Make the "block after DO" more stable so that adding instructions after
a DO doesn't require repairing the CFG. Use a new SHADER_OPCODE_FLOW
instruction that is a placeholder representing "go to the next block"
and disappears at code generation.
For some context, there are a few facts about how CFG currently works
- Blocks are assumed to not be empty;
- DO is always by itself in a block, i.e. starts and ends a block;
- There are no empty blocks;
- Predicated WHILE and CONTINUE will link to the "block after DO";
- When nesting loops, it is possible that the "block after DO" is
another "DO".
Reasons and further explanations for those are in the brw_cfg.c comments.
What makes this new change useful is that a pass might want to add
instructions between two DO instructions. When that happens, a new
block must be created and any predicated WHILE and CONTINUE must be
repaired.
So, instead of requiring a repair (which has proven to be tricky in
the past), this change adds a block that can be "virtually" empty but
allow instructions to be added without further changes.
One alternative design would be allowing empty blocks, that would be
a deeper change since the blocks are currently assumed to be not empty
in various places. We'll save that for when other changes are made to
the CFG.
The problem described happens in brw_opt_combine_constants, and a
different patch will clean that up.
Reviewed-by: Ian Romanick <ian.d.romanick@intel.com>
Part-of: <https://gitlab.freedesktop.org/mesa/mesa/-/merge_requests/33536>
Starting in Xe3, there's a variant of SEND that take the
register numbers from the ARF scalar register, and don't
require them to be contiguous. The new opcode added here
represents that kind of SEND.
To make the original sources still reachable, we keep them
around during the IR, just ignoring them at generator time.
This allow software scoreboard to properly reason the
dependencies without trying to decode the contents of ARF
scalar register being used.
Reviewed-by: Lionel Landwerlin <lionel.g.landwerlin@intel.com>
Reviewed-by: Kenneth Graunke <kenneth@whitecape.org>
Reviewed-by: Lionel Landwerlin <None>
Part-of: <https://gitlab.freedesktop.org/mesa/mesa/-/merge_requests/32410>
Xe3 adds a new pipe that handles *only* MOVs from immediate into the
scalar register.
Reviewed-by: Lionel Landwerlin <lionel.g.landwerlin@intel.com>
Reviewed-by: Lionel Landwerlin <None>
Part-of: <https://gitlab.freedesktop.org/mesa/mesa/-/merge_requests/32410>
This limits the address register to simple cases inside a block.
Validation ensures that the address register is only written once and
read once.
Instruction scheduling makes sure that instructions using the address
register in the generator are not scheduled while there is an usage of
the register in the IR.
Signed-off-by: Lionel Landwerlin <lionel.g.landwerlin@intel.com>
Reviewed-by: Alyssa Rosenzweig <alyssa@rosenzweig.io>
Reviewed-by: Caio Oliveira <caio.oliveira@intel.com>
Part-of: <https://gitlab.freedesktop.org/mesa/mesa/-/merge_requests/28199>
We want to reuse the brw::nr field as a virtual address register
identifer. So we can't use brw::file=ARF brw::nr=ADDRESS.
Signed-off-by: Lionel Landwerlin <lionel.g.landwerlin@intel.com>
Reviewed-by: Caio Oliveira <caio.oliveira@intel.com>
Part-of: <https://gitlab.freedesktop.org/mesa/mesa/-/merge_requests/28199>
This will translate to HDC Constant Cache loads or LSC UGM loads.
On LSC, MEMORY_MODE_UNTYPED would be fine, but for HDC we need to
distinguish between the regular and constant cache data ports.
Reviewed-by: Lionel Landwerlin <lionel.g.landwerlin@intel.com>
Part-of: <https://gitlab.freedesktop.org/mesa/mesa/-/merge_requests/32888>
This isn't used now, but future commits will add uses. Doing this as a
separate commit removes a lot of "just typing" churn from commits that
have real changes to review.
Reviewed-by: Kenneth Graunke <kenneth@whitecape.org>
Part-of: <https://gitlab.freedesktop.org/mesa/mesa/-/merge_requests/29884>
Almost all cases now handled with default arguments. The only real
extra work that was being done was pushed to the client code in
debug_optimizer().
Reviewed-by: Lionel Landwerlin <lionel.g.landwerlin@intel.com>
Part-of: <https://gitlab.freedesktop.org/mesa/mesa/-/merge_requests/32596>
Add opcodes for VOTE_ALL, VOTE_ANY and VOTE_EQUAL. The first two
are also used for the quad variants. Move their lowering from
NIR conversion to brw_lower_subgroup_ops.
Reviewed-by: Kenneth Graunke <kenneth@whitecape.org>
Part-of: <https://gitlab.freedesktop.org/mesa/mesa/-/merge_requests/31029>
These have now been replaced by the MEMORY_*_LOGICAL opcodes.
Reviewed-by: Lionel Landwerlin <lionel.g.landwerlin@intel.com>
Reviewed-by: Caio Oliveira <caio.oliveira@intel.com>
Acked-by: Rohan Garg <rohan.garg@intel.com>
Part-of: <https://gitlab.freedesktop.org/mesa/mesa/-/merge_requests/30828>
The new MEMORY_*_LOGICAL intrinsics have a lot of control sources with
a bunch of LSC_* enums (opcode, memory type, address type, address and
data sizes), as well as flags, coordinate components vs. components...
they unfortunately are nigh-unreadable with the default printing since
there's just a string of unreadable UD immediates in some order.
To fix this, we add some basic pretty-printing. If a control source is
simply an enum whose value communicates the entire purpose, we print it.
If it has a numeric value (i.e. alignment, or data), we add a label.
For example:
memory_store(16) (null):UD store shared flat addr: %2:UD coord_comps:1u align:16u d32 comps:2u data0: %3:UD
memory_store(16) (null):UD store typed bti:%2+0.0<0>:UD addr: %3+0.0:D coord_comps:2u align:0u d32 comps:4u data0: %4:UD
This make them much easier to read.
Reviewed-by: Lionel Landwerlin <lionel.g.landwerlin@intel.com>
Reviewed-by: Caio Oliveira <caio.oliveira@intel.com>
Reviewed-by: Rohan Garg <rohan.garg@intel.com>
Part-of: <https://gitlab.freedesktop.org/mesa/mesa/-/merge_requests/30828>
This is a new unified set of opcodes for memory access loosely patterned
after the new LSC-style data port messages introduced on Alchemist GPUs.
Rather than creating an opcode for every type of memory access, it has
only three opcodes: load, store, and atomic. It has various sources to
indicate the rest:
- Binding type (raw pointer, pointer to surface state, or BT index)
- Address size (A64, A32, A16)
- Data size (bit size, number of components)
- Opcode (atomic opcode, or LOAD/STORE vs. LOAD_CMASK/STORE_CMASK)
- Mode (typed vs. untyped vs. shared-local vs. scratch)
- Address (and its dimensionality)
- Data (0 for loads, 1 for stores, 2 for atomics)
- Whether we want block access
Reviewed-by: Lionel Landwerlin <lionel.g.landwerlin@intel.com>
Reviewed-by: Caio Oliveira <caio.oliveira@intel.com>
Reviewed-by: Rohan Garg <rohan.garg@intel.com>
Part-of: <https://gitlab.freedesktop.org/mesa/mesa/-/merge_requests/30828>
Post-register allocation, but before brw_fs_lower_vgrfs_to_fixed_grfs,
we have registers with the VGRF file but they are actually fixed GRFs.
brw_print_instructions_to_file() was seeing VGRFs and trying to access
their size, but using bogus register numbers that could be out-of-bound.
Detect when we're post-RA and avoid doing this.
Reviewed-by: Caio Oliveira <caio.oliveira@intel.com>
Part-of: <https://gitlab.freedesktop.org/mesa/mesa/-/merge_requests/30530>