct libinput_event_tablet_pad *event)
{
require_event_type(libinput_event_get_context(&event->base),
event->base.type,
0,
LIBINPUT_EVENT_TABLET_PAD_RING,
LIBINPUT_EVENT_TABLET_PAD_STRIP,
LIBINPUT_EVENT_TABLET_PAD_BUTTON);
return us2ms(event->time);
}
LIBINPUT_EXPORT uint64_t
libinput_event_tablet_pad_get_time_usec(struct libinput_event_tablet_pad *event)
{
require_event_type(libinput_event_get_context(&event->base),
event->base.type,
0,
LIBINPUT_EVENT_TABLET_PAD_RING,
LIBINPUT_EVENT_TABLET_PAD_STRIP,
LIBINPUT_EVENT_TABLET_PAD_BUTTON);
return event->time;
}
LIBINPUT_EXPORT struct libinput_event *
libinput_event_tablet_pad_get_base_event(struct libinput_event_tablet_pad *event)
{
require_event_type(libinput_event_get_context(&event->base),
event->base.type,
NULL,
LIBINPUT_EVENT_TABLET_PAD_RING,
LIBINPUT_EVENT_TABLET_PAD_STRIP,
LIBINPUT_EVENT_TABLET_PAD_BUTTON);
return &event->base;
}
LIBINPUT_EXPORT struct libinput_device_group *
libinput_device_group_ref(struct libinput_device_group *group)
{
group->refcount++;
return group;
}
struct libinput_device_group *
libinput_device_group_create(struct libinput *libinput,
const char *identifier)
{
struct libinput_device_group *group;
group = zalloc(sizeof *group);
if (!group)
return NULL;
group->refcount = 1;
if (identifier) {
group->identifier = strdup(identifier);
if (!group->identifier) {
free(group);
return NULL;
}
}
list_init(&group->link);
list_insert(&libinput->device_group_list, &group->link);
return group;
}
struct libinput_device_group *
libinput_device_group_find_group(struct libinput *libinput,
const char *identifier)
{
struct libinput_device_group *g = NULL;
list_for_each(g, &libinput->device_group_list, link) {
if (identifier && g->identifier &&
streq(g->identifier, identifier)) {
return g;
}
}
return NULL;
}
void
libinput_device_set_device_group(struct libinput_device *device,
struct libinput_device_group *group)
{
device->group = group;
libinput_device_group_ref(group);
}
static void
libinput_device_group_destroy(struct libinput_device_group *group)
{
list_remove(&group->link);
free(group->identifier);
free(group);
}
LIBINPUT_EXPORT struct libinput_device_group *
libinput_device_group_unref(struct libinput_device_group *group)
{
assert(group->refcount > 0);
group->refcount--;
if (group->refcount == 0) {
libinput_device_group_destroy(group);
return NULL;
} else {
return group;
}
}
LIBINPUT_EXPORT void
libinput_device_group_set_user_data(struct libinput_device_group *group,
void *user_data)
{
group->user_data = user_data;
}
LIBINPUT_EXPORT void *
libinput_device_group_get_user_data(struct libinput_device_group *group)
{
return group->user_data;
}
LIBINPUT_EXPORT const char *
libinput_config_status_to_str(enum libinput_config_status status)
{
const char *str = NULL;
switch(status) {
case LIBINPUT_CONFIG_STATUS_SUCCESS:
str = "Success";
break;
case LIBINPUT_CONFIG_STATUS_UNSUPPORTED:
str = "Unsupported configuration option";
break;
case LIBINPUT_CONFIG_STATUS_INVALID:
str = "Invalid argument range";
break;
}
return str;
}
LIBINPUT_EXPORT int
libinput_device_config_tap_get_finger_count(struct libinput_device *device)
{
return device->config.tap ? device->config.tap->count(device) : 0;
}
LIBINPUT_EXPORT enum libinput_config_status
libinput_device_config_tap_set_enabled(struct libinput_device *device,
enum libinput_config_tap_state enable)
{
if (enable != LIBINPUT_CONFIG_TAP_ENABLED &&
enable != LIBINPUT_CONFIG_TAP_DISABLED)
return LIBINPUT_CONFIG_STATUS_INVALID;
if (libinput_device_config_tap_get_finger_count(device) == 0)
return enable ? LIBINPUT_CONFIG_STATUS_UNSUPPORTED :
LIBINPUT_CONFIG_STATUS_SUCCESS;
return device->config.tap->set_enabled(device, enable);
}
LIBINPUT_EXPORT enum libinput_config_tap_state
libinput_device_config_tap_get_enabled(struct libinput_device *device)
{
if (libinput_device_config_tap_get_finger_count(device) == 0)
return LIBINPUT_CONFIG_TAP_DISABLED;
return device->config.tap->get_enabled(device);
}
LIBINPUT_EXPORT enum libinput_config_tap_state
libinput_device_config_tap_get_default_enabled(struct libinput_device *device)
{
if (libinput_device_config_tap_get_finger_count(device) == 0)
return LIBINPUT_CONFIG_TAP_DISABLED;
return device->config.tap->get_default(device);
}
LIBINPUT_EXPORT enum libinput_config_status
libinput_device_config_tap_set_button_map(struct libinput_device *device,
enum libinput_config_tap_button_map map)
{
switch (map) {
case LIBINPUT_CONFIG_TAP_MAP_LRM:
case LIBINPUT_CONFIG_TAP_MAP_LMR:
break;
default:
return LIBINPUT_CONFIG_STATUS_INVALID;
}
if (libinput_device_config_tap_get_finger_count(device) == 0)
return LIBINPUT_CONFIG_STATUS_UNSUPPORTED;
return device->config.tap->set_map(device, map);
}
LIBINPUT_EXPORT enum libinput_config_tap_button_map
libinput_device_config_tap_get_button_map(struct libinput_device *device)
{
if (libinput_device_config_tap_get_finger_count(device) == 0)
return LIBINPUT_CONFIG_TAP_MAP_LRM;
return device->config.tap->get_map(device);
}
LIBINPUT_EXPORT enum libinput_config_tap_button_map
libinput_device_config_tap_get_default_button_map(struct libinput_device *device)
{
if (libinput_device_config_tap_get_finger_count(device) == 0)
return LIBINPUT_CONFIG_TAP_MAP_LRM;
return device->config.tap->get_default_map(device);
}
LIBINPUT_EXPORT enum libinput_config_status
libinput_device_config_tap_set_drag_enabled(struct libinput_device *device,
enum libinput_config_drag_state enable)
{
if (enable != LIBINPUT_CONFIG_DRAG_ENABLED &&
enable != LIBINPUT_CONFIG_DRAG_DISABLED)
return LIBINPUT_CONFIG_STATUS_INVALID;
if (libinput_device_config_tap_get_finger_count(device) == 0)
return enable ? LIBINPUT_CONFIG_STATUS_UNSUPPORTED :
LIBINPUT_CONFIG_STATUS_SUCCESS;
return device->config.tap->set_drag_enabled(device, enable);
}
LIBINPUT_EXPORT enum libinput_config_drag_state
libinput_device_config_tap_get_drag_enabled(struct libinput_device *device)
{
if (libinput_device_config_tap_get_finger_count(device) == 0)
return LIBINPUT_CONFIG_DRAG_DISABLED;
return device->config.tap->get_drag_enabled(device);
}
LIBINPUT_EXPORT enum libinput_config_drag_state
libinput_device_config_tap_get_default_drag_enabled(struct libinput_device *device)
{
if (libinput_device_config_tap_get_finger_count(device) == 0)
return LIBINPUT_CONFIG_DRAG_DISABLED;
return device->config.tap->get_default_drag_enabled(device);
}
LIBINPUT_EXPORT enum libinput_config_status
libinput_device_config_tap_set_drag_lock_enabled(struct libinput_device *device,
enum libinput_config_drag_lock_state enable)
{
if (enable != LIBINPUT_CONFIG_DRAG_LOCK_ENABLED &&
enable != LIBINPUT_CONFIG_DRAG_LOCK_DISABLED)
return LIBINPUT_CONFIG_STATUS_INVALID;
if (libinput_device_config_tap_get_finger_count(device) == 0)
return enable ? LIBINPUT_CONFIG_STATUS_UNSUPPORTED :
LIBINPUT_CONFIG_STATUS_SUCCESS;
return device->config.tap->set_draglock_enabled(device, enable);
}
LIBINPUT_EXPORT enum libinput_config_drag_lock_state
libinput_device_config_tap_get_drag_lock_enabled(struct libinput_device *device)
{
if (libinput_device_config_tap_get_finger_count(device) == 0)
return LIBINPUT_CONFIG_DRAG_LOCK_DISABLED;
return device->config.tap->get_draglock_enabled(device);
}
LIBINPUT_EXPORT enum libinput_config_drag_lock_state
libinput_device_config_tap_get_default_drag_lock_enabled(struct libinput_device *device)
{
if (libinput_device_config_tap_get_finger_count(device) == 0)
return LIBINPUT_CONFIG_DRAG_LOCK_DISABLED;
return device->config.tap->get_default_draglock_enabled(device);
}
LIBINPUT_EXPORT int
libinput_device_config_calibration_has_matrix(struct libinput_device *device)
{
return device->config.calibration ?
device->config.calibration->has_matrix(device) : 0;
}
LIBINPUT_EXPORT enum libinput_config_status
libinput_device_config_calibration_set_matrix(struct libinput_device *device,
const float matrix[6])
{
if (!libinput_device_config_calibration_has_matrix(device))
return LIBINPUT_CONFIG_STATUS_UNSUPPORTED;
return device->config.calibration->set_matrix(device, matrix);
}
LIBINPUT_EXPORT int
libinput_device_config_calibration_get_matrix(struct libinput_device *device,
float matrix[6])
{
if (!libinput_device_config_calibration_has_matrix(device))
return 0;
return device->config.calibration->get_matrix(device, matrix);
}
LIBINPUT_EXPORT int
libinput_device_config_calibration_get_default_matrix(struct libinput_device *device,
float matrix[6])
{
if (!libinput_device_config_calibration_has_matrix(device))
return 0;
return device->config.calibration->get_default_matrix(device, matrix);
}
LIBINPUT_EXPORT uint32_t
libinput_device_config_send_events_get_modes(struct libinput_device *device)
{
uint32_t modes = LIBINPUT_CONFIG_SEND_EVENTS_ENABLED;
if (device->config.sendevents)
modes |= device->config.sendevents->get_modes(device);
return modes;
}
LIBINPUT_EXPORT enum libinput_config_status
libinput_device_config_send_events_set_mode(struct libinput_device *device,
uint32_t mode)
{
if ((libinput_device_config_send_events_get_modes(device) & mode) != mode)
return LIBINPUT_CONFIG_STATUS_UNSUPPORTED;
if (device->config.sendevents)
return device->config.sendevents->set_mode(device, mode);
else /* mode must be _ENABLED to get here */
return LIBINPUT_CONFIG_STATUS_SUCCESS;
}
LIBINPUT_EXPORT uint32_t
libinput_device_config_send_events_get_mode(struct libinput_device *device)
{
if (device->config.sendevents)
return device->config.sendevents->get_mode(device);
else
return LIBINPUT_CONFIG_SEND_EVENTS_ENABLED;
}
LIBINPUT_EXPORT uint32_t
libinput_device_config_send_events_get_default_mode(struct libinput_device *device)
{
return LIBINPUT_CONFIG_SEND_EVENTS_ENABLED;
}
LIBINPUT_EXPORT int
libinput_device_config_accel_is_available(struct libinput_device *device)
{
return device->config.accel ?
device->config.accel->available(device) : 0;
}
LIBINPUT_EXPORT enum libinput_config_status
libinput_device_config_accel_set_speed(struct libinput_device *device,
double speed)
{
/* Need the negation in case speed is NaN */
if (!(speed >= -1.0 && speed <= 1.0))
return LIBINPUT_CONFIG_STATUS_INVALID;
if (!libinput_device_config_accel_is_available(device))
return LIBINPUT_CONFIG_STATUS_UNSUPPORTED;
return device->config.accel->set_speed(device, speed);
}
LIBINPUT_EXPORT double
libinput_device_config_accel_get_speed(struct libinput_device *device)
{
if (!libinput_device_config_accel_is_available(device))
return 0;
return device->config.accel->get_speed(device);
}
LIBINPUT_EXPORT double
libinput_device_config_accel_get_default_speed(struct libinput_device *device)
{
if (!libinput_device_config_accel_is_available(device))
return 0;
return device->config.accel->get_default_speed(device);
}
LIBINPUT_EXPORT uint32_t
libinput_device_config_accel_get_profiles(struct libinput_device *device)
{
if (!libinput_device_config_accel_is_available(device))
return 0;
return device->config.accel->get_profiles(device);
}
LIBINPUT_EXPORT enum libinput_config_accel_profile
libinput_device_config_accel_get_profile(struct libinput_device *device)
{
if (!libinput_device_config_accel_is_available(device))
return LIBINPUT_CONFIG_ACCEL_PROFILE_NONE;
return device->config.accel->get_profile(device);
}
LIBINPUT_EXPORT enum libinput_config_accel_profile
libinput_device_config_accel_get_default_profile(struct libinput_device *device)
{
if (!libinput_device_config_accel_is_available(device))
return LIBINPUT_CONFIG_ACCEL_PROFILE_NONE;
return device->config.accel->get_default_profile(device);
}
LIBINPUT_EXPORT enum libinput_config_status
libinput_device_config_accel_set_profile(struct libinput_device *device,
enum libinput_config_accel_profile profile)
{
switch (profile) {
case LIBINPUT_CONFIG_ACCEL_PROFILE_FLAT:
case LIBINPUT_CONFIG_ACCEL_PROFILE_ADAPTIVE:
break;
default:
return LIBINPUT_CONFIG_STATUS_INVALID;
}
if (!libinput_device_config_accel_is_available(device) ||
(libinput_device_config_accel_get_profiles(device) & profile) == 0)
return LIBINPUT_CONFIG_STATUS_UNSUPPORTED;
return device->config.accel->set_profile(device, profile);
}
LIBINPUT_EXPORT int
libinput_device_config_scroll_has_natural_scroll(struct libinput_device *device)
{
if (!device->config.natural_scroll)
return 0;
return device->config.natural_scroll->has(device);
}
LIBINPUT_EXPORT enum libinput_config_status
libinput_device_config_scroll_set_natural_scroll_enabled(struct libinput_device *device,
int enabled)
{
if (!libinput_device_config_scroll_has_natural_scroll(device))
return LIBINPUT_CONFIG_STATUS_UNSUPPORTED;
return device->config.natural_scroll->set_enabled(device, enabled);
}
LIBINPUT_EXPORT int
libinput_device_config_scroll_get_natural_scroll_enabled(struct libinput_device *device)
{
if (!device->config.natural_scroll)
return 0;
return device->config.natural_scroll->get_enabled(device);
}
LIBINPUT_EXPORT int
libinput_device_config_scroll_get_default_natural_scroll_enabled(struct libinput_device *device)
{
if (!device->config.natural_scroll)
return 0;
return device->config.natural_scroll->get_default_enabled(device);
}
LIBINPUT_EXPORT int
libinput_device_config_left_handed_is_available(struct libinput_device *device)
{
if (!device->config.left_handed)
return 0;
return device->config.left_handed->has(device);
}
LIBINPUT_EXPORT enum libinput_config_status
libinput_device_config_left_handed_set(struct libinput_device *device,
int left_handed)
{
if (!libinput_device_config_left_handed_is_available(device))
return LIBINPUT_CONFIG_STATUS_UNSUPPORTED;
return device->config.left_handed->set(device, left_handed);
}
LIBINPUT_EXPORT int
libinput_device_config_left_handed_get(struct libinput_device *device)
{
if (!libinput_device_config_left_handed_is_available(device))
return 0;
return device->config.left_handed->get(device);
}
LIBINPUT_EXPORT int
libinput_device_config_left_handed_get_default(struct libinput_device *device)
{
if (!libinput_device_config_left_handed_is_available(device))
return 0;
return device->config.left_handed->get_default(device);
}
LIBINPUT_EXPORT uint32_t
libinput_device_config_click_get_methods(struct libinput_device *device)
{
if (device->config.click_method)
return device->config.click_method->get_methods(device);
else
return 0;
}
LIBINPUT_EXPORT enum libinput_config_status
libinput_device_config_click_set_method(struct libinput_device *device,
enum libinput_config_click_method method)
{
/* Check method is a single valid method */
switch (method) {
case LIBINPUT_CONFIG_CLICK_METHOD_NONE:
case LIBINPUT_CONFIG_CLICK_METHOD_BUTTON_AREAS:
case LIBINPUT_CONFIG_CLICK_METHOD_CLICKFINGER:
break;
default:
return LIBINPUT_CONFIG_STATUS_INVALID;
}
if ((libinput_device_config_click_get_methods(device) & method) != method)
return LIBINPUT_CONFIG_STATUS_UNSUPPORTED;
if (device->config.click_method)
return device->config.click_method->set_method(device, method);
else /* method must be _NONE to get here */
return LIBINPUT_CONFIG_STATUS_SUCCESS;
}
LIBINPUT_EXPORT enum libinput_config_click_method
libinput_device_config_click_get_method(struct libinput_device *device)
{
if (device->config.click_method)
return device->config.click_method->get_method(device);
else
return LIBINPUT_CONFIG_CLICK_METHOD_NONE;
}
LIBINPUT_EXPORT enum libinput_config_click_method
libinput_device_config_click_get_default_method(struct libinput_device *device)
{
if (device->config.click_method)
return device->config.click_method->get_default_method(device);
else
return LIBINPUT_CONFIG_CLICK_METHOD_NONE;
}
LIBINPUT_EXPORT int
libinput_device_config_middle_emulation_is_available(
struct libinput_device *device)
{
if (device->config.middle_emulation)
return device->config.middle_emulation->available(device);
else
return LIBINPUT_CONFIG_MIDDLE_EMULATION_DISABLED;
}
LIBINPUT_EXPORT enum libinput_config_status
libinput_device_config_middle_emulation_set_enabled(
struct libinput_device *device,
enum libinput_config_middle_emulation_state enable)
{
int available =
libinput_device_config_middle_emulation_is_available(device);
switch (enable) {
case LIBINPUT_CONFIG_MIDDLE_EMULATION_DISABLED:
if (!available)
return LIBINPUT_CONFIG_STATUS_SUCCESS;
break;
case LIBINPUT_CONFIG_MIDDLE_EMULATION_ENABLED:
if (!available)
return LIBINPUT_CONFIG_STATUS_UNSUPPORTED;
break;
default:
return LIBINPUT_CONFIG_STATUS_INVALID;
}
return device->config.middle_emulation->set(device, enable);
}
LIBINPUT_EXPORT enum libinput_config_middle_emulation_state
libinput_device_config_middle_emulation_get_enabled(
struct libinput_device *device)
{
if (!libinput_device_config_middle_emulation_is_available(device))
return LIBINPUT_CONFIG_MIDDLE_EMULATION_DISABLED;
return device->config.middle_emulation->get(device);
}
LIBINPUT_EXPORT enum libinput_config_middle_emulation_state
libinput_device_config_middle_emulation_get_default_enabled(
struct libinput_device *device)
{
if (!libinput_device_config_middle_emulation_is_available(device))
return LIBINPUT_CONFIG_MIDDLE_EMULATION_DISABLED;
return device->config.middle_emulation->get_default(device);
}
LIBINPUT_EXPORT uint32_t
libinput_device_config_scroll_get_methods(struct libinput_device *device)
{
if (device->config.scroll_method)
return device->config.scroll_method->get_methods(device);
else
return 0;
}
LIBINPUT_EXPORT enum libinput_config_status
libinput_device_config_scroll_set_method(struct libinput_device *device,
enum libinput_config_scroll_method method)
{
/* Check method is a single valid method */
switch (method) {
case LIBINPUT_CONFIG_SCROLL_NO_SCROLL:
case LIBINPUT_CONFIG_SCROLL_2FG:
case LIBINPUT_CONFIG_SCROLL_EDGE:
case LIBINPUT_CONFIG_SCROLL_ON_BUTTON_DOWN:
break;
default:
return LIBINPUT_CONFIG_STATUS_INVALID;
}
if ((libinput_device_config_scroll_get_methods(device) & method) != method)
return LIBINPUT_CONFIG_STATUS_UNSUPPORTED;
if (device->config.scroll_method)
return device->config.scroll_method->set_method(device, method);
else /* method must be _NO_SCROLL to get here */
return LIBINPUT_CONFIG_STATUS_SUCCESS;
}
LIBINPUT_EXPORT enum libinput_config_scroll_method
libinput_device_config_scroll_get_method(struct libinput_device *device)
{
if (device->config.scroll_method)
return device->config.scroll_method->get_method(device);
else
return LIBINPUT_CONFIG_SCROLL_NO_SCROLL;
}
LIBINPUT_EXPORT enum libinput_config_scroll_method
libinput_device_config_scroll_get_default_method(struct libinput_device *device)
{
if (device->config.scroll_method)
return device->config.scroll_method->get_default_method(device);
else
return LIBINPUT_CONFIG_SCROLL_NO_SCROLL;
}
LIBINPUT_EXPORT enum libinput_config_status
libinput_device_config_scroll_set_button(struct libinput_device *device,
uint32_t button)
{
if (button && !libinput_device_pointer_has_button(device, button))
return LIBINPUT_CONFIG_STATUS_INVALID;
if ((libinput_device_config_scroll_get_methods(device) &
LIBINPUT_CONFIG_SCROLL_ON_BUTTON_DOWN) == 0)
return LIBINPUT_CONFIG_STATUS_UNSUPPORTED;
return device->config.scroll_method->set_button(device, button);
}
LIBINPUT_EXPORT uint32_t
libinput_device_config_scroll_get_button(struct libinput_device *device)
{
if ((libinput_device_config_scroll_get_methods(device) &
LIBINPUT_CONFIG_SCROLL_ON_BUTTON_DOWN) == 0)
return 0;
return device->config.scroll_method->get_button(device);
}
LIBINPUT_EXPORT uint32_t
libinput_device_config_scroll_get_default_button(struct libinput_device *device)
{
if ((libinput_device_config_scroll_get_methods(device) &
LIBINPUT_CONFIG_SCROLL_ON_BUTTON_DOWN) == 0)
return 0;
return device->config.scroll_method->get_default_button(device);
}
LIBINPUT_EXPORT int
libinput_device_config_dwt_is_available(struct libinput_device *device)
{
if (!device->config.dwt)
return 0;
return device->config.dwt->is_available(device);
}
LIBINPUT_EXPORT enum libinput_config_status
libinput_device_config_dwt_set_enabled(struct libinput_device *device,
enum libinput_config_dwt_state enable)
{
if (enable != LIBINPUT_CONFIG_DWT_ENABLED &&
enable != LIBINPUT_CONFIG_DWT_DISABLED)
return LIBINPUT_CONFIG_STATUS_INVALID;
if (!libinput_device_config_dwt_is_available(device))
return enable ? LIBINPUT_CONFIG_STATUS_UNSUPPORTED :
LIBINPUT_CONFIG_STATUS_SUCCESS;
return device->config.dwt->set_enabled(device, enable);
}
LIBINPUT_EXPORT enum libinput_config_dwt_state
libinput_device_config_dwt_get_enabled(struct libinput_device *device)
{
if (!libinput_device_config_dwt_is_available(device))
return LIBINPUT_CONFIG_DWT_DISABLED;
return device->config.dwt->get_enabled(device);
}
LIBINPUT_EXPORT enum libinput_config_dwt_state
libinput_device_config_dwt_get_default_enabled(struct libinput_device *device)
{
if (!libinput_device_config_dwt_is_available(device))
return LIBINPUT_CONFIG_DWT_DISABLED;
return device->config.dwt->get_default_enabled(device);
}
LIBINPUT_EXPORT int
libinput_device_config_rotation_is_available(struct libinput_device *device)
{
if (!device->config.rotation)
return 0;
return device->config.rotation->is_available(device);
}
LIBINPUT_EXPORT enum libinput_config_status
libinput_device_config_rotation_set_angle(struct libinput_device *device,
unsigned int degrees_cw)
{
if (!libinput_device_config_rotation_is_available(device))
return degrees_cw ? LIBINPUT_CONFIG_STATUS_UNSUPPORTED :
LIBINPUT_CONFIG_STATUS_SUCCESS;
if (degrees_cw >= 360 || degrees_cw % 90)
return LIBINPUT_CONFIG_STATUS_INVALID;
return device->config.rotation->set_angle(device, degrees_cw);
}
LIBINPUT_EXPORT unsigned int
libinput_device_config_rotation_get_angle(struct libinput_device *device)
{
if (!libinput_device_config_rotation_is_available(device))
return 0;
return device->config.rotation->get_angle(device);
}
LIBINPUT_EXPORT unsigned int
libinput_device_config_rotation_get_default_angle(struct libinput_device *device)
{
if (!libinput_device_config_rotation_is_available(device))
return 0;
return device->config.rotation->get_default_angle(device);
}