mesa/src/intel/tools/aubinator_viewer_decoder.cpp
Lionel Landwerlin bf93084f44 intel/decoders: limit number of decoded batchbuffers
IGT has a test to hang the GPU that works by having a batch buffer
jump back into itself, trigger an infinite loop on the command stream.
As our implementation of the decoding is "perfectly" mimicking the
hardware, our decoder also "hangs". This change limits the number of
batch buffer we'll decode before we bail to 100.

Signed-off-by: Lionel Landwerlin <lionel.g.landwerlin@intel.com>
Reviewed-by: Rafael Antognolli <rafael.antognolli@intel.com>
2019-03-07 15:08:31 +00:00

1004 lines
36 KiB
C++

/*
* Copyright © 2017 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include <string.h>
#include "util/macros.h"
#include "aubinator_viewer.h"
void
aub_viewer_decode_ctx_init(struct aub_viewer_decode_ctx *ctx,
struct aub_viewer_cfg *cfg,
struct aub_viewer_decode_cfg *decode_cfg,
struct gen_spec *spec,
struct gen_disasm *disasm,
struct gen_batch_decode_bo (*get_bo)(void *, bool, uint64_t),
unsigned (*get_state_size)(void *, uint32_t),
void *user_data)
{
memset(ctx, 0, sizeof(*ctx));
ctx->get_bo = get_bo;
ctx->get_state_size = get_state_size;
ctx->user_data = user_data;
ctx->engine = I915_ENGINE_CLASS_RENDER;
ctx->cfg = cfg;
ctx->decode_cfg = decode_cfg;
ctx->spec = spec;
ctx->disasm = disasm;
}
static void
aub_viewer_print_group(struct aub_viewer_decode_ctx *ctx,
struct gen_group *group,
uint64_t address, const void *map)
{
struct gen_field_iterator iter;
int last_dword = -1;
const uint32_t *p = (const uint32_t *) map;
gen_field_iterator_init(&iter, group, p, 0, false);
while (gen_field_iterator_next(&iter)) {
if (ctx->decode_cfg->show_dwords) {
int iter_dword = iter.end_bit / 32;
if (last_dword != iter_dword) {
for (int i = last_dword + 1; i <= iter_dword; i++) {
ImGui::TextColored(ctx->cfg->dwords_color,
"0x%012" PRIx64 ": 0x%012x : Dword %d",
address + 4 * i, iter.p[i], i);
}
last_dword = iter_dword;
}
}
if (!gen_field_is_header(iter.field)) {
if (ctx->decode_cfg->field_filter.PassFilter(iter.name)) {
if (iter.field->type.kind == gen_type::GEN_TYPE_BOOL && iter.raw_value) {
ImGui::Text("%s: ", iter.name); ImGui::SameLine();
ImGui::TextColored(ctx->cfg->boolean_color, "true");
} else {
ImGui::Text("%s: %s", iter.name, iter.value);
}
if (iter.struct_desc) {
int struct_dword = iter.start_bit / 32;
uint64_t struct_address = address + 4 * struct_dword;
aub_viewer_print_group(ctx, iter.struct_desc, struct_address,
&p[struct_dword]);
}
}
}
}
}
static struct gen_batch_decode_bo
ctx_get_bo(struct aub_viewer_decode_ctx *ctx, bool ppgtt, uint64_t addr)
{
if (gen_spec_get_gen(ctx->spec) >= gen_make_gen(8,0)) {
/* On Broadwell and above, we have 48-bit addresses which consume two
* dwords. Some packets require that these get stored in a "canonical
* form" which means that bit 47 is sign-extended through the upper
* bits. In order to correctly handle those aub dumps, we need to mask
* off the top 16 bits.
*/
addr &= (~0ull >> 16);
}
struct gen_batch_decode_bo bo = ctx->get_bo(ctx->user_data, ppgtt, addr);
if (gen_spec_get_gen(ctx->spec) >= gen_make_gen(8,0))
bo.addr &= (~0ull >> 16);
/* We may actually have an offset into the bo */
if (bo.map != NULL) {
assert(bo.addr <= addr);
uint64_t offset = addr - bo.addr;
bo.map = (const uint8_t *)bo.map + offset;
bo.addr += offset;
bo.size -= offset;
}
return bo;
}
static int
update_count(struct aub_viewer_decode_ctx *ctx,
uint32_t offset_from_dsba,
unsigned element_dwords,
unsigned guess)
{
unsigned size = 0;
if (ctx->get_state_size)
size = ctx->get_state_size(ctx->user_data, offset_from_dsba);
if (size > 0)
return size / (sizeof(uint32_t) * element_dwords);
/* In the absence of any information, just guess arbitrarily. */
return guess;
}
static void
ctx_disassemble_program(struct aub_viewer_decode_ctx *ctx,
uint32_t ksp, const char *type)
{
uint64_t addr = ctx->instruction_base + ksp;
struct gen_batch_decode_bo bo = ctx_get_bo(ctx, true, addr);
if (!bo.map) {
ImGui::TextColored(ctx->cfg->missing_color,
"Shader unavailable addr=0x%012" PRIx64, addr);
return;
}
ImGui::PushID(addr);
if (ImGui::Button(type) && ctx->display_shader)
ctx->display_shader(ctx->user_data, type, addr);
ImGui::PopID();
}
static void
handle_state_base_address(struct aub_viewer_decode_ctx *ctx,
struct gen_group *inst,
const uint32_t *p)
{
struct gen_field_iterator iter;
gen_field_iterator_init(&iter, inst, p, 0, false);
uint64_t surface_base = 0, dynamic_base = 0, instruction_base = 0;
bool surface_modify = 0, dynamic_modify = 0, instruction_modify = 0;
while (gen_field_iterator_next(&iter)) {
if (strcmp(iter.name, "Surface State Base Address") == 0) {
surface_base = iter.raw_value;
} else if (strcmp(iter.name, "Dynamic State Base Address") == 0) {
dynamic_base = iter.raw_value;
} else if (strcmp(iter.name, "Instruction Base Address") == 0) {
instruction_base = iter.raw_value;
} else if (strcmp(iter.name, "Surface State Base Address Modify Enable") == 0) {
surface_modify = iter.raw_value;
} else if (strcmp(iter.name, "Dynamic State Base Address Modify Enable") == 0) {
dynamic_modify = iter.raw_value;
} else if (strcmp(iter.name, "Instruction Base Address Modify Enable") == 0) {
instruction_modify = iter.raw_value;
}
}
if (dynamic_modify)
ctx->dynamic_base = dynamic_base;
if (surface_modify)
ctx->surface_base = surface_base;
if (instruction_modify)
ctx->instruction_base = instruction_base;
}
static void
dump_binding_table(struct aub_viewer_decode_ctx *ctx, uint32_t offset, int count)
{
struct gen_group *strct =
gen_spec_find_struct(ctx->spec, "RENDER_SURFACE_STATE");
if (strct == NULL) {
ImGui::TextColored(ctx->cfg->missing_color, "did not find RENDER_SURFACE_STATE info");
return;
}
if (count < 0)
count = update_count(ctx, offset, 1, 8);
if (offset % 32 != 0 || offset >= UINT16_MAX) {
ImGui::TextColored(ctx->cfg->missing_color, "invalid binding table pointer");
return;
}
struct gen_batch_decode_bo bind_bo =
ctx_get_bo(ctx, true, ctx->surface_base + offset);
if (bind_bo.map == NULL) {
ImGui::TextColored(ctx->cfg->missing_color,
"binding table unavailable addr=0x%012" PRIx64,
ctx->surface_base + offset);
return;
}
const uint32_t *pointers = (const uint32_t *) bind_bo.map;
for (int i = 0; i < count; i++) {
if (pointers[i] == 0)
continue;
uint64_t addr = ctx->surface_base + pointers[i];
struct gen_batch_decode_bo bo = ctx_get_bo(ctx, true, addr);
uint32_t size = strct->dw_length * 4;
if (pointers[i] % 32 != 0 ||
addr < bo.addr || addr + size >= bo.addr + bo.size) {
ImGui::TextColored(ctx->cfg->missing_color,
"pointer %u: %012x <not valid>", i, pointers[i]);
continue;
}
const uint8_t *state = (const uint8_t *) bo.map + (addr - bo.addr);
if (ImGui::TreeNodeEx(&pointers[i], ImGuiTreeNodeFlags_Framed,
"pointer %u: %012x", i, pointers[i])) {
aub_viewer_print_group(ctx, strct, addr, state);
ImGui::TreePop();
}
}
}
static void
dump_samplers(struct aub_viewer_decode_ctx *ctx, uint32_t offset, int count)
{
struct gen_group *strct = gen_spec_find_struct(ctx->spec, "SAMPLER_STATE");
if (count < 0)
count = update_count(ctx, offset, strct->dw_length, 4);
uint64_t state_addr = ctx->dynamic_base + offset;
struct gen_batch_decode_bo bo = ctx_get_bo(ctx, true, state_addr);
const uint8_t *state_map = (const uint8_t *) bo.map;
if (state_map == NULL) {
ImGui::TextColored(ctx->cfg->missing_color,
"samplers unavailable addr=0x%012" PRIx64, state_addr);
return;
}
if (offset % 32 != 0 || state_addr - bo.addr >= bo.size) {
ImGui::TextColored(ctx->cfg->missing_color, "invalid sampler state pointer");
return;
}
for (int i = 0; i < count; i++) {
if (ImGui::TreeNodeEx(state_map, ImGuiTreeNodeFlags_Framed,
"sampler state %d", i)) {
aub_viewer_print_group(ctx, strct, state_addr, state_map);
ImGui::TreePop();
}
state_addr += 16;
state_map += 16;
}
}
static void
handle_media_interface_descriptor_load(struct aub_viewer_decode_ctx *ctx,
struct gen_group *inst,
const uint32_t *p)
{
struct gen_group *desc =
gen_spec_find_struct(ctx->spec, "INTERFACE_DESCRIPTOR_DATA");
struct gen_field_iterator iter;
gen_field_iterator_init(&iter, inst, p, 0, false);
uint32_t descriptor_offset = 0;
int descriptor_count = 0;
while (gen_field_iterator_next(&iter)) {
if (strcmp(iter.name, "Interface Descriptor Data Start Address") == 0) {
descriptor_offset = strtol(iter.value, NULL, 16);
} else if (strcmp(iter.name, "Interface Descriptor Total Length") == 0) {
descriptor_count =
strtol(iter.value, NULL, 16) / (desc->dw_length * 4);
}
}
uint64_t desc_addr = ctx->dynamic_base + descriptor_offset;
struct gen_batch_decode_bo bo = ctx_get_bo(ctx, true, desc_addr);
const uint32_t *desc_map = (const uint32_t *) bo.map;
if (desc_map == NULL) {
ImGui::TextColored(ctx->cfg->missing_color,
"interface descriptors unavailable addr=0x%012" PRIx64, desc_addr);
return;
}
for (int i = 0; i < descriptor_count; i++) {
ImGui::Text("descriptor %d: %012x", i, descriptor_offset);
aub_viewer_print_group(ctx, desc, desc_addr, desc_map);
gen_field_iterator_init(&iter, desc, desc_map, 0, false);
uint64_t ksp = 0;
uint32_t sampler_offset = 0, sampler_count = 0;
uint32_t binding_table_offset = 0, binding_entry_count = 0;
while (gen_field_iterator_next(&iter)) {
if (strcmp(iter.name, "Kernel Start Pointer") == 0) {
ksp = strtoll(iter.value, NULL, 16);
} else if (strcmp(iter.name, "Sampler State Pointer") == 0) {
sampler_offset = strtol(iter.value, NULL, 16);
} else if (strcmp(iter.name, "Sampler Count") == 0) {
sampler_count = strtol(iter.value, NULL, 10);
} else if (strcmp(iter.name, "Binding Table Pointer") == 0) {
binding_table_offset = strtol(iter.value, NULL, 16);
} else if (strcmp(iter.name, "Binding Table Entry Count") == 0) {
binding_entry_count = strtol(iter.value, NULL, 10);
}
}
ctx_disassemble_program(ctx, ksp, "compute shader");
dump_samplers(ctx, sampler_offset, sampler_count);
dump_binding_table(ctx, binding_table_offset, binding_entry_count);
desc_map += desc->dw_length;
desc_addr += desc->dw_length * 4;
}
}
static void
handle_3dstate_vertex_buffers(struct aub_viewer_decode_ctx *ctx,
struct gen_group *inst,
const uint32_t *p)
{
struct gen_group *vbs = gen_spec_find_struct(ctx->spec, "VERTEX_BUFFER_STATE");
struct gen_batch_decode_bo vb = {};
uint32_t vb_size = 0;
int index = -1;
int pitch = -1;
bool ready = false;
struct gen_field_iterator iter;
gen_field_iterator_init(&iter, inst, p, 0, false);
while (gen_field_iterator_next(&iter)) {
if (iter.struct_desc != vbs)
continue;
uint64_t buffer_addr = 0;
struct gen_field_iterator vbs_iter;
gen_field_iterator_init(&vbs_iter, vbs, &iter.p[iter.start_bit / 32], 0, false);
while (gen_field_iterator_next(&vbs_iter)) {
if (strcmp(vbs_iter.name, "Vertex Buffer Index") == 0) {
index = vbs_iter.raw_value;
} else if (strcmp(vbs_iter.name, "Buffer Pitch") == 0) {
pitch = vbs_iter.raw_value;
} else if (strcmp(vbs_iter.name, "Buffer Starting Address") == 0) {
buffer_addr = vbs_iter.raw_value;
vb = ctx_get_bo(ctx, true, buffer_addr);
} else if (strcmp(vbs_iter.name, "Buffer Size") == 0) {
vb_size = vbs_iter.raw_value;
ready = true;
} else if (strcmp(vbs_iter.name, "End Address") == 0) {
if (vb.map && vbs_iter.raw_value >= vb.addr)
vb_size = vbs_iter.raw_value - vb.addr;
else
vb_size = 0;
ready = true;
}
if (!ready)
continue;
ImGui::Text("vertex buffer %d, size %d, pitch %d", index, vb_size, pitch);
if (vb.map == NULL) {
ImGui::TextColored(ctx->cfg->missing_color,
"buffer contents unavailable addr=0x%012" PRIx64, buffer_addr);
continue;
}
if (vb.map == 0 || vb_size == 0)
continue;
vb.map = NULL;
vb_size = 0;
index = -1;
pitch = -1;
ready = false;
}
}
}
static void
handle_3dstate_index_buffer(struct aub_viewer_decode_ctx *ctx,
struct gen_group *inst,
const uint32_t *p)
{
struct gen_batch_decode_bo ib = {};
uint64_t buffer_addr = 0;
uint32_t ib_size = 0;
uint32_t format = 0;
struct gen_field_iterator iter;
gen_field_iterator_init(&iter, inst, p, 0, false);
while (gen_field_iterator_next(&iter)) {
if (strcmp(iter.name, "Index Format") == 0) {
format = iter.raw_value;
} else if (strcmp(iter.name, "Buffer Starting Address") == 0) {
buffer_addr = iter.raw_value;
ib = ctx_get_bo(ctx, true, buffer_addr);
} else if (strcmp(iter.name, "Buffer Size") == 0) {
ib_size = iter.raw_value;
}
}
if (ib.map == NULL) {
ImGui::TextColored(ctx->cfg->missing_color,
"buffer contents unavailable addr=0x%012" PRIx64,
buffer_addr);
return;
}
const uint8_t *m = (const uint8_t *) ib.map;
const uint8_t *ib_end = m + MIN2(ib.size, ib_size);
for (int i = 0; m < ib_end && i < 10; i++) {
switch (format) {
case 0:
m += 1;
break;
case 1:
m += 2;
break;
case 2:
m += 4;
break;
}
}
}
static void
decode_single_ksp(struct aub_viewer_decode_ctx *ctx,
struct gen_group *inst,
const uint32_t *p)
{
uint64_t ksp = 0;
bool is_simd8 = false; /* vertex shaders on Gen8+ only */
bool is_enabled = true;
struct gen_field_iterator iter;
gen_field_iterator_init(&iter, inst, p, 0, false);
while (gen_field_iterator_next(&iter)) {
if (strcmp(iter.name, "Kernel Start Pointer") == 0) {
ksp = iter.raw_value;
} else if (strcmp(iter.name, "SIMD8 Dispatch Enable") == 0) {
is_simd8 = iter.raw_value;
} else if (strcmp(iter.name, "Dispatch Mode") == 0) {
is_simd8 = strcmp(iter.value, "SIMD8") == 0;
} else if (strcmp(iter.name, "Dispatch Enable") == 0) {
is_simd8 = strcmp(iter.value, "SIMD8") == 0;
} else if (strcmp(iter.name, "Enable") == 0) {
is_enabled = iter.raw_value;
}
}
const char *type =
strcmp(inst->name, "VS_STATE") == 0 ? "vertex shader" :
strcmp(inst->name, "GS_STATE") == 0 ? "geometry shader" :
strcmp(inst->name, "SF_STATE") == 0 ? "strips and fans shader" :
strcmp(inst->name, "CLIP_STATE") == 0 ? "clip shader" :
strcmp(inst->name, "3DSTATE_DS") == 0 ? "tessellation evaluation shader" :
strcmp(inst->name, "3DSTATE_HS") == 0 ? "tessellation control shader" :
strcmp(inst->name, "3DSTATE_VS") == 0 ? (is_simd8 ? "SIMD8 vertex shader" : "vec4 vertex shader") :
strcmp(inst->name, "3DSTATE_GS") == 0 ? (is_simd8 ? "SIMD8 geometry shader" : "vec4 geometry shader") :
NULL;
if (is_enabled)
ctx_disassemble_program(ctx, ksp, type);
}
static void
decode_ps_kernels(struct aub_viewer_decode_ctx *ctx,
struct gen_group *inst,
const uint32_t *p)
{
uint64_t ksp[3] = {0, 0, 0};
bool enabled[3] = {false, false, false};
struct gen_field_iterator iter;
gen_field_iterator_init(&iter, inst, p, 0, false);
while (gen_field_iterator_next(&iter)) {
if (strncmp(iter.name, "Kernel Start Pointer ",
strlen("Kernel Start Pointer ")) == 0) {
int idx = iter.name[strlen("Kernel Start Pointer ")] - '0';
ksp[idx] = strtol(iter.value, NULL, 16);
} else if (strcmp(iter.name, "8 Pixel Dispatch Enable") == 0) {
enabled[0] = strcmp(iter.value, "true") == 0;
} else if (strcmp(iter.name, "16 Pixel Dispatch Enable") == 0) {
enabled[1] = strcmp(iter.value, "true") == 0;
} else if (strcmp(iter.name, "32 Pixel Dispatch Enable") == 0) {
enabled[2] = strcmp(iter.value, "true") == 0;
}
}
/* Reorder KSPs to be [8, 16, 32] instead of the hardware order. */
if (enabled[0] + enabled[1] + enabled[2] == 1) {
if (enabled[1]) {
ksp[1] = ksp[0];
ksp[0] = 0;
} else if (enabled[2]) {
ksp[2] = ksp[0];
ksp[0] = 0;
}
} else {
uint64_t tmp = ksp[1];
ksp[1] = ksp[2];
ksp[2] = tmp;
}
if (enabled[0])
ctx_disassemble_program(ctx, ksp[0], "SIMD8 fragment shader");
if (enabled[1])
ctx_disassemble_program(ctx, ksp[1], "SIMD16 fragment shader");
if (enabled[2])
ctx_disassemble_program(ctx, ksp[2], "SIMD32 fragment shader");
}
static void
decode_3dstate_constant(struct aub_viewer_decode_ctx *ctx,
struct gen_group *inst,
const uint32_t *p)
{
struct gen_group *body =
gen_spec_find_struct(ctx->spec, "3DSTATE_CONSTANT_BODY");
uint32_t read_length[4] = {0};
uint64_t read_addr[4];
struct gen_field_iterator outer;
gen_field_iterator_init(&outer, inst, p, 0, false);
while (gen_field_iterator_next(&outer)) {
if (outer.struct_desc != body)
continue;
struct gen_field_iterator iter;
gen_field_iterator_init(&iter, body, &outer.p[outer.start_bit / 32],
0, false);
while (gen_field_iterator_next(&iter)) {
int idx;
if (sscanf(iter.name, "Read Length[%d]", &idx) == 1) {
read_length[idx] = iter.raw_value;
} else if (sscanf(iter.name, "Buffer[%d]", &idx) == 1) {
read_addr[idx] = iter.raw_value;
}
}
for (int i = 0; i < 4; i++) {
if (read_length[i] == 0)
continue;
struct gen_batch_decode_bo buffer = ctx_get_bo(ctx, true, read_addr[i]);
if (!buffer.map) {
ImGui::TextColored(ctx->cfg->missing_color,
"constant buffer %d unavailable addr=0x%012" PRIx64,
i, read_addr[i]);
continue;
}
unsigned size = read_length[i] * 32;
ImGui::Text("constant buffer %d, size %u", i, size);
if (ctx->edit_address) {
if (ImGui::Button("Show/Edit buffer"))
ctx->edit_address(ctx->user_data, read_addr[i], size);
}
}
}
}
static void
decode_3dstate_binding_table_pointers(struct aub_viewer_decode_ctx *ctx,
struct gen_group *inst,
const uint32_t *p)
{
dump_binding_table(ctx, p[1], -1);
}
static void
decode_3dstate_sampler_state_pointers(struct aub_viewer_decode_ctx *ctx,
struct gen_group *inst,
const uint32_t *p)
{
dump_samplers(ctx, p[1], -1);
}
static void
decode_3dstate_sampler_state_pointers_gen6(struct aub_viewer_decode_ctx *ctx,
struct gen_group *inst,
const uint32_t *p)
{
dump_samplers(ctx, p[1], -1);
dump_samplers(ctx, p[2], -1);
dump_samplers(ctx, p[3], -1);
}
static bool
str_ends_with(const char *str, const char *end)
{
int offset = strlen(str) - strlen(end);
if (offset < 0)
return false;
return strcmp(str + offset, end) == 0;
}
static void
decode_dynamic_state_pointers(struct aub_viewer_decode_ctx *ctx,
struct gen_group *inst, const uint32_t *p,
const char *struct_type, int count)
{
uint32_t state_offset = 0;
struct gen_field_iterator iter;
gen_field_iterator_init(&iter, inst, p, 0, false);
while (gen_field_iterator_next(&iter)) {
if (str_ends_with(iter.name, "Pointer")) {
state_offset = iter.raw_value;
break;
}
}
uint64_t state_addr = ctx->dynamic_base + state_offset;
struct gen_batch_decode_bo bo = ctx_get_bo(ctx, true, state_addr);
const uint8_t *state_map = (const uint8_t *) bo.map;
if (state_map == NULL) {
ImGui::TextColored(ctx->cfg->missing_color,
"dynamic %s state unavailable addr=0x%012" PRIx64,
struct_type, state_addr);
return;
}
struct gen_group *state = gen_spec_find_struct(ctx->spec, struct_type);
if (strcmp(struct_type, "BLEND_STATE") == 0) {
/* Blend states are different from the others because they have a header
* struct called BLEND_STATE which is followed by a variable number of
* BLEND_STATE_ENTRY structs.
*/
ImGui::Text("%s", struct_type);
aub_viewer_print_group(ctx, state, state_addr, state_map);
state_addr += state->dw_length * 4;
state_map += state->dw_length * 4;
struct_type = "BLEND_STATE_ENTRY";
state = gen_spec_find_struct(ctx->spec, struct_type);
}
for (int i = 0; i < count; i++) {
ImGui::Text("%s %d", struct_type, i);
aub_viewer_print_group(ctx, state, state_addr, state_map);
state_addr += state->dw_length * 4;
state_map += state->dw_length * 4;
}
}
static void
decode_3dstate_viewport_state_pointers_cc(struct aub_viewer_decode_ctx *ctx,
struct gen_group *inst,
const uint32_t *p)
{
decode_dynamic_state_pointers(ctx, inst, p, "CC_VIEWPORT", 4);
}
static void
decode_3dstate_viewport_state_pointers_sf_clip(struct aub_viewer_decode_ctx *ctx,
struct gen_group *inst,
const uint32_t *p)
{
decode_dynamic_state_pointers(ctx, inst, p, "SF_CLIP_VIEWPORT", 4);
}
static void
decode_3dstate_blend_state_pointers(struct aub_viewer_decode_ctx *ctx,
struct gen_group *inst,
const uint32_t *p)
{
decode_dynamic_state_pointers(ctx, inst, p, "BLEND_STATE", 1);
}
static void
decode_3dstate_cc_state_pointers(struct aub_viewer_decode_ctx *ctx,
struct gen_group *inst,
const uint32_t *p)
{
decode_dynamic_state_pointers(ctx, inst, p, "COLOR_CALC_STATE", 1);
}
static void
decode_3dstate_scissor_state_pointers(struct aub_viewer_decode_ctx *ctx,
struct gen_group *inst,
const uint32_t *p)
{
decode_dynamic_state_pointers(ctx, inst, p, "SCISSOR_RECT", 1);
}
static void
decode_load_register_imm(struct aub_viewer_decode_ctx *ctx,
struct gen_group *inst,
const uint32_t *p)
{
struct gen_group *reg = gen_spec_find_register(ctx->spec, p[1]);
if (reg != NULL &&
ImGui::TreeNodeEx(&p[1], ImGuiTreeNodeFlags_Framed,
"%s (0x%x) = 0x%x",
reg->name, reg->register_offset, p[2])) {
aub_viewer_print_group(ctx, reg, reg->register_offset, &p[2]);
ImGui::TreePop();
}
}
static void
decode_3dprimitive(struct aub_viewer_decode_ctx *ctx,
struct gen_group *inst,
const uint32_t *p)
{
if (ctx->display_urb) {
if (ImGui::Button("Show URB"))
ctx->display_urb(ctx->user_data, ctx->urb_stages);
}
}
static void
handle_urb(struct aub_viewer_decode_ctx *ctx,
struct gen_group *inst,
const uint32_t *p)
{
struct gen_field_iterator iter;
gen_field_iterator_init(&iter, inst, p, 0, false);
while (gen_field_iterator_next(&iter)) {
if (strstr(iter.name, "URB Starting Address")) {
ctx->urb_stages[ctx->stage].start = iter.raw_value * 8192;
} else if (strstr(iter.name, "URB Entry Allocation Size")) {
ctx->urb_stages[ctx->stage].size = (iter.raw_value + 1) * 64;
} else if (strstr(iter.name, "Number of URB Entries")) {
ctx->urb_stages[ctx->stage].n_entries = iter.raw_value;
}
}
ctx->end_urb_offset = MAX2(ctx->urb_stages[ctx->stage].start +
ctx->urb_stages[ctx->stage].n_entries *
ctx->urb_stages[ctx->stage].size,
ctx->end_urb_offset);
}
static void
handle_urb_read(struct aub_viewer_decode_ctx *ctx,
struct gen_group *inst,
const uint32_t *p)
{
struct gen_field_iterator iter;
gen_field_iterator_init(&iter, inst, p, 0, false);
while (gen_field_iterator_next(&iter)) {
/* Workaround the "Force * URB Entry Read Length" fields */
if (iter.end_bit - iter.start_bit < 2)
continue;
if (strstr(iter.name, "URB Entry Read Offset")) {
ctx->urb_stages[ctx->stage].rd_offset = iter.raw_value * 32;
} else if (strstr(iter.name, "URB Entry Read Length")) {
ctx->urb_stages[ctx->stage].rd_length = iter.raw_value * 32;
} else if (strstr(iter.name, "URB Entry Output Read Offset")) {
ctx->urb_stages[ctx->stage].wr_offset = iter.raw_value * 32;
} else if (strstr(iter.name, "URB Entry Output Length")) {
ctx->urb_stages[ctx->stage].wr_length = iter.raw_value * 32;
}
}
}
static void
handle_urb_constant(struct aub_viewer_decode_ctx *ctx,
struct gen_group *inst,
const uint32_t *p)
{
struct gen_group *body =
gen_spec_find_struct(ctx->spec, "3DSTATE_CONSTANT_BODY");
struct gen_field_iterator outer;
gen_field_iterator_init(&outer, inst, p, 0, false);
while (gen_field_iterator_next(&outer)) {
if (outer.struct_desc != body)
continue;
struct gen_field_iterator iter;
gen_field_iterator_init(&iter, body, &outer.p[outer.start_bit / 32],
0, false);
ctx->urb_stages[ctx->stage].const_rd_length = 0;
while (gen_field_iterator_next(&iter)) {
int idx;
if (sscanf(iter.name, "Read Length[%d]", &idx) == 1) {
ctx->urb_stages[ctx->stage].const_rd_length += iter.raw_value * 32;
}
}
}
}
struct custom_decoder {
const char *cmd_name;
void (*decode)(struct aub_viewer_decode_ctx *ctx,
struct gen_group *inst,
const uint32_t *p);
enum aub_decode_stage stage;
} display_decoders[] = {
{ "STATE_BASE_ADDRESS", handle_state_base_address },
{ "MEDIA_INTERFACE_DESCRIPTOR_LOAD", handle_media_interface_descriptor_load },
{ "3DSTATE_VERTEX_BUFFERS", handle_3dstate_vertex_buffers },
{ "3DSTATE_INDEX_BUFFER", handle_3dstate_index_buffer },
{ "3DSTATE_VS", decode_single_ksp, AUB_DECODE_STAGE_VS, },
{ "3DSTATE_GS", decode_single_ksp, AUB_DECODE_STAGE_GS, },
{ "3DSTATE_DS", decode_single_ksp, AUB_DECODE_STAGE_DS, },
{ "3DSTATE_HS", decode_single_ksp, AUB_DECODE_STAGE_HS, },
{ "3DSTATE_PS", decode_ps_kernels, AUB_DECODE_STAGE_PS, },
{ "3DSTATE_CONSTANT_VS", decode_3dstate_constant, AUB_DECODE_STAGE_VS, },
{ "3DSTATE_CONSTANT_GS", decode_3dstate_constant, AUB_DECODE_STAGE_GS, },
{ "3DSTATE_CONSTANT_DS", decode_3dstate_constant, AUB_DECODE_STAGE_DS, },
{ "3DSTATE_CONSTANT_HS", decode_3dstate_constant, AUB_DECODE_STAGE_HS, },
{ "3DSTATE_CONSTANT_PS", decode_3dstate_constant, AUB_DECODE_STAGE_PS, },
{ "3DSTATE_BINDING_TABLE_POINTERS_VS", decode_3dstate_binding_table_pointers, AUB_DECODE_STAGE_VS, },
{ "3DSTATE_BINDING_TABLE_POINTERS_GS", decode_3dstate_binding_table_pointers, AUB_DECODE_STAGE_GS, },
{ "3DSTATE_BINDING_TABLE_POINTERS_HS", decode_3dstate_binding_table_pointers, AUB_DECODE_STAGE_HS, },
{ "3DSTATE_BINDING_TABLE_POINTERS_DS", decode_3dstate_binding_table_pointers, AUB_DECODE_STAGE_DS, },
{ "3DSTATE_BINDING_TABLE_POINTERS_PS", decode_3dstate_binding_table_pointers, AUB_DECODE_STAGE_PS, },
{ "3DSTATE_SAMPLER_STATE_POINTERS_VS", decode_3dstate_sampler_state_pointers, AUB_DECODE_STAGE_VS, },
{ "3DSTATE_SAMPLER_STATE_POINTERS_GS", decode_3dstate_sampler_state_pointers, AUB_DECODE_STAGE_GS, },
{ "3DSTATE_SAMPLER_STATE_POINTERS_DS", decode_3dstate_sampler_state_pointers, AUB_DECODE_STAGE_DS, },
{ "3DSTATE_SAMPLER_STATE_POINTERS_HS", decode_3dstate_sampler_state_pointers, AUB_DECODE_STAGE_HS, },
{ "3DSTATE_SAMPLER_STATE_POINTERS_PS", decode_3dstate_sampler_state_pointers, AUB_DECODE_STAGE_PS, },
{ "3DSTATE_SAMPLER_STATE_POINTERS", decode_3dstate_sampler_state_pointers_gen6 },
{ "3DSTATE_VIEWPORT_STATE_POINTERS_CC", decode_3dstate_viewport_state_pointers_cc },
{ "3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP", decode_3dstate_viewport_state_pointers_sf_clip },
{ "3DSTATE_BLEND_STATE_POINTERS", decode_3dstate_blend_state_pointers },
{ "3DSTATE_CC_STATE_POINTERS", decode_3dstate_cc_state_pointers },
{ "3DSTATE_SCISSOR_STATE_POINTERS", decode_3dstate_scissor_state_pointers },
{ "MI_LOAD_REGISTER_IMM", decode_load_register_imm },
{ "3DPRIMITIVE", decode_3dprimitive },
};
struct custom_decoder info_decoders[] = {
{ "STATE_BASE_ADDRESS", handle_state_base_address },
{ "3DSTATE_URB_VS", handle_urb, AUB_DECODE_STAGE_VS, },
{ "3DSTATE_URB_GS", handle_urb, AUB_DECODE_STAGE_GS, },
{ "3DSTATE_URB_DS", handle_urb, AUB_DECODE_STAGE_DS, },
{ "3DSTATE_URB_HS", handle_urb, AUB_DECODE_STAGE_HS, },
{ "3DSTATE_VS", handle_urb_read, AUB_DECODE_STAGE_VS, },
{ "3DSTATE_GS", handle_urb_read, AUB_DECODE_STAGE_GS, },
{ "3DSTATE_DS", handle_urb_read, AUB_DECODE_STAGE_DS, },
{ "3DSTATE_HS", handle_urb_read, AUB_DECODE_STAGE_HS, },
{ "3DSTATE_PS", handle_urb_read, AUB_DECODE_STAGE_PS, },
{ "3DSTATE_CONSTANT_VS", handle_urb_constant, AUB_DECODE_STAGE_VS, },
{ "3DSTATE_CONSTANT_GS", handle_urb_constant, AUB_DECODE_STAGE_GS, },
{ "3DSTATE_CONSTANT_DS", handle_urb_constant, AUB_DECODE_STAGE_DS, },
{ "3DSTATE_CONSTANT_HS", handle_urb_constant, AUB_DECODE_STAGE_HS, },
{ "3DSTATE_CONSTANT_PS", handle_urb_constant, AUB_DECODE_STAGE_PS, },
};
void
aub_viewer_render_batch(struct aub_viewer_decode_ctx *ctx,
const void *_batch, uint32_t batch_size,
uint64_t batch_addr, bool from_ring)
{
struct gen_group *inst;
const uint32_t *p, *batch = (const uint32_t *) _batch, *end = batch + batch_size / sizeof(uint32_t);
int length;
if (ctx->n_batch_buffer_start >= 100) {
ImGui::TextColored(ctx->cfg->error_color,
"0x%08" PRIx64 ": Max batch buffer jumps exceeded", batch_addr);
return;
}
ctx->n_batch_buffer_start++;
for (p = batch; p < end; p += length) {
inst = gen_spec_find_instruction(ctx->spec, ctx->engine, p);
length = gen_group_get_length(inst, p);
assert(inst == NULL || length > 0);
length = MAX2(1, length);
uint64_t offset = batch_addr + ((char *)p - (char *)batch);
if (inst == NULL) {
ImGui::TextColored(ctx->cfg->error_color,
"0x%012" PRIx64 ": unknown instruction %012x",
offset, p[0]);
continue;
}
const char *inst_name = gen_group_get_name(inst);
for (unsigned i = 0; i < ARRAY_SIZE(info_decoders); i++) {
if (strcmp(inst_name, info_decoders[i].cmd_name) == 0) {
ctx->stage = info_decoders[i].stage;
info_decoders[i].decode(ctx, inst, p);
break;
}
}
if (ctx->decode_cfg->command_filter.PassFilter(inst->name) &&
ImGui::TreeNodeEx(p,
ImGuiTreeNodeFlags_Framed,
"0x%012" PRIx64 ": %s",
offset, inst->name)) {
aub_viewer_print_group(ctx, inst, offset, p);
for (unsigned i = 0; i < ARRAY_SIZE(display_decoders); i++) {
if (strcmp(inst_name, display_decoders[i].cmd_name) == 0) {
ctx->stage = display_decoders[i].stage;
display_decoders[i].decode(ctx, inst, p);
break;
}
}
if (ctx->edit_address) {
if (ImGui::Button("Edit instruction"))
ctx->edit_address(ctx->user_data, offset, length * 4);
}
ImGui::TreePop();
}
if (strcmp(inst_name, "MI_BATCH_BUFFER_START") == 0) {
uint64_t next_batch_addr;
bool ppgtt = false;
bool second_level;
struct gen_field_iterator iter;
gen_field_iterator_init(&iter, inst, p, 0, false);
while (gen_field_iterator_next(&iter)) {
if (strcmp(iter.name, "Batch Buffer Start Address") == 0) {
next_batch_addr = iter.raw_value;
} else if (strcmp(iter.name, "Second Level Batch Buffer") == 0) {
second_level = iter.raw_value;
} else if (strcmp(iter.name, "Address Space Indicator") == 0) {
ppgtt = iter.raw_value;
}
}
struct gen_batch_decode_bo next_batch = ctx_get_bo(ctx, ppgtt, next_batch_addr);
if (next_batch.map == NULL) {
ImGui::TextColored(ctx->cfg->missing_color,
"Secondary batch at 0x%012" PRIx64 " unavailable",
next_batch_addr);
} else {
aub_viewer_render_batch(ctx, next_batch.map, next_batch.size,
next_batch.addr, false);
}
if (second_level) {
/* MI_BATCH_BUFFER_START with "2nd Level Batch Buffer" set acts
* like a subroutine call. Commands that come afterwards get
* processed once the 2nd level batch buffer returns with
* MI_BATCH_BUFFER_END.
*/
continue;
} else if (!from_ring) {
/* MI_BATCH_BUFFER_START with "2nd Level Batch Buffer" unset acts
* like a goto. Nothing after it will ever get processed. In
* order to prevent the recursion from growing, we just reset the
* loop and continue;
*/
break;
}
} else if (strcmp(inst_name, "MI_BATCH_BUFFER_END") == 0) {
break;
}
}
ctx->n_batch_buffer_start--;
}