mesa/src/intel/compiler/brw_fs_visitor.cpp
Caio Oliveira f82bcd56fc intel/brw: Add functions to allocate VGRF space
Reviewed-by: Lionel Landwerlin <lionel.g.landwerlin@intel.com>
Part-of: <https://gitlab.freedesktop.org/mesa/mesa/-/merge_requests/33334>
2025-02-06 08:33:03 -08:00

454 lines
17 KiB
C++

/*
* Copyright © 2010 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
/** @file
*
* This file supports generating the FS LIR from the GLSL IR. The LIR
* makes it easier to do backend-specific optimizations than doing so
* in the GLSL IR or in the native code.
*/
#include "brw_eu.h"
#include "brw_fs.h"
#include "brw_builder.h"
#include "brw_nir.h"
#include "compiler/glsl_types.h"
#include "dev/intel_device_info.h"
void
fs_visitor::emit_urb_writes(const brw_reg &gs_vertex_count)
{
int slot, urb_offset, length;
int starting_urb_offset = 0;
const struct brw_vue_prog_data *vue_prog_data =
brw_vue_prog_data(this->prog_data);
const GLbitfield64 psiz_mask =
VARYING_BIT_LAYER | VARYING_BIT_VIEWPORT | VARYING_BIT_PSIZ | VARYING_BIT_PRIMITIVE_SHADING_RATE;
const struct intel_vue_map *vue_map = &vue_prog_data->vue_map;
bool flush;
brw_reg sources[8];
brw_reg urb_handle;
switch (stage) {
case MESA_SHADER_VERTEX:
urb_handle = vs_payload().urb_handles;
break;
case MESA_SHADER_TESS_EVAL:
urb_handle = tes_payload().urb_output;
break;
case MESA_SHADER_GEOMETRY:
urb_handle = gs_payload().urb_handles;
break;
default:
unreachable("invalid stage");
}
const brw_builder bld = brw_builder(this).at_end();
brw_reg per_slot_offsets;
if (stage == MESA_SHADER_GEOMETRY) {
const struct brw_gs_prog_data *gs_prog_data =
brw_gs_prog_data(this->prog_data);
/* We need to increment the Global Offset to skip over the control data
* header and the extra "Vertex Count" field (1 HWord) at the beginning
* of the VUE. We're counting in OWords, so the units are doubled.
*/
starting_urb_offset = 2 * gs_prog_data->control_data_header_size_hwords;
if (gs_prog_data->static_vertex_count == -1)
starting_urb_offset += 2;
/* The URB offset is in 128-bit units, so we need to multiply by 2 */
const int output_vertex_size_owords =
gs_prog_data->output_vertex_size_hwords * 2;
/* On Xe2+ platform, LSC can operate on the Dword data element with byte
* offset granularity, so convert per slot offset in bytes since it's in
* Owords (16-bytes) unit else keep per slot offset in oword unit for
* previous platforms.
*/
const int output_vertex_size = devinfo->ver >= 20 ?
output_vertex_size_owords * 16 :
output_vertex_size_owords;
if (gs_vertex_count.file == IMM) {
per_slot_offsets = brw_imm_ud(output_vertex_size *
gs_vertex_count.ud);
} else {
per_slot_offsets = bld.vgrf(BRW_TYPE_UD);
bld.MUL(per_slot_offsets, gs_vertex_count,
brw_imm_ud(output_vertex_size));
}
}
length = 0;
urb_offset = starting_urb_offset;
flush = false;
/* SSO shaders can have VUE slots allocated which are never actually
* written to, so ignore them when looking for the last (written) slot.
*/
int last_slot = vue_map->num_slots - 1;
while (last_slot > 0 &&
(vue_map->slot_to_varying[last_slot] == BRW_VARYING_SLOT_PAD ||
outputs[vue_map->slot_to_varying[last_slot]].file == BAD_FILE)) {
last_slot--;
}
bool urb_written = false;
for (slot = 0; slot < vue_map->num_slots; slot++) {
int varying = vue_map->slot_to_varying[slot];
switch (varying) {
case VARYING_SLOT_PSIZ: {
/* The point size varying slot is the vue header and is always in the
* vue map. But often none of the special varyings that live there
* are written and in that case we can skip writing to the vue
* header, provided the corresponding state properly clamps the
* values further down the pipeline. */
if ((vue_map->slots_valid & psiz_mask) == 0) {
assert(length == 0);
urb_offset++;
break;
}
brw_reg zero =
retype(brw_allocate_vgrf_units(*this, dispatch_width / 8), BRW_TYPE_UD);
bld.MOV(zero, brw_imm_ud(0u));
if (vue_map->slots_valid & VARYING_BIT_PRIMITIVE_SHADING_RATE &&
this->outputs[VARYING_SLOT_PRIMITIVE_SHADING_RATE].file != BAD_FILE) {
sources[length++] = this->outputs[VARYING_SLOT_PRIMITIVE_SHADING_RATE];
} else if (devinfo->has_coarse_pixel_primitive_and_cb) {
uint32_t one_fp16 = 0x3C00;
brw_reg one_by_one_fp16 =
retype(brw_allocate_vgrf_units(*this, dispatch_width / 8), BRW_TYPE_UD);
bld.MOV(one_by_one_fp16, brw_imm_ud((one_fp16 << 16) | one_fp16));
sources[length++] = one_by_one_fp16;
} else {
sources[length++] = zero;
}
if (vue_map->slots_valid & VARYING_BIT_LAYER)
sources[length++] = this->outputs[VARYING_SLOT_LAYER];
else
sources[length++] = zero;
if (vue_map->slots_valid & VARYING_BIT_VIEWPORT)
sources[length++] = this->outputs[VARYING_SLOT_VIEWPORT];
else
sources[length++] = zero;
if (vue_map->slots_valid & VARYING_BIT_PSIZ)
sources[length++] = this->outputs[VARYING_SLOT_PSIZ];
else
sources[length++] = zero;
break;
}
case VARYING_SLOT_EDGE:
unreachable("unexpected scalar vs output");
break;
default:
/* gl_Position is always in the vue map, but isn't always written by
* the shader. Other varyings (clip distances) get added to the vue
* map but don't always get written. In those cases, the
* corresponding this->output[] slot will be invalid we and can skip
* the urb write for the varying. If we've already queued up a vue
* slot for writing we flush a mlen 5 urb write, otherwise we just
* advance the urb_offset.
*/
if (varying == BRW_VARYING_SLOT_PAD ||
this->outputs[varying].file == BAD_FILE) {
if (length > 0)
flush = true;
else
urb_offset++;
break;
}
int slot_offset = 0;
/* When using Primitive Replication, there may be multiple slots
* assigned to POS.
*/
if (varying == VARYING_SLOT_POS)
slot_offset = slot - vue_map->varying_to_slot[VARYING_SLOT_POS];
for (unsigned i = 0; i < 4; i++) {
sources[length++] = offset(this->outputs[varying], bld,
i + (slot_offset * 4));
}
break;
}
const brw_builder abld = bld.annotate("URB write");
/* If we've queued up 8 registers of payload (2 VUE slots), if this is
* the last slot or if we need to flush (see BAD_FILE varying case
* above), emit a URB write send now to flush out the data.
*/
if (length == 8 || (length > 0 && slot == last_slot))
flush = true;
if (flush) {
brw_reg srcs[URB_LOGICAL_NUM_SRCS];
srcs[URB_LOGICAL_SRC_HANDLE] = urb_handle;
srcs[URB_LOGICAL_SRC_PER_SLOT_OFFSETS] = per_slot_offsets;
srcs[URB_LOGICAL_SRC_DATA] =
retype(brw_allocate_vgrf_units(*this, (dispatch_width / 8) * length), BRW_TYPE_F);
srcs[URB_LOGICAL_SRC_COMPONENTS] = brw_imm_ud(length);
abld.LOAD_PAYLOAD(srcs[URB_LOGICAL_SRC_DATA], sources, length, 0);
brw_inst *inst = abld.emit(SHADER_OPCODE_URB_WRITE_LOGICAL, reg_undef,
srcs, ARRAY_SIZE(srcs));
/* For Wa_1805992985 one needs additional write in the end. */
if (intel_needs_workaround(devinfo, 1805992985) && stage == MESA_SHADER_TESS_EVAL)
inst->eot = false;
else
inst->eot = slot == last_slot && stage != MESA_SHADER_GEOMETRY;
inst->offset = urb_offset;
urb_offset = starting_urb_offset + slot + 1;
length = 0;
flush = false;
urb_written = true;
}
}
/* If we don't have any valid slots to write, just do a minimal urb write
* send to terminate the shader. This includes 1 slot of undefined data,
* because it's invalid to write 0 data:
*
* From the Broadwell PRM, Volume 7: 3D Media GPGPU, Shared Functions -
* Unified Return Buffer (URB) > URB_SIMD8_Write and URB_SIMD8_Read >
* Write Data Payload:
*
* "The write data payload can be between 1 and 8 message phases long."
*/
if (!urb_written) {
/* For GS, just turn EmitVertex() into a no-op. We don't want it to
* end the thread, and emit_gs_thread_end() already emits a SEND with
* EOT at the end of the program for us.
*/
if (stage == MESA_SHADER_GEOMETRY)
return;
brw_reg uniform_urb_handle =
retype(brw_allocate_vgrf_units(*this, dispatch_width / 8), BRW_TYPE_UD);
brw_reg payload =
retype(brw_allocate_vgrf_units(*this, dispatch_width / 8), BRW_TYPE_UD);
bld.exec_all().MOV(uniform_urb_handle, urb_handle);
brw_reg srcs[URB_LOGICAL_NUM_SRCS];
srcs[URB_LOGICAL_SRC_HANDLE] = uniform_urb_handle;
srcs[URB_LOGICAL_SRC_DATA] = payload;
srcs[URB_LOGICAL_SRC_COMPONENTS] = brw_imm_ud(1);
brw_inst *inst = bld.emit(SHADER_OPCODE_URB_WRITE_LOGICAL, reg_undef,
srcs, ARRAY_SIZE(srcs));
inst->eot = true;
inst->offset = 1;
return;
}
/* Wa_1805992985:
*
* GPU hangs on one of tessellation vkcts tests with DS not done. The
* send cycle, which is a urb write with an eot must be 4 phases long and
* all 8 lanes must valid.
*/
if (intel_needs_workaround(devinfo, 1805992985) && stage == MESA_SHADER_TESS_EVAL) {
assert(dispatch_width == 8);
brw_reg uniform_urb_handle = retype(brw_allocate_vgrf_units(*this, 1), BRW_TYPE_UD);
brw_reg uniform_mask = retype(brw_allocate_vgrf_units(*this, 1), BRW_TYPE_UD);
brw_reg payload = retype(brw_allocate_vgrf_units(*this, 4), BRW_TYPE_UD);
/* Workaround requires all 8 channels (lanes) to be valid. This is
* understood to mean they all need to be alive. First trick is to find
* a live channel and copy its urb handle for all the other channels to
* make sure all handles are valid.
*/
bld.exec_all().MOV(uniform_urb_handle, bld.emit_uniformize(urb_handle));
/* Second trick is to use masked URB write where one can tell the HW to
* actually write data only for selected channels even though all are
* active.
* Third trick is to take advantage of the must-be-zero (MBZ) area in
* the very beginning of the URB.
*
* One masks data to be written only for the first channel and uses
* offset zero explicitly to land data to the MBZ area avoiding trashing
* any other part of the URB.
*
* Since the WA says that the write needs to be 4 phases long one uses
* 4 slots data. All are explicitly zeros in order to to keep the MBZ
* area written as zeros.
*/
bld.exec_all().MOV(uniform_mask, brw_imm_ud(0x10000u));
bld.exec_all().MOV(offset(payload, bld, 0), brw_imm_ud(0u));
bld.exec_all().MOV(offset(payload, bld, 1), brw_imm_ud(0u));
bld.exec_all().MOV(offset(payload, bld, 2), brw_imm_ud(0u));
bld.exec_all().MOV(offset(payload, bld, 3), brw_imm_ud(0u));
brw_reg srcs[URB_LOGICAL_NUM_SRCS];
srcs[URB_LOGICAL_SRC_HANDLE] = uniform_urb_handle;
srcs[URB_LOGICAL_SRC_CHANNEL_MASK] = uniform_mask;
srcs[URB_LOGICAL_SRC_DATA] = payload;
srcs[URB_LOGICAL_SRC_COMPONENTS] = brw_imm_ud(4);
brw_inst *inst = bld.exec_all().emit(SHADER_OPCODE_URB_WRITE_LOGICAL,
reg_undef, srcs, ARRAY_SIZE(srcs));
inst->eot = true;
inst->offset = 0;
}
}
void
fs_visitor::emit_cs_terminate()
{
const brw_builder ubld = brw_builder(this).at_end().exec_all();
/* We can't directly send from g0, since sends with EOT have to use
* g112-127. So, copy it to a virtual register, The register allocator will
* make sure it uses the appropriate register range.
*/
struct brw_reg g0 = retype(brw_vec8_grf(0, 0), BRW_TYPE_UD);
brw_reg payload =
retype(brw_allocate_vgrf_units(*this, reg_unit(devinfo)), BRW_TYPE_UD);
ubld.group(8 * reg_unit(devinfo), 0).MOV(payload, g0);
/* Set the descriptor to "Dereference Resource" and "Root Thread" */
unsigned desc = 0;
/* Set Resource Select to "Do not dereference URB" on Gfx < 11.
*
* Note that even though the thread has a URB resource associated with it,
* we set the "do not dereference URB" bit, because the URB resource is
* managed by the fixed-function unit, so it will free it automatically.
*/
if (devinfo->ver < 11)
desc |= (1 << 4); /* Do not dereference URB */
brw_reg srcs[4] = {
brw_imm_ud(desc), /* desc */
brw_imm_ud(0), /* ex_desc */
payload, /* payload */
brw_reg(), /* payload2 */
};
brw_inst *send = ubld.emit(SHADER_OPCODE_SEND, reg_undef, srcs, 4);
/* On Alchemist and later, send an EOT message to the message gateway to
* terminate a compute shader. For older GPUs, send to the thread spawner.
*/
send->sfid = devinfo->verx10 >= 125 ? BRW_SFID_MESSAGE_GATEWAY
: BRW_SFID_THREAD_SPAWNER;
send->mlen = reg_unit(devinfo);
send->eot = true;
}
fs_visitor::fs_visitor(const struct brw_compiler *compiler,
const struct brw_compile_params *params,
const brw_base_prog_key *key,
struct brw_stage_prog_data *prog_data,
const nir_shader *shader,
unsigned dispatch_width,
bool needs_register_pressure,
bool debug_enabled)
: compiler(compiler), log_data(params->log_data),
devinfo(compiler->devinfo), nir(shader),
mem_ctx(params->mem_ctx),
cfg(NULL), stage(shader->info.stage),
debug_enabled(debug_enabled),
key(key), prog_data(prog_data),
live_analysis(this), regpressure_analysis(this),
performance_analysis(this), idom_analysis(this), def_analysis(this),
needs_register_pressure(needs_register_pressure),
dispatch_width(dispatch_width),
max_polygons(0),
api_subgroup_size(brw_nir_api_subgroup_size(shader, dispatch_width))
{
init();
}
fs_visitor::fs_visitor(const struct brw_compiler *compiler,
const struct brw_compile_params *params,
const brw_wm_prog_key *key,
struct brw_wm_prog_data *prog_data,
const nir_shader *shader,
unsigned dispatch_width, unsigned max_polygons,
bool needs_register_pressure,
bool debug_enabled)
: compiler(compiler), log_data(params->log_data),
devinfo(compiler->devinfo), nir(shader),
mem_ctx(params->mem_ctx),
cfg(NULL), stage(shader->info.stage),
debug_enabled(debug_enabled),
key(&key->base), prog_data(&prog_data->base),
live_analysis(this), regpressure_analysis(this),
performance_analysis(this), idom_analysis(this), def_analysis(this),
needs_register_pressure(needs_register_pressure),
dispatch_width(dispatch_width),
max_polygons(max_polygons),
api_subgroup_size(brw_nir_api_subgroup_size(shader, dispatch_width))
{
init();
assert(api_subgroup_size == 0 ||
api_subgroup_size == 8 ||
api_subgroup_size == 16 ||
api_subgroup_size == 32);
}
void
fs_visitor::init()
{
this->max_dispatch_width = 32;
this->failed = false;
this->fail_msg = NULL;
this->payload_ = NULL;
this->source_depth_to_render_target = false;
this->first_non_payload_grf = 0;
this->uniforms = 0;
this->last_scratch = 0;
memset(&this->shader_stats, 0, sizeof(this->shader_stats));
this->grf_used = 0;
this->spilled_any_registers = false;
this->phase = BRW_SHADER_PHASE_INITIAL;
this->next_address_register_nr = 1;
this->gs.control_data_bits_per_vertex = 0;
this->gs.control_data_header_size_bits = 0;
}
fs_visitor::~fs_visitor()
{
delete this->payload_;
}