mesa/src/intel/vulkan/gfx8_cmd_buffer.c
Lionel Landwerlin 3aadbb9fde anv: enable sample location enable dynamic state
Signed-off-by: Lionel Landwerlin <lionel.g.landwerlin@intel.com>
Reviewed-by: Tapani Pälli <tapani.palli@intel.com>
Reviewed-by: Jason Ekstrand <jason.ekstrand@collabora.com>
Part-of: <https://gitlab.freedesktop.org/mesa/mesa/-/merge_requests/19925>
2022-11-22 17:04:33 +00:00

821 lines
35 KiB
C
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*
* Copyright © 2015 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include <assert.h>
#include <stdbool.h>
#include <string.h>
#include <unistd.h>
#include <fcntl.h>
#include "anv_private.h"
#include "genxml/gen_macros.h"
#include "genxml/genX_pack.h"
void
genX(cmd_buffer_enable_pma_fix)(struct anv_cmd_buffer *cmd_buffer, bool enable)
{
if (cmd_buffer->state.pma_fix_enabled == enable)
return;
cmd_buffer->state.pma_fix_enabled = enable;
/* According to the Broadwell PIPE_CONTROL documentation, software should
* emit a PIPE_CONTROL with the CS Stall and Depth Cache Flush bits set
* prior to the LRI. If stencil buffer writes are enabled, then a Render
* Cache Flush is also necessary.
*
* The Skylake docs say to use a depth stall rather than a command
* streamer stall. However, the hardware seems to violently disagree.
* A full command streamer stall seems to be needed in both cases.
*/
anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
pc.DepthCacheFlushEnable = true;
pc.CommandStreamerStallEnable = true;
pc.RenderTargetCacheFlushEnable = true;
#if GFX_VER >= 12
pc.TileCacheFlushEnable = true;
/* Wa_1409600907: "PIPE_CONTROL with Depth Stall Enable bit must
* be set with any PIPE_CONTROL with Depth Flush Enable bit set.
*/
pc.DepthStallEnable = true;
#endif
}
#if GFX_VER == 9
uint32_t cache_mode;
anv_pack_struct(&cache_mode, GENX(CACHE_MODE_0),
.STCPMAOptimizationEnable = enable,
.STCPMAOptimizationEnableMask = true);
anv_batch_emit(&cmd_buffer->batch, GENX(MI_LOAD_REGISTER_IMM), lri) {
lri.RegisterOffset = GENX(CACHE_MODE_0_num);
lri.DataDWord = cache_mode;
}
#endif /* GFX_VER == 9 */
/* After the LRI, a PIPE_CONTROL with both the Depth Stall and Depth Cache
* Flush bits is often necessary. We do it regardless because it's easier.
* The render cache flush is also necessary if stencil writes are enabled.
*
* Again, the Skylake docs give a different set of flushes but the BDW
* flushes seem to work just as well.
*/
anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
pc.DepthStallEnable = true;
pc.DepthCacheFlushEnable = true;
pc.RenderTargetCacheFlushEnable = true;
#if GFX_VER >= 12
pc.TileCacheFlushEnable = true;
#endif
}
}
UNUSED static bool
want_stencil_pma_fix(struct anv_cmd_buffer *cmd_buffer,
const struct vk_depth_stencil_state *ds)
{
if (GFX_VER > 9)
return false;
assert(GFX_VER == 9);
/* From the Skylake PRM Vol. 2c CACHE_MODE_1::STC PMA Optimization Enable:
*
* Clearing this bit will force the STC cache to wait for pending
* retirement of pixels at the HZ-read stage and do the STC-test for
* Non-promoted, R-computed and Computed depth modes instead of
* postponing the STC-test to RCPFE.
*
* STC_TEST_EN = 3DSTATE_STENCIL_BUFFER::STENCIL_BUFFER_ENABLE &&
* 3DSTATE_WM_DEPTH_STENCIL::StencilTestEnable
*
* STC_WRITE_EN = 3DSTATE_STENCIL_BUFFER::STENCIL_BUFFER_ENABLE &&
* (3DSTATE_WM_DEPTH_STENCIL::Stencil Buffer Write Enable &&
* 3DSTATE_DEPTH_BUFFER::STENCIL_WRITE_ENABLE)
*
* COMP_STC_EN = STC_TEST_EN &&
* 3DSTATE_PS_EXTRA::PixelShaderComputesStencil
*
* SW parses the pipeline states to generate the following logical
* signal indicating if PMA FIX can be enabled.
*
* STC_PMA_OPT =
* 3DSTATE_WM::ForceThreadDispatch != 1 &&
* !(3DSTATE_RASTER::ForceSampleCount != NUMRASTSAMPLES_0) &&
* 3DSTATE_DEPTH_BUFFER::SURFACE_TYPE != NULL &&
* 3DSTATE_DEPTH_BUFFER::HIZ Enable &&
* !(3DSTATE_WM::EDSC_Mode == 2) &&
* 3DSTATE_PS_EXTRA::PixelShaderValid &&
* !(3DSTATE_WM_HZ_OP::DepthBufferClear ||
* 3DSTATE_WM_HZ_OP::DepthBufferResolve ||
* 3DSTATE_WM_HZ_OP::Hierarchical Depth Buffer Resolve Enable ||
* 3DSTATE_WM_HZ_OP::StencilBufferClear) &&
* (COMP_STC_EN || STC_WRITE_EN) &&
* ((3DSTATE_PS_EXTRA::PixelShaderKillsPixels ||
* 3DSTATE_WM::ForceKillPix == ON ||
* 3DSTATE_PS_EXTRA::oMask Present to RenderTarget ||
* 3DSTATE_PS_BLEND::AlphaToCoverageEnable ||
* 3DSTATE_PS_BLEND::AlphaTestEnable ||
* 3DSTATE_WM_CHROMAKEY::ChromaKeyKillEnable) ||
* (3DSTATE_PS_EXTRA::Pixel Shader Computed Depth mode != PSCDEPTH_OFF))
*/
/* These are always true:
* 3DSTATE_WM::ForceThreadDispatch != 1 &&
* !(3DSTATE_RASTER::ForceSampleCount != NUMRASTSAMPLES_0)
*/
/* We only enable the PMA fix if we know for certain that HiZ is enabled.
* If we don't know whether HiZ is enabled or not, we disable the PMA fix
* and there is no harm.
*
* (3DSTATE_DEPTH_BUFFER::SURFACE_TYPE != NULL) &&
* 3DSTATE_DEPTH_BUFFER::HIZ Enable
*/
if (!cmd_buffer->state.hiz_enabled)
return false;
/* We can't possibly know if HiZ is enabled without the depth attachment */
ASSERTED const struct anv_image_view *d_iview =
cmd_buffer->state.gfx.depth_att.iview;
assert(d_iview && d_iview->image->planes[0].aux_usage == ISL_AUX_USAGE_HIZ);
/* 3DSTATE_PS_EXTRA::PixelShaderValid */
struct anv_graphics_pipeline *pipeline = cmd_buffer->state.gfx.pipeline;
if (!anv_pipeline_has_stage(pipeline, MESA_SHADER_FRAGMENT))
return false;
/* !(3DSTATE_WM::EDSC_Mode == 2) */
const struct brw_wm_prog_data *wm_prog_data = get_wm_prog_data(pipeline);
if (wm_prog_data->early_fragment_tests)
return false;
/* We never use anv_pipeline for HiZ ops so this is trivially true:
* !(3DSTATE_WM_HZ_OP::DepthBufferClear ||
* 3DSTATE_WM_HZ_OP::DepthBufferResolve ||
* 3DSTATE_WM_HZ_OP::Hierarchical Depth Buffer Resolve Enable ||
* 3DSTATE_WM_HZ_OP::StencilBufferClear)
*/
/* 3DSTATE_STENCIL_BUFFER::STENCIL_BUFFER_ENABLE &&
* 3DSTATE_WM_DEPTH_STENCIL::StencilTestEnable
*/
const bool stc_test_en = ds->stencil.test_enable;
/* 3DSTATE_STENCIL_BUFFER::STENCIL_BUFFER_ENABLE &&
* (3DSTATE_WM_DEPTH_STENCIL::Stencil Buffer Write Enable &&
* 3DSTATE_DEPTH_BUFFER::STENCIL_WRITE_ENABLE)
*/
const bool stc_write_en = ds->stencil.write_enable;
/* STC_TEST_EN && 3DSTATE_PS_EXTRA::PixelShaderComputesStencil */
const bool comp_stc_en = stc_test_en && wm_prog_data->computed_stencil;
/* COMP_STC_EN || STC_WRITE_EN */
if (!(comp_stc_en || stc_write_en))
return false;
/* (3DSTATE_PS_EXTRA::PixelShaderKillsPixels ||
* 3DSTATE_WM::ForceKillPix == ON ||
* 3DSTATE_PS_EXTRA::oMask Present to RenderTarget ||
* 3DSTATE_PS_BLEND::AlphaToCoverageEnable ||
* 3DSTATE_PS_BLEND::AlphaTestEnable ||
* 3DSTATE_WM_CHROMAKEY::ChromaKeyKillEnable) ||
* (3DSTATE_PS_EXTRA::Pixel Shader Computed Depth mode != PSCDEPTH_OFF)
*/
return pipeline->kill_pixel ||
wm_prog_data->computed_depth_mode != PSCDEPTH_OFF;
}
static void
genX(cmd_emit_te)(struct anv_cmd_buffer *cmd_buffer)
{
const struct vk_dynamic_graphics_state *dyn =
&cmd_buffer->vk.dynamic_graphics_state;
struct anv_graphics_pipeline *pipeline = cmd_buffer->state.gfx.pipeline;
const struct brw_tes_prog_data *tes_prog_data = get_tes_prog_data(pipeline);
if (!tes_prog_data ||
!anv_pipeline_has_stage(pipeline, MESA_SHADER_TESS_EVAL)) {
anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_TE), te);
return;
}
anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_TE), te) {
te.Partitioning = tes_prog_data->partitioning;
te.TEDomain = tes_prog_data->domain;
te.TEEnable = true;
te.MaximumTessellationFactorOdd = 63.0;
te.MaximumTessellationFactorNotOdd = 64.0;
#if GFX_VERx10 >= 125
te.TessellationDistributionMode = TEDMODE_RR_FREE;
te.TessellationDistributionLevel = TEDLEVEL_PATCH;
/* 64_TRIANGLES */
te.SmallPatchThreshold = 3;
/* 1K_TRIANGLES */
te.TargetBlockSize = 8;
/* 1K_TRIANGLES */
te.LocalBOPAccumulatorThreshold = 1;
#endif
if (dyn->ts.domain_origin == VK_TESSELLATION_DOMAIN_ORIGIN_LOWER_LEFT) {
te.OutputTopology = tes_prog_data->output_topology;
} else {
/* When the origin is upper-left, we have to flip the winding order */
if (tes_prog_data->output_topology == OUTPUT_TRI_CCW) {
te.OutputTopology = OUTPUT_TRI_CW;
} else if (tes_prog_data->output_topology == OUTPUT_TRI_CW) {
te.OutputTopology = OUTPUT_TRI_CCW;
} else {
te.OutputTopology = tes_prog_data->output_topology;
}
}
}
}
static void
genX(cmd_emit_sample_mask)(struct anv_cmd_buffer *cmd_buffer)
{
struct anv_graphics_pipeline *pipeline = cmd_buffer->state.gfx.pipeline;
const struct vk_dynamic_graphics_state *dyn =
&cmd_buffer->vk.dynamic_graphics_state;
if (!anv_pipeline_has_stage(pipeline, MESA_SHADER_FRAGMENT))
return;
/* From the Vulkan 1.0 spec:
* If pSampleMask is NULL, it is treated as if the mask has all bits
* enabled, i.e. no coverage is removed from fragments.
*
* 3DSTATE_SAMPLE_MASK.SampleMask is 16 bits.
*/
uint32_t sample_mask = 0xffff;
anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_SAMPLE_MASK), sm) {
sm.SampleMask = dyn->ms.sample_mask & sample_mask;
}
}
#if GFX_VER >= 12
static uint32_t
get_cps_state_offset(struct anv_device *device, bool cps_enabled,
const struct vk_fragment_shading_rate_state *fsr)
{
if (!cps_enabled)
return device->cps_states.offset;
uint32_t offset;
static const uint32_t size_index[] = {
[1] = 0,
[2] = 1,
[4] = 2,
};
#if GFX_VERx10 >= 125
offset =
1 + /* skip disabled */
fsr->combiner_ops[0] * 5 * 3 * 3 +
fsr->combiner_ops[1] * 3 * 3 +
size_index[fsr->fragment_size.width] * 3 +
size_index[fsr->fragment_size.height];
#else
offset =
1 + /* skip disabled */
size_index[fsr->fragment_size.width] * 3 +
size_index[fsr->fragment_size.height];
#endif
offset *= MAX_VIEWPORTS * GENX(CPS_STATE_length) * 4;
return device->cps_states.offset + offset;
}
#endif /* GFX_VER >= 12 */
#if GFX_VER >= 11
static void
genX(emit_shading_rate)(struct anv_batch *batch,
const struct anv_graphics_pipeline *pipeline,
const struct vk_fragment_shading_rate_state *fsr)
{
const struct brw_wm_prog_data *wm_prog_data = get_wm_prog_data(pipeline);
const bool cps_enable = wm_prog_data && wm_prog_data->per_coarse_pixel_dispatch;
#if GFX_VER == 11
anv_batch_emit(batch, GENX(3DSTATE_CPS), cps) {
cps.CoarsePixelShadingMode = cps_enable ? CPS_MODE_CONSTANT : CPS_MODE_NONE;
if (cps_enable) {
cps.MinCPSizeX = fsr->fragment_size.width;
cps.MinCPSizeY = fsr->fragment_size.height;
}
}
#elif GFX_VER >= 12
/* TODO: we can optimize this flush in the following cases:
*
* In the case where the last geometry shader emits a value that is not
* constant, we can avoid this stall because we can synchronize the
* pixel shader internally with
* 3DSTATE_PS::EnablePSDependencyOnCPsizeChange.
*
* If we know that the previous pipeline and the current one are using
* the same fragment shading rate.
*/
anv_batch_emit(batch, GENX(PIPE_CONTROL), pc) {
#if GFX_VERx10 >= 125
pc.PSSStallSyncEnable = true;
#else
pc.PSDSyncEnable = true;
#endif
}
anv_batch_emit(batch, GENX(3DSTATE_CPS_POINTERS), cps) {
struct anv_device *device = pipeline->base.device;
cps.CoarsePixelShadingStateArrayPointer =
get_cps_state_offset(device, cps_enable, fsr);
}
#endif
}
#endif /* GFX_VER >= 11 */
const uint32_t genX(vk_to_intel_blend)[] = {
[VK_BLEND_FACTOR_ZERO] = BLENDFACTOR_ZERO,
[VK_BLEND_FACTOR_ONE] = BLENDFACTOR_ONE,
[VK_BLEND_FACTOR_SRC_COLOR] = BLENDFACTOR_SRC_COLOR,
[VK_BLEND_FACTOR_ONE_MINUS_SRC_COLOR] = BLENDFACTOR_INV_SRC_COLOR,
[VK_BLEND_FACTOR_DST_COLOR] = BLENDFACTOR_DST_COLOR,
[VK_BLEND_FACTOR_ONE_MINUS_DST_COLOR] = BLENDFACTOR_INV_DST_COLOR,
[VK_BLEND_FACTOR_SRC_ALPHA] = BLENDFACTOR_SRC_ALPHA,
[VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA] = BLENDFACTOR_INV_SRC_ALPHA,
[VK_BLEND_FACTOR_DST_ALPHA] = BLENDFACTOR_DST_ALPHA,
[VK_BLEND_FACTOR_ONE_MINUS_DST_ALPHA] = BLENDFACTOR_INV_DST_ALPHA,
[VK_BLEND_FACTOR_CONSTANT_COLOR] = BLENDFACTOR_CONST_COLOR,
[VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_COLOR]= BLENDFACTOR_INV_CONST_COLOR,
[VK_BLEND_FACTOR_CONSTANT_ALPHA] = BLENDFACTOR_CONST_ALPHA,
[VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_ALPHA]= BLENDFACTOR_INV_CONST_ALPHA,
[VK_BLEND_FACTOR_SRC_ALPHA_SATURATE] = BLENDFACTOR_SRC_ALPHA_SATURATE,
[VK_BLEND_FACTOR_SRC1_COLOR] = BLENDFACTOR_SRC1_COLOR,
[VK_BLEND_FACTOR_ONE_MINUS_SRC1_COLOR] = BLENDFACTOR_INV_SRC1_COLOR,
[VK_BLEND_FACTOR_SRC1_ALPHA] = BLENDFACTOR_SRC1_ALPHA,
[VK_BLEND_FACTOR_ONE_MINUS_SRC1_ALPHA] = BLENDFACTOR_INV_SRC1_ALPHA,
};
static const uint32_t genX(vk_to_intel_blend_op)[] = {
[VK_BLEND_OP_ADD] = BLENDFUNCTION_ADD,
[VK_BLEND_OP_SUBTRACT] = BLENDFUNCTION_SUBTRACT,
[VK_BLEND_OP_REVERSE_SUBTRACT] = BLENDFUNCTION_REVERSE_SUBTRACT,
[VK_BLEND_OP_MIN] = BLENDFUNCTION_MIN,
[VK_BLEND_OP_MAX] = BLENDFUNCTION_MAX,
};
void
genX(cmd_buffer_flush_dynamic_state)(struct anv_cmd_buffer *cmd_buffer)
{
struct anv_graphics_pipeline *pipeline = cmd_buffer->state.gfx.pipeline;
const struct vk_dynamic_graphics_state *dyn =
&cmd_buffer->vk.dynamic_graphics_state;
if ((cmd_buffer->state.gfx.dirty & ANV_CMD_DIRTY_PIPELINE) ||
BITSET_TEST(dyn->dirty, MESA_VK_DYNAMIC_TS_DOMAIN_ORIGIN)) {
genX(cmd_emit_te)(cmd_buffer);
}
#if GFX_VER >= 11
if (cmd_buffer->device->vk.enabled_extensions.KHR_fragment_shading_rate &&
BITSET_TEST(dyn->dirty, MESA_VK_DYNAMIC_FSR))
genX(emit_shading_rate)(&cmd_buffer->batch, pipeline, &dyn->fsr);
#endif /* GFX_VER >= 11 */
if ((cmd_buffer->state.gfx.dirty & ANV_CMD_DIRTY_PIPELINE) ||
BITSET_TEST(dyn->dirty, MESA_VK_DYNAMIC_RS_LINE_WIDTH) ||
BITSET_TEST(dyn->dirty, MESA_VK_DYNAMIC_RS_PROVOKING_VERTEX)) {
uint32_t sf_dw[GENX(3DSTATE_SF_length)];
struct GENX(3DSTATE_SF) sf = {
GENX(3DSTATE_SF_header),
};
ANV_SETUP_PROVOKING_VERTEX(sf, dyn->rs.provoking_vertex);
sf.LineWidth = dyn->rs.line.width,
GENX(3DSTATE_SF_pack)(NULL, sf_dw, &sf);
anv_batch_emit_merge(&cmd_buffer->batch, sf_dw, pipeline->gfx8.sf);
}
if ((cmd_buffer->state.gfx.dirty & ANV_CMD_DIRTY_PIPELINE) ||
BITSET_TEST(dyn->dirty, MESA_VK_DYNAMIC_IA_PRIMITIVE_TOPOLOGY) ||
BITSET_TEST(dyn->dirty, MESA_VK_DYNAMIC_RS_CULL_MODE) ||
BITSET_TEST(dyn->dirty, MESA_VK_DYNAMIC_RS_FRONT_FACE) ||
BITSET_TEST(dyn->dirty, MESA_VK_DYNAMIC_RS_DEPTH_BIAS_ENABLE) ||
BITSET_TEST(dyn->dirty, MESA_VK_DYNAMIC_RS_DEPTH_BIAS_FACTORS) ||
BITSET_TEST(dyn->dirty, MESA_VK_DYNAMIC_RS_POLYGON_MODE) ||
BITSET_TEST(dyn->dirty, MESA_VK_DYNAMIC_RS_LINE_MODE) ||
BITSET_TEST(dyn->dirty, MESA_VK_DYNAMIC_RS_DEPTH_CLIP_ENABLE) ||
BITSET_TEST(dyn->dirty, MESA_VK_DYNAMIC_RS_DEPTH_CLAMP_ENABLE)) {
/* Take dynamic primitive topology in to account with
* 3DSTATE_RASTER::APIMode
* 3DSTATE_RASTER::DXMultisampleRasterizationEnable
* 3DSTATE_RASTER::AntialiasingEnable
*/
uint32_t api_mode = 0;
bool msaa_raster_enable = false;
VkLineRasterizationModeEXT line_mode =
anv_line_rasterization_mode(dyn->rs.line.mode,
pipeline->rasterization_samples);
VkPolygonMode dynamic_raster_mode =
genX(raster_polygon_mode)(cmd_buffer->state.gfx.pipeline,
dyn->rs.polygon_mode,
dyn->ia.primitive_topology);
genX(rasterization_mode)(dynamic_raster_mode,
line_mode, dyn->rs.line.width,
&api_mode, &msaa_raster_enable);
bool aa_enable = anv_rasterization_aa_mode(dynamic_raster_mode,
line_mode);
bool depth_clip_enable =
vk_rasterization_state_depth_clip_enable(&dyn->rs);
uint32_t raster_dw[GENX(3DSTATE_RASTER_length)];
struct GENX(3DSTATE_RASTER) raster = {
GENX(3DSTATE_RASTER_header),
.APIMode = api_mode,
.DXMultisampleRasterizationEnable = msaa_raster_enable,
.AntialiasingEnable = aa_enable,
.CullMode = genX(vk_to_intel_cullmode)[dyn->rs.cull_mode],
.FrontWinding = genX(vk_to_intel_front_face)[dyn->rs.front_face],
.GlobalDepthOffsetEnableSolid = dyn->rs.depth_bias.enable,
.GlobalDepthOffsetEnableWireframe = dyn->rs.depth_bias.enable,
.GlobalDepthOffsetEnablePoint = dyn->rs.depth_bias.enable,
.GlobalDepthOffsetConstant = dyn->rs.depth_bias.constant,
.GlobalDepthOffsetScale = dyn->rs.depth_bias.slope,
.GlobalDepthOffsetClamp = dyn->rs.depth_bias.clamp,
.FrontFaceFillMode = genX(vk_to_intel_fillmode)[dyn->rs.polygon_mode],
.BackFaceFillMode = genX(vk_to_intel_fillmode)[dyn->rs.polygon_mode],
.ViewportZFarClipTestEnable = depth_clip_enable,
.ViewportZNearClipTestEnable = depth_clip_enable,
};
GENX(3DSTATE_RASTER_pack)(NULL, raster_dw, &raster);
anv_batch_emit_merge(&cmd_buffer->batch, raster_dw,
pipeline->gfx8.raster);
}
/* Stencil reference values moved from COLOR_CALC_STATE in gfx8 to
* 3DSTATE_WM_DEPTH_STENCIL in gfx9. That means the dirty bits gets split
* across different state packets for gfx8 and gfx9. We handle that by
* using a big old #if switch here.
*/
if (BITSET_TEST(dyn->dirty, MESA_VK_DYNAMIC_CB_BLEND_CONSTANTS)) {
struct anv_state cc_state =
anv_cmd_buffer_alloc_dynamic_state(cmd_buffer,
GENX(COLOR_CALC_STATE_length) * 4,
64);
struct GENX(COLOR_CALC_STATE) cc = {
.BlendConstantColorRed = dyn->cb.blend_constants[0],
.BlendConstantColorGreen = dyn->cb.blend_constants[1],
.BlendConstantColorBlue = dyn->cb.blend_constants[2],
.BlendConstantColorAlpha = dyn->cb.blend_constants[3],
};
GENX(COLOR_CALC_STATE_pack)(NULL, cc_state.map, &cc);
anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_CC_STATE_POINTERS), ccp) {
ccp.ColorCalcStatePointer = cc_state.offset;
ccp.ColorCalcStatePointerValid = true;
}
}
if ((cmd_buffer->state.gfx.dirty & (ANV_CMD_DIRTY_PIPELINE) ||
BITSET_TEST(dyn->dirty, MESA_VK_DYNAMIC_MS_SAMPLE_MASK)))
genX(cmd_emit_sample_mask)(cmd_buffer);
if ((cmd_buffer->state.gfx.dirty & (ANV_CMD_DIRTY_PIPELINE |
ANV_CMD_DIRTY_RENDER_TARGETS)) ||
BITSET_TEST(dyn->dirty, MESA_VK_DYNAMIC_DS_DEPTH_TEST_ENABLE) ||
BITSET_TEST(dyn->dirty, MESA_VK_DYNAMIC_DS_DEPTH_WRITE_ENABLE) ||
BITSET_TEST(dyn->dirty, MESA_VK_DYNAMIC_DS_DEPTH_COMPARE_OP) ||
BITSET_TEST(dyn->dirty, MESA_VK_DYNAMIC_DS_STENCIL_TEST_ENABLE) ||
BITSET_TEST(dyn->dirty, MESA_VK_DYNAMIC_DS_STENCIL_OP) ||
BITSET_TEST(dyn->dirty, MESA_VK_DYNAMIC_DS_STENCIL_COMPARE_MASK) ||
BITSET_TEST(dyn->dirty, MESA_VK_DYNAMIC_DS_STENCIL_WRITE_MASK) ||
BITSET_TEST(dyn->dirty, MESA_VK_DYNAMIC_DS_STENCIL_REFERENCE)) {
VkImageAspectFlags ds_aspects = 0;
if (cmd_buffer->state.gfx.depth_att.vk_format != VK_FORMAT_UNDEFINED)
ds_aspects |= VK_IMAGE_ASPECT_DEPTH_BIT;
if (cmd_buffer->state.gfx.stencil_att.vk_format != VK_FORMAT_UNDEFINED)
ds_aspects |= VK_IMAGE_ASPECT_STENCIL_BIT;
struct vk_depth_stencil_state opt_ds = dyn->ds;
vk_optimize_depth_stencil_state(&opt_ds, ds_aspects, true);
anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_WM_DEPTH_STENCIL), ds) {
ds.DoubleSidedStencilEnable = true;
ds.StencilTestMask = opt_ds.stencil.front.compare_mask & 0xff;
ds.StencilWriteMask = opt_ds.stencil.front.write_mask & 0xff;
ds.BackfaceStencilTestMask = opt_ds.stencil.back.compare_mask & 0xff;
ds.BackfaceStencilWriteMask = opt_ds.stencil.back.write_mask & 0xff;
ds.StencilReferenceValue = opt_ds.stencil.front.reference & 0xff;
ds.BackfaceStencilReferenceValue = opt_ds.stencil.back.reference & 0xff;
ds.DepthTestEnable = opt_ds.depth.test_enable;
ds.DepthBufferWriteEnable = opt_ds.depth.write_enable;
ds.DepthTestFunction = genX(vk_to_intel_compare_op)[opt_ds.depth.compare_op];
ds.StencilTestEnable = opt_ds.stencil.test_enable;
ds.StencilBufferWriteEnable = opt_ds.stencil.write_enable;
ds.StencilFailOp = genX(vk_to_intel_stencil_op)[opt_ds.stencil.front.op.fail];
ds.StencilPassDepthPassOp = genX(vk_to_intel_stencil_op)[opt_ds.stencil.front.op.pass];
ds.StencilPassDepthFailOp = genX(vk_to_intel_stencil_op)[opt_ds.stencil.front.op.depth_fail];
ds.StencilTestFunction = genX(vk_to_intel_compare_op)[opt_ds.stencil.front.op.compare];
ds.BackfaceStencilFailOp = genX(vk_to_intel_stencil_op)[opt_ds.stencil.back.op.fail];
ds.BackfaceStencilPassDepthPassOp = genX(vk_to_intel_stencil_op)[opt_ds.stencil.back.op.pass];
ds.BackfaceStencilPassDepthFailOp = genX(vk_to_intel_stencil_op)[opt_ds.stencil.back.op.depth_fail];
ds.BackfaceStencilTestFunction = genX(vk_to_intel_compare_op)[opt_ds.stencil.back.op.compare];
}
const bool pma = want_stencil_pma_fix(cmd_buffer, &opt_ds);
genX(cmd_buffer_enable_pma_fix)(cmd_buffer, pma);
}
#if GFX_VER >= 12
if (BITSET_TEST(dyn->dirty, MESA_VK_DYNAMIC_DS_DEPTH_BOUNDS_TEST_ENABLE) ||
BITSET_TEST(dyn->dirty, MESA_VK_DYNAMIC_DS_DEPTH_BOUNDS_TEST_BOUNDS)) {
anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_DEPTH_BOUNDS), db) {
db.DepthBoundsTestEnable = dyn->ds.depth.bounds_test.enable;
db.DepthBoundsTestMinValue = dyn->ds.depth.bounds_test.min;
db.DepthBoundsTestMaxValue = dyn->ds.depth.bounds_test.max;
}
}
#endif
if (BITSET_TEST(dyn->dirty, MESA_VK_DYNAMIC_RS_LINE_STIPPLE)) {
anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_LINE_STIPPLE), ls) {
ls.LineStipplePattern = dyn->rs.line.stipple.pattern;
ls.LineStippleInverseRepeatCount =
1.0f / MAX2(1, dyn->rs.line.stipple.factor);
ls.LineStippleRepeatCount = dyn->rs.line.stipple.factor;
}
}
if ((cmd_buffer->state.gfx.dirty & ANV_CMD_DIRTY_RESTART_INDEX) ||
BITSET_TEST(dyn->dirty, MESA_VK_DYNAMIC_IA_PRIMITIVE_RESTART_ENABLE)) {
anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_VF), vf) {
#if GFX_VERx10 >= 125
vf.GeometryDistributionEnable = true;
#endif
vf.IndexedDrawCutIndexEnable = dyn->ia.primitive_restart_enable;
vf.CutIndex = cmd_buffer->state.gfx.restart_index;
}
}
if (cmd_buffer->state.gfx.dirty & ANV_CMD_DIRTY_INDEX_BUFFER) {
struct anv_buffer *buffer = cmd_buffer->state.gfx.index_buffer;
uint32_t offset = cmd_buffer->state.gfx.index_offset;
anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_INDEX_BUFFER), ib) {
ib.IndexFormat = cmd_buffer->state.gfx.index_type;
ib.MOCS = anv_mocs(cmd_buffer->device,
buffer->address.bo,
ISL_SURF_USAGE_INDEX_BUFFER_BIT);
#if GFX_VER >= 12
ib.L3BypassDisable = true;
#endif
ib.BufferStartingAddress = anv_address_add(buffer->address, offset);
ib.BufferSize = vk_buffer_range(&buffer->vk, offset,
VK_WHOLE_SIZE);
}
}
#if GFX_VERx10 >= 125
if ((cmd_buffer->state.gfx.dirty & ANV_CMD_DIRTY_PIPELINE) ||
BITSET_TEST(dyn->dirty, MESA_VK_DYNAMIC_IA_PRIMITIVE_RESTART_ENABLE)) {
anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_VFG), vfg) {
/* If 3DSTATE_TE: TE Enable == 1 then RR_STRICT else RR_FREE*/
vfg.DistributionMode =
anv_pipeline_has_stage(pipeline, MESA_SHADER_TESS_EVAL) ? RR_STRICT :
RR_FREE;
vfg.DistributionGranularity = BatchLevelGranularity;
/* Wa_14014890652 */
if (intel_device_info_is_dg2(cmd_buffer->device->info))
vfg.GranularityThresholdDisable = 1;
vfg.ListCutIndexEnable = dyn->ia.primitive_restart_enable;
/* 192 vertices for TRILIST_ADJ */
vfg.ListNBatchSizeScale = 0;
/* Batch size of 384 vertices */
vfg.List3BatchSizeScale = 2;
/* Batch size of 128 vertices */
vfg.List2BatchSizeScale = 1;
/* Batch size of 128 vertices */
vfg.List1BatchSizeScale = 2;
/* Batch size of 256 vertices for STRIP topologies */
vfg.StripBatchSizeScale = 3;
/* 192 control points for PATCHLIST_3 */
vfg.PatchBatchSizeScale = 1;
/* 192 control points for PATCHLIST_3 */
vfg.PatchBatchSizeMultiplier = 31;
}
}
#endif
if (pipeline->base.device->vk.enabled_extensions.EXT_sample_locations &&
(BITSET_TEST(dyn->dirty, MESA_VK_DYNAMIC_MS_SAMPLE_LOCATIONS) ||
BITSET_TEST(dyn->dirty, MESA_VK_DYNAMIC_MS_SAMPLE_LOCATIONS_ENABLE))) {
genX(emit_sample_pattern)(&cmd_buffer->batch,
dyn->ms.sample_locations_enable ?
dyn->ms.sample_locations : NULL);
}
if ((cmd_buffer->state.gfx.dirty & ANV_CMD_DIRTY_PIPELINE) ||
BITSET_TEST(dyn->dirty, MESA_VK_DYNAMIC_CB_COLOR_WRITE_ENABLES) ||
BITSET_TEST(dyn->dirty, MESA_VK_DYNAMIC_RS_LINE_STIPPLE_ENABLE)) {
/* 3DSTATE_WM in the hope we can avoid spawning fragment shaders
* threads.
*/
uint32_t wm_dwords[GENX(3DSTATE_WM_length)];
struct GENX(3DSTATE_WM) wm = {
GENX(3DSTATE_WM_header),
.ForceThreadDispatchEnable = anv_pipeline_has_stage(pipeline, MESA_SHADER_FRAGMENT) &&
(pipeline->force_fragment_thread_dispatch ||
anv_cmd_buffer_all_color_write_masked(cmd_buffer)) ?
ForceON : 0,
.LineStippleEnable = dyn->rs.line.stipple.enable,
};
GENX(3DSTATE_WM_pack)(NULL, wm_dwords, &wm);
anv_batch_emit_merge(&cmd_buffer->batch, wm_dwords, pipeline->gfx8.wm);
}
if ((cmd_buffer->state.gfx.dirty & ANV_CMD_DIRTY_PIPELINE) ||
BITSET_TEST(dyn->dirty, MESA_VK_DYNAMIC_CB_LOGIC_OP) ||
BITSET_TEST(dyn->dirty, MESA_VK_DYNAMIC_CB_COLOR_WRITE_ENABLES) ||
BITSET_TEST(dyn->dirty, MESA_VK_DYNAMIC_CB_LOGIC_OP_ENABLE) ||
BITSET_TEST(dyn->dirty, MESA_VK_DYNAMIC_MS_ALPHA_TO_ONE_ENABLE) ||
BITSET_TEST(dyn->dirty, MESA_VK_DYNAMIC_CB_COLOR_WRITE_ENABLES) ||
BITSET_TEST(dyn->dirty, MESA_VK_DYNAMIC_CB_BLEND_EQUATIONS)) {
const uint8_t color_writes = dyn->cb.color_write_enables;
const struct anv_cmd_graphics_state *state = &cmd_buffer->state.gfx;
const struct brw_wm_prog_data *wm_prog_data = get_wm_prog_data(pipeline);
bool has_writeable_rt =
anv_pipeline_has_stage(pipeline, MESA_SHADER_FRAGMENT) &&
(color_writes & ((1u << state->color_att_count) - 1)) != 0;
uint32_t blend_dws[GENX(BLEND_STATE_length) +
MAX_RTS * GENX(BLEND_STATE_ENTRY_length)];
uint32_t *dws = blend_dws;
memset(blend_dws, 0, sizeof(blend_dws));
struct GENX(BLEND_STATE) blend_state = {
.AlphaToCoverageEnable = dyn->ms.alpha_to_coverage_enable,
.AlphaToOneEnable = dyn->ms.alpha_to_one_enable,
};
/* Jump to blend entries. */
dws += GENX(BLEND_STATE_length);
struct GENX(BLEND_STATE_ENTRY) bs0 = { 0 };
for (uint32_t i = 0; i < MAX_RTS; i++) {
/* Disable anything above the current number of color attachments. */
bool write_disabled = i >= cmd_buffer->state.gfx.color_att_count ||
(color_writes & BITFIELD_BIT(i)) == 0;
struct GENX(BLEND_STATE_ENTRY) entry = {
.WriteDisableAlpha = write_disabled ||
(dyn->cb.attachments[i].write_mask &
VK_COLOR_COMPONENT_A_BIT) == 0,
.WriteDisableRed = write_disabled ||
(dyn->cb.attachments[i].write_mask &
VK_COLOR_COMPONENT_R_BIT) == 0,
.WriteDisableGreen = write_disabled ||
(dyn->cb.attachments[i].write_mask &
VK_COLOR_COMPONENT_G_BIT) == 0,
.WriteDisableBlue = write_disabled ||
(dyn->cb.attachments[i].write_mask &
VK_COLOR_COMPONENT_B_BIT) == 0,
.LogicOpFunction = genX(vk_to_intel_logic_op)[dyn->cb.logic_op],
.LogicOpEnable = dyn->cb.logic_op_enable,
.ColorBufferBlendEnable =
!dyn->cb.logic_op_enable && dyn->cb.attachments[i].blend_enable,
};
/* Setup blend equation. */
entry.SourceBlendFactor =
genX(vk_to_intel_blend)[dyn->cb.attachments[i].src_color_blend_factor];
entry.DestinationBlendFactor =
genX(vk_to_intel_blend)[dyn->cb.attachments[i].dst_color_blend_factor];
entry.ColorBlendFunction =
genX(vk_to_intel_blend_op)[dyn->cb.attachments[i].color_blend_op];
entry.SourceAlphaBlendFactor =
genX(vk_to_intel_blend)[dyn->cb.attachments[i].src_alpha_blend_factor];
entry.DestinationAlphaBlendFactor =
genX(vk_to_intel_blend)[dyn->cb.attachments[i].dst_alpha_blend_factor];
entry.AlphaBlendFunction =
genX(vk_to_intel_blend_op)[dyn->cb.attachments[i].alpha_blend_op];
if (dyn->cb.attachments[i].src_color_blend_factor !=
dyn->cb.attachments[i].src_alpha_blend_factor ||
dyn->cb.attachments[i].dst_color_blend_factor !=
dyn->cb.attachments[i].dst_alpha_blend_factor ||
dyn->cb.attachments[i].color_blend_op !=
dyn->cb.attachments[i].alpha_blend_op) {
blend_state.IndependentAlphaBlendEnable = true;
}
/* The Dual Source Blending documentation says:
*
* "If SRC1 is included in a src/dst blend factor and
* a DualSource RT Write message is not used, results
* are UNDEFINED. (This reflects the same restriction in DX APIs,
* where undefined results are produced if “o1” is not written
* by a PS there are no default values defined)."
*
* There is no way to gracefully fix this undefined situation
* so we just disable the blending to prevent possible issues.
*/
if (wm_prog_data && !wm_prog_data->dual_src_blend &&
anv_is_dual_src_blend_equation(&dyn->cb.attachments[i])) {
entry.ColorBufferBlendEnable = false;
}
/* Our hardware applies the blend factor prior to the blend function
* regardless of what function is used. Technically, this means the
* hardware can do MORE than GL or Vulkan specify. However, it also
* means that, for MIN and MAX, we have to stomp the blend factor to
* ONE to make it a no-op.
*/
if (dyn->cb.attachments[i].color_blend_op == VK_BLEND_OP_MIN ||
dyn->cb.attachments[i].color_blend_op == VK_BLEND_OP_MAX) {
entry.SourceBlendFactor = BLENDFACTOR_ONE;
entry.DestinationBlendFactor = BLENDFACTOR_ONE;
}
if (dyn->cb.attachments[i].alpha_blend_op == VK_BLEND_OP_MIN ||
dyn->cb.attachments[i].alpha_blend_op == VK_BLEND_OP_MAX) {
entry.SourceAlphaBlendFactor = BLENDFACTOR_ONE;
entry.DestinationAlphaBlendFactor = BLENDFACTOR_ONE;
}
GENX(BLEND_STATE_ENTRY_pack)(NULL, dws, &entry);
if (i == 0)
bs0 = entry;
dws += GENX(BLEND_STATE_ENTRY_length);
}
/* Generate blend state after entries. */
GENX(BLEND_STATE_pack)(NULL, blend_dws, &blend_state);
/* 3DSTATE_PS_BLEND to be consistent with the rest of the
* BLEND_STATE_ENTRY.
*/
anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_PS_BLEND), blend) {
blend.HasWriteableRT = has_writeable_rt,
blend.ColorBufferBlendEnable = bs0.ColorBufferBlendEnable;
blend.SourceAlphaBlendFactor = bs0.SourceAlphaBlendFactor;
blend.DestinationAlphaBlendFactor = bs0.DestinationAlphaBlendFactor;
blend.SourceBlendFactor = bs0.SourceBlendFactor;
blend.DestinationBlendFactor = bs0.DestinationBlendFactor;
blend.AlphaTestEnable = false;
blend.IndependentAlphaBlendEnable = blend_state.IndependentAlphaBlendEnable;
blend.AlphaToCoverageEnable = dyn->ms.alpha_to_coverage_enable;
}
uint32_t num_dwords = GENX(BLEND_STATE_length) +
GENX(BLEND_STATE_ENTRY_length) * MAX_RTS;
struct anv_state blend_states =
anv_cmd_buffer_merge_dynamic(cmd_buffer, blend_dws,
pipeline->gfx8.blend_state, num_dwords, 64);
anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_BLEND_STATE_POINTERS), bsp) {
bsp.BlendStatePointer = blend_states.offset;
bsp.BlendStatePointerValid = true;
}
}
/* When we're done, there is no more dirty gfx state. */
vk_dynamic_graphics_state_clear_dirty(&cmd_buffer->vk.dynamic_graphics_state);
cmd_buffer->state.gfx.dirty = 0;
}