mesa/src/intel/compiler/brw_analysis_liveness.cpp
Kenneth Graunke ea468412f6 brw: Track the largest VGRF size in liveness analysis
We're already looking at this data to calculate the per-component
vars_from_vgrf[] and vgrf_from_vars[] mappings, so just record the
largest VGRF size while we're here.  This will allow passes to size
arrays based on the actual size needed, rather than hardcoding some
fixed size.  In many cases, MAX_VGRF_SIZE(devinfo) is larger than
necessary, because e.g. vec5 sparse sampling results aren't used.
Not hardcoding this means we can also temporarily handle very large
VGRFs which we know will be split eventually, without having to
increase the maximum which is ultimately used for RA classes.

Cc: mesa-stable
Reviewed-by: Matt Turner <mattst88@gmail.com>
Part-of: <https://gitlab.freedesktop.org/mesa/mesa/-/merge_requests/34461>
2025-04-11 20:34:51 +00:00

370 lines
12 KiB
C++

/*
* Copyright © 2012 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
* Authors:
* Eric Anholt <eric@anholt.net>
*
*/
#include "brw_shader.h"
#include "brw_analysis.h"
#define MAX_INSTRUCTION (1 << 30)
/** @file
*
* Support for calculating liveness information about virtual GRFs.
*
* This produces a live interval for each whole virtual GRF. We could
* choose to expose per-component live intervals for VGRFs of size > 1,
* but we currently do not. It is easier for the consumers of this
* information to work with whole VGRFs.
*
* However, we internally track use/def information at the per-GRF level for
* greater accuracy. Large VGRFs may be accessed piecemeal over many
* (possibly non-adjacent) instructions. In this case, examining a single
* instruction is insufficient to decide whether a whole VGRF is ultimately
* used or defined. Tracking individual components allows us to easily
* assemble this information.
*
* See Muchnick's Advanced Compiler Design and Implementation, section
* 14.1 (p444).
*/
void
brw_live_variables::setup_one_read(struct block_data *bd,
int ip, const brw_reg &reg)
{
int var = var_from_reg(reg);
assert(var < num_vars);
vars_range[var] = merge(vars_range[var], ip);
/* The use[] bitset marks when the block makes use of a variable (VGRF
* channel) without having completely defined that variable within the
* block.
*/
if (!BITSET_TEST(bd->def, var))
BITSET_SET(bd->use, var);
}
void
brw_live_variables::setup_one_write(struct block_data *bd, brw_inst *inst,
int ip, const brw_reg &reg)
{
int var = var_from_reg(reg);
assert(var < num_vars);
vars_range[var] = merge(vars_range[var], ip);
/* The def[] bitset marks when an initialization in a block completely
* screens off previous updates of that variable (VGRF channel).
*/
if (inst->dst.file == VGRF) {
if (!inst->is_partial_write() && !BITSET_TEST(bd->use, var))
BITSET_SET(bd->def, var);
BITSET_SET(bd->defout, var);
}
}
/**
* Sets up the use[] and def[] bitsets.
*
* The basic-block-level live variable analysis needs to know which
* variables get used before they're completely defined, and which
* variables are completely defined before they're used.
*
* These are tracked at the per-component level, rather than whole VGRFs.
*/
void
brw_live_variables::setup_def_use()
{
int ip = 0;
foreach_block (block, cfg) {
struct block_data *bd = &block_data[block->num];
assert(ip == bd->ip_range.start);
if (block->num > 0)
assert(block_data[block->num - 1].ip_range.end == ip);
foreach_inst_in_block(brw_inst, inst, block) {
/* Set use[] for this instruction */
for (unsigned int i = 0; i < inst->sources; i++) {
brw_reg reg = inst->src[i];
if (reg.file != VGRF)
continue;
for (unsigned j = 0; j < regs_read(devinfo, inst, i); j++) {
setup_one_read(bd, ip, reg);
reg.offset += REG_SIZE;
}
}
bd->flag_use[0] |= inst->flags_read(devinfo) & ~bd->flag_def[0];
/* Set def[] for this instruction */
if (inst->dst.file == VGRF) {
brw_reg reg = inst->dst;
for (unsigned j = 0; j < regs_written(inst); j++) {
setup_one_write(bd, inst, ip, reg);
reg.offset += REG_SIZE;
}
}
if (!inst->predicate && inst->exec_size >= 8)
bd->flag_def[0] |= inst->flags_written(devinfo) & ~bd->flag_use[0];
ip++;
}
}
}
/**
* The algorithm incrementally sets bits in liveout and livein,
* propagating it through control flow. It will eventually terminate
* because it only ever adds bits, and stops when no bits are added in
* a pass.
*/
void
brw_live_variables::compute_live_variables()
{
bool cont = true;
/* Propagate defin and defout down the CFG to calculate the union of live
* variables potentially defined along any possible control flow path.
*/
do {
cont = false;
foreach_block (block, cfg) {
const struct block_data *bd = &block_data[block->num];
foreach_list_typed(bblock_link, child_link, link, &block->children) {
struct block_data *child_bd = &block_data[child_link->block->num];
for (int i = 0; i < bitset_words; i++) {
const BITSET_WORD new_def = bd->defout[i] & ~child_bd->defin[i];
child_bd->defin[i] |= new_def;
child_bd->defout[i] |= new_def;
cont |= new_def;
}
}
}
} while (cont);
do {
cont = false;
foreach_block_reverse (block, cfg) {
struct block_data *bd = &block_data[block->num];
/* Update liveout */
foreach_list_typed(bblock_link, child_link, link, &block->children) {
struct block_data *child_bd = &block_data[child_link->block->num];
for (int i = 0; i < bitset_words; i++) {
BITSET_WORD new_liveout = (child_bd->livein[i] &
~bd->liveout[i]);
new_liveout &= bd->defout[i]; /* Screen off uses with no reaching def */
if (new_liveout)
bd->liveout[i] |= new_liveout;
}
BITSET_WORD new_liveout = (child_bd->flag_livein[0] &
~bd->flag_liveout[0]);
if (new_liveout)
bd->flag_liveout[0] |= new_liveout;
}
/* Update livein */
for (int i = 0; i < bitset_words; i++) {
BITSET_WORD new_livein = (bd->use[i] |
(bd->liveout[i] &
~bd->def[i]));
new_livein &= bd->defin[i]; /* Screen off uses with no reaching def */
if (new_livein & ~bd->livein[i]) {
bd->livein[i] |= new_livein;
cont = true;
}
}
BITSET_WORD new_livein = (bd->flag_use[0] |
(bd->flag_liveout[0] &
~bd->flag_def[0]));
if (new_livein & ~bd->flag_livein[0]) {
bd->flag_livein[0] |= new_livein;
cont = true;
}
}
} while (cont);
}
/**
* Extend the start/end ranges for each variable to account for the
* new information calculated from control flow.
*/
void
brw_live_variables::compute_start_end()
{
foreach_block (block, cfg) {
struct block_data *bd = &block_data[block->num];
unsigned i;
BITSET_FOREACH_SET(i, bd->livein, (unsigned)num_vars)
vars_range[i] = merge(vars_range[i], bd->ip_range.start);
BITSET_FOREACH_SET(i, bd->liveout, (unsigned)num_vars)
vars_range[i] = merge(vars_range[i], bd->ip_range.last());
}
}
brw_live_variables::brw_live_variables(const brw_shader *s)
: devinfo(s->devinfo), cfg(s->cfg)
{
mem_ctx = ralloc_context(NULL);
linear_ctx *lin_ctx = linear_context(mem_ctx);
num_vgrfs = s->alloc.count;
num_vars = 0;
max_vgrf_size = 0;
var_from_vgrf = linear_alloc_array(lin_ctx, int, num_vgrfs);
for (int i = 0; i < num_vgrfs; i++) {
var_from_vgrf[i] = num_vars;
num_vars += s->alloc.sizes[i];
max_vgrf_size = MAX2(max_vgrf_size, s->alloc.sizes[i]);
}
vgrf_from_var = linear_alloc_array(lin_ctx, int, num_vars);
for (int i = 0; i < num_vgrfs; i++) {
for (unsigned j = 0; j < s->alloc.sizes[i]; j++) {
vgrf_from_var[var_from_vgrf[i] + j] = i;
}
}
vars_range = linear_zalloc_array(lin_ctx, brw_range, num_vars);
vgrf_range = linear_zalloc_array(lin_ctx, brw_range, num_vgrfs);
block_data = linear_alloc_array(lin_ctx, struct block_data, cfg->num_blocks);
bitset_words = BITSET_WORDS(num_vars);
for (int i = 0; i < cfg->num_blocks; i++) {
block_data[i].def = linear_zalloc_array(lin_ctx, BITSET_WORD, bitset_words);
block_data[i].use = linear_zalloc_array(lin_ctx, BITSET_WORD, bitset_words);
block_data[i].livein = linear_zalloc_array(lin_ctx, BITSET_WORD, bitset_words);
block_data[i].liveout = linear_zalloc_array(lin_ctx, BITSET_WORD, bitset_words);
block_data[i].defin = linear_zalloc_array(lin_ctx, BITSET_WORD, bitset_words);
block_data[i].defout = linear_zalloc_array(lin_ctx, BITSET_WORD, bitset_words);
block_data[i].flag_def[0] = 0;
block_data[i].flag_use[0] = 0;
block_data[i].flag_livein[0] = 0;
block_data[i].flag_liveout[0] = 0;
}
const brw_ip_ranges &ips = s->ip_ranges_analysis.require();
for (int i = 0; i < cfg->num_blocks; i++)
block_data[i].ip_range = ips.range(cfg->blocks[i]);
setup_def_use();
compute_live_variables();
compute_start_end();
/* Merge the per-component live ranges to whole VGRF live ranges. */
for (int i = 0; i < num_vars; i++) {
const unsigned vgrf = vgrf_from_var[i];
vgrf_range[vgrf] = merge(vgrf_range[vgrf], vars_range[i]);
}
}
brw_live_variables::~brw_live_variables()
{
ralloc_free(mem_ctx);
}
static bool
check_register_live_range(const brw_live_variables *live, int ip,
const brw_reg &reg, unsigned n)
{
const unsigned var = live->var_from_reg(reg);
if (var + n > unsigned(live->num_vars) ||
!live->vgrf_range[reg.nr].contains(ip))
return false;
for (unsigned j = 0; j < n; j++) {
if (!live->vars_range[var + j].contains(ip))
return false;
}
return true;
}
bool
brw_live_variables::validate(const brw_shader *s) const
{
int ip = 0;
foreach_block_and_inst(block, brw_inst, inst, s->cfg) {
for (unsigned i = 0; i < inst->sources; i++) {
if (inst->src[i].file == VGRF &&
!check_register_live_range(this, ip,
inst->src[i], regs_read(devinfo, inst, i)))
return false;
}
if (inst->dst.file == VGRF &&
!check_register_live_range(this, ip, inst->dst, regs_written(inst)))
return false;
ip++;
}
return true;
}
bool
brw_live_variables::vars_interfere(int a, int b) const
{
/* Clip the ranges so the end of a live range can overlap with
* the start of another live range. See details in vgrfs_interfere().
*/
return overlaps(clip_end(vars_range[a], 1),
clip_end(vars_range[b], 1));
}
bool
brw_live_variables::vgrfs_interfere(int a, int b) const
{
/* The live ranges are constructed such that at the start
* of the range there's a WRITE to the VGRF and at the
* end of the range there's a READ of the VGRF.
*
* Two VGRFs will not interfere if the same IP has both
* the READ at the end for one and the WRITE at the start
* for the other.
*
* Clip the ranges to cover this edge case.
*/
return overlaps(clip_end(vgrf_range[a], 1),
clip_end(vgrf_range[b], 1));
}