mirror of
https://gitlab.freedesktop.org/mesa/mesa.git
synced 2025-12-22 00:30:13 +01:00
Eric's initial patch adding constant expression evaluation for
ir_unop_round_even used nearbyint. The open-coded _mesa_round_to_even
implementation came about without much explanation after a reviewer
asked whether nearbyint depended on the application not modifying the
rounding mode. Of course (as Eric commented) we rely on the application
not changing the rounding mode from its default (round-to-nearest) in
many other places, including the IROUND function used by
_mesa_round_to_even!
Worse, IROUND() is implemented using the trunc(x + 0.5) trick which
fails for x = nextafterf(0.5, 0.0).
Still worse, _mesa_round_to_even unexpectedly returns an int. I suspect
that could cause problems when rounding large integral values not
representable as an int in ir_constant_expression.cpp's
ir_unop_round_even evaluation. Its use of _mesa_round_to_even is clearly
broken for doubles (as noted during review).
The constant expression evaluation code for the packing built-in
functions also mistakenly assumed that _mesa_round_to_even returned a
float, as can be seen by the cast through a signed integer type to an
unsigned (since negative float -> unsigned conversions are undefined).
rint() and nearbyint() implement the round-half-to-even behavior we want
when the rounding mode is set to the default round-to-nearest. The only
difference between them is that nearbyint() raises the inexact
exception.
This patch implements _mesa_roundeven{f,}, a function similar to the
roundeven function added by a yet unimplemented technical specification
(ISO/IEC TS 18661-1:2014), with a small difference in behavior -- we
don't bother raising the inexact exception, which I don't think we care
about anyway.
At least recent Intel CPUs can quickly change a subset of the bits in
the x87 floating-point control register, but the exception mask bits are
not included. rint() does not need to change these bits, but nearbyint()
does (twice: save old, set new, and restore old) in order to raise the
inexact exception, which would incur some penalty.
Reviewed-by: Carl Worth <cworth@cworth.org>
591 lines
20 KiB
Python
591 lines
20 KiB
Python
#! /usr/bin/env python
|
|
#
|
|
# Copyright (C) 2014 Connor Abbott
|
|
#
|
|
# Permission is hereby granted, free of charge, to any person obtaining a
|
|
# copy of this software and associated documentation files (the "Software"),
|
|
# to deal in the Software without restriction, including without limitation
|
|
# the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
# and/or sell copies of the Software, and to permit persons to whom the
|
|
# Software is furnished to do so, subject to the following conditions:
|
|
#
|
|
# The above copyright notice and this permission notice (including the next
|
|
# paragraph) shall be included in all copies or substantial portions of the
|
|
# Software.
|
|
#
|
|
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
# THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
|
# FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
|
|
# IN THE SOFTWARE.
|
|
#
|
|
# Authors:
|
|
# Connor Abbott (cwabbott0@gmail.com)
|
|
|
|
|
|
# Class that represents all the information we have about the opcode
|
|
# NOTE: this must be kept in sync with nir_op_info
|
|
|
|
class Opcode(object):
|
|
"""Class that represents all the information we have about the opcode
|
|
NOTE: this must be kept in sync with nir_op_info
|
|
"""
|
|
def __init__(self, name, output_size, output_type, input_sizes,
|
|
input_types, algebraic_properties, const_expr):
|
|
"""Parameters:
|
|
|
|
- name is the name of the opcode (prepend nir_op_ for the enum name)
|
|
- all types are strings that get nir_type_ prepended to them
|
|
- input_types is a list of types
|
|
- algebraic_properties is a space-seperated string, where nir_op_is_ is
|
|
prepended before each entry
|
|
- const_expr is an expression or series of statements that computes the
|
|
constant value of the opcode given the constant values of its inputs.
|
|
|
|
Constant expressions are formed from the variables src0, src1, ...,
|
|
src(N-1), where N is the number of arguments. The output of the
|
|
expression should be stored in the dst variable. Per-component input
|
|
and output variables will be scalars and non-per-component input and
|
|
output variables will be a struct with fields named x, y, z, and w
|
|
all of the correct type. Input and output variables can be assumed
|
|
to already be of the correct type and need no conversion. In
|
|
particular, the conversion from the C bool type to/from NIR_TRUE and
|
|
NIR_FALSE happens automatically.
|
|
|
|
For per-component instructions, the entire expression will be
|
|
executed once for each component. For non-per-component
|
|
instructions, the expression is expected to store the correct values
|
|
in dst.x, dst.y, etc. If "dst" does not exist anywhere in the
|
|
constant expression, an assignment to dst will happen automatically
|
|
and the result will be equivalent to "dst = <expression>" for
|
|
per-component instructions and "dst.x = dst.y = ... = <expression>"
|
|
for non-per-component instructions.
|
|
"""
|
|
assert isinstance(name, str)
|
|
assert isinstance(output_size, int)
|
|
assert isinstance(output_type, str)
|
|
assert isinstance(input_sizes, list)
|
|
assert isinstance(input_sizes[0], int)
|
|
assert isinstance(input_types, list)
|
|
assert isinstance(input_types[0], str)
|
|
assert isinstance(algebraic_properties, str)
|
|
assert isinstance(const_expr, str)
|
|
assert len(input_sizes) == len(input_types)
|
|
assert 0 <= output_size <= 4
|
|
for size in input_sizes:
|
|
assert 0 <= size <= 4
|
|
if output_size != 0:
|
|
assert size != 0
|
|
self.name = name
|
|
self.num_inputs = len(input_sizes)
|
|
self.output_size = output_size
|
|
self.output_type = output_type
|
|
self.input_sizes = input_sizes
|
|
self.input_types = input_types
|
|
self.algebraic_properties = algebraic_properties
|
|
self.const_expr = const_expr
|
|
|
|
# helper variables for strings
|
|
tfloat = "float"
|
|
tint = "int"
|
|
tbool = "bool"
|
|
tunsigned = "unsigned"
|
|
|
|
commutative = "commutative "
|
|
associative = "associative "
|
|
|
|
# global dictionary of opcodes
|
|
opcodes = {}
|
|
|
|
def opcode(name, output_size, output_type, input_sizes, input_types,
|
|
algebraic_properties, const_expr):
|
|
assert name not in opcodes
|
|
opcodes[name] = Opcode(name, output_size, output_type, input_sizes,
|
|
input_types, algebraic_properties, const_expr)
|
|
|
|
def unop_convert(name, in_type, out_type, const_expr):
|
|
opcode(name, 0, out_type, [0], [in_type], "", const_expr)
|
|
|
|
def unop(name, ty, const_expr):
|
|
opcode(name, 0, ty, [0], [ty], "", const_expr)
|
|
|
|
def unop_horiz(name, output_size, output_type, input_size, input_type,
|
|
const_expr):
|
|
opcode(name, output_size, output_type, [input_size], [input_type], "",
|
|
const_expr)
|
|
|
|
def unop_reduce(name, output_size, output_type, input_type, prereduce_expr,
|
|
reduce_expr, final_expr):
|
|
def prereduce(src):
|
|
return "(" + prereduce_expr.format(src=src) + ")"
|
|
def final(src):
|
|
return final_expr.format(src="(" + src + ")")
|
|
def reduce_(src0, src1):
|
|
return reduce_expr.format(src0=src0, src1=src1)
|
|
src0 = prereduce("src0.x")
|
|
src1 = prereduce("src0.y")
|
|
src2 = prereduce("src0.z")
|
|
src3 = prereduce("src0.w")
|
|
unop_horiz(name + "2", output_size, output_type, 2, input_type,
|
|
final(reduce_(src0, src1)))
|
|
unop_horiz(name + "3", output_size, output_type, 3, input_type,
|
|
final(reduce_(reduce_(src0, src1), src2)))
|
|
unop_horiz(name + "4", output_size, output_type, 4, input_type,
|
|
final(reduce_(reduce_(src0, src1), reduce_(src2, src3))))
|
|
|
|
|
|
# These two move instructions differ in what modifiers they support and what
|
|
# the negate modifier means. Otherwise, they are identical.
|
|
unop("fmov", tfloat, "src0")
|
|
unop("imov", tint, "src0")
|
|
|
|
unop("ineg", tint, "-src0")
|
|
unop("fneg", tfloat, "-src0")
|
|
unop("inot", tint, "~src0") # invert every bit of the integer
|
|
unop("fnot", tfloat, "(src0 == 0.0f) ? 1.0f : 0.0f")
|
|
unop("fsign", tfloat, "(src0 == 0.0f) ? 0.0f : ((src0 > 0.0f) ? 1.0f : -1.0f)")
|
|
unop("isign", tint, "(src0 == 0) ? 0 : ((src0 > 0) ? 1 : -1)")
|
|
unop("iabs", tint, "(src0 < 0) ? -src0 : src0")
|
|
unop("fabs", tfloat, "fabsf(src0)")
|
|
unop("fsat", tfloat, "(src0 > 1.0f) ? 1.0f : ((src0 <= 0.0f) ? 0.0f : src0)")
|
|
unop("frcp", tfloat, "1.0f / src0")
|
|
unop("frsq", tfloat, "1.0f / sqrtf(src0)")
|
|
unop("fsqrt", tfloat, "sqrtf(src0)")
|
|
unop("fexp", tfloat, "expf(src0)") # < e^x
|
|
unop("flog", tfloat, "logf(src0)") # log base e
|
|
unop("fexp2", tfloat, "exp2f(src0)")
|
|
unop("flog2", tfloat, "log2f(src0)")
|
|
unop_convert("f2i", tfloat, tint, "src0") # Float-to-integer conversion.
|
|
unop_convert("f2u", tfloat, tunsigned, "src0") # Float-to-unsigned conversion
|
|
unop_convert("i2f", tint, tfloat, "src0") # Integer-to-float conversion.
|
|
# Float-to-boolean conversion
|
|
unop_convert("f2b", tfloat, tbool, "src0 == 0.0f")
|
|
# Boolean-to-float conversion
|
|
unop_convert("b2f", tbool, tfloat, "src0 ? 1.0f : 0.0f")
|
|
# Int-to-boolean conversion
|
|
unop_convert("i2b", tint, tbool, "src0 == 0")
|
|
unop_convert("b2i", tbool, tint, "src0 ? 0 : -1") # Boolean-to-int conversion
|
|
unop_convert("u2f", tunsigned, tfloat, "src0") #Unsigned-to-float conversion.
|
|
|
|
unop_reduce("bany", 1, tbool, tbool, "{src}", "{src0} || {src1}", "{src}")
|
|
unop_reduce("ball", 1, tbool, tbool, "{src}", "{src0} && {src1}", "{src}")
|
|
unop_reduce("fany", 1, tfloat, tfloat, "{src} != 0.0f", "{src0} || {src1}",
|
|
"{src} ? 1.0f : 0.0f")
|
|
unop_reduce("fall", 1, tfloat, tfloat, "{src} != 0.0f", "{src0} && {src1}",
|
|
"{src} ? 1.0f : 0.0f")
|
|
|
|
# Unary floating-point rounding operations.
|
|
|
|
|
|
unop("ftrunc", tfloat, "truncf(src0)")
|
|
unop("fceil", tfloat, "ceilf(src0)")
|
|
unop("ffloor", tfloat, "floorf(src0)")
|
|
unop("ffract", tfloat, "src0 - floorf(src0)")
|
|
unop("fround_even", tfloat, "_mesa_roundevenf(src0)")
|
|
|
|
|
|
# Trigonometric operations.
|
|
|
|
|
|
unop("fsin", tfloat, "sinf(src0)")
|
|
unop("fcos", tfloat, "cosf(src0)")
|
|
unop("fsin_reduced", tfloat, "sinf(src0)")
|
|
unop("fcos_reduced", tfloat, "cosf(src0)")
|
|
|
|
|
|
# Partial derivatives.
|
|
|
|
|
|
unop("fddx", tfloat, "0.0f") # the derivative of a constant is 0.
|
|
unop("fddy", tfloat, "0.0f")
|
|
unop("fddx_fine", tfloat, "0.0f")
|
|
unop("fddy_fine", tfloat, "0.0f")
|
|
unop("fddx_coarse", tfloat, "0.0f")
|
|
unop("fddy_coarse", tfloat, "0.0f")
|
|
|
|
|
|
# Floating point pack and unpack operations.
|
|
|
|
def pack_2x16(fmt):
|
|
unop_horiz("pack_" + fmt + "_2x16", 1, tunsigned, 2, tfloat, """
|
|
dst.x = (uint32_t) pack_fmt_1x16(src0.x);
|
|
dst.x |= ((uint32_t) pack_fmt_1x16(src0.y)) << 16;
|
|
""".replace("fmt", fmt))
|
|
|
|
def pack_4x8(fmt):
|
|
unop_horiz("pack_" + fmt + "_4x8", 1, tunsigned, 4, tfloat, """
|
|
dst.x = (uint32_t) pack_fmt_1x8(src0.x);
|
|
dst.x |= ((uint32_t) pack_fmt_1x8(src0.y)) << 8;
|
|
dst.x |= ((uint32_t) pack_fmt_1x8(src0.z)) << 16;
|
|
dst.x |= ((uint32_t) pack_fmt_1x8(src0.w)) << 24;
|
|
""".replace("fmt", fmt))
|
|
|
|
def unpack_2x16(fmt):
|
|
unop_horiz("unpack_" + fmt + "_2x16", 2, tfloat, 1, tunsigned, """
|
|
dst.x = unpack_fmt_1x16((uint16_t)(src0.x & 0xffff));
|
|
dst.y = unpack_fmt_1x16((uint16_t)(src0.x << 16));
|
|
""".replace("fmt", fmt))
|
|
|
|
def unpack_4x8(fmt):
|
|
unop_horiz("unpack_" + fmt + "_4x8", 4, tfloat, 1, tunsigned, """
|
|
dst.x = unpack_fmt_1x8((uint8_t)(src0.x & 0xff));
|
|
dst.y = unpack_fmt_1x8((uint8_t)((src0.x >> 8) & 0xff));
|
|
dst.z = unpack_fmt_1x8((uint8_t)((src0.x >> 16) & 0xff));
|
|
dst.w = unpack_fmt_1x8((uint8_t)(src0.x >> 24));
|
|
""".replace("fmt", fmt))
|
|
|
|
|
|
pack_2x16("snorm")
|
|
pack_4x8("snorm")
|
|
pack_2x16("unorm")
|
|
pack_4x8("unorm")
|
|
pack_2x16("half")
|
|
unpack_2x16("snorm")
|
|
unpack_4x8("snorm")
|
|
unpack_2x16("unorm")
|
|
unpack_4x8("unorm")
|
|
unpack_2x16("half")
|
|
|
|
|
|
# Lowered floating point unpacking operations.
|
|
|
|
|
|
unop_horiz("unpack_half_2x16_split_x", 1, tfloat, 1, tunsigned,
|
|
"unpack_half_1x16((uint16_t)(src0.x & 0xffff))")
|
|
unop_horiz("unpack_half_2x16_split_y", 1, tfloat, 1, tunsigned,
|
|
"unpack_half_1x16((uint16_t)(src0.x >> 16))")
|
|
|
|
|
|
# Bit operations, part of ARB_gpu_shader5.
|
|
|
|
|
|
unop("bitfield_reverse", tunsigned, """
|
|
/* we're not winning any awards for speed here, but that's ok */
|
|
dst = 0;
|
|
for (unsigned bit = 0; bit < 32; bit++)
|
|
dst |= ((src0 >> bit) & 1) << (31 - bit);
|
|
""")
|
|
unop("bit_count", tunsigned, """
|
|
dst = 0;
|
|
for (unsigned bit = 0; bit < 32; bit++) {
|
|
if ((src0 >> bit) & 1)
|
|
dst++;
|
|
}
|
|
""")
|
|
|
|
unop_convert("ufind_msb", tunsigned, tint, """
|
|
dst = -1;
|
|
for (int bit = 31; bit > 0; bit--) {
|
|
if ((src0 >> bit) & 1) {
|
|
dst = bit;
|
|
break;
|
|
}
|
|
}
|
|
""")
|
|
|
|
unop("ifind_msb", tint, """
|
|
dst = -1;
|
|
for (int bit = 31; bit >= 0; bit--) {
|
|
/* If src0 < 0, we're looking for the first 0 bit.
|
|
* if src0 >= 0, we're looking for the first 1 bit.
|
|
*/
|
|
if ((((src0 >> bit) & 1) && (src0 >= 0)) ||
|
|
(!((src0 >> bit) & 1) && (src0 < 0))) {
|
|
dst = bit;
|
|
break;
|
|
}
|
|
}
|
|
""")
|
|
|
|
unop("find_lsb", tint, """
|
|
dst = -1;
|
|
for (unsigned bit = 0; bit < 32; bit++) {
|
|
if ((src0 >> bit) & 1) {
|
|
dst = bit;
|
|
break;
|
|
}
|
|
}
|
|
""")
|
|
|
|
|
|
for i in xrange(1, 5):
|
|
for j in xrange(1, 5):
|
|
unop_horiz("fnoise{0}_{1}".format(i, j), i, tfloat, j, tfloat, "0.0f")
|
|
|
|
def binop_convert(name, out_type, in_type, alg_props, const_expr):
|
|
opcode(name, 0, out_type, [0, 0], [in_type, in_type], alg_props, const_expr)
|
|
|
|
def binop(name, ty, alg_props, const_expr):
|
|
binop_convert(name, ty, ty, alg_props, const_expr)
|
|
|
|
def binop_compare(name, ty, alg_props, const_expr):
|
|
binop_convert(name, tbool, ty, alg_props, const_expr)
|
|
|
|
def binop_horiz(name, out_size, out_type, src1_size, src1_type, src2_size,
|
|
src2_type, const_expr):
|
|
opcode(name, out_size, out_type, [src1_size, src2_size], [src1_type, src2_type],
|
|
"", const_expr)
|
|
|
|
def binop_reduce(name, output_size, output_type, src_type, prereduce_expr,
|
|
reduce_expr, final_expr):
|
|
def final(src):
|
|
return final_expr.format(src= "(" + src + ")")
|
|
def reduce_(src0, src1):
|
|
return reduce_expr.format(src0=src0, src1=src1)
|
|
def prereduce(src0, src1):
|
|
return "(" + prereduce_expr.format(src0=src0, src1=src1) + ")"
|
|
src0 = prereduce("src0.x", "src1.x")
|
|
src1 = prereduce("src0.y", "src1.y")
|
|
src2 = prereduce("src0.z", "src1.z")
|
|
src3 = prereduce("src0.w", "src1.w")
|
|
opcode(name + "2", output_size, output_type,
|
|
[2, 2], [src_type, src_type], commutative,
|
|
final(reduce_(src0, src1)))
|
|
opcode(name + "3", output_size, output_type,
|
|
[3, 3], [src_type, src_type], commutative,
|
|
final(reduce_(reduce_(src0, src1), src2)))
|
|
opcode(name + "4", output_size, output_type,
|
|
[4, 4], [src_type, src_type], commutative,
|
|
final(reduce_(reduce_(src0, src1), reduce_(src2, src3))))
|
|
|
|
binop("fadd", tfloat, commutative + associative, "src0 + src1")
|
|
binop("iadd", tint, commutative + associative, "src0 + src1")
|
|
binop("fsub", tfloat, "", "src0 - src1")
|
|
binop("isub", tint, "", "src0 - src1")
|
|
|
|
binop("fmul", tfloat, commutative + associative, "src0 * src1")
|
|
# low 32-bits of signed/unsigned integer multiply
|
|
binop("imul", tint, commutative + associative, "src0 * src1")
|
|
# high 32-bits of signed integer multiply
|
|
binop("imul_high", tint, commutative,
|
|
"(int32_t)(((int64_t) src0 * (int64_t) src1) >> 32)")
|
|
# high 32-bits of unsigned integer multiply
|
|
binop("umul_high", tunsigned, commutative,
|
|
"(uint32_t)(((uint64_t) src0 * (uint64_t) src1) >> 32)")
|
|
|
|
binop("fdiv", tfloat, "", "src0 / src1")
|
|
binop("idiv", tint, "", "src0 / src1")
|
|
binop("udiv", tunsigned, "", "src0 / src1")
|
|
|
|
# returns a boolean representing the carry resulting from the addition of
|
|
# the two unsigned arguments.
|
|
|
|
binop_convert("uadd_carry", tbool, tunsigned, commutative, "src0 + src1 < src0")
|
|
|
|
# returns a boolean representing the borrow resulting from the subtraction
|
|
# of the two unsigned arguments.
|
|
|
|
binop_convert("usub_borrow", tbool, tunsigned, "", "src1 < src0")
|
|
|
|
binop("fmod", tfloat, "", "src0 - src1 * floorf(src0 / src1)")
|
|
binop("umod", tunsigned, "", "src1 == 0 ? 0 : src0 % src1")
|
|
|
|
#
|
|
# Comparisons
|
|
#
|
|
|
|
|
|
# these integer-aware comparisons return a boolean (0 or ~0)
|
|
|
|
binop_compare("flt", tfloat, "", "src0 < src1")
|
|
binop_compare("fge", tfloat, "", "src0 >= src1")
|
|
binop_compare("feq", tfloat, commutative, "src0 == src1")
|
|
binop_compare("fne", tfloat, commutative, "src0 != src1")
|
|
binop_compare("ilt", tint, "", "src0 < src1")
|
|
binop_compare("ige", tint, "", "src0 >= src1")
|
|
binop_compare("ieq", tint, commutative, "src0 == src1")
|
|
binop_compare("ine", tint, commutative, "src0 != src1")
|
|
binop_compare("ult", tunsigned, "", "src0 < src1")
|
|
binop_compare("uge", tunsigned, "", "src0 >= src1")
|
|
|
|
# integer-aware GLSL-style comparisons that compare floats and ints
|
|
|
|
binop_reduce("ball_fequal", 1, tbool, tfloat, "{src0} == {src1}",
|
|
"{src0} && {src1}", "{src}")
|
|
binop_reduce("bany_fnequal", 1, tbool, tfloat, "{src0} != {src1}",
|
|
"{src0} || {src1}", "{src}")
|
|
binop_reduce("ball_iequal", 1, tbool, tint, "{src0} == {src1}",
|
|
"{src0} && {src1}", "{src}")
|
|
binop_reduce("bany_inequal", 1, tbool, tint, "{src0} != {src1}",
|
|
"{src0} || {src1}", "{src}")
|
|
|
|
# non-integer-aware GLSL-style comparisons that return 0.0 or 1.0
|
|
|
|
binop_reduce("fall_equal", 1, tfloat, tfloat, "{src0} == {src1}",
|
|
"{src0} && {src1}", "{src} ? 1.0f : 0.0f")
|
|
binop_reduce("fany_nequal", 1, tfloat, tfloat, "{src0} != {src1}",
|
|
"{src0} || {src1}", "{src} ? 1.0f : 0.0f")
|
|
|
|
# These comparisons for integer-less hardware return 1.0 and 0.0 for true
|
|
# and false respectively
|
|
|
|
binop("slt", tfloat, "", "(src0 < src1) ? 1.0f : 0.0f") # Set on Less Than
|
|
binop("sge", tfloat, "", "(src0 >= src1) ? 1.0f : 0.0f") # Set on Greater or Equal
|
|
binop("seq", tfloat, commutative, "(src0 == src1) ? 1.0f : 0.0f") # Set on Equal
|
|
binop("sne", tfloat, commutative, "(src0 != src1) ? 1.0f : 0.0f") # Set on Not Equal
|
|
|
|
|
|
binop("ishl", tint, "", "src0 << src1")
|
|
binop("ishr", tint, "", "src0 >> src1")
|
|
binop("ushr", tunsigned, "", "src0 >> src1")
|
|
|
|
# bitwise logic operators
|
|
#
|
|
# These are also used as boolean and, or, xor for hardware supporting
|
|
# integers.
|
|
|
|
|
|
binop("iand", tunsigned, commutative + associative, "src0 & src1")
|
|
binop("ior", tunsigned, commutative + associative, "src0 | src1")
|
|
binop("ixor", tunsigned, commutative + associative, "src0 ^ src1")
|
|
|
|
|
|
# floating point logic operators
|
|
#
|
|
# These use (src != 0.0) for testing the truth of the input, and output 1.0
|
|
# for true and 0.0 for false
|
|
|
|
binop("fand", tfloat, commutative,
|
|
"((src0 != 0.0f) && (src1 != 0.0f)) ? 1.0f : 0.0f")
|
|
binop("for", tfloat, commutative,
|
|
"((src0 != 0.0f) || (src1 != 0.0f)) ? 1.0f : 0.0f")
|
|
binop("fxor", tfloat, commutative,
|
|
"(src0 != 0.0f && src1 == 0.0f) || (src0 == 0.0f && src1 != 0.0f) ? 1.0f : 0.0f")
|
|
|
|
binop_reduce("fdot", 1, tfloat, tfloat, "{src0} * {src1}", "{src0} + {src1}",
|
|
"{src}")
|
|
|
|
binop("fmin", tfloat, "", "fminf(src0, src1)")
|
|
binop("imin", tint, commutative + associative, "src1 > src0 ? src0 : src1")
|
|
binop("umin", tunsigned, commutative + associative, "src1 > src0 ? src0 : src1")
|
|
binop("fmax", tfloat, "", "fmaxf(src0, src1)")
|
|
binop("imax", tint, commutative + associative, "src1 > src0 ? src1 : src0")
|
|
binop("umax", tunsigned, commutative + associative, "src1 > src0 ? src1 : src0")
|
|
|
|
binop("fpow", tfloat, "", "powf(src0, src1)")
|
|
|
|
binop_horiz("pack_half_2x16_split", 1, tunsigned, 1, tfloat, 1, tfloat,
|
|
"pack_half_1x16(src0.x) | (pack_half_1x16(src1.x) << 16)")
|
|
|
|
binop_convert("bfm", tunsigned, tint, "", """
|
|
int offset = src0, bits = src1;
|
|
if (offset < 0 || bits < 0 || offset + bits > 32)
|
|
dst = 0; /* undefined per the spec */
|
|
else
|
|
dst = ((1 << bits)- 1) << offset;
|
|
""")
|
|
|
|
opcode("ldexp", 0, tfloat, [0, 0], [tfloat, tint], "", """
|
|
dst = ldexp(src0, src1);
|
|
/* flush denormals to zero. */
|
|
if (!isnormal(dst))
|
|
dst = copysign(0.0f, src0);
|
|
""")
|
|
|
|
# Combines the first component of each input to make a 2-component vector.
|
|
|
|
binop_horiz("vec2", 2, tunsigned, 1, tunsigned, 1, tunsigned, """
|
|
dst.x = src0.x;
|
|
dst.y = src1.x;
|
|
""")
|
|
|
|
def triop(name, ty, const_expr):
|
|
opcode(name, 0, ty, [0, 0, 0], [ty, ty, ty], "", const_expr)
|
|
def triop_horiz(name, output_size, src1_size, src2_size, src3_size, const_expr):
|
|
opcode(name, output_size, tunsigned,
|
|
[src1_size, src2_size, src3_size],
|
|
[tunsigned, tunsigned, tunsigned], "", const_expr)
|
|
|
|
triop("ffma", tfloat, "src0 * src1 + src2")
|
|
|
|
triop("flrp", tfloat, "src0 * (1 - src2) + src1 * src2")
|
|
|
|
# Conditional Select
|
|
#
|
|
# A vector conditional select instruction (like ?:, but operating per-
|
|
# component on vectors). There are two versions, one for floating point
|
|
# bools (0.0 vs 1.0) and one for integer bools (0 vs ~0).
|
|
|
|
|
|
triop("fcsel", tfloat, "(src0 != 0.0f) ? src1 : src2")
|
|
opcode("bcsel", 0, tunsigned, [0, 0, 0],
|
|
[tbool, tunsigned, tunsigned], "", "src0 ? src1 : src2")
|
|
|
|
triop("bfi", tunsigned, """
|
|
unsigned mask = src0, insert = src1 & mask, base = src2;
|
|
if (mask == 0) {
|
|
dst = base;
|
|
} else {
|
|
unsigned tmp = mask;
|
|
while (!(tmp & 1)) {
|
|
tmp >>= 1;
|
|
insert <<= 1;
|
|
}
|
|
dst = (base & ~mask) | insert;
|
|
}
|
|
""")
|
|
|
|
opcode("ubitfield_extract", 0, tunsigned,
|
|
[0, 1, 1], [tunsigned, tint, tint], "", """
|
|
unsigned base = src0;
|
|
int offset = src1.x, bits = src2.x;
|
|
if (bits == 0) {
|
|
dst = 0;
|
|
} else if (bits < 0 || offset < 0 || offset + bits > 32) {
|
|
dst = 0; /* undefined per the spec */
|
|
} else {
|
|
dst = (base >> offset) & ((1 << bits) - 1);
|
|
}
|
|
""")
|
|
opcode("ibitfield_extract", 0, tint,
|
|
[0, 1, 1], [tint, tint, tint], "", """
|
|
int base = src0;
|
|
int offset = src1.x, bits = src2.x;
|
|
if (bits == 0) {
|
|
dst = 0;
|
|
} else if (offset < 0 || bits < 0 || offset + bits > 32) {
|
|
dst = 0;
|
|
} else {
|
|
dst = (base << (32 - offset - bits)) >> offset; /* use sign-extending shift */
|
|
}
|
|
""")
|
|
|
|
# Combines the first component of each input to make a 3-component vector.
|
|
|
|
triop_horiz("vec3", 3, 1, 1, 1, """
|
|
dst.x = src0.x;
|
|
dst.y = src1.x;
|
|
dst.z = src2.x;
|
|
""")
|
|
|
|
def quadop_horiz(name, output_size, src1_size, src2_size, src3_size,
|
|
src4_size, const_expr):
|
|
opcode(name, output_size, tunsigned,
|
|
[src1_size, src2_size, src3_size, src4_size],
|
|
[tunsigned, tunsigned, tunsigned, tunsigned],
|
|
"", const_expr)
|
|
|
|
opcode("bitfield_insert", 0, tunsigned, [0, 0, 1, 1],
|
|
[tunsigned, tunsigned, tint, tint], "", """
|
|
unsigned base = src0, insert = src1;
|
|
int offset = src2.x, bits = src3.x;
|
|
if (bits == 0) {
|
|
dst = 0;
|
|
} else if (offset < 0 || bits < 0 || bits + offset > 32) {
|
|
dst = 0;
|
|
} else {
|
|
unsigned mask = ((1 << bits) - 1) << offset;
|
|
dst = (base & ~mask) | ((insert << bits) & mask);
|
|
}
|
|
""")
|
|
|
|
quadop_horiz("vec4", 4, 1, 1, 1, 1, """
|
|
dst.x = src0.x;
|
|
dst.y = src1.x;
|
|
dst.z = src2.x;
|
|
dst.w = src3.x;
|
|
""")
|
|
|
|
|