mirror of
https://gitlab.freedesktop.org/mesa/mesa.git
synced 2026-01-07 06:30:11 +01:00
read-only mirror of https://gitlab.freedesktop.org/mesa/mesa
Eric's initial patch adding constant expression evaluation for
ir_unop_round_even used nearbyint. The open-coded _mesa_round_to_even
implementation came about without much explanation after a reviewer
asked whether nearbyint depended on the application not modifying the
rounding mode. Of course (as Eric commented) we rely on the application
not changing the rounding mode from its default (round-to-nearest) in
many other places, including the IROUND function used by
_mesa_round_to_even!
Worse, IROUND() is implemented using the trunc(x + 0.5) trick which
fails for x = nextafterf(0.5, 0.0).
Still worse, _mesa_round_to_even unexpectedly returns an int. I suspect
that could cause problems when rounding large integral values not
representable as an int in ir_constant_expression.cpp's
ir_unop_round_even evaluation. Its use of _mesa_round_to_even is clearly
broken for doubles (as noted during review).
The constant expression evaluation code for the packing built-in
functions also mistakenly assumed that _mesa_round_to_even returned a
float, as can be seen by the cast through a signed integer type to an
unsigned (since negative float -> unsigned conversions are undefined).
rint() and nearbyint() implement the round-half-to-even behavior we want
when the rounding mode is set to the default round-to-nearest. The only
difference between them is that nearbyint() raises the inexact
exception.
This patch implements _mesa_roundeven{f,}, a function similar to the
roundeven function added by a yet unimplemented technical specification
(ISO/IEC TS 18661-1:2014), with a small difference in behavior -- we
don't bother raising the inexact exception, which I don't think we care
about anyway.
At least recent Intel CPUs can quickly change a subset of the bits in
the x87 floating-point control register, but the exception mask bits are
not included. rint() does not need to change these bits, but nearbyint()
does (twice: save old, set new, and restore old) in order to raise the
inexact exception, which would incur some penalty.
Reviewed-by: Carl Worth <cworth@cworth.org>
|
||
|---|---|---|
| bin | ||
| docs | ||
| doxygen | ||
| include | ||
| m4 | ||
| scons | ||
| src | ||
| .dir-locals.el | ||
| .gitattributes | ||
| .gitignore | ||
| Android.common.mk | ||
| Android.mk | ||
| autogen.sh | ||
| CleanSpec.mk | ||
| common.py | ||
| configure.ac | ||
| install-gallium-links.mk | ||
| install-lib-links.mk | ||
| Makefile.am | ||
| SConstruct | ||
| VERSION | ||
File: docs/README.WIN32 Last updated: 21 June 2013 Quick Start ----- ----- Windows drivers are build with SCons. Makefiles or Visual Studio projects are no longer shipped or supported. Run scons osmesa to build classic osmesa driver; or scons libgl-gdi to build gallium based GDI driver. This will work both with MSVS or Mingw. Windows Drivers ------- ------- At this time, only the gallium GDI driver is known to work. Source code also exists in the tree for other drivers in src/mesa/drivers/windows, but the status of this code is unknown. Recipe ------ Building on windows requires several open-source packages. These are steps that work as of this writing. - install python 2.7 - install scons (latest) - install mingw, flex, and bison - install pywin32 from here: http://www.lfd.uci.edu/~gohlke/pythonlibs get pywin32-218.4.win-amd64-py2.7.exe - install git - download mesa from git see http://www.mesa3d.org/repository.html - run scons General ------- After building, you can copy the above DLL files to a place in your PATH such as $SystemRoot/SYSTEM32. If you don't like putting things in a system directory, place them in the same directory as the executable(s). Be careful about accidentially overwriting files of the same name in the SYSTEM32 directory. The DLL files are built so that the external entry points use the stdcall calling convention. Static LIB files are not built. The LIB files that are built with are the linker import files associated with the DLL files. The si-glu sources are used to build the GLU libs. This was done mainly to get the better tessellator code. If you have a Windows-related build problem or question, please post to the mesa-dev or mesa-users list.