mirror of
https://gitlab.freedesktop.org/mesa/mesa.git
synced 2026-01-03 05:00:09 +01:00
In the C23 standard unreachable() is now a predefined function-like macro in <stddef.h> See https://android.googlesource.com/platform/bionic/+/HEAD/docs/c23.md#is-now-a-predefined-function_like-macro-in And this causes build errors when building for C23: ----------------------------------------------------------------------- In file included from ../src/util/log.h:30, from ../src/util/log.c:30: ../src/util/macros.h:123:9: warning: "unreachable" redefined 123 | #define unreachable(str) \ | ^~~~~~~~~~~ In file included from ../src/util/macros.h:31: /usr/lib/gcc/x86_64-linux-gnu/14/include/stddef.h:456:9: note: this is the location of the previous definition 456 | #define unreachable() (__builtin_unreachable ()) | ^~~~~~~~~~~ ----------------------------------------------------------------------- So don't redefine it with the same name, but use the name UNREACHABLE() to also signify it's a macro. Using a different name also makes sense because the behavior of the macro was extending the one of __builtin_unreachable() anyway, and it also had a different signature, accepting one argument, compared to the standard unreachable() with no arguments. This change improves the chances of building mesa with the C23 standard, which for instance is the default in recent AOSP versions. All the instances of the macro, including the definition, were updated with the following command line: git grep -l '[^_]unreachable(' -- "src/**" | sort | uniq | \ while read file; \ do \ sed -e 's/\([^_]\)unreachable(/\1UNREACHABLE(/g' -i "$file"; \ done && \ sed -e 's/#undef unreachable/#undef UNREACHABLE/g' -i src/intel/isl/isl_aux_info.c Reviewed-by: Erik Faye-Lund <erik.faye-lund@collabora.com> Part-of: <https://gitlab.freedesktop.org/mesa/mesa/-/merge_requests/36437>
538 lines
19 KiB
C
538 lines
19 KiB
C
/*
|
|
* Copyright © 2014-2015 Broadcom
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
* to deal in the Software without restriction, including without limitation
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice (including the next
|
|
* paragraph) shall be included in all copies or substantial portions of the
|
|
* Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
|
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
|
|
* IN THE SOFTWARE.
|
|
*/
|
|
|
|
#include "nir.h"
|
|
#include "nir_builder.h"
|
|
|
|
struct alu_width_data {
|
|
nir_vectorize_cb cb;
|
|
const void *data;
|
|
};
|
|
|
|
/** @file nir_lower_alu_width.c
|
|
*
|
|
* Replaces nir_alu_instr operations with more than one channel used in the
|
|
* arguments with individual per-channel operations.
|
|
*
|
|
* Optionally, a callback function which returns the max vectorization width
|
|
* per instruction can be provided.
|
|
*
|
|
* The max vectorization width must be a power of 2.
|
|
*/
|
|
|
|
static bool
|
|
inst_is_vector_alu(const nir_instr *instr, const void *_state)
|
|
{
|
|
if (instr->type != nir_instr_type_alu)
|
|
return false;
|
|
|
|
nir_alu_instr *alu = nir_instr_as_alu(instr);
|
|
|
|
/* There is no ALU instruction which has a scalar destination, scalar
|
|
* src[0], and some other vector source.
|
|
*/
|
|
return alu->def.num_components > 1 ||
|
|
nir_op_infos[alu->op].input_sizes[0] > 1;
|
|
}
|
|
|
|
/* Checks whether all operands of an ALU instruction are swizzled
|
|
* within the targeted vectorization width.
|
|
*
|
|
* The assumption here is that a vecN instruction can only swizzle
|
|
* within the first N channels of the values it consumes, irrespective
|
|
* of the capabilities of the instruction which produced those values.
|
|
* If we assume values are packed consistently (i.e., they always start
|
|
* at the beginning of a hardware register), we can actually access any
|
|
* aligned group of N channels so long as we stay within the group.
|
|
* This means for a vectorization width of 4 that only swizzles from
|
|
* either [xyzw] or [abcd] etc are allowed. For a width of 2 these are
|
|
* swizzles from either [xy] or [zw] etc.
|
|
*/
|
|
static bool
|
|
alu_is_swizzled_in_bounds(const nir_alu_instr *alu, unsigned width)
|
|
{
|
|
for (unsigned i = 0; i < nir_op_infos[alu->op].num_inputs; i++) {
|
|
if (nir_op_infos[alu->op].input_sizes[i] == 1)
|
|
continue;
|
|
|
|
unsigned mask = ~(width - 1);
|
|
for (unsigned j = 1; j < alu->def.num_components; j++) {
|
|
if ((alu->src[i].swizzle[0] & mask) != (alu->src[i].swizzle[j] & mask))
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static void
|
|
nir_alu_ssa_dest_init(nir_alu_instr *alu, unsigned num_components,
|
|
unsigned bit_size)
|
|
{
|
|
nir_def_init(&alu->instr, &alu->def, num_components, bit_size);
|
|
}
|
|
|
|
static nir_def *
|
|
lower_reduction(nir_alu_instr *alu, nir_op chan_op, nir_op merge_op,
|
|
nir_builder *builder, bool reverse_order)
|
|
{
|
|
unsigned num_components = nir_op_infos[alu->op].input_sizes[0];
|
|
|
|
nir_def *last = NULL;
|
|
for (int i = 0; i < num_components; i++) {
|
|
int channel = reverse_order ? num_components - 1 - i : i;
|
|
nir_alu_instr *chan = nir_alu_instr_create(builder->shader, chan_op);
|
|
nir_alu_ssa_dest_init(chan, 1, alu->def.bit_size);
|
|
nir_alu_src_copy(&chan->src[0], &alu->src[0]);
|
|
chan->src[0].swizzle[0] = chan->src[0].swizzle[channel];
|
|
if (nir_op_infos[chan_op].num_inputs > 1) {
|
|
assert(nir_op_infos[chan_op].num_inputs == 2);
|
|
nir_alu_src_copy(&chan->src[1], &alu->src[1]);
|
|
chan->src[1].swizzle[0] = chan->src[1].swizzle[channel];
|
|
}
|
|
chan->exact = alu->exact;
|
|
chan->fp_fast_math = alu->fp_fast_math;
|
|
|
|
nir_builder_instr_insert(builder, &chan->instr);
|
|
|
|
if (i == 0) {
|
|
last = &chan->def;
|
|
} else {
|
|
last = nir_build_alu(builder, merge_op,
|
|
last, &chan->def, NULL, NULL);
|
|
}
|
|
}
|
|
|
|
return last;
|
|
}
|
|
|
|
static inline bool
|
|
will_lower_ffma(nir_shader *shader, unsigned bit_size)
|
|
{
|
|
switch (bit_size) {
|
|
case 16:
|
|
return shader->options->lower_ffma16;
|
|
case 32:
|
|
return shader->options->lower_ffma32;
|
|
case 64:
|
|
return shader->options->lower_ffma64;
|
|
}
|
|
UNREACHABLE("bad bit size");
|
|
}
|
|
|
|
static nir_def *
|
|
lower_bfdot_to_bfdot2_bfadd(nir_builder *b, nir_alu_instr *alu)
|
|
{
|
|
unsigned num_components = nir_op_infos[alu->op].input_sizes[0];
|
|
|
|
nir_def *acc = nir_imm_intN_t(b, 0x8000, 16); /* -0.0 BF16`*/
|
|
for (int i = 0; i < num_components; i += 2) {
|
|
nir_alu_instr *instr = nir_alu_instr_create(b->shader, nir_op_bfdot2_bfadd);
|
|
nir_alu_ssa_dest_init(instr, 1, 16);
|
|
|
|
for (unsigned j = 0; j < 2; j++) {
|
|
if (num_components - i == 1) {
|
|
/* Pad with mix of -1.0 and +0.0 to get -0.0 for the mul. */
|
|
nir_def *zero = nir_imm_intN_t(b, j ? 0xbf80 : 0, 16);
|
|
nir_def *src = nir_channel(b, alu->src[j].src.ssa, alu->src[j].swizzle[i]);
|
|
instr->src[j].src = nir_src_for_ssa(nir_vec2(b, src, zero));
|
|
} else {
|
|
nir_alu_src_copy(&instr->src[j], &alu->src[j]);
|
|
instr->src[j].swizzle[0] = alu->src[j].swizzle[i];
|
|
instr->src[j].swizzle[1] = alu->src[j].swizzle[i + 1];
|
|
}
|
|
}
|
|
instr->src[2].src = nir_src_for_ssa(acc);
|
|
instr->exact = b->exact;
|
|
instr->fp_fast_math = b->fp_fast_math;
|
|
|
|
nir_builder_instr_insert(b, &instr->instr);
|
|
acc = &instr->def;
|
|
}
|
|
|
|
return acc;
|
|
}
|
|
|
|
static nir_def *
|
|
lower_fdot(nir_alu_instr *alu, nir_builder *builder, bool is_bfloat16)
|
|
{
|
|
/* Reversed order can result in lower instruction count because it
|
|
* creates more MAD/FMA in the case of fdot(a, vec4(b, 1.0)).
|
|
* Some games expect xyzw order, so only reverse the order for imprecise fdot.
|
|
*/
|
|
bool reverse_order = !builder->exact;
|
|
|
|
/* If we don't want to lower ffma, create several ffma instead of fmul+fadd
|
|
* and fusing later because fusing is not possible for exact fdot instructions.
|
|
*/
|
|
if (!is_bfloat16 && will_lower_ffma(builder->shader, alu->def.bit_size))
|
|
return lower_reduction(alu, nir_op_fmul, nir_op_fadd, builder, reverse_order);
|
|
|
|
unsigned num_components = nir_op_infos[alu->op].input_sizes[0];
|
|
|
|
const nir_op fma_op = is_bfloat16 ? nir_op_bffma : nir_op_ffma;
|
|
const nir_op mul_op = is_bfloat16 ? nir_op_bfmul : nir_op_fmul;
|
|
|
|
nir_def *prev = NULL;
|
|
for (int i = 0; i < num_components; i++) {
|
|
int channel = reverse_order ? num_components - 1 - i : i;
|
|
nir_alu_instr *instr = nir_alu_instr_create(
|
|
builder->shader, prev ? fma_op : mul_op);
|
|
nir_alu_ssa_dest_init(instr, 1, alu->def.bit_size);
|
|
for (unsigned j = 0; j < 2; j++) {
|
|
nir_alu_src_copy(&instr->src[j], &alu->src[j]);
|
|
instr->src[j].swizzle[0] = alu->src[j].swizzle[channel];
|
|
}
|
|
if (i != 0)
|
|
instr->src[2].src = nir_src_for_ssa(prev);
|
|
instr->exact = builder->exact;
|
|
instr->fp_fast_math = builder->fp_fast_math;
|
|
|
|
nir_builder_instr_insert(builder, &instr->instr);
|
|
|
|
prev = &instr->def;
|
|
}
|
|
|
|
return prev;
|
|
}
|
|
|
|
static nir_def *
|
|
lower_alu_instr_width(nir_builder *b, nir_instr *instr, void *_data)
|
|
{
|
|
struct alu_width_data *data = _data;
|
|
nir_alu_instr *alu = nir_instr_as_alu(instr);
|
|
unsigned num_src = nir_op_infos[alu->op].num_inputs;
|
|
unsigned i, chan;
|
|
|
|
b->exact = alu->exact;
|
|
b->fp_fast_math = alu->fp_fast_math;
|
|
|
|
unsigned num_components = alu->def.num_components;
|
|
unsigned target_width = 1;
|
|
|
|
if (data->cb) {
|
|
target_width = data->cb(instr, data->data);
|
|
assert(util_is_power_of_two_or_zero(target_width));
|
|
if (target_width == 0)
|
|
return NULL;
|
|
}
|
|
|
|
#define LOWER_REDUCTION(name, chan, merge) \
|
|
case name##2: \
|
|
case name##3: \
|
|
case name##4: \
|
|
case name##8: \
|
|
case name##16: \
|
|
return lower_reduction(alu, chan, merge, b, true);
|
|
|
|
switch (alu->op) {
|
|
case nir_op_vec16:
|
|
case nir_op_vec8:
|
|
case nir_op_vec5:
|
|
case nir_op_vec4:
|
|
case nir_op_vec3:
|
|
case nir_op_vec2:
|
|
case nir_op_cube_amd:
|
|
/* We don't need to scalarize these ops, they're the ones generated to
|
|
* group up outputs into a value that can be SSAed.
|
|
*/
|
|
return NULL;
|
|
|
|
case nir_op_pack_half_2x16: {
|
|
if (!b->shader->options->lower_pack_half_2x16)
|
|
return NULL;
|
|
|
|
nir_def *src_vec2 = nir_ssa_for_alu_src(b, alu, 0);
|
|
return nir_pack_half_2x16_split(b, nir_channel(b, src_vec2, 0),
|
|
nir_channel(b, src_vec2, 1));
|
|
}
|
|
|
|
case nir_op_unpack_unorm_4x8:
|
|
case nir_op_unpack_snorm_4x8:
|
|
case nir_op_unpack_unorm_2x16:
|
|
case nir_op_unpack_snorm_2x16:
|
|
case nir_op_mqsad_4x8:
|
|
/* There is no scalar version of these ops, unless we were to break it
|
|
* down to bitshifts and math (which is definitely not intended).
|
|
*/
|
|
return NULL;
|
|
|
|
case nir_op_unpack_half_2x16: {
|
|
if (!b->shader->options->lower_unpack_half_2x16)
|
|
return NULL;
|
|
|
|
nir_def *packed = nir_ssa_for_alu_src(b, alu, 0);
|
|
return nir_vec2(b,
|
|
nir_unpack_half_2x16_split_x(b, packed),
|
|
nir_unpack_half_2x16_split_y(b, packed));
|
|
}
|
|
|
|
case nir_op_pack_uvec2_to_uint: {
|
|
assert(b->shader->options->lower_pack_snorm_2x16 ||
|
|
b->shader->options->lower_pack_unorm_2x16);
|
|
|
|
nir_def *word = nir_extract_u16(b, nir_ssa_for_alu_src(b, alu, 0),
|
|
nir_imm_int(b, 0));
|
|
return nir_ior(b, nir_ishl(b, nir_channel(b, word, 1), nir_imm_int(b, 16)),
|
|
nir_channel(b, word, 0));
|
|
}
|
|
|
|
case nir_op_pack_uvec4_to_uint: {
|
|
assert(b->shader->options->lower_pack_snorm_4x8 ||
|
|
b->shader->options->lower_pack_unorm_4x8);
|
|
|
|
if (b->shader->options->has_pack_32_4x8)
|
|
return nir_pack_32_4x8(b, nir_u2u8(b, nir_ssa_for_alu_src(b, alu, 0)));
|
|
|
|
nir_def *byte = nir_extract_u8(b, nir_ssa_for_alu_src(b, alu, 0),
|
|
nir_imm_int(b, 0));
|
|
return nir_ior(b, nir_ior(b, nir_ishl(b, nir_channel(b, byte, 3), nir_imm_int(b, 24)), nir_ishl(b, nir_channel(b, byte, 2), nir_imm_int(b, 16))),
|
|
nir_ior(b, nir_ishl(b, nir_channel(b, byte, 1), nir_imm_int(b, 8)),
|
|
nir_channel(b, byte, 0)));
|
|
}
|
|
|
|
case nir_op_fdph: {
|
|
nir_def *src0_vec = nir_ssa_for_alu_src(b, alu, 0);
|
|
nir_def *src1_vec = nir_ssa_for_alu_src(b, alu, 1);
|
|
|
|
/* Only use reverse order for imprecise fdph, see explanation in lower_fdot. */
|
|
bool reverse_order = !b->exact;
|
|
if (will_lower_ffma(b->shader, alu->def.bit_size)) {
|
|
nir_def *sum[4];
|
|
for (unsigned i = 0; i < 3; i++) {
|
|
int dest = reverse_order ? 3 - i : i;
|
|
sum[dest] = nir_fmul(b, nir_channel(b, src0_vec, i),
|
|
nir_channel(b, src1_vec, i));
|
|
}
|
|
sum[reverse_order ? 0 : 3] = nir_channel(b, src1_vec, 3);
|
|
|
|
return nir_fadd(b, nir_fadd(b, nir_fadd(b, sum[0], sum[1]), sum[2]), sum[3]);
|
|
} else if (reverse_order) {
|
|
nir_def *sum = nir_channel(b, src1_vec, 3);
|
|
for (int i = 2; i >= 0; i--)
|
|
sum = nir_ffma(b, nir_channel(b, src0_vec, i), nir_channel(b, src1_vec, i), sum);
|
|
return sum;
|
|
} else {
|
|
nir_def *sum = nir_fmul(b, nir_channel(b, src0_vec, 0), nir_channel(b, src1_vec, 0));
|
|
sum = nir_ffma(b, nir_channel(b, src0_vec, 1), nir_channel(b, src1_vec, 1), sum);
|
|
sum = nir_ffma(b, nir_channel(b, src0_vec, 2), nir_channel(b, src1_vec, 2), sum);
|
|
return nir_fadd(b, sum, nir_channel(b, src1_vec, 3));
|
|
}
|
|
}
|
|
|
|
case nir_op_pack_64_2x32: {
|
|
if (!b->shader->options->lower_pack_64_2x32)
|
|
return NULL;
|
|
|
|
nir_def *src_vec2 = nir_ssa_for_alu_src(b, alu, 0);
|
|
return nir_pack_64_2x32_split(b, nir_channel(b, src_vec2, 0),
|
|
nir_channel(b, src_vec2, 1));
|
|
}
|
|
case nir_op_pack_64_4x16: {
|
|
if (!b->shader->options->lower_pack_64_4x16)
|
|
return NULL;
|
|
|
|
nir_def *src_vec4 = nir_ssa_for_alu_src(b, alu, 0);
|
|
nir_def *xy = nir_pack_32_2x16_split(b, nir_channel(b, src_vec4, 0),
|
|
nir_channel(b, src_vec4, 1));
|
|
nir_def *zw = nir_pack_32_2x16_split(b, nir_channel(b, src_vec4, 2),
|
|
nir_channel(b, src_vec4, 3));
|
|
|
|
return nir_pack_64_2x32_split(b, xy, zw);
|
|
}
|
|
case nir_op_pack_32_2x16: {
|
|
if (!b->shader->options->lower_pack_32_2x16)
|
|
return NULL;
|
|
|
|
nir_def *src_vec2 = nir_ssa_for_alu_src(b, alu, 0);
|
|
return nir_pack_32_2x16_split(b, nir_channel(b, src_vec2, 0),
|
|
nir_channel(b, src_vec2, 1));
|
|
}
|
|
case nir_op_unpack_64_2x32:
|
|
case nir_op_unpack_64_4x16:
|
|
case nir_op_unpack_32_2x16:
|
|
case nir_op_unpack_32_4x8:
|
|
case nir_op_unpack_double_2x32_dxil:
|
|
return NULL;
|
|
|
|
case nir_op_fdot2:
|
|
case nir_op_fdot3:
|
|
case nir_op_fdot4:
|
|
case nir_op_fdot8:
|
|
case nir_op_fdot16:
|
|
return lower_fdot(alu, b, false);
|
|
case nir_op_bfdot2:
|
|
case nir_op_bfdot3:
|
|
case nir_op_bfdot4:
|
|
case nir_op_bfdot8:
|
|
case nir_op_bfdot16:
|
|
if (b->shader->options->has_bfdot2_bfadd)
|
|
return lower_bfdot_to_bfdot2_bfadd(b, alu);
|
|
return lower_fdot(alu, b, true);
|
|
|
|
LOWER_REDUCTION(nir_op_ball_fequal, nir_op_feq, nir_op_iand);
|
|
LOWER_REDUCTION(nir_op_ball_iequal, nir_op_ieq, nir_op_iand);
|
|
LOWER_REDUCTION(nir_op_bany_fnequal, nir_op_fneu, nir_op_ior);
|
|
LOWER_REDUCTION(nir_op_bany_inequal, nir_op_ine, nir_op_ior);
|
|
LOWER_REDUCTION(nir_op_b8all_fequal, nir_op_feq8, nir_op_iand);
|
|
LOWER_REDUCTION(nir_op_b8all_iequal, nir_op_ieq8, nir_op_iand);
|
|
LOWER_REDUCTION(nir_op_b8any_fnequal, nir_op_fneu8, nir_op_ior);
|
|
LOWER_REDUCTION(nir_op_b8any_inequal, nir_op_ine8, nir_op_ior);
|
|
LOWER_REDUCTION(nir_op_b16all_fequal, nir_op_feq16, nir_op_iand);
|
|
LOWER_REDUCTION(nir_op_b16all_iequal, nir_op_ieq16, nir_op_iand);
|
|
LOWER_REDUCTION(nir_op_b16any_fnequal, nir_op_fneu16, nir_op_ior);
|
|
LOWER_REDUCTION(nir_op_b16any_inequal, nir_op_ine16, nir_op_ior);
|
|
LOWER_REDUCTION(nir_op_b32all_fequal, nir_op_feq32, nir_op_iand);
|
|
LOWER_REDUCTION(nir_op_b32all_iequal, nir_op_ieq32, nir_op_iand);
|
|
LOWER_REDUCTION(nir_op_b32any_fnequal, nir_op_fneu32, nir_op_ior);
|
|
LOWER_REDUCTION(nir_op_b32any_inequal, nir_op_ine32, nir_op_ior);
|
|
LOWER_REDUCTION(nir_op_fall_equal, nir_op_seq, nir_op_fmin);
|
|
LOWER_REDUCTION(nir_op_fany_nequal, nir_op_sne, nir_op_fmax);
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
if (num_components == 1)
|
|
return NULL;
|
|
|
|
if (num_components <= target_width) {
|
|
/* If the ALU instr is swizzled outside the target width,
|
|
* reduce the target width.
|
|
*/
|
|
if (alu_is_swizzled_in_bounds(alu, target_width))
|
|
return NULL;
|
|
else
|
|
target_width = DIV_ROUND_UP(num_components, 2);
|
|
}
|
|
|
|
nir_alu_instr *vec = nir_alu_instr_create(b->shader, nir_op_vec(num_components));
|
|
|
|
for (chan = 0; chan < num_components; chan += target_width) {
|
|
unsigned components = MIN2(target_width, num_components - chan);
|
|
nir_alu_instr *lower = nir_alu_instr_create(b->shader, alu->op);
|
|
|
|
for (i = 0; i < num_src; i++) {
|
|
nir_alu_src_copy(&lower->src[i], &alu->src[i]);
|
|
|
|
/* We only handle same-size-as-dest (input_sizes[] == 0) or scalar
|
|
* args (input_sizes[] == 1).
|
|
*/
|
|
assert(nir_op_infos[alu->op].input_sizes[i] < 2);
|
|
for (int j = 0; j < components; j++) {
|
|
unsigned src_chan = nir_op_infos[alu->op].input_sizes[i] == 1 ? 0 : chan + j;
|
|
lower->src[i].swizzle[j] = alu->src[i].swizzle[src_chan];
|
|
}
|
|
}
|
|
|
|
nir_alu_ssa_dest_init(lower, components, alu->def.bit_size);
|
|
lower->exact = alu->exact;
|
|
lower->fp_fast_math = alu->fp_fast_math;
|
|
|
|
for (i = 0; i < components; i++) {
|
|
vec->src[chan + i].src = nir_src_for_ssa(&lower->def);
|
|
vec->src[chan + i].swizzle[0] = i;
|
|
}
|
|
|
|
nir_builder_instr_insert(b, &lower->instr);
|
|
}
|
|
|
|
return nir_builder_alu_instr_finish_and_insert(b, vec);
|
|
}
|
|
|
|
bool
|
|
nir_lower_alu_width(nir_shader *shader, nir_vectorize_cb cb, const void *_data)
|
|
{
|
|
struct alu_width_data data = {
|
|
.cb = cb,
|
|
.data = _data,
|
|
};
|
|
|
|
return nir_shader_lower_instructions(shader,
|
|
inst_is_vector_alu,
|
|
lower_alu_instr_width,
|
|
&data);
|
|
}
|
|
|
|
struct alu_to_scalar_data {
|
|
nir_instr_filter_cb cb;
|
|
const void *data;
|
|
};
|
|
|
|
static uint8_t
|
|
scalar_cb(const nir_instr *instr, const void *data)
|
|
{
|
|
/* return vectorization-width = 1 for filtered instructions */
|
|
const struct alu_to_scalar_data *filter = data;
|
|
return filter->cb(instr, filter->data) ? 1 : 0;
|
|
}
|
|
|
|
bool
|
|
nir_lower_alu_to_scalar(nir_shader *shader, nir_instr_filter_cb cb, const void *_data)
|
|
{
|
|
struct alu_to_scalar_data data = {
|
|
.cb = cb,
|
|
.data = _data,
|
|
};
|
|
|
|
return nir_lower_alu_width(shader, cb ? scalar_cb : NULL, &data);
|
|
}
|
|
|
|
static bool
|
|
lower_alu_vec8_16_src(nir_builder *b, nir_alu_instr *alu, void *_data)
|
|
{
|
|
const nir_op_info *info = &nir_op_infos[alu->op];
|
|
|
|
bool changed = false;
|
|
b->cursor = nir_before_instr(&alu->instr);
|
|
for (int i = 0; i < info->num_inputs; i++) {
|
|
if (alu->src[i].src.ssa->num_components < 8 || info->input_sizes[i])
|
|
continue;
|
|
|
|
changed = true;
|
|
nir_def *comps[4];
|
|
for (int c = 0; c < alu->def.num_components; c++) {
|
|
unsigned swizzle = alu->src[i].swizzle[c];
|
|
alu->src[i].swizzle[c] = c;
|
|
|
|
nir_const_value *const_val = nir_src_as_const_value(alu->src[i].src);
|
|
if (const_val) {
|
|
comps[c] = nir_build_imm(b, 1, alu->src[i].src.ssa->bit_size, &const_val[swizzle]);
|
|
} else {
|
|
comps[c] = nir_swizzle(b, alu->src[i].src.ssa, &swizzle, 1);
|
|
}
|
|
}
|
|
nir_def *src = nir_vec(b, comps, alu->def.num_components);
|
|
nir_src_rewrite(&alu->src[i].src, src);
|
|
}
|
|
|
|
return changed;
|
|
}
|
|
|
|
bool
|
|
nir_lower_alu_vec8_16_srcs(nir_shader *shader)
|
|
{
|
|
return nir_shader_alu_pass(shader, lower_alu_vec8_16_src,
|
|
nir_metadata_control_flow,
|
|
NULL);
|
|
}
|