mesa/src/imagination/vulkan/pvr_cmd_buffer.c

6321 lines
223 KiB
C
Raw Normal View History

/*
* Copyright © 2022 Imagination Technologies Ltd.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include <assert.h>
#include <limits.h>
#include <stdbool.h>
#include <stddef.h>
#include <stdint.h>
#include <string.h>
#include <vulkan/vulkan.h>
#include "hwdef/rogue_hw_defs.h"
#include "hwdef/rogue_hw_utils.h"
#include "pvr_bo.h"
#include "pvr_csb.h"
#include "pvr_csb_enum_helpers.h"
#include "pvr_device_info.h"
#include "pvr_end_of_tile.h"
#include "pvr_formats.h"
#include "pvr_hw_pass.h"
#include "pvr_job_common.h"
#include "pvr_job_render.h"
#include "pvr_limits.h"
#include "pvr_pds.h"
#include "pvr_private.h"
#include "pvr_types.h"
#include "pvr_winsys.h"
#include "util/bitscan.h"
#include "util/bitset.h"
#include "util/compiler.h"
#include "util/list.h"
#include "util/macros.h"
#include "util/u_dynarray.h"
#include "util/u_pack_color.h"
#include "vk_alloc.h"
#include "vk_command_buffer.h"
#include "vk_command_pool.h"
#include "vk_common_entrypoints.h"
#include "vk_format.h"
#include "vk_graphics_state.h"
#include "vk_log.h"
#include "vk_object.h"
#include "vk_util.h"
/* Structure used to pass data into pvr_compute_generate_control_stream()
* function.
*/
struct pvr_compute_kernel_info {
pvr_dev_addr_t indirect_buffer_addr;
bool global_offsets_present;
uint32_t usc_common_size;
uint32_t usc_unified_size;
uint32_t pds_temp_size;
uint32_t pds_data_size;
enum PVRX(CDMCTRL_USC_TARGET) usc_target;
bool is_fence;
uint32_t pds_data_offset;
uint32_t pds_code_offset;
enum PVRX(CDMCTRL_SD_TYPE) sd_type;
bool usc_common_shared;
uint32_t local_size[PVR_WORKGROUP_DIMENSIONS];
uint32_t global_size[PVR_WORKGROUP_DIMENSIONS];
uint32_t max_instances;
};
static void pvr_cmd_buffer_free_sub_cmd(struct pvr_cmd_buffer *cmd_buffer,
struct pvr_sub_cmd *sub_cmd)
{
if (sub_cmd->owned) {
switch (sub_cmd->type) {
case PVR_SUB_CMD_TYPE_GRAPHICS:
pvr_csb_finish(&sub_cmd->gfx.control_stream);
pvr_bo_free(cmd_buffer->device, sub_cmd->gfx.depth_bias_bo);
pvr_bo_free(cmd_buffer->device, sub_cmd->gfx.scissor_bo);
break;
case PVR_SUB_CMD_TYPE_COMPUTE:
pvr_csb_finish(&sub_cmd->compute.control_stream);
break;
case PVR_SUB_CMD_TYPE_TRANSFER:
list_for_each_entry_safe (struct pvr_transfer_cmd,
transfer_cmd,
&sub_cmd->transfer.transfer_cmds,
link) {
list_del(&transfer_cmd->link);
vk_free(&cmd_buffer->vk.pool->alloc, transfer_cmd);
}
break;
case PVR_SUB_CMD_TYPE_EVENT:
if (sub_cmd->event.type == PVR_EVENT_TYPE_WAIT)
vk_free(&cmd_buffer->vk.pool->alloc, sub_cmd->event.wait.events);
break;
default:
unreachable("Unsupported sub-command type");
}
}
list_del(&sub_cmd->link);
vk_free(&cmd_buffer->vk.pool->alloc, sub_cmd);
}
static void pvr_cmd_buffer_free_sub_cmds(struct pvr_cmd_buffer *cmd_buffer)
{
list_for_each_entry_safe (struct pvr_sub_cmd,
sub_cmd,
&cmd_buffer->sub_cmds,
link) {
pvr_cmd_buffer_free_sub_cmd(cmd_buffer, sub_cmd);
}
}
static void pvr_cmd_buffer_free_resources(struct pvr_cmd_buffer *cmd_buffer)
{
vk_free(&cmd_buffer->vk.pool->alloc,
cmd_buffer->state.render_pass_info.attachments);
vk_free(&cmd_buffer->vk.pool->alloc,
cmd_buffer->state.render_pass_info.clear_values);
pvr_cmd_buffer_free_sub_cmds(cmd_buffer);
list_for_each_entry_safe (struct pvr_bo, bo, &cmd_buffer->bo_list, link) {
list_del(&bo->link);
pvr_bo_free(cmd_buffer->device, bo);
}
util_dynarray_fini(&cmd_buffer->deferred_csb_commands);
util_dynarray_fini(&cmd_buffer->scissor_array);
util_dynarray_fini(&cmd_buffer->depth_bias_array);
}
static void pvr_cmd_buffer_reset(struct vk_command_buffer *vk_cmd_buffer,
VkCommandBufferResetFlags flags)
{
struct pvr_cmd_buffer *cmd_buffer =
container_of(vk_cmd_buffer, struct pvr_cmd_buffer, vk);
/* FIXME: For now we always free all resources as if
* VK_COMMAND_BUFFER_RESET_RELEASE_RESOURCES_BIT was set.
*/
pvr_cmd_buffer_free_resources(cmd_buffer);
vk_command_buffer_reset(&cmd_buffer->vk);
memset(&cmd_buffer->state, 0, sizeof(cmd_buffer->state));
memset(&cmd_buffer->scissor_words, 0, sizeof(cmd_buffer->scissor_words));
cmd_buffer->usage_flags = 0;
cmd_buffer->state.status = VK_SUCCESS;
}
static void pvr_cmd_buffer_destroy(struct vk_command_buffer *vk_cmd_buffer)
{
struct pvr_cmd_buffer *cmd_buffer =
container_of(vk_cmd_buffer, struct pvr_cmd_buffer, vk);
pvr_cmd_buffer_free_resources(cmd_buffer);
vk_command_buffer_finish(&cmd_buffer->vk);
vk_free(&cmd_buffer->vk.pool->alloc, cmd_buffer);
}
static const struct vk_command_buffer_ops cmd_buffer_ops = {
.reset = pvr_cmd_buffer_reset,
.destroy = pvr_cmd_buffer_destroy,
};
static VkResult pvr_cmd_buffer_create(struct pvr_device *device,
struct vk_command_pool *pool,
VkCommandBufferLevel level,
VkCommandBuffer *pCommandBuffer)
{
struct pvr_cmd_buffer *cmd_buffer;
VkResult result;
cmd_buffer = vk_zalloc(&pool->alloc,
sizeof(*cmd_buffer),
8U,
VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
if (!cmd_buffer)
return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY);
result =
vk_command_buffer_init(pool, &cmd_buffer->vk, &cmd_buffer_ops, level);
if (result != VK_SUCCESS) {
vk_free(&pool->alloc, cmd_buffer);
return result;
}
cmd_buffer->device = device;
util_dynarray_init(&cmd_buffer->depth_bias_array, NULL);
util_dynarray_init(&cmd_buffer->scissor_array, NULL);
util_dynarray_init(&cmd_buffer->deferred_csb_commands, NULL);
cmd_buffer->state.status = VK_SUCCESS;
list_inithead(&cmd_buffer->sub_cmds);
list_inithead(&cmd_buffer->bo_list);
*pCommandBuffer = pvr_cmd_buffer_to_handle(cmd_buffer);
return VK_SUCCESS;
}
VkResult
pvr_AllocateCommandBuffers(VkDevice _device,
const VkCommandBufferAllocateInfo *pAllocateInfo,
VkCommandBuffer *pCommandBuffers)
{
VK_FROM_HANDLE(vk_command_pool, pool, pAllocateInfo->commandPool);
PVR_FROM_HANDLE(pvr_device, device, _device);
VkResult result = VK_SUCCESS;
uint32_t i;
for (i = 0; i < pAllocateInfo->commandBufferCount; i++) {
result = pvr_cmd_buffer_create(device,
pool,
pAllocateInfo->level,
&pCommandBuffers[i]);
if (result != VK_SUCCESS)
break;
}
if (result != VK_SUCCESS) {
while (i--) {
VK_FROM_HANDLE(vk_command_buffer, cmd_buffer, pCommandBuffers[i]);
pvr_cmd_buffer_destroy(cmd_buffer);
}
for (i = 0; i < pAllocateInfo->commandBufferCount; i++)
pCommandBuffers[i] = VK_NULL_HANDLE;
}
return result;
}
static void pvr_cmd_buffer_update_barriers(struct pvr_cmd_buffer *cmd_buffer,
enum pvr_sub_cmd_type type)
{
struct pvr_cmd_buffer_state *state = &cmd_buffer->state;
uint32_t barriers;
switch (type) {
case PVR_SUB_CMD_TYPE_GRAPHICS:
barriers = PVR_PIPELINE_STAGE_GEOM_BIT | PVR_PIPELINE_STAGE_FRAG_BIT;
break;
case PVR_SUB_CMD_TYPE_COMPUTE:
barriers = PVR_PIPELINE_STAGE_COMPUTE_BIT;
break;
case PVR_SUB_CMD_TYPE_TRANSFER:
barriers = PVR_PIPELINE_STAGE_TRANSFER_BIT;
break;
case PVR_SUB_CMD_TYPE_EVENT:
barriers = 0;
break;
default:
unreachable("Unsupported sub-command type");
}
for (uint32_t i = 0; i < ARRAY_SIZE(state->barriers_needed); i++)
state->barriers_needed[i] |= barriers;
}
static VkResult
pvr_cmd_buffer_upload_tables(struct pvr_device *device,
struct pvr_cmd_buffer *cmd_buffer,
struct pvr_sub_cmd_gfx *const sub_cmd)
{
const uint32_t cache_line_size =
rogue_get_slc_cache_line_size(&device->pdevice->dev_info);
VkResult result;
assert(!sub_cmd->depth_bias_bo && !sub_cmd->scissor_bo);
if (cmd_buffer->depth_bias_array.size > 0) {
result =
pvr_gpu_upload(device,
device->heaps.general_heap,
util_dynarray_begin(&cmd_buffer->depth_bias_array),
cmd_buffer->depth_bias_array.size,
cache_line_size,
&sub_cmd->depth_bias_bo);
if (result != VK_SUCCESS)
return result;
}
if (cmd_buffer->scissor_array.size > 0) {
result = pvr_gpu_upload(device,
device->heaps.general_heap,
util_dynarray_begin(&cmd_buffer->scissor_array),
cmd_buffer->scissor_array.size,
cache_line_size,
&sub_cmd->scissor_bo);
if (result != VK_SUCCESS)
goto err_free_depth_bias_bo;
}
util_dynarray_clear(&cmd_buffer->depth_bias_array);
util_dynarray_clear(&cmd_buffer->scissor_array);
return VK_SUCCESS;
err_free_depth_bias_bo:
pvr_bo_free(device, sub_cmd->depth_bias_bo);
sub_cmd->depth_bias_bo = NULL;
return result;
}
static VkResult
pvr_cmd_buffer_emit_ppp_state(struct pvr_cmd_buffer *cmd_buffer,
struct pvr_sub_cmd_gfx *const sub_cmd)
{
struct pvr_framebuffer *framebuffer =
cmd_buffer->state.render_pass_info.framebuffer;
pvr_csb_emit (&sub_cmd->control_stream, VDMCTRL_PPP_STATE0, state0) {
state0.addrmsb = framebuffer->ppp_state_bo->vma->dev_addr;
state0.word_count = framebuffer->ppp_state_size;
}
pvr_csb_emit (&sub_cmd->control_stream, VDMCTRL_PPP_STATE1, state1) {
state1.addrlsb = framebuffer->ppp_state_bo->vma->dev_addr;
}
return VK_SUCCESS;
}
static VkResult
pvr_cmd_buffer_upload_general(struct pvr_cmd_buffer *const cmd_buffer,
const void *const data,
const size_t size,
struct pvr_bo **const pvr_bo_out)
{
struct pvr_device *const device = cmd_buffer->device;
const uint32_t cache_line_size =
rogue_get_slc_cache_line_size(&device->pdevice->dev_info);
struct pvr_bo *pvr_bo;
VkResult result;
result = pvr_gpu_upload(device,
device->heaps.general_heap,
data,
size,
cache_line_size,
&pvr_bo);
if (result != VK_SUCCESS)
return result;
list_add(&pvr_bo->link, &cmd_buffer->bo_list);
*pvr_bo_out = pvr_bo;
return VK_SUCCESS;
}
static VkResult
pvr_cmd_buffer_upload_usc(struct pvr_cmd_buffer *const cmd_buffer,
const void *const code,
const size_t code_size,
uint64_t code_alignment,
struct pvr_bo **const pvr_bo_out)
{
struct pvr_device *const device = cmd_buffer->device;
const uint32_t cache_line_size =
rogue_get_slc_cache_line_size(&device->pdevice->dev_info);
struct pvr_bo *pvr_bo;
VkResult result;
code_alignment = MAX2(code_alignment, cache_line_size);
result =
pvr_gpu_upload_usc(device, code, code_size, code_alignment, &pvr_bo);
if (result != VK_SUCCESS)
return result;
list_add(&pvr_bo->link, &cmd_buffer->bo_list);
*pvr_bo_out = pvr_bo;
return VK_SUCCESS;
}
static VkResult
pvr_cmd_buffer_upload_pds(struct pvr_cmd_buffer *const cmd_buffer,
const uint32_t *data,
uint32_t data_size_dwords,
uint32_t data_alignment,
const uint32_t *code,
uint32_t code_size_dwords,
uint32_t code_alignment,
uint64_t min_alignment,
struct pvr_pds_upload *const pds_upload_out)
{
struct pvr_device *const device = cmd_buffer->device;
VkResult result;
result = pvr_gpu_upload_pds(device,
data,
data_size_dwords,
data_alignment,
code,
code_size_dwords,
code_alignment,
min_alignment,
pds_upload_out);
if (result != VK_SUCCESS)
return result;
list_add(&pds_upload_out->pvr_bo->link, &cmd_buffer->bo_list);
return VK_SUCCESS;
}
static inline VkResult
pvr_cmd_buffer_upload_pds_data(struct pvr_cmd_buffer *const cmd_buffer,
const uint32_t *data,
uint32_t data_size_dwords,
uint32_t data_alignment,
struct pvr_pds_upload *const pds_upload_out)
{
return pvr_cmd_buffer_upload_pds(cmd_buffer,
data,
data_size_dwords,
data_alignment,
NULL,
0,
0,
data_alignment,
pds_upload_out);
}
static VkResult pvr_sub_cmd_gfx_per_job_fragment_programs_create_and_upload(
struct pvr_cmd_buffer *const cmd_buffer,
const uint32_t pbe_cs_words[static const ROGUE_NUM_PBESTATE_STATE_WORDS],
struct pvr_pds_upload *const pds_upload_out)
{
struct pvr_pds_event_program pixel_event_program = {
/* No data to DMA, just a DOUTU needed. */
.num_emit_word_pairs = 0,
};
const uint32_t staging_buffer_size =
cmd_buffer->device->pixel_event_data_size_in_dwords * sizeof(uint32_t);
const VkAllocationCallbacks *const allocator = &cmd_buffer->vk.pool->alloc;
struct pvr_device *const device = cmd_buffer->device;
/* FIXME: This should come from the compiler for the USC pixel program. */
const uint32_t usc_temp_count = 0;
struct pvr_bo *usc_eot_program;
uint8_t *usc_eot_program_ptr;
uint32_t *staging_buffer;
VkResult result;
result = pvr_cmd_buffer_upload_usc(cmd_buffer,
pvr_end_of_tile_program,
sizeof(pvr_end_of_tile_program),
4,
&usc_eot_program);
if (result != VK_SUCCESS)
return result;
assert((pbe_cs_words[1] & 0x3F) == 0x20);
/* FIXME: Stop patching the framebuffer address (this will require the
* end-of-tile program to be generated at run-time).
*/
pvr_bo_cpu_map(device, usc_eot_program);
usc_eot_program_ptr = usc_eot_program->bo->map;
usc_eot_program_ptr[6] = (pbe_cs_words[0] >> 0) & 0xFF;
usc_eot_program_ptr[7] = (pbe_cs_words[0] >> 8) & 0xFF;
usc_eot_program_ptr[8] = (pbe_cs_words[0] >> 16) & 0xFF;
usc_eot_program_ptr[9] = (pbe_cs_words[0] >> 24) & 0xFF;
pvr_bo_cpu_unmap(device, usc_eot_program);
pvr_pds_setup_doutu(&pixel_event_program.task_control,
usc_eot_program->vma->dev_addr.addr,
usc_temp_count,
PVRX(PDSINST_DOUTU_SAMPLE_RATE_INSTANCE),
false);
/* TODO: We could skip allocating this and generate directly into the device
* buffer thus removing one allocation and memcpy() per job. Would this
* speed up things in a noticeable way?
*/
staging_buffer = vk_alloc(allocator,
staging_buffer_size,
8,
VK_SYSTEM_ALLOCATION_SCOPE_COMMAND);
if (!staging_buffer) {
result = vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY);
goto err_free_usc_pixel_program;
}
/* Generate the data segment. The code segment was uploaded earlier when
* setting up the PDS static heap data.
*/
pvr_pds_generate_pixel_event_data_segment(&pixel_event_program,
staging_buffer,
&device->pdevice->dev_info);
result = pvr_cmd_buffer_upload_pds_data(
cmd_buffer,
staging_buffer,
cmd_buffer->device->pixel_event_data_size_in_dwords,
4,
pds_upload_out);
if (result != VK_SUCCESS)
goto err_free_pixel_event_staging_buffer;
vk_free(allocator, staging_buffer);
return VK_SUCCESS;
err_free_pixel_event_staging_buffer:
vk_free(allocator, staging_buffer);
err_free_usc_pixel_program:
list_del(&usc_eot_program->link);
pvr_bo_free(device, usc_eot_program);
return result;
}
static VkResult
pvr_load_op_constants_create_and_upload(struct pvr_cmd_buffer *cmd_buffer,
const struct pvr_load_op *load_op,
pvr_dev_addr_t *const addr_out)
{
const struct pvr_render_pass_info *render_pass_info =
&cmd_buffer->state.render_pass_info;
const struct pvr_render_pass *pass = render_pass_info->pass;
const struct pvr_renderpass_hwsetup_render *hw_render = load_op->hw_render;
const struct pvr_renderpass_colorinit *color_init =
&hw_render->color_init[0];
const struct pvr_render_pass_attachment *attachment =
&pass->attachments[color_init->index];
const VkClearValue *clear_value =
&render_pass_info->clear_values[color_init->index];
uint32_t hw_clear_value[PVR_CLEAR_COLOR_ARRAY_SIZE];
struct pvr_bo *clear_bo;
VkResult result;
pvr_finishme("Add missing load op data support");
assert(load_op->is_hw_object);
assert(hw_render->color_init_count == 1);
assert(vk_format_get_blocksize(attachment->vk_format) <=
sizeof(hw_clear_value));
/* FIXME: add support for VK_ATTACHMENT_LOAD_OP_LOAD. */
assert(color_init->op == VK_ATTACHMENT_LOAD_OP_CLEAR);
/* FIXME: do this at the point we store the clear values? */
pvr_get_hw_clear_color(attachment->vk_format,
clear_value->color,
hw_clear_value);
result = pvr_cmd_buffer_upload_general(cmd_buffer,
&hw_clear_value[0],
sizeof(hw_clear_value),
&clear_bo);
if (result != VK_SUCCESS)
return result;
*addr_out = clear_bo->vma->dev_addr;
return VK_SUCCESS;
}
static VkResult pvr_load_op_pds_data_create_and_upload(
struct pvr_cmd_buffer *cmd_buffer,
const struct pvr_load_op *load_op,
pvr_dev_addr_t constants_addr,
struct pvr_pds_upload *const pds_upload_out)
{
struct pvr_device *device = cmd_buffer->device;
const struct pvr_device_info *dev_info = &device->pdevice->dev_info;
struct pvr_pds_pixel_shader_sa_program program = { 0 };
uint32_t staging_buffer_size;
uint32_t *staging_buffer;
VkResult result;
program.num_texture_dma_kicks = 1;
pvr_csb_pack (&program.texture_dma_address[0],
PDSINST_DOUT_FIELDS_DOUTD_SRC0,
value) {
value.sbase = constants_addr;
}
pvr_csb_pack (&program.texture_dma_control[0],
PDSINST_DOUT_FIELDS_DOUTD_SRC1,
value) {
value.dest = PVRX(PDSINST_DOUTD_DEST_COMMON_STORE);
value.a0 = load_op->shareds_dest_offset;
value.bsize = load_op->shareds_count;
}
pvr_pds_set_sizes_pixel_shader_sa_texture_data(&program, dev_info);
staging_buffer_size = program.data_size * sizeof(*staging_buffer);
staging_buffer = vk_alloc(&cmd_buffer->vk.pool->alloc,
staging_buffer_size,
8,
VK_SYSTEM_ALLOCATION_SCOPE_COMMAND);
if (!staging_buffer)
return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY);
pvr_pds_generate_pixel_shader_sa_texture_state_data(&program,
staging_buffer,
dev_info);
result = pvr_cmd_buffer_upload_pds_data(cmd_buffer,
staging_buffer,
program.data_size,
1,
pds_upload_out);
if (result != VK_SUCCESS) {
vk_free(&cmd_buffer->vk.pool->alloc, staging_buffer);
return result;
}
vk_free(&cmd_buffer->vk.pool->alloc, staging_buffer);
return VK_SUCCESS;
}
/* FIXME: Should this function be specific to the HW background object, in
* which case its name should be changed, or should it have the load op
* structure passed in?
*/
static VkResult
pvr_load_op_data_create_and_upload(struct pvr_cmd_buffer *cmd_buffer,
const struct pvr_load_op *load_op,
struct pvr_pds_upload *const pds_upload_out)
{
pvr_dev_addr_t constants_addr;
VkResult result;
result = pvr_load_op_constants_create_and_upload(cmd_buffer,
load_op,
&constants_addr);
if (result != VK_SUCCESS)
return result;
return pvr_load_op_pds_data_create_and_upload(cmd_buffer,
load_op,
constants_addr,
pds_upload_out);
}
static void pvr_pds_bgnd_pack_state(
const struct pvr_load_op *load_op,
const struct pvr_pds_upload *load_op_program,
uint64_t pds_reg_values[static const ROGUE_NUM_CR_PDS_BGRND_WORDS])
{
pvr_csb_pack (&pds_reg_values[0], CR_PDS_BGRND0_BASE, value) {
value.shader_addr = PVR_DEV_ADDR(load_op->pds_frag_prog.data_offset);
value.texunicode_addr =
PVR_DEV_ADDR(load_op->pds_tex_state_prog.code_offset);
}
pvr_csb_pack (&pds_reg_values[1], CR_PDS_BGRND1_BASE, value) {
value.texturedata_addr = PVR_DEV_ADDR(load_op_program->data_offset);
}
pvr_csb_pack (&pds_reg_values[2], CR_PDS_BGRND3_SIZEINFO, value) {
value.usc_sharedsize =
DIV_ROUND_UP(load_op->const_shareds_count,
PVRX(CR_PDS_BGRND3_SIZEINFO_USC_SHAREDSIZE_UNIT_SIZE));
value.pds_texturestatesize = DIV_ROUND_UP(
load_op_program->data_size,
PVRX(CR_PDS_BGRND3_SIZEINFO_PDS_TEXTURESTATESIZE_UNIT_SIZE));
value.pds_tempsize =
DIV_ROUND_UP(load_op->temps_count,
PVRX(CR_PDS_BGRND3_SIZEINFO_PDS_TEMPSIZE_UNIT_SIZE));
}
}
/**
* \brief Calculates the stride in pixels based on the pitch in bytes and pixel
* format.
*
* \param[in] pitch Width pitch in bytes.
* \param[in] vk_format Vulkan image format.
* \return Stride in pixels.
*/
static inline uint32_t pvr_stride_from_pitch(uint32_t pitch, VkFormat vk_format)
{
const unsigned int cpp = vk_format_get_blocksize(vk_format);
assert(pitch % cpp == 0);
return pitch / cpp;
}
static void pvr_setup_pbe_state(
const struct pvr_device_info *dev_info,
struct pvr_framebuffer *framebuffer,
uint32_t mrt_index,
const struct usc_mrt_resource *mrt_resource,
const struct pvr_image_view *const iview,
const VkRect2D *render_area,
const bool down_scale,
const uint32_t samples,
uint32_t pbe_cs_words[static const ROGUE_NUM_PBESTATE_STATE_WORDS],
uint64_t pbe_reg_words[static const ROGUE_NUM_PBESTATE_REG_WORDS])
{
const struct pvr_image *image = vk_to_pvr_image(iview->vk.image);
uint32_t level_pitch = image->mip_levels[iview->vk.base_mip_level].pitch;
struct pvr_pbe_surf_params surface_params;
struct pvr_pbe_render_params render_params;
bool with_packed_usc_channel;
const uint8_t *swizzle;
uint32_t position;
/* down_scale should be true when performing a resolve, in which case there
* should be more than one sample.
*/
assert((down_scale && samples > 1U) || (!down_scale && samples == 1U));
/* Setup surface parameters. */
if (PVR_HAS_FEATURE(dev_info, usc_f16sop_u8)) {
switch (iview->vk.format) {
case VK_FORMAT_B8G8R8A8_UNORM:
with_packed_usc_channel = true;
break;
case VK_FORMAT_D32_SFLOAT:
with_packed_usc_channel = false;
break;
default:
unreachable("Unsupported Vulkan image format");
}
} else {
with_packed_usc_channel = false;
}
swizzle = pvr_get_format_swizzle(iview->vk.format);
memcpy(surface_params.swizzle, swizzle, sizeof(surface_params.swizzle));
pvr_pbe_get_src_format_and_gamma(iview->vk.format,
PVR_PBE_GAMMA_NONE,
with_packed_usc_channel,
&surface_params.source_format,
&surface_params.gamma);
surface_params.is_normalized = vk_format_is_normalized(iview->vk.format);
surface_params.pbe_packmode = pvr_get_pbe_packmode(iview->vk.format);
surface_params.nr_components = vk_format_get_nr_components(iview->vk.format);
/* FIXME: Should we have an inline function to return the address of a mip
* level?
*/
surface_params.addr =
PVR_DEV_ADDR_OFFSET(image->vma->dev_addr,
image->mip_levels[iview->vk.base_mip_level].offset);
surface_params.mem_layout = image->memlayout;
surface_params.stride = pvr_stride_from_pitch(level_pitch, iview->vk.format);
surface_params.depth = iview->vk.extent.depth;
surface_params.width = iview->vk.extent.width;
surface_params.height = iview->vk.extent.height;
surface_params.z_only_render = false;
surface_params.down_scale = down_scale;
surface_params.msaa_mode = samples;
/* Setup render parameters. */
if (mrt_resource->type == USC_MRT_RESOURCE_TYPE_MEMORY) {
position = mrt_resource->mem.offset_dw;
} else {
assert(mrt_resource->type == USC_MRT_RESOURCE_TYPE_OUTPUT_REG);
assert(mrt_resource->reg.offset == 0);
position = mrt_resource->reg.output_reg;
}
assert(position <= 3 || PVR_HAS_FEATURE(dev_info, eight_output_registers));
switch (position) {
case 0:
case 4:
render_params.source_start = PVR_PBE_STARTPOS_BIT0;
break;
case 1:
case 5:
render_params.source_start = PVR_PBE_STARTPOS_BIT32;
break;
case 2:
case 6:
render_params.source_start = PVR_PBE_STARTPOS_BIT64;
break;
case 3:
case 7:
render_params.source_start = PVR_PBE_STARTPOS_BIT96;
break;
default:
assert(!"Invalid output register");
break;
}
render_params.min_x_clip = MAX2(0, render_area->offset.x);
render_params.min_y_clip = MAX2(0, render_area->offset.y);
render_params.max_x_clip =
MIN2(framebuffer->width,
render_area->offset.x + render_area->extent.width) -
1;
render_params.max_y_clip =
MIN2(framebuffer->height,
render_area->offset.y + render_area->extent.height) -
1;
render_params.slice = 0;
render_params.mrt_index = mrt_index;
pvr_pbe_pack_state(dev_info,
&surface_params,
&render_params,
pbe_cs_words,
pbe_reg_words);
}
static struct pvr_render_target *
pvr_get_render_target(const struct pvr_render_pass *pass,
const struct pvr_framebuffer *framebuffer,
uint32_t idx)
{
const struct pvr_renderpass_hwsetup_render *hw_render =
&pass->hw_setup->renders[idx];
uint32_t rt_idx = 0;
switch (hw_render->sample_count) {
case 1:
case 2:
case 4:
case 8:
rt_idx = util_logbase2(hw_render->sample_count);
break;
default:
unreachable("Unsupported sample count");
break;
}
return &framebuffer->render_targets[rt_idx];
}
static uint32_t
pvr_pass_get_pixel_output_width(const struct pvr_render_pass *pass,
uint32_t idx,
const struct pvr_device_info *dev_info)
{
const struct pvr_renderpass_hwsetup_render *hw_render =
&pass->hw_setup->renders[idx];
/* Default value based on the maximum value found in all existing cores. The
* maximum is used as this is being treated as a lower bound, making it a
* "safer" choice than the minimum value found in all existing cores.
*/
const uint32_t min_output_regs =
PVR_GET_FEATURE_VALUE(dev_info, usc_min_output_registers_per_pix, 2U);
const uint32_t width = MAX2(hw_render->output_regs_count, min_output_regs);
return util_next_power_of_two(width);
}
static VkResult pvr_sub_cmd_gfx_job_init(const struct pvr_device_info *dev_info,
struct pvr_cmd_buffer *cmd_buffer,
struct pvr_sub_cmd_gfx *sub_cmd)
{
const struct vk_dynamic_graphics_state *dynamic_state =
&cmd_buffer->vk.dynamic_graphics_state;
struct pvr_render_pass_info *render_pass_info =
&cmd_buffer->state.render_pass_info;
const struct pvr_renderpass_hwsetup_render *hw_render =
&render_pass_info->pass->hw_setup->renders[sub_cmd->hw_render_idx];
struct pvr_render_job *job = &sub_cmd->job;
struct pvr_pds_upload pds_pixel_event_program;
uint32_t pbe_cs_words[PVR_MAX_COLOR_ATTACHMENTS]
[ROGUE_NUM_PBESTATE_STATE_WORDS] = { 0 };
struct pvr_render_target *render_target;
VkResult result;
assert(hw_render->eot_surface_count < ARRAY_SIZE(pbe_cs_words));
for (uint32_t i = 0; i < hw_render->eot_surface_count; i++) {
const struct pvr_renderpass_hwsetup_eot_surface *surface =
&hw_render->eot_surfaces[i];
const struct pvr_image_view *iview =
render_pass_info->attachments[surface->attachment_idx];
const struct usc_mrt_resource *mrt_resource =
&hw_render->eot_setup.mrt_resources[surface->mrt_idx];
uint32_t samples = 1;
if (surface->need_resolve) {
const struct pvr_image_view *resolve_src =
render_pass_info->attachments[surface->src_attachment_idx];
/* Attachments that are the destination of resolve operations must be
* loaded before their next use.
*/
render_pass_info->enable_bg_tag = true;
render_pass_info->process_empty_tiles = true;
if (surface->resolve_type != PVR_RESOLVE_TYPE_PBE)
continue;
samples = (uint32_t)resolve_src->vk.image->samples;
}
pvr_setup_pbe_state(dev_info,
render_pass_info->framebuffer,
surface->mrt_idx,
mrt_resource,
iview,
&render_pass_info->render_area,
surface->need_resolve,
samples,
pbe_cs_words[i],
job->pbe_reg_words[i]);
}
/* FIXME: The fragment program only supports a single surface at present. */
assert(hw_render->eot_surface_count == 1);
result = pvr_sub_cmd_gfx_per_job_fragment_programs_create_and_upload(
cmd_buffer,
pbe_cs_words[0],
&pds_pixel_event_program);
if (result != VK_SUCCESS)
return result;
job->pds_pixel_event_data_offset = pds_pixel_event_program.data_offset;
/* FIXME: Don't do this if there is a barrier load. */
if (render_pass_info->enable_bg_tag) {
const struct pvr_load_op *load_op = hw_render->load_op;
struct pvr_pds_upload load_op_program;
/* FIXME: Should we free the PDS pixel event data or let it be freed
* when the pool gets emptied?
*/
result = pvr_load_op_data_create_and_upload(cmd_buffer,
load_op,
&load_op_program);
if (result != VK_SUCCESS)
return result;
pvr_pds_bgnd_pack_state(load_op,
&load_op_program,
job->pds_bgnd_reg_values);
}
job->enable_bg_tag = render_pass_info->enable_bg_tag;
job->process_empty_tiles = render_pass_info->process_empty_tiles;
render_target = pvr_get_render_target(render_pass_info->pass,
render_pass_info->framebuffer,
sub_cmd->hw_render_idx);
job->rt_dataset = render_target->rt_dataset;
job->ctrl_stream_addr = pvr_csb_get_start_address(&sub_cmd->control_stream);
/* FIXME: Need to set up the border color table at device creation
* time. Set to invalid for the time being.
*/
job->border_colour_table_addr = PVR_DEV_ADDR_INVALID;
if (sub_cmd->depth_bias_bo)
job->depth_bias_table_addr = sub_cmd->depth_bias_bo->vma->dev_addr;
else
job->depth_bias_table_addr = PVR_DEV_ADDR_INVALID;
if (sub_cmd->scissor_bo)
job->scissor_table_addr = sub_cmd->scissor_bo->vma->dev_addr;
else
job->scissor_table_addr = PVR_DEV_ADDR_INVALID;
job->pixel_output_width =
pvr_pass_get_pixel_output_width(render_pass_info->pass,
sub_cmd->hw_render_idx,
dev_info);
/* Setup depth/stencil job information. */
if (hw_render->ds_attach_idx != VK_ATTACHMENT_UNUSED) {
struct pvr_image_view *iview =
render_pass_info->attachments[hw_render->ds_attach_idx];
const struct pvr_image *image = vk_to_pvr_image(iview->vk.image);
if (vk_format_has_depth(image->vk.format)) {
uint32_t level_pitch =
image->mip_levels[iview->vk.base_mip_level].pitch;
/* FIXME: Is this sufficient for depth buffers? */
job->depth_addr = image->dev_addr;
job->depth_stride =
pvr_stride_from_pitch(level_pitch, iview->vk.format);
job->depth_height = iview->vk.extent.height;
job->depth_physical_width =
u_minify(image->physical_extent.width, iview->vk.base_mip_level);
job->depth_physical_height =
u_minify(image->physical_extent.height, iview->vk.base_mip_level);
job->depth_layer_size = image->layer_size;
if (hw_render->ds_attach_idx < render_pass_info->clear_value_count) {
VkClearValue *clear_values =
&render_pass_info->clear_values[hw_render->ds_attach_idx];
job->depth_clear_value = clear_values->depthStencil.depth;
} else {
job->depth_clear_value = 1.0f;
}
job->depth_vk_format = iview->vk.format;
job->depth_memlayout = image->memlayout;
} else {
job->depth_addr = PVR_DEV_ADDR_INVALID;
job->depth_stride = 0;
job->depth_height = 0;
job->depth_physical_width = 0;
job->depth_physical_height = 0;
job->depth_layer_size = 0;
job->depth_clear_value = 1.0f;
job->depth_vk_format = VK_FORMAT_UNDEFINED;
job->depth_memlayout = PVR_MEMLAYOUT_LINEAR;
}
if (vk_format_has_stencil(image->vk.format)) {
/* FIXME: Is this sufficient for stencil buffers? */
job->stencil_addr = image->dev_addr;
} else {
job->stencil_addr = PVR_DEV_ADDR_INVALID;
}
} else {
job->depth_addr = PVR_DEV_ADDR_INVALID;
job->depth_stride = 0;
job->depth_height = 0;
job->depth_physical_width = 0;
job->depth_physical_height = 0;
job->depth_layer_size = 0;
job->depth_clear_value = 1.0f;
job->depth_vk_format = VK_FORMAT_UNDEFINED;
job->depth_memlayout = PVR_MEMLAYOUT_LINEAR;
job->stencil_addr = PVR_DEV_ADDR_INVALID;
}
if (hw_render->ds_attach_idx != VK_ATTACHMENT_UNUSED) {
struct pvr_image_view *iview =
render_pass_info->attachments[hw_render->ds_attach_idx];
const struct pvr_image *image = vk_to_pvr_image(iview->vk.image);
/* If the HW render pass has a valid depth/stencil surface, determine the
* sample count from the attachment's image.
*/
job->samples = image->vk.samples;
} else if (hw_render->output_regs_count) {
/* If the HW render pass has output registers, we have color attachments
* to write to, so determine the sample count from the count specified for
* every color attachment in this render.
*/
job->samples = hw_render->sample_count;
} else if (cmd_buffer->state.gfx_pipeline) {
/* If the HW render pass has no color or depth/stencil attachments, we
* determine the sample count from the count given during pipeline
* creation.
*/
job->samples = dynamic_state->ms.rasterization_samples;
} else if (render_pass_info->pass->attachment_count > 0) {
/* If we get here, we have a render pass with subpasses containing no
* attachments. The next best thing is largest of the sample counts
* specified by the render pass attachment descriptions.
*/
job->samples = render_pass_info->pass->max_sample_count;
} else {
/* No appropriate framebuffer attachment is available. */
mesa_logw("Defaulting render job sample count to 1.");
job->samples = VK_SAMPLE_COUNT_1_BIT;
}
if (sub_cmd->max_tiles_in_flight ==
PVR_GET_FEATURE_VALUE(dev_info, isp_max_tiles_in_flight, 1U)) {
/* Use the default limit based on the partition store. */
job->max_tiles_in_flight = 0U;
} else {
job->max_tiles_in_flight = sub_cmd->max_tiles_in_flight;
}
job->frag_uses_atomic_ops = sub_cmd->frag_uses_atomic_ops;
job->disable_compute_overlap = false;
job->max_shared_registers = cmd_buffer->state.max_shared_regs;
job->run_frag = true;
job->geometry_terminate = true;
return VK_SUCCESS;
}
/* Number of shareds used in the Issue Data Fence(IDF)/Wait Data Fence(WDF)
* kernel.
*/
#define PVR_IDF_WDF_IN_REGISTER_CONST_COUNT 12U
static void
pvr_sub_cmd_compute_job_init(const struct pvr_physical_device *pdevice,
struct pvr_cmd_buffer *cmd_buffer,
struct pvr_sub_cmd_compute *sub_cmd)
{
sub_cmd->num_shared_regs = MAX2(cmd_buffer->device->idfwdf_state.usc_shareds,
cmd_buffer->state.max_shared_regs);
cmd_buffer->state.max_shared_regs = 0U;
}
#define PIXEL_ALLOCATION_SIZE_MAX_IN_BLOCKS \
(1024 / PVRX(CDMCTRL_KERNEL0_USC_COMMON_SIZE_UNIT_SIZE))
static uint32_t
pvr_compute_flat_slot_size(const struct pvr_physical_device *pdevice,
uint32_t coeff_regs_count,
bool use_barrier,
uint32_t total_workitems)
{
const struct pvr_device_runtime_info *dev_runtime_info =
&pdevice->dev_runtime_info;
const struct pvr_device_info *dev_info = &pdevice->dev_info;
uint32_t max_workgroups_per_task = ROGUE_CDM_MAX_PACKED_WORKGROUPS_PER_TASK;
uint32_t max_avail_coeff_regs =
dev_runtime_info->cdm_max_local_mem_size_regs;
uint32_t localstore_chunks_count =
DIV_ROUND_UP(coeff_regs_count << 2,
PVRX(CDMCTRL_KERNEL0_USC_COMMON_SIZE_UNIT_SIZE));
/* Ensure that we cannot have more workgroups in a slot than the available
* number of coefficients allow us to have.
*/
if (coeff_regs_count > 0U) {
/* If the geometry or fragment jobs can overlap with the compute job, or
* if there is a vertex shader already running then we need to consider
* this in calculating max allowed work-groups.
*/
if (PVR_HAS_QUIRK(dev_info, 52354) &&
(PVR_HAS_FEATURE(dev_info, compute_overlap) ||
PVR_HAS_FEATURE(dev_info, gs_rta_support))) {
/* Solve for n (number of work-groups per task). All values are in
* size of common store alloc blocks:
*
* n + (2n + 7) * (local_memory_size_max - 1) =
* (coefficient_memory_pool_size) - (7 * pixel_allocation_size_max)
* ==>
* n + 2n * (local_memory_size_max - 1) =
* (coefficient_memory_pool_size) - (7 * pixel_allocation_size_max)
* - (7 * (local_memory_size_max - 1))
* ==>
* n * (1 + 2 * (local_memory_size_max - 1)) =
* (coefficient_memory_pool_size) - (7 * pixel_allocation_size_max)
* - (7 * (local_memory_size_max - 1))
* ==>
* n = ((coefficient_memory_pool_size) -
* (7 * pixel_allocation_size_max) -
* (7 * (local_memory_size_max - 1)) / (1 +
* 2 * (local_memory_size_max - 1)))
*/
uint32_t max_common_store_blocks =
DIV_ROUND_UP(max_avail_coeff_regs * 4U,
PVRX(CDMCTRL_KERNEL0_USC_COMMON_SIZE_UNIT_SIZE));
/* (coefficient_memory_pool_size) - (7 * pixel_allocation_size_max)
*/
max_common_store_blocks -= ROGUE_MAX_OVERLAPPED_PIXEL_TASK_INSTANCES *
PIXEL_ALLOCATION_SIZE_MAX_IN_BLOCKS;
/* - (7 * (local_memory_size_max - 1)) */
max_common_store_blocks -= (ROGUE_MAX_OVERLAPPED_PIXEL_TASK_INSTANCES *
(localstore_chunks_count - 1U));
/* Divide by (1 + 2 * (local_memory_size_max - 1)) */
max_workgroups_per_task = max_common_store_blocks /
(1U + 2U * (localstore_chunks_count - 1U));
max_workgroups_per_task =
MIN2(max_workgroups_per_task,
ROGUE_CDM_MAX_PACKED_WORKGROUPS_PER_TASK);
} else {
max_workgroups_per_task =
MIN2((max_avail_coeff_regs / coeff_regs_count),
max_workgroups_per_task);
}
}
/* max_workgroups_per_task should at least be one. */
assert(max_workgroups_per_task >= 1U);
if (total_workitems >= ROGUE_MAX_INSTANCES_PER_TASK) {
/* In this case, the work group size will have been padded up to the
* next ROGUE_MAX_INSTANCES_PER_TASK so we just set max instances to be
* ROGUE_MAX_INSTANCES_PER_TASK.
*/
return ROGUE_MAX_INSTANCES_PER_TASK;
}
/* In this case, the number of instances in the slot must be clamped to
* accommodate whole work-groups only.
*/
if (PVR_HAS_QUIRK(dev_info, 49032) || use_barrier) {
max_workgroups_per_task =
MIN2(max_workgroups_per_task,
ROGUE_MAX_INSTANCES_PER_TASK / total_workitems);
return total_workitems * max_workgroups_per_task;
}
return MIN2(total_workitems * max_workgroups_per_task,
ROGUE_MAX_INSTANCES_PER_TASK);
}
static void
pvr_compute_generate_control_stream(struct pvr_csb *csb,
struct pvr_sub_cmd_compute *sub_cmd,
const struct pvr_compute_kernel_info *info)
{
/* Compute kernel 0. */
pvr_csb_emit (csb, CDMCTRL_KERNEL0, kernel0) {
kernel0.indirect_present = !!info->indirect_buffer_addr.addr;
kernel0.global_offsets_present = info->global_offsets_present;
kernel0.usc_common_size = info->usc_common_size;
kernel0.usc_unified_size = info->usc_unified_size;
kernel0.pds_temp_size = info->pds_temp_size;
kernel0.pds_data_size = info->pds_data_size;
kernel0.usc_target = info->usc_target;
kernel0.fence = info->is_fence;
}
/* Compute kernel 1. */
pvr_csb_emit (csb, CDMCTRL_KERNEL1, kernel1) {
kernel1.data_addr = PVR_DEV_ADDR(info->pds_data_offset);
kernel1.sd_type = info->sd_type;
kernel1.usc_common_shared = info->usc_common_shared;
}
/* Compute kernel 2. */
pvr_csb_emit (csb, CDMCTRL_KERNEL2, kernel2) {
kernel2.code_addr = PVR_DEV_ADDR(info->pds_code_offset);
}
if (info->indirect_buffer_addr.addr) {
/* Compute kernel 6. */
pvr_csb_emit (csb, CDMCTRL_KERNEL6, kernel6) {
kernel6.indirect_addrmsb = info->indirect_buffer_addr;
}
/* Compute kernel 7. */
pvr_csb_emit (csb, CDMCTRL_KERNEL7, kernel7) {
kernel7.indirect_addrlsb = info->indirect_buffer_addr;
}
} else {
/* Compute kernel 3. */
pvr_csb_emit (csb, CDMCTRL_KERNEL3, kernel3) {
assert(info->global_size[0U] > 0U);
kernel3.workgroup_x = info->global_size[0U] - 1U;
}
/* Compute kernel 4. */
pvr_csb_emit (csb, CDMCTRL_KERNEL4, kernel4) {
assert(info->global_size[1U] > 0U);
kernel4.workgroup_y = info->global_size[1U] - 1U;
}
/* Compute kernel 5. */
pvr_csb_emit (csb, CDMCTRL_KERNEL5, kernel5) {
assert(info->global_size[2U] > 0U);
kernel5.workgroup_z = info->global_size[2U] - 1U;
}
}
/* Compute kernel 8. */
pvr_csb_emit (csb, CDMCTRL_KERNEL8, kernel8) {
if (info->max_instances == ROGUE_MAX_INSTANCES_PER_TASK)
kernel8.max_instances = 0U;
else
kernel8.max_instances = info->max_instances;
assert(info->local_size[0U] > 0U);
kernel8.workgroup_size_x = info->local_size[0U] - 1U;
assert(info->local_size[1U] > 0U);
kernel8.workgroup_size_y = info->local_size[1U] - 1U;
assert(info->local_size[2U] > 0U);
kernel8.workgroup_size_z = info->local_size[2U] - 1U;
}
/* Track the highest amount of shared registers usage in this dispatch.
* This is used by the FW for context switching, so must be large enough
* to contain all the shared registers that might be in use for this compute
* job. Coefficients don't need to be included as the context switch will not
* happen within the execution of a single workgroup, thus nothing needs to
* be preserved.
*/
if (info->usc_common_shared) {
sub_cmd->num_shared_regs =
MAX2(sub_cmd->num_shared_regs, info->usc_common_size);
}
}
/* TODO: This can be pre-packed and uploaded directly. Would that provide any
* speed up?
*/
static void
pvr_compute_generate_idfwdf(struct pvr_cmd_buffer *cmd_buffer,
struct pvr_sub_cmd_compute *const sub_cmd)
{
struct pvr_cmd_buffer_state *state = &cmd_buffer->state;
bool *const is_sw_barier_required =
&state->current_sub_cmd->compute.pds_sw_barrier_requires_clearing;
const struct pvr_physical_device *pdevice = cmd_buffer->device->pdevice;
struct pvr_csb *csb = &sub_cmd->control_stream;
const struct pvr_pds_upload *program;
if (PVR_NEED_SW_COMPUTE_PDS_BARRIER(&pdevice->dev_info) &&
*is_sw_barier_required) {
*is_sw_barier_required = false;
program = &cmd_buffer->device->idfwdf_state.sw_compute_barrier_pds;
} else {
program = &cmd_buffer->device->idfwdf_state.pds;
}
struct pvr_compute_kernel_info info = {
.indirect_buffer_addr = PVR_DEV_ADDR_INVALID,
.global_offsets_present = false,
.usc_common_size =
DIV_ROUND_UP(cmd_buffer->device->idfwdf_state.usc_shareds << 2,
PVRX(CDMCTRL_KERNEL0_USC_COMMON_SIZE_UNIT_SIZE)),
.usc_unified_size = 0U,
.pds_temp_size = 0U,
.pds_data_size =
DIV_ROUND_UP(program->data_size << 2,
PVRX(CDMCTRL_KERNEL0_PDS_DATA_SIZE_UNIT_SIZE)),
.usc_target = PVRX(CDMCTRL_USC_TARGET_ALL),
.is_fence = false,
.pds_data_offset = program->data_offset,
.sd_type = PVRX(CDMCTRL_SD_TYPE_USC),
.usc_common_shared = true,
.pds_code_offset = program->code_offset,
.global_size = { 1U, 1U, 1U },
.local_size = { 1U, 1U, 1U },
};
/* We don't need to pad work-group size for this case. */
info.max_instances =
pvr_compute_flat_slot_size(pdevice,
cmd_buffer->device->idfwdf_state.usc_shareds,
false,
1U);
pvr_compute_generate_control_stream(csb, sub_cmd, &info);
}
static void
pvr_compute_generate_fence(struct pvr_cmd_buffer *cmd_buffer,
struct pvr_sub_cmd_compute *const sub_cmd,
bool deallocate_shareds)
{
const struct pvr_pds_upload *program =
&cmd_buffer->device->pds_compute_fence_program;
const struct pvr_physical_device *pdevice = cmd_buffer->device->pdevice;
struct pvr_csb *csb = &sub_cmd->control_stream;
struct pvr_compute_kernel_info info = {
.indirect_buffer_addr = PVR_DEV_ADDR_INVALID,
.global_offsets_present = false,
.usc_common_size = 0U,
.usc_unified_size = 0U,
.pds_temp_size = 0U,
.pds_data_size =
DIV_ROUND_UP(program->data_size << 2,
PVRX(CDMCTRL_KERNEL0_PDS_DATA_SIZE_UNIT_SIZE)),
.usc_target = PVRX(CDMCTRL_USC_TARGET_ANY),
.is_fence = true,
.pds_data_offset = program->data_offset,
.sd_type = PVRX(CDMCTRL_SD_TYPE_PDS),
.usc_common_shared = deallocate_shareds,
.pds_code_offset = program->code_offset,
.global_size = { 1U, 1U, 1U },
.local_size = { 1U, 1U, 1U },
};
/* We don't need to pad work-group size for this case. */
/* Here we calculate the slot size. This can depend on the use of barriers,
* local memory, BRN's or other factors.
*/
info.max_instances = pvr_compute_flat_slot_size(pdevice, 0U, false, 1U);
pvr_compute_generate_control_stream(csb, sub_cmd, &info);
}
static VkResult pvr_cmd_buffer_end_sub_cmd(struct pvr_cmd_buffer *cmd_buffer)
{
struct pvr_cmd_buffer_state *state = &cmd_buffer->state;
struct pvr_sub_cmd *sub_cmd = state->current_sub_cmd;
struct pvr_device *device = cmd_buffer->device;
VkResult result;
/* FIXME: Is this NULL check required because this function is called from
* pvr_resolve_unemitted_resolve_attachments()? See comment about this
* function being called twice in a row in pvr_CmdEndRenderPass().
*/
if (!sub_cmd)
return VK_SUCCESS;
if (!sub_cmd->owned) {
state->current_sub_cmd = NULL;
return VK_SUCCESS;
}
switch (sub_cmd->type) {
case PVR_SUB_CMD_TYPE_GRAPHICS: {
struct pvr_sub_cmd_gfx *const gfx_sub_cmd = &sub_cmd->gfx;
if (cmd_buffer->vk.level == VK_COMMAND_BUFFER_LEVEL_SECONDARY) {
result = pvr_csb_emit_return(&gfx_sub_cmd->control_stream);
if (result != VK_SUCCESS) {
state->status = result;
return result;
}
break;
}
/* TODO: Check if the sub_cmd can be skipped based on
* sub_cmd->gfx.empty_cmd flag.
*/
result = pvr_cmd_buffer_upload_tables(device, cmd_buffer, gfx_sub_cmd);
if (result != VK_SUCCESS) {
state->status = result;
return result;
}
result = pvr_cmd_buffer_emit_ppp_state(cmd_buffer, gfx_sub_cmd);
if (result != VK_SUCCESS) {
state->status = result;
return result;
}
result = pvr_csb_emit_terminate(&gfx_sub_cmd->control_stream);
if (result != VK_SUCCESS) {
state->status = result;
return result;
}
result = pvr_sub_cmd_gfx_job_init(&device->pdevice->dev_info,
cmd_buffer,
gfx_sub_cmd);
if (result != VK_SUCCESS) {
state->status = result;
return result;
}
break;
}
case PVR_SUB_CMD_TYPE_COMPUTE: {
struct pvr_sub_cmd_compute *const compute_sub_cmd = &sub_cmd->compute;
pvr_compute_generate_fence(cmd_buffer, compute_sub_cmd, true);
result = pvr_csb_emit_terminate(&compute_sub_cmd->control_stream);
if (result != VK_SUCCESS) {
state->status = result;
return result;
}
pvr_sub_cmd_compute_job_init(device->pdevice,
cmd_buffer,
compute_sub_cmd);
break;
}
case PVR_SUB_CMD_TYPE_TRANSFER:
break;
case PVR_SUB_CMD_TYPE_EVENT:
break;
default:
unreachable("Unsupported sub-command type");
}
state->current_sub_cmd = NULL;
return VK_SUCCESS;
}
static void
pvr_reset_graphics_dirty_state(struct pvr_cmd_buffer *const cmd_buffer,
bool start_geom)
{
struct vk_dynamic_graphics_state *const dynamic_state =
&cmd_buffer->vk.dynamic_graphics_state;
if (start_geom) {
/*
* Initial geometry phase state.
* It's the driver's responsibility to ensure that the state of the
* hardware is correctly initialized at the start of every geometry
* phase. This is required to prevent stale state from a previous
* geometry phase erroneously affecting the next geometry phase.
*
* If a geometry phase does not contain any geometry, this restriction
* can be ignored. If the first draw call in a geometry phase will only
* update the depth or stencil buffers i.e. ISP_TAGWRITEDISABLE is set
* in the ISP State Control Word, the PDS State Pointers
* (TA_PRES_PDSSTATEPTR*) in the first PPP State Update do not need to
* be supplied, since they will never reach the PDS in the fragment
* phase.
*/
cmd_buffer->state.emit_header = (struct PVRX(TA_STATE_HEADER)){
.pres_stream_out_size = true,
.pres_ppp_ctrl = true,
.pres_varying_word2 = true,
.pres_varying_word1 = true,
.pres_varying_word0 = true,
.pres_outselects = true,
.pres_wclamp = true,
.pres_viewport = true,
.pres_region_clip = true,
.pres_pds_state_ptr0 = true,
.pres_ispctl_fb = true,
.pres_ispctl = true,
};
} else {
struct PVRX(TA_STATE_HEADER) *const emit_header =
&cmd_buffer->state.emit_header;
emit_header->pres_ppp_ctrl = true;
emit_header->pres_varying_word1 = true;
emit_header->pres_varying_word0 = true;
emit_header->pres_outselects = true;
emit_header->pres_viewport = true;
emit_header->pres_region_clip = true;
emit_header->pres_pds_state_ptr0 = true;
emit_header->pres_ispctl_fb = true;
emit_header->pres_ispctl = true;
}
memset(&cmd_buffer->state.ppp_state,
0U,
sizeof(cmd_buffer->state.ppp_state));
cmd_buffer->state.dirty.vertex_bindings = true;
cmd_buffer->state.dirty.gfx_pipeline_binding = true;
BITSET_SET(dynamic_state->dirty, MESA_VK_DYNAMIC_VP_VIEWPORTS);
BITSET_SET(dynamic_state->dirty, MESA_VK_DYNAMIC_VP_VIEWPORT_COUNT);
}
static inline bool
pvr_cmd_uses_deferred_cs_cmds(const struct pvr_cmd_buffer *const cmd_buffer)
{
const VkCommandBufferUsageFlags deferred_control_stream_flags =
VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT &
VK_COMMAND_BUFFER_USAGE_SIMULTANEOUS_USE_BIT;
return cmd_buffer->vk.level == VK_COMMAND_BUFFER_LEVEL_SECONDARY &&
(cmd_buffer->usage_flags & deferred_control_stream_flags) ==
deferred_control_stream_flags;
}
static VkResult pvr_cmd_buffer_start_sub_cmd(struct pvr_cmd_buffer *cmd_buffer,
enum pvr_sub_cmd_type type)
{
struct pvr_cmd_buffer_state *state = &cmd_buffer->state;
struct pvr_device *device = cmd_buffer->device;
struct pvr_sub_cmd *sub_cmd;
VkResult result;
/* Check the current status of the buffer. */
if (state->status != VK_SUCCESS)
return state->status;
pvr_cmd_buffer_update_barriers(cmd_buffer, type);
/* TODO: Add proper support for joining consecutive event sub_cmd? */
if (state->current_sub_cmd) {
if (state->current_sub_cmd->type == type) {
/* Continue adding to the current sub command. */
return VK_SUCCESS;
}
/* End the current sub command. */
result = pvr_cmd_buffer_end_sub_cmd(cmd_buffer);
if (result != VK_SUCCESS)
return result;
}
sub_cmd = vk_zalloc(&cmd_buffer->vk.pool->alloc,
sizeof(*sub_cmd),
8,
VK_SYSTEM_ALLOCATION_SCOPE_COMMAND);
if (!sub_cmd) {
state->status = vk_error(cmd_buffer, VK_ERROR_OUT_OF_HOST_MEMORY);
return state->status;
}
sub_cmd->type = type;
sub_cmd->owned = true;
switch (type) {
case PVR_SUB_CMD_TYPE_GRAPHICS:
sub_cmd->gfx.depth_usage = PVR_DEPTH_STENCIL_USAGE_UNDEFINED;
sub_cmd->gfx.stencil_usage = PVR_DEPTH_STENCIL_USAGE_UNDEFINED;
sub_cmd->gfx.modifies_depth = false;
sub_cmd->gfx.modifies_stencil = false;
sub_cmd->gfx.max_tiles_in_flight =
PVR_GET_FEATURE_VALUE(&device->pdevice->dev_info,
isp_max_tiles_in_flight,
1);
sub_cmd->gfx.hw_render_idx = state->render_pass_info.current_hw_subpass;
sub_cmd->gfx.framebuffer = state->render_pass_info.framebuffer;
sub_cmd->gfx.empty_cmd = true;
pvr_reset_graphics_dirty_state(cmd_buffer, true);
if (pvr_cmd_uses_deferred_cs_cmds(cmd_buffer)) {
pvr_csb_init(device,
PVR_CMD_STREAM_TYPE_GRAPHICS_DEFERRED,
&sub_cmd->gfx.control_stream);
} else {
pvr_csb_init(device,
PVR_CMD_STREAM_TYPE_GRAPHICS,
&sub_cmd->gfx.control_stream);
}
break;
case PVR_SUB_CMD_TYPE_COMPUTE:
pvr_csb_init(device,
PVR_CMD_STREAM_TYPE_COMPUTE,
&sub_cmd->compute.control_stream);
break;
case PVR_SUB_CMD_TYPE_TRANSFER:
list_inithead(&sub_cmd->transfer.transfer_cmds);
break;
case PVR_SUB_CMD_TYPE_EVENT:
break;
default:
unreachable("Unsupported sub-command type");
}
list_addtail(&sub_cmd->link, &cmd_buffer->sub_cmds);
state->current_sub_cmd = sub_cmd;
return VK_SUCCESS;
}
VkResult pvr_cmd_buffer_alloc_mem(struct pvr_cmd_buffer *cmd_buffer,
struct pvr_winsys_heap *heap,
uint64_t size,
uint32_t flags,
struct pvr_bo **const pvr_bo_out)
{
const uint32_t cache_line_size =
rogue_get_slc_cache_line_size(&cmd_buffer->device->pdevice->dev_info);
struct pvr_bo *pvr_bo;
VkResult result;
result = pvr_bo_alloc(cmd_buffer->device,
heap,
size,
cache_line_size,
flags,
&pvr_bo);
if (result != VK_SUCCESS) {
cmd_buffer->state.status = result;
return result;
}
list_add(&pvr_bo->link, &cmd_buffer->bo_list);
*pvr_bo_out = pvr_bo;
return VK_SUCCESS;
}
static void pvr_cmd_bind_compute_pipeline(
const struct pvr_compute_pipeline *const compute_pipeline,
struct pvr_cmd_buffer *const cmd_buffer)
{
cmd_buffer->state.compute_pipeline = compute_pipeline;
cmd_buffer->state.dirty.compute_pipeline_binding = true;
}
static void pvr_cmd_bind_graphics_pipeline(
const struct pvr_graphics_pipeline *const gfx_pipeline,
struct pvr_cmd_buffer *const cmd_buffer)
{
cmd_buffer->state.gfx_pipeline = gfx_pipeline;
cmd_buffer->state.dirty.gfx_pipeline_binding = true;
vk_cmd_set_dynamic_graphics_state(&cmd_buffer->vk,
&gfx_pipeline->dynamic_state);
}
void pvr_CmdBindPipeline(VkCommandBuffer commandBuffer,
VkPipelineBindPoint pipelineBindPoint,
VkPipeline _pipeline)
{
PVR_FROM_HANDLE(pvr_cmd_buffer, cmd_buffer, commandBuffer);
PVR_FROM_HANDLE(pvr_pipeline, pipeline, _pipeline);
switch (pipelineBindPoint) {
case VK_PIPELINE_BIND_POINT_COMPUTE:
pvr_cmd_bind_compute_pipeline(to_pvr_compute_pipeline(pipeline),
cmd_buffer);
break;
case VK_PIPELINE_BIND_POINT_GRAPHICS:
pvr_cmd_bind_graphics_pipeline(to_pvr_graphics_pipeline(pipeline),
cmd_buffer);
break;
default:
unreachable("Invalid bind point.");
break;
}
}
#if defined(DEBUG)
static void check_viewport_quirk_70165(const struct pvr_device *device,
const VkViewport *pViewport)
{
const struct pvr_device_info *dev_info = &device->pdevice->dev_info;
float min_vertex_x, max_vertex_x, min_vertex_y, max_vertex_y;
float min_screen_space_value, max_screen_space_value;
float sign_to_unsigned_offset, fixed_point_max;
float guardband_width, guardband_height;
if (PVR_HAS_FEATURE(dev_info, simple_internal_parameter_format)) {
/* Max representable value in 13.4 fixed point format.
* Round-down to avoid precision issues.
* Calculated as (2 ** 13) - 2*(2 ** -4)
*/
fixed_point_max = 8192.0f - 2.0f / 16.0f;
if (PVR_HAS_FEATURE(dev_info, screen_size8K)) {
if (pViewport->width <= 4096 && pViewport->height <= 4096) {
guardband_width = pViewport->width / 4.0f;
guardband_height = pViewport->height / 4.0f;
/* 2k of the range is negative */
sign_to_unsigned_offset = 2048.0f;
} else {
guardband_width = 0.0f;
guardband_height = 0.0f;
/* For > 4k renders, the entire range is positive */
sign_to_unsigned_offset = 0.0f;
}
} else {
guardband_width = pViewport->width / 4.0f;
guardband_height = pViewport->height / 4.0f;
/* 2k of the range is negative */
sign_to_unsigned_offset = 2048.0f;
}
} else {
/* Max representable value in 16.8 fixed point format
* Calculated as (2 ** 16) - (2 ** -8)
*/
fixed_point_max = 65535.99609375f;
guardband_width = pViewport->width / 4.0f;
guardband_height = pViewport->height / 4.0f;
/* 4k/20k of the range is negative */
sign_to_unsigned_offset = (float)PVR_MAX_NEG_OFFSCREEN_OFFSET;
}
min_screen_space_value = -sign_to_unsigned_offset;
max_screen_space_value = fixed_point_max - sign_to_unsigned_offset;
min_vertex_x = pViewport->x - guardband_width;
max_vertex_x = pViewport->x + pViewport->width + guardband_width;
min_vertex_y = pViewport->y - guardband_height;
max_vertex_y = pViewport->y + pViewport->height + guardband_height;
if (min_vertex_x < min_screen_space_value ||
max_vertex_x > max_screen_space_value ||
min_vertex_y < min_screen_space_value ||
max_vertex_y > max_screen_space_value) {
mesa_logw("Viewport is affected by BRN70165, geometry outside "
"the viewport could be corrupted");
}
}
#endif
void pvr_CmdSetViewport(VkCommandBuffer commandBuffer,
uint32_t firstViewport,
uint32_t viewportCount,
const VkViewport *pViewports)
{
PVR_FROM_HANDLE(pvr_cmd_buffer, cmd_buffer, commandBuffer);
const uint32_t total_count = firstViewport + viewportCount;
assert(firstViewport < PVR_MAX_VIEWPORTS && viewportCount > 0);
assert(total_count >= 1 && total_count <= PVR_MAX_VIEWPORTS);
PVR_CHECK_COMMAND_BUFFER_BUILDING_STATE(cmd_buffer);
#if defined(DEBUG)
if (PVR_HAS_QUIRK(&cmd_buffer->device->pdevice->dev_info, 70165)) {
for (uint32_t viewport = 0; viewport < viewportCount; viewport++) {
check_viewport_quirk_70165(cmd_buffer->device, &pViewports[viewport]);
}
}
#endif
vk_common_CmdSetViewport(commandBuffer,
firstViewport,
viewportCount,
pViewports);
}
void pvr_CmdSetDepthBounds(VkCommandBuffer commandBuffer,
float minDepthBounds,
float maxDepthBounds)
{
mesa_logd("No support for depth bounds testing.");
}
void pvr_CmdBindDescriptorSets(VkCommandBuffer commandBuffer,
VkPipelineBindPoint pipelineBindPoint,
VkPipelineLayout _layout,
uint32_t firstSet,
uint32_t descriptorSetCount,
const VkDescriptorSet *pDescriptorSets,
uint32_t dynamicOffsetCount,
const uint32_t *pDynamicOffsets)
{
PVR_FROM_HANDLE(pvr_cmd_buffer, cmd_buffer, commandBuffer);
struct pvr_descriptor_state *descriptor_state;
assert(firstSet + descriptorSetCount <= PVR_MAX_DESCRIPTOR_SETS);
PVR_CHECK_COMMAND_BUFFER_BUILDING_STATE(cmd_buffer);
switch (pipelineBindPoint) {
case VK_PIPELINE_BIND_POINT_GRAPHICS:
case VK_PIPELINE_BIND_POINT_COMPUTE:
break;
default:
unreachable("Unsupported bind point.");
break;
}
if (pipelineBindPoint == VK_PIPELINE_BIND_POINT_GRAPHICS) {
descriptor_state = &cmd_buffer->state.gfx_desc_state;
cmd_buffer->state.dirty.gfx_desc_dirty = true;
} else {
descriptor_state = &cmd_buffer->state.compute_desc_state;
cmd_buffer->state.dirty.compute_desc_dirty = true;
}
for (uint32_t i = 0; i < descriptorSetCount; i++) {
PVR_FROM_HANDLE(pvr_descriptor_set, set, pDescriptorSets[i]);
uint32_t index = firstSet + i;
if (descriptor_state->descriptor_sets[index] != set) {
descriptor_state->descriptor_sets[index] = set;
descriptor_state->valid_mask |= (1u << index);
}
}
}
void pvr_CmdBindVertexBuffers(VkCommandBuffer commandBuffer,
uint32_t firstBinding,
uint32_t bindingCount,
const VkBuffer *pBuffers,
const VkDeviceSize *pOffsets)
{
PVR_FROM_HANDLE(pvr_cmd_buffer, cmd_buffer, commandBuffer);
struct pvr_vertex_binding *const vb = cmd_buffer->state.vertex_bindings;
/* We have to defer setting up vertex buffer since we need the buffer
* stride from the pipeline.
*/
assert(firstBinding < PVR_MAX_VERTEX_INPUT_BINDINGS &&
bindingCount <= PVR_MAX_VERTEX_INPUT_BINDINGS);
PVR_CHECK_COMMAND_BUFFER_BUILDING_STATE(cmd_buffer);
for (uint32_t i = 0; i < bindingCount; i++) {
vb[firstBinding + i].buffer = pvr_buffer_from_handle(pBuffers[i]);
vb[firstBinding + i].offset = pOffsets[i];
}
cmd_buffer->state.dirty.vertex_bindings = true;
}
void pvr_CmdBindIndexBuffer(VkCommandBuffer commandBuffer,
VkBuffer buffer,
VkDeviceSize offset,
VkIndexType indexType)
{
PVR_FROM_HANDLE(pvr_cmd_buffer, cmd_buffer, commandBuffer);
PVR_FROM_HANDLE(pvr_buffer, index_buffer, buffer);
struct pvr_cmd_buffer_state *const state = &cmd_buffer->state;
assert(offset < index_buffer->vk.size);
assert(indexType == VK_INDEX_TYPE_UINT32 ||
indexType == VK_INDEX_TYPE_UINT16);
PVR_CHECK_COMMAND_BUFFER_BUILDING_STATE(cmd_buffer);
state->index_buffer_binding.buffer = index_buffer;
state->index_buffer_binding.offset = offset;
state->index_buffer_binding.type = indexType;
state->dirty.index_buffer_binding = true;
}
void pvr_CmdPushConstants(VkCommandBuffer commandBuffer,
VkPipelineLayout layout,
VkShaderStageFlags stageFlags,
uint32_t offset,
uint32_t size,
const void *pValues)
{
#if defined(DEBUG)
const uint64_t ending = (uint64_t)offset + (uint64_t)size;
#endif
PVR_FROM_HANDLE(pvr_cmd_buffer, cmd_buffer, commandBuffer);
struct pvr_cmd_buffer_state *const state = &cmd_buffer->state;
PVR_CHECK_COMMAND_BUFFER_BUILDING_STATE(cmd_buffer);
pvr_assert(ending <= PVR_MAX_PUSH_CONSTANTS_SIZE);
memcpy(&state->push_constants.data[offset], pValues, size);
state->push_constants.dirty_stages |= stageFlags;
}
static VkResult
pvr_cmd_buffer_setup_attachments(struct pvr_cmd_buffer *cmd_buffer,
const struct pvr_render_pass *pass,
const struct pvr_framebuffer *framebuffer)
{
struct pvr_cmd_buffer_state *state = &cmd_buffer->state;
struct pvr_render_pass_info *info = &state->render_pass_info;
assert(pass->attachment_count == framebuffer->attachment_count);
/* Free any previously allocated attachments. */
vk_free(&cmd_buffer->vk.pool->alloc, state->render_pass_info.attachments);
if (pass->attachment_count == 0) {
info->attachments = NULL;
return VK_SUCCESS;
}
info->attachments =
vk_zalloc(&cmd_buffer->vk.pool->alloc,
pass->attachment_count * sizeof(*info->attachments),
8,
VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
if (!info->attachments) {
/* Propagate VK_ERROR_OUT_OF_HOST_MEMORY to vkEndCommandBuffer */
state->status = vk_error(cmd_buffer, VK_ERROR_OUT_OF_HOST_MEMORY);
return state->status;
}
for (uint32_t i = 0; i < pass->attachment_count; i++)
info->attachments[i] = framebuffer->attachments[i];
return VK_SUCCESS;
}
static VkResult pvr_init_render_targets(struct pvr_device *device,
struct pvr_render_pass *pass,
struct pvr_framebuffer *framebuffer)
{
for (uint32_t i = 0; i < pass->hw_setup->render_count; i++) {
struct pvr_render_target *render_target =
pvr_get_render_target(pass, framebuffer, i);
pthread_mutex_lock(&render_target->mutex);
if (!render_target->valid) {
const struct pvr_renderpass_hwsetup_render *hw_render =
&pass->hw_setup->renders[i];
VkResult result;
result = pvr_render_target_dataset_create(device,
framebuffer->width,
framebuffer->height,
hw_render->sample_count,
framebuffer->layers,
&render_target->rt_dataset);
if (result != VK_SUCCESS) {
pthread_mutex_unlock(&render_target->mutex);
return result;
}
render_target->valid = true;
}
pthread_mutex_unlock(&render_target->mutex);
}
return VK_SUCCESS;
}
static const struct pvr_renderpass_hwsetup_subpass *
pvr_get_hw_subpass(const struct pvr_render_pass *pass, const uint32_t subpass)
{
const struct pvr_renderpass_hw_map *map =
&pass->hw_setup->subpass_map[subpass];
return &pass->hw_setup->renders[map->render].subpasses[map->subpass];
}
static void pvr_perform_start_of_render_attachment_clear(
struct pvr_cmd_buffer *cmd_buffer,
const struct pvr_framebuffer *framebuffer,
uint32_t index,
bool is_depth_stencil,
uint32_t *index_list_clear_mask)
{
struct pvr_render_pass_info *info = &cmd_buffer->state.render_pass_info;
const struct pvr_render_pass *pass = info->pass;
const struct pvr_renderpass_hwsetup *hw_setup = pass->hw_setup;
const struct pvr_renderpass_hwsetup_render *hw_render =
&hw_setup->renders[hw_setup->subpass_map[info->subpass_idx].render];
struct pvr_image_view *iview;
uint32_t view_idx;
uint32_t height;
uint32_t width;
if (is_depth_stencil) {
bool stencil_clear;
bool depth_clear;
bool is_stencil;
bool is_depth;
assert(hw_render->ds_attach_idx != VK_ATTACHMENT_UNUSED);
assert(index == 0);
view_idx = hw_render->ds_attach_idx;
is_depth = vk_format_has_depth(pass->attachments[view_idx].vk_format);
is_stencil = vk_format_has_stencil(pass->attachments[view_idx].vk_format);
depth_clear = hw_render->depth_init == VK_ATTACHMENT_LOAD_OP_CLEAR;
stencil_clear = hw_render->stencil_init == VK_ATTACHMENT_LOAD_OP_CLEAR;
/* Attempt to clear the ds attachment. Do not erroneously discard an
* attachment that has no depth clear but has a stencil attachment.
*/
/* if not (a ∧ c) (b ∧ d) */
if (!((is_depth && depth_clear) || (is_stencil && stencil_clear)))
return;
} else if (hw_render->color_init[index].op != VK_ATTACHMENT_LOAD_OP_CLEAR) {
return;
} else {
view_idx = hw_render->color_init[index].index;
}
iview = info->attachments[view_idx];
width = iview->vk.extent.width;
height = iview->vk.extent.height;
/* FIXME: It would be nice if this function and pvr_sub_cmd_gfx_job_init()
* were doing the same check (even if it's just an assert) to determine if a
* clear is needed.
*/
/* If this is single-layer fullscreen, we already do the clears in
* pvr_sub_cmd_gfx_job_init().
*/
if (info->render_area.offset.x == 0 && info->render_area.offset.y == 0 &&
info->render_area.extent.width == width &&
info->render_area.extent.height == height && framebuffer->layers == 1) {
return;
}
pvr_finishme("Unimplemented path!");
}
static void
pvr_perform_start_of_render_clears(struct pvr_cmd_buffer *cmd_buffer)
{
struct pvr_render_pass_info *info = &cmd_buffer->state.render_pass_info;
const struct pvr_framebuffer *framebuffer = info->framebuffer;
const struct pvr_render_pass *pass = info->pass;
const struct pvr_renderpass_hwsetup *hw_setup = pass->hw_setup;
const struct pvr_renderpass_hwsetup_render *hw_render =
&hw_setup->renders[hw_setup->subpass_map[info->subpass_idx].render];
/* Mask of attachment clears using index lists instead of background object
* to clear.
*/
uint32_t index_list_clear_mask = 0;
for (uint32_t i = 0; i < hw_render->color_init_count; i++) {
pvr_perform_start_of_render_attachment_clear(cmd_buffer,
framebuffer,
i,
false,
&index_list_clear_mask);
}
info->enable_bg_tag = !!hw_render->color_init_count;
/* If we're not using index list for all clears/loads then we need to run
* the background object on empty tiles.
*/
if (hw_render->color_init_count &&
index_list_clear_mask != ((1u << hw_render->color_init_count) - 1u)) {
info->process_empty_tiles = true;
} else {
info->process_empty_tiles = false;
}
if (hw_render->ds_attach_idx != VK_ATTACHMENT_UNUSED) {
uint32_t ds_index_list = 0;
pvr_perform_start_of_render_attachment_clear(cmd_buffer,
framebuffer,
0,
true,
&ds_index_list);
}
if (index_list_clear_mask)
pvr_finishme("Add support for generating loadops shaders!");
}
static void pvr_stash_depth_format(struct pvr_cmd_buffer_state *state,
struct pvr_sub_cmd_gfx *const sub_cmd)
{
const struct pvr_render_pass *pass = state->render_pass_info.pass;
const struct pvr_renderpass_hwsetup_render *hw_render =
&pass->hw_setup->renders[sub_cmd->hw_render_idx];
if (hw_render->ds_attach_idx != VK_ATTACHMENT_UNUSED) {
struct pvr_image_view **iviews = state->render_pass_info.attachments;
state->depth_format = iviews[hw_render->ds_attach_idx]->vk.format;
}
}
static bool pvr_loadops_contain_clear(struct pvr_renderpass_hwsetup *hw_setup)
{
for (uint32_t i = 0; i < hw_setup->render_count; i++) {
struct pvr_renderpass_hwsetup_render *hw_render = &hw_setup->renders[i];
uint32_t render_targets_count = hw_render->init_setup.num_render_targets;
for (uint32_t j = 0;
j < (hw_render->color_init_count * render_targets_count);
j += render_targets_count) {
for (uint32_t k = 0; k < hw_render->init_setup.num_render_targets;
k++) {
if (hw_render->color_init[j + k].op ==
VK_ATTACHMENT_LOAD_OP_CLEAR) {
return true;
}
}
}
if (hw_render->depth_init == VK_ATTACHMENT_LOAD_OP_CLEAR ||
hw_render->stencil_init == VK_ATTACHMENT_LOAD_OP_CLEAR) {
return true;
}
}
return false;
}
static VkResult
pvr_cmd_buffer_set_clear_values(struct pvr_cmd_buffer *cmd_buffer,
const VkRenderPassBeginInfo *pRenderPassBegin)
{
struct pvr_cmd_buffer_state *state = &cmd_buffer->state;
/* Free any previously allocated clear values. */
vk_free(&cmd_buffer->vk.pool->alloc, state->render_pass_info.clear_values);
if (pRenderPassBegin->clearValueCount) {
const size_t size = pRenderPassBegin->clearValueCount *
sizeof(*state->render_pass_info.clear_values);
state->render_pass_info.clear_values =
vk_zalloc(&cmd_buffer->vk.pool->alloc,
size,
8,
VK_SYSTEM_ALLOCATION_SCOPE_COMMAND);
if (!state->render_pass_info.clear_values) {
state->status = vk_error(cmd_buffer, VK_ERROR_OUT_OF_HOST_MEMORY);
return state->status;
}
memcpy(state->render_pass_info.clear_values,
pRenderPassBegin->pClearValues,
size);
} else {
state->render_pass_info.clear_values = NULL;
}
state->render_pass_info.clear_value_count =
pRenderPassBegin->clearValueCount;
return VK_SUCCESS;
}
static bool
pvr_is_large_clear_required(const struct pvr_cmd_buffer *const cmd_buffer)
{
const struct pvr_device_info *const dev_info =
&cmd_buffer->device->pdevice->dev_info;
const VkRect2D render_area = cmd_buffer->state.render_pass_info.render_area;
const uint32_t vf_max_x = rogue_get_param_vf_max_x(dev_info);
const uint32_t vf_max_y = rogue_get_param_vf_max_x(dev_info);
return (render_area.extent.width > (vf_max_x / 2) - 1) ||
(render_area.extent.height > (vf_max_y / 2) - 1);
}
static void pvr_emit_clear_words(struct pvr_cmd_buffer *const cmd_buffer,
struct pvr_sub_cmd_gfx *const sub_cmd)
{
struct pvr_csb *csb = &sub_cmd->control_stream;
struct pvr_device *device = cmd_buffer->device;
uint32_t *stream;
stream = pvr_csb_alloc_dwords(csb, PVR_CLEAR_VDM_STATE_DWORD_COUNT);
if (!stream) {
cmd_buffer->state.status = VK_ERROR_OUT_OF_HOST_MEMORY;
return;
}
if (pvr_is_large_clear_required(cmd_buffer)) {
memcpy(stream,
device->static_clear_state.large_clear_vdm_words,
sizeof(device->static_clear_state.large_clear_vdm_words));
} else {
memcpy(stream,
device->static_clear_state.vdm_words,
sizeof(device->static_clear_state.vdm_words));
}
}
static VkResult pvr_cs_write_load_op(struct pvr_cmd_buffer *cmd_buffer,
struct pvr_sub_cmd_gfx *sub_cmd,
struct pvr_load_op *load_op,
uint32_t isp_userpass)
{
const struct pvr_device *device = cmd_buffer->device;
struct pvr_static_clear_ppp_template template =
device->static_clear_state.ppp_templates[PVR_STATIC_CLEAR_COLOR_BIT];
uint32_t pds_state[PVR_STATIC_CLEAR_PDS_STATE_COUNT];
struct pvr_pds_upload shareds_update_program;
struct pvr_bo *pvr_bo;
VkResult result;
result = pvr_load_op_data_create_and_upload(cmd_buffer,
load_op,
&shareds_update_program);
if (result != VK_SUCCESS)
return result;
template.config.ispctl.upass = isp_userpass;
/* It might look odd that we aren't specifying the code segment's
* address anywhere. This is because the hardware always assumes that the
* data size is 2 128bit words and the code segments starts after that.
*/
pvr_csb_pack (&pds_state[PVR_STATIC_CLEAR_PPP_PDS_TYPE_SHADERBASE],
TA_STATE_PDS_SHADERBASE,
shaderbase) {
shaderbase.addr = PVR_DEV_ADDR(load_op->pds_frag_prog.data_offset);
}
pvr_csb_pack (&pds_state[PVR_STATIC_CLEAR_PPP_PDS_TYPE_TEXUNICODEBASE],
TA_STATE_PDS_TEXUNICODEBASE,
texunicodebase) {
texunicodebase.addr =
PVR_DEV_ADDR(load_op->pds_tex_state_prog.code_offset);
}
pvr_csb_pack (&pds_state[PVR_STATIC_CLEAR_PPP_PDS_TYPE_SIZEINFO1],
TA_STATE_PDS_SIZEINFO1,
sizeinfo1) {
/* Dummy coefficient loading program. */
sizeinfo1.pds_varyingsize = 0;
sizeinfo1.pds_texturestatesize = DIV_ROUND_UP(
shareds_update_program.data_size,
PVRX(TA_STATE_PDS_SIZEINFO1_PDS_TEXTURESTATESIZE_UNIT_SIZE));
sizeinfo1.pds_tempsize =
DIV_ROUND_UP(load_op->temps_count,
PVRX(TA_STATE_PDS_SIZEINFO1_PDS_TEMPSIZE_UNIT_SIZE));
}
pvr_csb_pack (&pds_state[PVR_STATIC_CLEAR_PPP_PDS_TYPE_SIZEINFO2],
TA_STATE_PDS_SIZEINFO2,
sizeinfo2) {
sizeinfo2.usc_sharedsize =
DIV_ROUND_UP(load_op->const_shareds_count,
PVRX(TA_STATE_PDS_SIZEINFO2_USC_SHAREDSIZE_UNIT_SIZE));
}
/* Dummy coefficient loading program. */
pds_state[PVR_STATIC_CLEAR_PPP_PDS_TYPE_VARYINGBASE] = 0;
pvr_csb_pack (&pds_state[PVR_STATIC_CLEAR_PPP_PDS_TYPE_TEXTUREDATABASE],
TA_STATE_PDS_TEXTUREDATABASE,
texturedatabase) {
texturedatabase.addr = PVR_DEV_ADDR(shareds_update_program.data_offset);
}
template.config.pds_state = &pds_state;
pvr_emit_ppp_from_template(&sub_cmd->control_stream, &template, &pvr_bo);
list_add(&pvr_bo->link, &cmd_buffer->bo_list);
pvr_emit_clear_words(cmd_buffer, sub_cmd);
pvr_reset_graphics_dirty_state(cmd_buffer, false);
return VK_SUCCESS;
}
void pvr_CmdBeginRenderPass2(VkCommandBuffer commandBuffer,
const VkRenderPassBeginInfo *pRenderPassBeginInfo,
const VkSubpassBeginInfo *pSubpassBeginInfo)
{
PVR_FROM_HANDLE(pvr_framebuffer,
framebuffer,
pRenderPassBeginInfo->framebuffer);
PVR_FROM_HANDLE(pvr_render_pass, pass, pRenderPassBeginInfo->renderPass);
PVR_FROM_HANDLE(pvr_cmd_buffer, cmd_buffer, commandBuffer);
const struct pvr_renderpass_hwsetup_subpass *hw_subpass;
struct pvr_cmd_buffer_state *state = &cmd_buffer->state;
VkResult result;
PVR_CHECK_COMMAND_BUFFER_BUILDING_STATE(cmd_buffer);
assert(!state->render_pass_info.pass);
assert(cmd_buffer->vk.level == VK_COMMAND_BUFFER_LEVEL_PRIMARY);
/* FIXME: Create a separate function for everything using pass->subpasses,
* look at cmd_buffer_begin_subpass() for example. */
state->render_pass_info.pass = pass;
state->render_pass_info.framebuffer = framebuffer;
state->render_pass_info.subpass_idx = 0;
state->render_pass_info.render_area = pRenderPassBeginInfo->renderArea;
state->render_pass_info.current_hw_subpass = 0;
state->render_pass_info.pipeline_bind_point =
pass->subpasses[0].pipeline_bind_point;
state->render_pass_info.isp_userpass = pass->subpasses[0].isp_userpass;
state->dirty.isp_userpass = true;
result = pvr_cmd_buffer_setup_attachments(cmd_buffer, pass, framebuffer);
if (result != VK_SUCCESS)
return;
state->status =
pvr_init_render_targets(cmd_buffer->device, pass, framebuffer);
if (state->status != VK_SUCCESS)
return;
result = pvr_cmd_buffer_set_clear_values(cmd_buffer, pRenderPassBeginInfo);
if (result != VK_SUCCESS)
return;
assert(pass->subpasses[0].pipeline_bind_point ==
VK_PIPELINE_BIND_POINT_GRAPHICS);
result = pvr_cmd_buffer_start_sub_cmd(cmd_buffer, PVR_SUB_CMD_TYPE_GRAPHICS);
if (result != VK_SUCCESS)
return;
/* Run subpass 0 "soft" background object after the actual background
* object.
*/
hw_subpass = pvr_get_hw_subpass(pass, 0);
if (hw_subpass->load_op) {
result = pvr_cs_write_load_op(cmd_buffer,
&cmd_buffer->state.current_sub_cmd->gfx,
hw_subpass->load_op,
0);
if (result != VK_SUCCESS)
return;
}
pvr_perform_start_of_render_clears(cmd_buffer);
pvr_stash_depth_format(&cmd_buffer->state,
&cmd_buffer->state.current_sub_cmd->gfx);
}
VkResult pvr_BeginCommandBuffer(VkCommandBuffer commandBuffer,
const VkCommandBufferBeginInfo *pBeginInfo)
{
PVR_FROM_HANDLE(pvr_cmd_buffer, cmd_buffer, commandBuffer);
struct pvr_cmd_buffer_state *state;
VkResult result;
vk_command_buffer_begin(&cmd_buffer->vk, pBeginInfo);
cmd_buffer->usage_flags = pBeginInfo->flags;
state = &cmd_buffer->state;
/* VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT must be ignored for
* primary level command buffers.
*
* From the Vulkan 1.0 spec:
*
* VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT specifies that a
* secondary command buffer is considered to be entirely inside a render
* pass. If this is a primary command buffer, then this bit is ignored.
*/
if (cmd_buffer->vk.level == VK_COMMAND_BUFFER_LEVEL_PRIMARY) {
cmd_buffer->usage_flags &=
~VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT;
}
if (cmd_buffer->usage_flags &
VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT) {
const VkCommandBufferInheritanceInfo *inheritance_info =
pBeginInfo->pInheritanceInfo;
struct pvr_render_pass *pass;
pass = pvr_render_pass_from_handle(inheritance_info->renderPass);
state->render_pass_info.pass = pass;
state->render_pass_info.framebuffer =
pvr_framebuffer_from_handle(inheritance_info->framebuffer);
state->render_pass_info.subpass_idx = inheritance_info->subpass;
state->render_pass_info.isp_userpass =
pass->subpasses[inheritance_info->subpass].isp_userpass;
result =
pvr_cmd_buffer_start_sub_cmd(cmd_buffer, PVR_SUB_CMD_TYPE_GRAPHICS);
if (result != VK_SUCCESS)
return result;
}
memset(state->barriers_needed,
0xFF,
sizeof(*state->barriers_needed) * ARRAY_SIZE(state->barriers_needed));
return VK_SUCCESS;
}
VkResult pvr_cmd_buffer_add_transfer_cmd(struct pvr_cmd_buffer *cmd_buffer,
struct pvr_transfer_cmd *transfer_cmd)
{
struct pvr_sub_cmd_transfer *sub_cmd;
VkResult result;
result = pvr_cmd_buffer_start_sub_cmd(cmd_buffer, PVR_SUB_CMD_TYPE_TRANSFER);
if (result != VK_SUCCESS)
return result;
sub_cmd = &cmd_buffer->state.current_sub_cmd->transfer;
list_addtail(&transfer_cmd->link, &sub_cmd->transfer_cmds);
return VK_SUCCESS;
}
#define PVR_WRITE(_buffer, _value, _offset, _max) \
do { \
__typeof__(_value) __value = _value; \
uint64_t __offset = _offset; \
uint32_t __nr_dwords = sizeof(__value) / sizeof(uint32_t); \
static_assert(__same_type(*_buffer, __value), \
"Buffer and value type mismatch"); \
assert((__offset + __nr_dwords) <= (_max)); \
assert((__offset % __nr_dwords) == 0U); \
_buffer[__offset / __nr_dwords] = __value; \
} while (0)
static VkResult
pvr_setup_vertex_buffers(struct pvr_cmd_buffer *cmd_buffer,
const struct pvr_graphics_pipeline *const gfx_pipeline)
{
const struct pvr_vertex_shader_state *const vertex_state =
&gfx_pipeline->shader_state.vertex;
struct pvr_cmd_buffer_state *const state = &cmd_buffer->state;
const struct pvr_pds_info *const pds_info = state->pds_shader.info;
const uint8_t *entries;
uint32_t *dword_buffer;
uint64_t *qword_buffer;
struct pvr_bo *pvr_bo;
VkResult result;
result = pvr_cmd_buffer_alloc_mem(cmd_buffer,
cmd_buffer->device->heaps.pds_heap,
pds_info->data_size_in_dwords << 2,
PVR_BO_ALLOC_FLAG_CPU_MAPPED,
&pvr_bo);
if (result != VK_SUCCESS)
return result;
dword_buffer = (uint32_t *)pvr_bo->bo->map;
qword_buffer = (uint64_t *)pvr_bo->bo->map;
entries = (uint8_t *)pds_info->entries;
for (uint32_t i = 0; i < pds_info->entry_count; i++) {
const struct pvr_const_map_entry *const entry_header =
(struct pvr_const_map_entry *)entries;
switch (entry_header->type) {
case PVR_PDS_CONST_MAP_ENTRY_TYPE_LITERAL32: {
const struct pvr_const_map_entry_literal32 *const literal =
(struct pvr_const_map_entry_literal32 *)entries;
PVR_WRITE(dword_buffer,
literal->literal_value,
literal->const_offset,
pds_info->data_size_in_dwords);
entries += sizeof(*literal);
break;
}
case PVR_PDS_CONST_MAP_ENTRY_TYPE_DOUTU_ADDRESS: {
const struct pvr_const_map_entry_doutu_address *const doutu_addr =
(struct pvr_const_map_entry_doutu_address *)entries;
const pvr_dev_addr_t exec_addr =
PVR_DEV_ADDR_OFFSET(vertex_state->bo->vma->dev_addr,
vertex_state->entry_offset);
uint64_t addr = 0ULL;
pvr_set_usc_execution_address64(&addr, exec_addr.addr);
PVR_WRITE(qword_buffer,
addr | doutu_addr->doutu_control,
doutu_addr->const_offset,
pds_info->data_size_in_dwords);
entries += sizeof(*doutu_addr);
break;
}
case PVR_PDS_CONST_MAP_ENTRY_TYPE_BASE_INSTANCE: {
const struct pvr_const_map_entry_base_instance *const base_instance =
(struct pvr_const_map_entry_base_instance *)entries;
PVR_WRITE(dword_buffer,
state->draw_state.base_instance,
base_instance->const_offset,
pds_info->data_size_in_dwords);
entries += sizeof(*base_instance);
break;
}
case PVR_PDS_CONST_MAP_ENTRY_TYPE_VERTEX_ATTRIBUTE_ADDRESS: {
const struct pvr_const_map_entry_vertex_attribute_address
*const attribute =
(struct pvr_const_map_entry_vertex_attribute_address *)entries;
const struct pvr_vertex_binding *const binding =
&state->vertex_bindings[attribute->binding_index];
const pvr_dev_addr_t addr =
PVR_DEV_ADDR_OFFSET(binding->buffer->dev_addr,
binding->offset + attribute->offset);
PVR_WRITE(qword_buffer,
addr.addr,
attribute->const_offset,
pds_info->data_size_in_dwords);
entries += sizeof(*attribute);
break;
}
default:
unreachable("Unsupported data section map");
break;
}
}
state->pds_vertex_attrib_offset =
pvr_bo->vma->dev_addr.addr -
cmd_buffer->device->heaps.pds_heap->base_addr.addr;
pvr_bo_cpu_unmap(cmd_buffer->device, pvr_bo);
return VK_SUCCESS;
}
static VkResult pvr_setup_descriptor_mappings(
struct pvr_cmd_buffer *const cmd_buffer,
enum pvr_stage_allocation stage,
const struct pvr_stage_allocation_descriptor_state *descriptor_state,
const pvr_dev_addr_t *const num_worgroups_buff_addr,
uint32_t *const descriptor_data_offset_out)
{
const struct pvr_pds_info *const pds_info = &descriptor_state->pds_info;
const struct pvr_descriptor_state *desc_state;
const uint8_t *entries;
uint32_t *dword_buffer;
uint64_t *qword_buffer;
struct pvr_bo *pvr_bo;
VkResult result;
if (!pds_info->data_size_in_dwords)
return VK_SUCCESS;
result = pvr_cmd_buffer_alloc_mem(cmd_buffer,
cmd_buffer->device->heaps.pds_heap,
pds_info->data_size_in_dwords << 2,
PVR_BO_ALLOC_FLAG_CPU_MAPPED,
&pvr_bo);
if (result != VK_SUCCESS)
return result;
dword_buffer = (uint32_t *)pvr_bo->bo->map;
qword_buffer = (uint64_t *)pvr_bo->bo->map;
entries = (uint8_t *)pds_info->entries;
switch (stage) {
case PVR_STAGE_ALLOCATION_VERTEX_GEOMETRY:
case PVR_STAGE_ALLOCATION_FRAGMENT:
desc_state = &cmd_buffer->state.gfx_desc_state;
break;
case PVR_STAGE_ALLOCATION_COMPUTE:
desc_state = &cmd_buffer->state.compute_desc_state;
break;
default:
unreachable("Unsupported stage.");
break;
}
for (uint32_t i = 0; i < pds_info->entry_count; i++) {
const struct pvr_const_map_entry *const entry_header =
(struct pvr_const_map_entry *)entries;
switch (entry_header->type) {
case PVR_PDS_CONST_MAP_ENTRY_TYPE_LITERAL32: {
const struct pvr_const_map_entry_literal32 *const literal =
(struct pvr_const_map_entry_literal32 *)entries;
PVR_WRITE(dword_buffer,
literal->literal_value,
literal->const_offset,
pds_info->data_size_in_dwords);
entries += sizeof(*literal);
break;
}
case PVR_PDS_CONST_MAP_ENTRY_TYPE_CONSTANT_BUFFER: {
const struct pvr_const_map_entry_constant_buffer *const_buffer_entry =
(struct pvr_const_map_entry_constant_buffer *)entries;
const uint32_t desc_set = const_buffer_entry->desc_set;
const uint32_t binding = const_buffer_entry->binding;
const struct pvr_descriptor_set *descriptor_set;
const struct pvr_descriptor *descriptor;
pvr_dev_addr_t buffer_addr;
assert(desc_set < PVR_MAX_DESCRIPTOR_SETS);
descriptor_set = desc_state->descriptor_sets[desc_set];
/* TODO: Handle dynamic buffers. */
descriptor = &descriptor_set->descriptors[binding];
assert(descriptor->type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER);
assert(descriptor->buffer_desc_range ==
const_buffer_entry->size_in_dwords * sizeof(uint32_t));
assert(descriptor->buffer_create_info_size ==
const_buffer_entry->size_in_dwords * sizeof(uint32_t));
buffer_addr =
PVR_DEV_ADDR_OFFSET(descriptor->buffer_dev_addr,
const_buffer_entry->offset * sizeof(uint32_t));
PVR_WRITE(qword_buffer,
buffer_addr.addr,
const_buffer_entry->const_offset,
pds_info->data_size_in_dwords);
entries += sizeof(*const_buffer_entry);
break;
}
case PVR_PDS_CONST_MAP_ENTRY_TYPE_DESCRIPTOR_SET: {
const struct pvr_const_map_entry_descriptor_set *desc_set_entry =
(struct pvr_const_map_entry_descriptor_set *)entries;
const uint32_t desc_set_num = desc_set_entry->descriptor_set;
const struct pvr_descriptor_set *descriptor_set;
pvr_dev_addr_t desc_set_addr;
assert(desc_set_num < PVR_MAX_DESCRIPTOR_SETS);
/* TODO: Remove this when the compiler provides us with usage info?
*/
/* We skip DMAing unbound descriptor sets. */
if (!(desc_state->valid_mask & BITFIELD_BIT(desc_set_num))) {
const struct pvr_const_map_entry_literal32 *literal;
uint32_t zero_literal_value;
/* The code segment contains a DOUT instructions so in the data
* section we have to write a DOUTD_SRC0 and DOUTD_SRC1.
* We'll write 0 for DOUTD_SRC0 since we don't have a buffer to DMA.
* We're expecting a LITERAL32 entry containing the value for
* DOUTD_SRC1 next so let's make sure we get it and write it
* with BSIZE to 0 disabling the DMA operation.
* We don't want the LITERAL32 to be processed as normal otherwise
* we'd be DMAing from an address of 0.
*/
entries += sizeof(*desc_set_entry);
literal = (struct pvr_const_map_entry_literal32 *)entries;
assert(literal->type == PVR_PDS_CONST_MAP_ENTRY_TYPE_LITERAL32);
zero_literal_value =
literal->literal_value &
PVR_ROGUE_PDSINST_DOUT_FIELDS_DOUTD_SRC1_BSIZE_CLRMSK;
PVR_WRITE(qword_buffer,
UINT64_C(0),
desc_set_entry->const_offset,
pds_info->data_size_in_dwords);
PVR_WRITE(dword_buffer,
zero_literal_value,
desc_set_entry->const_offset,
pds_info->data_size_in_dwords);
entries += sizeof(*literal);
i++;
continue;
}
descriptor_set = desc_state->descriptor_sets[desc_set_num];
desc_set_addr = descriptor_set->pvr_bo->vma->dev_addr;
if (desc_set_entry->primary) {
desc_set_addr = PVR_DEV_ADDR_OFFSET(
desc_set_addr,
descriptor_set->layout->memory_layout_in_dwords_per_stage[stage]
.primary_offset
<< 2U);
} else {
desc_set_addr = PVR_DEV_ADDR_OFFSET(
desc_set_addr,
descriptor_set->layout->memory_layout_in_dwords_per_stage[stage]
.secondary_offset
<< 2U);
}
desc_set_addr = PVR_DEV_ADDR_OFFSET(
desc_set_addr,
(uint64_t)desc_set_entry->offset_in_dwords << 2U);
PVR_WRITE(qword_buffer,
desc_set_addr.addr,
desc_set_entry->const_offset,
pds_info->data_size_in_dwords);
entries += sizeof(*desc_set_entry);
break;
}
case PVR_PDS_CONST_MAP_ENTRY_TYPE_SPECIAL_BUFFER: {
const struct pvr_const_map_entry_special_buffer *special_buff_entry =
(struct pvr_const_map_entry_special_buffer *)entries;
switch (special_buff_entry->buffer_type) {
case PVR_BUFFER_TYPE_COMPILE_TIME: {
uint64_t addr = descriptor_state->static_consts->vma->dev_addr.addr;
PVR_WRITE(qword_buffer,
addr,
special_buff_entry->const_offset,
pds_info->data_size_in_dwords);
break;
}
case PVR_BUFFER_TYPE_BLEND_CONSTS:
/* TODO: See if instead of reusing the blend constant buffer type
* entry, we can setup a new buffer type specifically for
* num_workgroups or other built-in variables. The mappings are
* setup at pipeline creation when creating the descriptor program.
*/
if (stage == PVR_STAGE_ALLOCATION_COMPUTE) {
assert(num_worgroups_buff_addr->addr);
/* TODO: Check if we need to offset this (e.g. for just y and z),
* or cope with any reordering?
*/
PVR_WRITE(qword_buffer,
num_worgroups_buff_addr->addr,
special_buff_entry->const_offset,
pds_info->data_size_in_dwords);
} else {
pvr_finishme("Add blend constants support.");
}
break;
default:
unreachable("Unsupported special buffer type.");
}
entries += sizeof(*special_buff_entry);
break;
}
default:
unreachable("Unsupported map entry type.");
}
}
pvr_bo_cpu_unmap(cmd_buffer->device, pvr_bo);
*descriptor_data_offset_out =
pvr_bo->vma->dev_addr.addr -
cmd_buffer->device->heaps.pds_heap->base_addr.addr;
return VK_SUCCESS;
}
#undef PVR_WRITE
static void pvr_compute_update_shared(struct pvr_cmd_buffer *cmd_buffer,
struct pvr_sub_cmd_compute *const sub_cmd)
{
const struct pvr_physical_device *pdevice = cmd_buffer->device->pdevice;
struct pvr_cmd_buffer_state *state = &cmd_buffer->state;
struct pvr_csb *csb = &sub_cmd->control_stream;
const struct pvr_compute_pipeline *pipeline = state->compute_pipeline;
const uint32_t const_shared_reg_count =
pipeline->state.shader.const_shared_reg_count;
struct pvr_compute_kernel_info info;
/* No shared regs, no need to use an allocation kernel. */
if (!const_shared_reg_count)
return;
info = (struct pvr_compute_kernel_info){
.indirect_buffer_addr = PVR_DEV_ADDR_INVALID,
.sd_type = PVRX(CDMCTRL_SD_TYPE_NONE),
.usc_target = PVRX(CDMCTRL_USC_TARGET_ALL),
.usc_common_shared = true,
.usc_common_size =
DIV_ROUND_UP(const_shared_reg_count,
PVRX(CDMCTRL_KERNEL0_USC_COMMON_SIZE_UNIT_SIZE)),
.local_size = { 1, 1, 1 },
.global_size = { 1, 1, 1 },
};
/* Sometimes we don't have a secondary program if there were no constants to
* write, but we still need to run a PDS program to accomplish the
* allocation of the local/common store shared registers so we repurpose the
* deallocation PDS program.
*/
if (pipeline->state.descriptor.pds_info.code_size_in_dwords) {
uint32_t pds_data_size_in_dwords =
pipeline->state.descriptor.pds_info.data_size_in_dwords;
info.pds_data_offset = state->pds_compute_descriptor_data_offset;
info.pds_data_size =
DIV_ROUND_UP(pds_data_size_in_dwords << 2U,
PVRX(CDMCTRL_KERNEL0_PDS_DATA_SIZE_UNIT_SIZE));
/* Check that we have upload the code section. */
assert(pipeline->state.descriptor.pds_code.code_size);
info.pds_code_offset = pipeline->state.descriptor.pds_code.code_offset;
} else {
/* FIXME: There should be a deallocation pds program already uploaded
* that we use at this point.
*/
assert(!"Unimplemented");
}
/* We don't need to pad the workgroup size. */
info.max_instances =
pvr_compute_flat_slot_size(pdevice, const_shared_reg_count, false, 1U);
pvr_compute_generate_control_stream(csb, sub_cmd, &info);
}
static uint32_t
pvr_compute_flat_pad_workgroup_size(const struct pvr_physical_device *pdevice,
uint32_t workgroup_size,
uint32_t coeff_regs_count)
{
const struct pvr_device_runtime_info *dev_runtime_info =
&pdevice->dev_runtime_info;
const struct pvr_device_info *dev_info = &pdevice->dev_info;
uint32_t max_avail_coeff_regs =
dev_runtime_info->cdm_max_local_mem_size_regs;
uint32_t coeff_regs_count_aligned =
ALIGN_POT(coeff_regs_count,
PVRX(CDMCTRL_KERNEL0_USC_COMMON_SIZE_UNIT_SIZE) >> 2U);
/* If the work group size is > ROGUE_MAX_INSTANCES_PER_TASK. We now *always*
* pad the work group size to the next multiple of
* ROGUE_MAX_INSTANCES_PER_TASK.
*
* If we use more than 1/8th of the max coefficient registers then we round
* work group size up to the next multiple of ROGUE_MAX_INSTANCES_PER_TASK
*/
/* TODO: See if this can be optimized. */
if (workgroup_size > ROGUE_MAX_INSTANCES_PER_TASK ||
coeff_regs_count_aligned > (max_avail_coeff_regs / 8)) {
assert(workgroup_size < rogue_get_compute_max_work_group_size(dev_info));
return ALIGN_POT(workgroup_size, ROGUE_MAX_INSTANCES_PER_TASK);
}
return workgroup_size;
}
/* TODO: Wire up the base_workgroup variant program when implementing
* VK_KHR_device_group. The values will also need patching into the program.
*/
static void pvr_compute_update_kernel(
struct pvr_cmd_buffer *cmd_buffer,
struct pvr_sub_cmd_compute *const sub_cmd,
pvr_dev_addr_t indirect_addr,
const uint32_t global_workgroup_size[static const PVR_WORKGROUP_DIMENSIONS])
{
const struct pvr_physical_device *pdevice = cmd_buffer->device->pdevice;
const struct pvr_device_runtime_info *dev_runtime_info =
&pdevice->dev_runtime_info;
struct pvr_cmd_buffer_state *state = &cmd_buffer->state;
struct pvr_csb *csb = &sub_cmd->control_stream;
const struct pvr_compute_pipeline *pipeline = state->compute_pipeline;
const struct pvr_pds_info *program_info =
&pipeline->state.primary_program_info;
struct pvr_compute_kernel_info info = {
.indirect_buffer_addr = indirect_addr,
.usc_target = PVRX(CDMCTRL_USC_TARGET_ANY),
.pds_temp_size =
DIV_ROUND_UP(program_info->temps_required << 2U,
PVRX(CDMCTRL_KERNEL0_PDS_TEMP_SIZE_UNIT_SIZE)),
.pds_data_size =
DIV_ROUND_UP(program_info->data_size_in_dwords << 2U,
PVRX(CDMCTRL_KERNEL0_PDS_DATA_SIZE_UNIT_SIZE)),
.pds_data_offset = pipeline->state.primary_program.data_offset,
.pds_code_offset = pipeline->state.primary_program.code_offset,
.sd_type = PVRX(CDMCTRL_SD_TYPE_USC),
.usc_unified_size =
DIV_ROUND_UP(pipeline->state.shader.input_register_count << 2U,
PVRX(CDMCTRL_KERNEL0_USC_UNIFIED_SIZE_UNIT_SIZE)),
/* clang-format off */
.global_size = {
global_workgroup_size[0],
global_workgroup_size[1],
global_workgroup_size[2]
},
/* clang-format on */
};
uint32_t work_size = pipeline->state.shader.work_size;
uint32_t coeff_regs;
if (work_size > ROGUE_MAX_INSTANCES_PER_TASK) {
/* Enforce a single workgroup per cluster through allocation starvation.
*/
coeff_regs = dev_runtime_info->cdm_max_local_mem_size_regs;
} else {
coeff_regs = pipeline->state.shader.coefficient_register_count;
}
info.usc_common_size =
DIV_ROUND_UP(coeff_regs << 2U,
PVRX(CDMCTRL_KERNEL0_USC_COMMON_SIZE_UNIT_SIZE));
/* Use a whole slot per workgroup. */
work_size = MAX2(work_size, ROGUE_MAX_INSTANCES_PER_TASK);
coeff_regs += pipeline->state.shader.const_shared_reg_count;
work_size =
pvr_compute_flat_pad_workgroup_size(pdevice, work_size, coeff_regs);
info.local_size[0] = work_size;
info.local_size[1] = 1U;
info.local_size[2] = 1U;
info.max_instances =
pvr_compute_flat_slot_size(pdevice, coeff_regs, false, work_size);
pvr_compute_generate_control_stream(csb, sub_cmd, &info);
}
void pvr_CmdDispatch(VkCommandBuffer commandBuffer,
uint32_t groupCountX,
uint32_t groupCountY,
uint32_t groupCountZ)
{
const uint32_t workgroup_size[] = { groupCountX, groupCountY, groupCountZ };
PVR_FROM_HANDLE(pvr_cmd_buffer, cmd_buffer, commandBuffer);
struct pvr_cmd_buffer_state *state = &cmd_buffer->state;
const struct pvr_compute_pipeline *compute_pipeline =
state->compute_pipeline;
const VkShaderStageFlags push_consts_stage_mask =
compute_pipeline->base.layout->push_constants_shader_stages;
struct pvr_sub_cmd_compute *sub_cmd;
VkResult result;
PVR_CHECK_COMMAND_BUFFER_BUILDING_STATE(cmd_buffer);
if (!groupCountX || !groupCountY || !groupCountZ)
return;
pvr_cmd_buffer_start_sub_cmd(cmd_buffer, PVR_SUB_CMD_TYPE_COMPUTE);
sub_cmd = &state->current_sub_cmd->compute;
sub_cmd->uses_atomic_ops |= compute_pipeline->state.shader.uses_atomic_ops;
sub_cmd->uses_barrier |= compute_pipeline->state.shader.uses_barrier;
if (push_consts_stage_mask & VK_SHADER_STAGE_COMPUTE_BIT) {
/* TODO: Add a dirty push constants mask in the cmd_buffer state and
* check for dirty compute stage.
*/
pvr_finishme("Add support for push constants.");
}
if (compute_pipeline->state.shader.uses_num_workgroups) {
struct pvr_bo *num_workgroups_bo;
result = pvr_cmd_buffer_upload_general(cmd_buffer,
workgroup_size,
sizeof(workgroup_size),
&num_workgroups_bo);
if (result != VK_SUCCESS)
return;
result = pvr_setup_descriptor_mappings(
cmd_buffer,
PVR_STAGE_ALLOCATION_COMPUTE,
&compute_pipeline->state.descriptor,
&num_workgroups_bo->vma->dev_addr,
&state->pds_compute_descriptor_data_offset);
if (result != VK_SUCCESS)
return;
} else if ((compute_pipeline->base.layout
->per_stage_descriptor_masks[PVR_STAGE_ALLOCATION_COMPUTE] &&
state->dirty.compute_desc_dirty) ||
state->dirty.compute_pipeline_binding) {
result = pvr_setup_descriptor_mappings(
cmd_buffer,
PVR_STAGE_ALLOCATION_COMPUTE,
&compute_pipeline->state.descriptor,
NULL,
&state->pds_compute_descriptor_data_offset);
if (result != VK_SUCCESS)
return;
}
pvr_compute_update_shared(cmd_buffer, sub_cmd);
pvr_compute_update_kernel(cmd_buffer,
sub_cmd,
PVR_DEV_ADDR_INVALID,
workgroup_size);
}
void pvr_CmdDispatchIndirect(VkCommandBuffer commandBuffer,
VkBuffer _buffer,
VkDeviceSize offset)
{
const uint32_t workgroup_size[PVR_WORKGROUP_DIMENSIONS] = { 1, 1, 1 };
PVR_FROM_HANDLE(pvr_cmd_buffer, cmd_buffer, commandBuffer);
struct pvr_cmd_buffer_state *state = &cmd_buffer->state;
const struct pvr_compute_pipeline *compute_pipeline =
state->compute_pipeline;
const VkShaderStageFlags push_consts_stage_mask =
compute_pipeline->base.layout->push_constants_shader_stages;
PVR_FROM_HANDLE(pvr_buffer, buffer, _buffer);
struct pvr_sub_cmd_compute *sub_cmd;
pvr_dev_addr_t indirect_addr;
VkResult result;
PVR_CHECK_COMMAND_BUFFER_BUILDING_STATE(cmd_buffer);
indirect_addr = PVR_DEV_ADDR_OFFSET(buffer->dev_addr, offset);
pvr_cmd_buffer_start_sub_cmd(cmd_buffer, PVR_SUB_CMD_TYPE_COMPUTE);
sub_cmd = &state->current_sub_cmd->compute;
sub_cmd->uses_atomic_ops |= compute_pipeline->state.shader.uses_atomic_ops;
sub_cmd->uses_barrier |= compute_pipeline->state.shader.uses_barrier;
if (push_consts_stage_mask & VK_SHADER_STAGE_COMPUTE_BIT) {
/* TODO: Add a dirty push constants mask in the cmd_buffer state and
* check for dirty compute stage.
*/
pvr_finishme("Add support for push constants.");
}
if (compute_pipeline->state.shader.uses_num_workgroups) {
result = pvr_setup_descriptor_mappings(
cmd_buffer,
PVR_STAGE_ALLOCATION_COMPUTE,
&compute_pipeline->state.descriptor,
&indirect_addr,
&state->pds_compute_descriptor_data_offset);
if (result != VK_SUCCESS)
return;
} else if ((compute_pipeline->base.layout
->per_stage_descriptor_masks[PVR_STAGE_ALLOCATION_COMPUTE] &&
state->dirty.compute_desc_dirty) ||
state->dirty.compute_pipeline_binding) {
result = pvr_setup_descriptor_mappings(
cmd_buffer,
PVR_STAGE_ALLOCATION_COMPUTE,
&compute_pipeline->state.descriptor,
NULL,
&state->pds_compute_descriptor_data_offset);
if (result != VK_SUCCESS)
return;
}
pvr_compute_update_shared(cmd_buffer, sub_cmd);
pvr_compute_update_kernel(cmd_buffer, sub_cmd, indirect_addr, workgroup_size);
}
static void
pvr_update_draw_state(struct pvr_cmd_buffer_state *const state,
const struct pvr_cmd_buffer_draw_state *const draw_state)
{
/* We don't have a state to tell us that base_instance is being used so it
* gets used as a boolean - 0 means we'll use a pds program that skips the
* base instance addition. If the base_instance gets used (and the last
* draw's base_instance was 0) then we switch to the BASE_INSTANCE attrib
* program.
*
* If base_instance changes then we only need to update the data section.
*
* The only draw call state that doesn't really matter is the start vertex
* as that is handled properly in the VDM state in all cases.
*/
if ((state->draw_state.draw_indexed != draw_state->draw_indexed) ||
(state->draw_state.draw_indirect != draw_state->draw_indirect) ||
(state->draw_state.base_instance == 0 &&
draw_state->base_instance != 0)) {
state->dirty.draw_variant = true;
} else if (state->draw_state.base_instance != draw_state->base_instance) {
state->dirty.draw_base_instance = true;
}
state->draw_state = *draw_state;
}
static uint32_t pvr_calc_shared_regs_count(
const struct pvr_graphics_pipeline *const gfx_pipeline)
{
const struct pvr_pipeline_stage_state *const vertex_state =
&gfx_pipeline->shader_state.vertex.stage_state;
uint32_t shared_regs = vertex_state->const_shared_reg_count +
vertex_state->const_shared_reg_offset;
if (gfx_pipeline->shader_state.fragment.bo) {
const struct pvr_pipeline_stage_state *const fragment_state =
&gfx_pipeline->shader_state.fragment.stage_state;
uint32_t fragment_regs = fragment_state->const_shared_reg_count +
fragment_state->const_shared_reg_offset;
shared_regs = MAX2(shared_regs, fragment_regs);
}
return shared_regs;
}
static void
pvr_emit_dirty_pds_state(const struct pvr_cmd_buffer *const cmd_buffer,
struct pvr_sub_cmd_gfx *const sub_cmd,
const uint32_t pds_vertex_descriptor_data_offset)
{
const struct pvr_cmd_buffer_state *const state = &cmd_buffer->state;
const struct pvr_stage_allocation_descriptor_state
*const vertex_descriptor_state =
&state->gfx_pipeline->shader_state.vertex.descriptor_state;
const struct pvr_pipeline_stage_state *const vertex_stage_state =
&state->gfx_pipeline->shader_state.vertex.stage_state;
struct pvr_csb *const csb = &sub_cmd->control_stream;
if (!vertex_descriptor_state->pds_info.code_size_in_dwords)
return;
pvr_csb_emit (csb, VDMCTRL_PDS_STATE0, state0) {
state0.usc_target = PVRX(VDMCTRL_USC_TARGET_ALL);
state0.usc_common_size =
DIV_ROUND_UP(vertex_stage_state->const_shared_reg_count << 2,
PVRX(VDMCTRL_PDS_STATE0_USC_COMMON_SIZE_UNIT_SIZE));
state0.pds_data_size = DIV_ROUND_UP(
vertex_descriptor_state->pds_info.data_size_in_dwords << 2,
PVRX(VDMCTRL_PDS_STATE0_PDS_DATA_SIZE_UNIT_SIZE));
}
pvr_csb_emit (csb, VDMCTRL_PDS_STATE1, state1) {
state1.pds_data_addr = PVR_DEV_ADDR(pds_vertex_descriptor_data_offset);
state1.sd_type = PVRX(VDMCTRL_SD_TYPE_NONE);
}
pvr_csb_emit (csb, VDMCTRL_PDS_STATE2, state2) {
state2.pds_code_addr =
PVR_DEV_ADDR(vertex_descriptor_state->pds_code.code_offset);
}
}
static void pvr_setup_output_select(struct pvr_cmd_buffer *const cmd_buffer)
{
const struct pvr_graphics_pipeline *const gfx_pipeline =
cmd_buffer->state.gfx_pipeline;
const struct pvr_vertex_shader_state *const vertex_state =
&gfx_pipeline->shader_state.vertex;
struct vk_dynamic_graphics_state *const dynamic_state =
&cmd_buffer->vk.dynamic_graphics_state;
struct PVRX(TA_STATE_HEADER) *const header = &cmd_buffer->state.emit_header;
struct pvr_ppp_state *const ppp_state = &cmd_buffer->state.ppp_state;
uint32_t output_selects;
/* TODO: Handle vertex and fragment shader state flags. */
pvr_csb_pack (&output_selects, TA_OUTPUT_SEL, state) {
state.rhw_pres = true;
state.vtxsize = DIV_ROUND_UP(vertex_state->vertex_output_size, 4U);
state.psprite_size_pres = (dynamic_state->ia.primitive_topology ==
VK_PRIMITIVE_TOPOLOGY_POINT_LIST);
}
if (ppp_state->output_selects != output_selects) {
ppp_state->output_selects = output_selects;
header->pres_outselects = true;
}
if (ppp_state->varying_word[0] != vertex_state->varying[0]) {
ppp_state->varying_word[0] = vertex_state->varying[0];
header->pres_varying_word0 = true;
}
if (ppp_state->varying_word[1] != vertex_state->varying[1]) {
ppp_state->varying_word[1] = vertex_state->varying[1];
header->pres_varying_word1 = true;
}
}
static void
pvr_setup_isp_faces_and_control(struct pvr_cmd_buffer *const cmd_buffer,
struct PVRX(TA_STATE_ISPA) *const ispa_out)
{
struct PVRX(TA_STATE_HEADER) *const header = &cmd_buffer->state.emit_header;
const struct pvr_fragment_shader_state *const fragment_shader_state =
&cmd_buffer->state.gfx_pipeline->shader_state.fragment;
const struct pvr_render_pass_info *const pass_info =
&cmd_buffer->state.render_pass_info;
struct vk_dynamic_graphics_state *dynamic_state =
&cmd_buffer->vk.dynamic_graphics_state;
struct pvr_ppp_state *const ppp_state = &cmd_buffer->state.ppp_state;
const bool rasterizer_discard = dynamic_state->rs.rasterizer_discard_enable;
const uint32_t subpass_idx = pass_info->subpass_idx;
const uint32_t *depth_stencil_attachment_idx =
pass_info->pass->subpasses[subpass_idx].depth_stencil_attachment;
const struct pvr_image_view *const attachment =
depth_stencil_attachment_idx
? pass_info->attachments[*depth_stencil_attachment_idx]
: NULL;
const enum PVRX(TA_OBJTYPE)
obj_type = pvr_ta_objtype(dynamic_state->ia.primitive_topology);
const VkImageAspectFlags ds_aspects =
(!rasterizer_discard && attachment)
? vk_format_aspects(attachment->vk.format) &
(VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT)
: VK_IMAGE_ASPECT_NONE;
/* This is deliberately a full copy rather than a pointer because
* vk_optimize_depth_stencil_state() can only be run once against any given
* instance of vk_depth_stencil_state.
*/
struct vk_depth_stencil_state ds_state = dynamic_state->ds;
uint32_t ispb_stencil_off;
bool is_two_sided = false;
uint32_t isp_control;
uint32_t line_width;
uint32_t common_a;
uint32_t front_a;
uint32_t front_b;
uint32_t back_a;
uint32_t back_b;
vk_optimize_depth_stencil_state(&ds_state, ds_aspects, true);
/* Convert to 4.4 fixed point format. */
line_width = util_unsigned_fixed(dynamic_state->rs.line.width, 4);
/* Subtract 1 to shift values from range [0=0,256=16] to [0=1/16,255=16].
* If 0 it stays at 0, otherwise we subtract 1.
*/
line_width = (!!line_width) * (line_width - 1);
line_width = MIN2(line_width, PVRX(TA_STATE_ISPA_POINTLINEWIDTH_SIZE_MAX));
/* TODO: Part of the logic in this function is duplicated in another part
* of the code. E.g. the dcmpmode, and sop1/2/3. Could we do this earlier?
*/
pvr_csb_pack (&common_a, TA_STATE_ISPA, ispa) {
ispa.pointlinewidth = line_width;
ispa.dcmpmode = pvr_ta_cmpmode(ds_state.depth.compare_op);
ispa.dwritedisable = !ds_state.depth.write_enable;
ispa.passtype = fragment_shader_state->pass_type;
ispa.objtype = obj_type;
/* Return unpacked ispa structure. dcmpmode, dwritedisable, passtype and
* objtype are needed by pvr_setup_triangle_merging_flag.
*/
if (ispa_out)
*ispa_out = ispa;
}
/* TODO: Does this actually represent the ispb control word on stencil off?
* If not, rename the variable.
*/
pvr_csb_pack (&ispb_stencil_off, TA_STATE_ISPB, ispb) {
ispb.sop3 = PVRX(TA_ISPB_STENCILOP_KEEP);
ispb.sop2 = PVRX(TA_ISPB_STENCILOP_KEEP);
ispb.sop1 = PVRX(TA_ISPB_STENCILOP_KEEP);
ispb.scmpmode = PVRX(TA_CMPMODE_ALWAYS);
}
/* FIXME: This logic should be redone and improved. Can we also get rid of
* the front and back variants?
*/
front_a = common_a;
back_a = common_a;
if (ds_state.stencil.test_enable) {
uint32_t front_a_sref;
uint32_t back_a_sref;
pvr_csb_pack (&front_a_sref, TA_STATE_ISPA, ispa) {
ispa.sref = ds_state.stencil.front.reference;
}
front_a |= front_a_sref;
pvr_csb_pack (&back_a_sref, TA_STATE_ISPA, ispa) {
ispa.sref = ds_state.stencil.back.reference;
}
back_a |= back_a_sref;
pvr_csb_pack (&front_b, TA_STATE_ISPB, ispb) {
const struct vk_stencil_test_face_state *const front =
&ds_state.stencil.front;
if (ds_state.stencil.write_enable)
ispb.swmask = front->write_mask;
ispb.scmpmask = front->compare_mask;
ispb.sop3 = pvr_ta_stencilop(front->op.pass);
ispb.sop2 = pvr_ta_stencilop(front->op.depth_fail);
ispb.sop1 = pvr_ta_stencilop(front->op.fail);
ispb.scmpmode = pvr_ta_cmpmode(front->op.compare);
}
pvr_csb_pack (&back_b, TA_STATE_ISPB, ispb) {
const struct vk_stencil_test_face_state *const back =
&ds_state.stencil.back;
if (ds_state.stencil.write_enable)
ispb.swmask = back->write_mask;
ispb.scmpmask = back->compare_mask;
ispb.sop3 = pvr_ta_stencilop(back->op.pass);
ispb.sop2 = pvr_ta_stencilop(back->op.depth_fail);
ispb.sop1 = pvr_ta_stencilop(back->op.fail);
ispb.scmpmode = pvr_ta_cmpmode(back->op.compare);
}
} else {
front_b = ispb_stencil_off;
back_b = ispb_stencil_off;
}
if (front_a != back_a || front_b != back_b) {
if (dynamic_state->rs.cull_mode & VK_CULL_MODE_BACK_BIT) {
/* Single face, using front state. */
} else if (dynamic_state->rs.cull_mode & VK_CULL_MODE_FRONT_BIT) {
/* Single face, using back state. */
front_a = back_a;
front_b = back_b;
} else {
/* Both faces. */
header->pres_ispctl_ba = is_two_sided = true;
if (dynamic_state->rs.front_face == VK_FRONT_FACE_COUNTER_CLOCKWISE) {
uint32_t tmp = front_a;
front_a = back_a;
back_a = tmp;
tmp = front_b;
front_b = back_b;
back_b = tmp;
}
/* HW defaults to stencil off. */
if (back_b != ispb_stencil_off) {
header->pres_ispctl_fb = true;
header->pres_ispctl_bb = true;
}
}
}
if (ds_state.stencil.test_enable && front_b != ispb_stencil_off)
header->pres_ispctl_fb = true;
pvr_csb_pack (&isp_control, TA_STATE_ISPCTL, ispctl) {
ispctl.upass = pass_info->isp_userpass;
/* TODO: is bo ever NULL? Figure out what to do. */
ispctl.tagwritedisable = rasterizer_discard || !fragment_shader_state->bo;
ispctl.two_sided = is_two_sided;
ispctl.bpres = header->pres_ispctl_fb || header->pres_ispctl_bb;
ispctl.dbenable = !rasterizer_discard &&
dynamic_state->rs.depth_bias.enable &&
obj_type == PVRX(TA_OBJTYPE_TRIANGLE);
ispctl.scenable = !rasterizer_discard;
ppp_state->isp.control_struct = ispctl;
}
header->pres_ispctl = true;
ppp_state->isp.control = isp_control;
ppp_state->isp.front_a = front_a;
ppp_state->isp.front_b = front_b;
ppp_state->isp.back_a = back_a;
ppp_state->isp.back_b = back_b;
}
static float
pvr_calculate_final_depth_bias_contant_factor(struct pvr_device_info *dev_info,
VkFormat format,
float depth_bias)
{
/* Information for future modifiers of these depth bias calculations.
* ==================================================================
* Specified depth bias equations scale the specified constant factor by a
* value 'r' that is guaranteed to cause a resolvable difference in depth
* across the entire range of depth values.
* For floating point depth formats 'r' is calculated by taking the maximum
* exponent across the triangle.
* For UNORM formats 'r' is constant.
* Here 'n' is the number of mantissa bits stored in the floating point
* representation (23 for F32).
*
* UNORM Format -> z += dbcf * r + slope
* FLOAT Format -> z += dbcf * 2^(e-n) + slope
*
* HW Variations.
* ==============
* The HW either always performs the F32 depth bias equation (exponent based
* r), or in the case of HW that correctly supports the integer depth bias
* equation for UNORM depth formats, we can select between both equations
* using the ROGUE_CR_ISP_CTL.dbias_is_int flag - this is required to
* correctly perform Vulkan UNORM depth bias (constant r).
*
* if ern42307:
* if DBIAS_IS_INT_EN:
* z += dbcf + slope
* else:
* z += dbcf * 2^(e-n) + slope
* else:
* z += dbcf * 2^(e-n) + slope
*
*/
float nudge_factor;
if (PVR_HAS_ERN(dev_info, 42307)) {
switch (format) {
case VK_FORMAT_D16_UNORM:
return depth_bias / (1 << 15);
case VK_FORMAT_D24_UNORM_S8_UINT:
case VK_FORMAT_X8_D24_UNORM_PACK32:
return depth_bias / (1 << 23);
default:
return depth_bias;
}
}
/* The reasoning behind clamping/nudging the value here is because UNORM
* depth formats can have higher precision over our underlying D32F
* representation for some depth ranges.
*
* When the HW scales the depth bias value by 2^(e-n) [The 'r' term'] a depth
* bias of 1 can result in a value smaller than one F32 ULP, which will get
* quantized to 0 - resulting in no bias.
*
* Biasing small values away from zero will ensure that small depth biases of
* 1 still yield a result and overcome Z-fighting.
*/
switch (format) {
case VK_FORMAT_D16_UNORM:
depth_bias *= 512.0f;
nudge_factor = 1.0f;
break;
case VK_FORMAT_D24_UNORM_S8_UINT:
case VK_FORMAT_X8_D24_UNORM_PACK32:
depth_bias *= 2.0f;
nudge_factor = 2.0f;
break;
default:
nudge_factor = 0.0f;
break;
}
if (nudge_factor != 0.0f) {
if (depth_bias < 0.0f && depth_bias > -nudge_factor)
depth_bias -= nudge_factor;
else if (depth_bias > 0.0f && depth_bias < nudge_factor)
depth_bias += nudge_factor;
}
return depth_bias;
}
static void pvr_get_viewport_scissor_overlap(const VkViewport *const viewport,
const VkRect2D *const scissor,
VkRect2D *const rect_out)
{
/* TODO: See if we can remove this struct. */
struct pvr_rect {
int32_t x0, y0;
int32_t x1, y1;
};
/* TODO: Worry about overflow? */
const struct pvr_rect scissor_rect = {
.x0 = scissor->offset.x,
.y0 = scissor->offset.y,
.x1 = scissor->offset.x + scissor->extent.width,
.y1 = scissor->offset.y + scissor->extent.height
};
struct pvr_rect viewport_rect = { 0 };
assert(viewport->width >= 0.0f);
assert(scissor_rect.x0 >= 0);
assert(scissor_rect.y0 >= 0);
if (scissor->extent.width == 0 || scissor->extent.height == 0) {
*rect_out = (VkRect2D){ 0 };
return;
}
viewport_rect.x0 = (int32_t)viewport->x;
viewport_rect.x1 = (int32_t)viewport->x + (int32_t)viewport->width;
/* TODO: Is there a mathematical way of doing all this and then clamp at
* the end?
*/
/* We flip the y0 and y1 when height is negative. */
viewport_rect.y0 = (int32_t)viewport->y + MIN2(0, (int32_t)viewport->height);
viewport_rect.y1 = (int32_t)viewport->y + MAX2(0, (int32_t)viewport->height);
if (scissor_rect.x1 <= viewport_rect.x0 ||
scissor_rect.y1 <= viewport_rect.y0 ||
scissor_rect.x0 >= viewport_rect.x1 ||
scissor_rect.y0 >= viewport_rect.y1) {
*rect_out = (VkRect2D){ 0 };
return;
}
/* Determine the overlapping rectangle. */
viewport_rect.x0 = MAX2(viewport_rect.x0, scissor_rect.x0);
viewport_rect.y0 = MAX2(viewport_rect.y0, scissor_rect.y0);
viewport_rect.x1 = MIN2(viewport_rect.x1, scissor_rect.x1);
viewport_rect.y1 = MIN2(viewport_rect.y1, scissor_rect.y1);
/* TODO: Is this conversion safe? Is this logic right? */
rect_out->offset.x = (uint32_t)viewport_rect.x0;
rect_out->offset.y = (uint32_t)viewport_rect.y0;
rect_out->extent.height = (uint32_t)(viewport_rect.y1 - viewport_rect.y0);
rect_out->extent.width = (uint32_t)(viewport_rect.x1 - viewport_rect.x0);
}
static inline uint32_t
pvr_get_geom_region_clip_align_size(struct pvr_device_info *const dev_info)
{
/* TODO: This should come from rogue_ppp.xml. */
return 16U + 16U * (!PVR_HAS_FEATURE(dev_info, tile_size_16x16));
}
static void
pvr_setup_isp_depth_bias_scissor_state(struct pvr_cmd_buffer *const cmd_buffer)
{
struct PVRX(TA_STATE_HEADER) *const header = &cmd_buffer->state.emit_header;
struct pvr_ppp_state *const ppp_state = &cmd_buffer->state.ppp_state;
struct vk_dynamic_graphics_state *const dynamic_state =
&cmd_buffer->vk.dynamic_graphics_state;
const struct PVRX(TA_STATE_ISPCTL) *const ispctl =
&ppp_state->isp.control_struct;
struct pvr_device_info *const dev_info =
&cmd_buffer->device->pdevice->dev_info;
if (ispctl->dbenable &&
(BITSET_TEST(dynamic_state->dirty,
MESA_VK_DYNAMIC_RS_DEPTH_BIAS_FACTORS) ||
cmd_buffer->depth_bias_array.size == 0)) {
struct pvr_depth_bias_state depth_bias = {
.constant_factor = pvr_calculate_final_depth_bias_contant_factor(
dev_info,
cmd_buffer->state.depth_format,
dynamic_state->rs.depth_bias.constant),
.slope_factor = dynamic_state->rs.depth_bias.slope,
.clamp = dynamic_state->rs.depth_bias.clamp,
};
ppp_state->depthbias_scissor_indices.depthbias_index =
util_dynarray_num_elements(&cmd_buffer->depth_bias_array,
__typeof__(depth_bias));
util_dynarray_append(&cmd_buffer->depth_bias_array,
__typeof__(depth_bias),
depth_bias);
header->pres_ispctl_dbsc = true;
}
if (ispctl->scenable) {
const uint32_t region_clip_align_size =
pvr_get_geom_region_clip_align_size(dev_info);
const VkViewport *const viewport = &dynamic_state->vp.viewports[0];
const VkRect2D *const scissor = &dynamic_state->vp.scissors[0];
struct pvr_scissor_words scissor_words;
VkRect2D overlap_rect;
uint32_t height;
uint32_t width;
uint32_t x;
uint32_t y;
/* For region clip. */
uint32_t bottom;
uint32_t right;
uint32_t left;
uint32_t top;
/* We don't support multiple viewport calculations. */
assert(dynamic_state->vp.viewport_count == 1);
/* We don't support multiple scissor calculations. */
assert(dynamic_state->vp.scissor_count == 1);
pvr_get_viewport_scissor_overlap(viewport, scissor, &overlap_rect);
x = overlap_rect.offset.x;
y = overlap_rect.offset.y;
width = overlap_rect.extent.width;
height = overlap_rect.extent.height;
pvr_csb_pack (&scissor_words.w0, IPF_SCISSOR_WORD_0, word0) {
word0.scw0_xmax = x + width;
word0.scw0_xmin = x;
}
pvr_csb_pack (&scissor_words.w1, IPF_SCISSOR_WORD_1, word1) {
word1.scw1_ymax = y + height;
word1.scw1_ymin = y;
}
if (cmd_buffer->scissor_array.size &&
cmd_buffer->scissor_words.w0 == scissor_words.w0 &&
cmd_buffer->scissor_words.w1 == scissor_words.w1) {
return;
}
cmd_buffer->scissor_words = scissor_words;
/* Calculate region clip. */
left = x / region_clip_align_size;
top = y / region_clip_align_size;
/* We prevent right=-1 with the multiplication. */
/* TODO: Is there a better way of doing this? */
if ((x + width) != 0U)
right = DIV_ROUND_UP(x + width, region_clip_align_size) - 1;
else
right = 0;
if ((y + height) != 0U)
bottom = DIV_ROUND_UP(y + height, region_clip_align_size) - 1;
else
bottom = 0U;
/* Setup region clip to clip everything outside what was calculated. */
/* FIXME: Should we mask to prevent writing over other words? */
pvr_csb_pack (&ppp_state->region_clipping.word0, TA_REGION_CLIP0, word0) {
word0.right = right;
word0.left = left;
word0.mode = PVRX(TA_REGION_CLIP_MODE_OUTSIDE);
}
pvr_csb_pack (&ppp_state->region_clipping.word1, TA_REGION_CLIP1, word1) {
word1.bottom = bottom;
word1.top = top;
}
ppp_state->depthbias_scissor_indices.scissor_index =
util_dynarray_num_elements(&cmd_buffer->scissor_array,
struct pvr_scissor_words);
util_dynarray_append(&cmd_buffer->scissor_array,
struct pvr_scissor_words,
cmd_buffer->scissor_words);
header->pres_ispctl_dbsc = true;
header->pres_region_clip = true;
}
}
static void
pvr_setup_triangle_merging_flag(struct pvr_cmd_buffer *const cmd_buffer,
struct PVRX(TA_STATE_ISPA) * ispa)
{
struct PVRX(TA_STATE_HEADER) *const header = &cmd_buffer->state.emit_header;
struct pvr_ppp_state *const ppp_state = &cmd_buffer->state.ppp_state;
uint32_t merge_word;
uint32_t mask;
pvr_csb_pack (&merge_word, TA_STATE_PDS_SIZEINFO2, size_info) {
/* Disable for lines or punch-through or for DWD and depth compare
* always.
*/
if (ispa->objtype == PVRX(TA_OBJTYPE_LINE) ||
ispa->passtype == PVRX(TA_PASSTYPE_PUNCH_THROUGH) ||
(ispa->dwritedisable && ispa->dcmpmode == PVRX(TA_CMPMODE_ALWAYS))) {
size_info.pds_tri_merge_disable = true;
}
}
pvr_csb_pack (&mask, TA_STATE_PDS_SIZEINFO2, size_info) {
size_info.pds_tri_merge_disable = true;
}
merge_word |= ppp_state->pds.size_info2 & ~mask;
if (merge_word != ppp_state->pds.size_info2) {
ppp_state->pds.size_info2 = merge_word;
header->pres_pds_state_ptr0 = true;
}
}
static void
pvr_setup_fragment_state_pointers(struct pvr_cmd_buffer *const cmd_buffer,
struct pvr_sub_cmd_gfx *const sub_cmd)
{
struct pvr_cmd_buffer_state *const state = &cmd_buffer->state;
const struct pvr_fragment_shader_state *const fragment =
&state->gfx_pipeline->shader_state.fragment;
const struct pvr_stage_allocation_descriptor_state *descriptor_shader_state =
&fragment->descriptor_state;
const struct pvr_pipeline_stage_state *fragment_state =
&fragment->stage_state;
const struct pvr_pds_upload *pds_coeff_program =
&fragment->pds_coeff_program;
const struct pvr_physical_device *pdevice = cmd_buffer->device->pdevice;
struct PVRX(TA_STATE_HEADER) *const header = &state->emit_header;
struct pvr_ppp_state *const ppp_state = &state->ppp_state;
const uint32_t pds_uniform_size =
DIV_ROUND_UP(descriptor_shader_state->pds_info.data_size_in_dwords,
PVRX(TA_STATE_PDS_SIZEINFO1_PDS_UNIFORMSIZE_UNIT_SIZE));
const uint32_t pds_varying_state_size =
DIV_ROUND_UP(pds_coeff_program->data_size,
PVRX(TA_STATE_PDS_SIZEINFO1_PDS_VARYINGSIZE_UNIT_SIZE));
const uint32_t usc_varying_size =
DIV_ROUND_UP(fragment_state->coefficient_size,
PVRX(TA_STATE_PDS_SIZEINFO1_USC_VARYINGSIZE_UNIT_SIZE));
const uint32_t pds_temp_size =
DIV_ROUND_UP(fragment_state->temps_count,
PVRX(TA_STATE_PDS_SIZEINFO1_PDS_TEMPSIZE_UNIT_SIZE));
const uint32_t usc_shared_size =
DIV_ROUND_UP(fragment_state->const_shared_reg_count,
PVRX(TA_STATE_PDS_SIZEINFO2_USC_SHAREDSIZE_UNIT_SIZE));
const uint32_t max_tiles_in_flight =
pvr_calc_fscommon_size_and_tiles_in_flight(
pdevice,
usc_shared_size *
PVRX(TA_STATE_PDS_SIZEINFO2_USC_SHAREDSIZE_UNIT_SIZE),
1);
uint32_t size_info_mask;
uint32_t size_info2;
if (max_tiles_in_flight < sub_cmd->max_tiles_in_flight)
sub_cmd->max_tiles_in_flight = max_tiles_in_flight;
pvr_csb_pack (&ppp_state->pds.pixel_shader_base,
TA_STATE_PDS_SHADERBASE,
shader_base) {
const struct pvr_pds_upload *const pds_upload =
&fragment->pds_fragment_program;
shader_base.addr = PVR_DEV_ADDR(pds_upload->data_offset);
}
if (descriptor_shader_state->pds_code.pvr_bo) {
pvr_csb_pack (&ppp_state->pds.texture_uniform_code_base,
TA_STATE_PDS_TEXUNICODEBASE,
tex_base) {
tex_base.addr =
PVR_DEV_ADDR(descriptor_shader_state->pds_code.code_offset);
}
} else {
ppp_state->pds.texture_uniform_code_base = 0U;
}
pvr_csb_pack (&ppp_state->pds.size_info1, TA_STATE_PDS_SIZEINFO1, info1) {
info1.pds_uniformsize = pds_uniform_size;
info1.pds_texturestatesize = 0U;
info1.pds_varyingsize = pds_varying_state_size;
info1.usc_varyingsize = usc_varying_size;
info1.pds_tempsize = pds_temp_size;
}
pvr_csb_pack (&size_info_mask, TA_STATE_PDS_SIZEINFO2, mask) {
mask.pds_tri_merge_disable = true;
}
ppp_state->pds.size_info2 &= size_info_mask;
pvr_csb_pack (&size_info2, TA_STATE_PDS_SIZEINFO2, info2) {
info2.usc_sharedsize = usc_shared_size;
}
ppp_state->pds.size_info2 |= size_info2;
if (pds_coeff_program->pvr_bo) {
header->pres_pds_state_ptr1 = true;
pvr_csb_pack (&ppp_state->pds.varying_base,
TA_STATE_PDS_VARYINGBASE,
base) {
base.addr = PVR_DEV_ADDR(pds_coeff_program->data_offset);
}
} else {
ppp_state->pds.varying_base = 0U;
}
pvr_csb_pack (&ppp_state->pds.uniform_state_data_base,
TA_STATE_PDS_UNIFORMDATABASE,
base) {
base.addr = PVR_DEV_ADDR(state->pds_fragment_descriptor_data_offset);
}
header->pres_pds_state_ptr0 = true;
header->pres_pds_state_ptr3 = true;
}
static void pvr_setup_viewport(struct pvr_cmd_buffer *const cmd_buffer)
{
struct pvr_cmd_buffer_state *const state = &cmd_buffer->state;
struct PVRX(TA_STATE_HEADER) *const header = &state->emit_header;
struct vk_dynamic_graphics_state *const dynamic_state =
&cmd_buffer->vk.dynamic_graphics_state;
struct pvr_ppp_state *const ppp_state = &state->ppp_state;
if (ppp_state->viewport_count != dynamic_state->vp.viewport_count) {
ppp_state->viewport_count = dynamic_state->vp.viewport_count;
header->pres_viewport = true;
}
if (dynamic_state->rs.rasterizer_discard_enable) {
/* We don't want to emit any viewport data as it'll just get thrown
* away. It's after the previous condition because we still want to
* stash the viewport_count as it's our trigger for when
* rasterizer discard gets disabled.
*/
header->pres_viewport = false;
return;
}
for (uint32_t i = 0; i < ppp_state->viewport_count; i++) {
VkViewport *viewport = &dynamic_state->vp.viewports[i];
uint32_t x_scale = fui(viewport->width * 0.5f);
uint32_t y_scale = fui(viewport->height * 0.5f);
uint32_t z_scale = fui(viewport->maxDepth - viewport->minDepth);
uint32_t x_center = fui(viewport->x + viewport->width * 0.5f);
uint32_t y_center = fui(viewport->y + viewport->height * 0.5f);
uint32_t z_center = fui(viewport->minDepth);
if (ppp_state->viewports[i].a0 != x_center ||
ppp_state->viewports[i].m0 != x_scale ||
ppp_state->viewports[i].a1 != y_center ||
ppp_state->viewports[i].m1 != y_scale ||
ppp_state->viewports[i].a2 != z_center ||
ppp_state->viewports[i].m2 != z_scale) {
ppp_state->viewports[i].a0 = x_center;
ppp_state->viewports[i].m0 = x_scale;
ppp_state->viewports[i].a1 = y_center;
ppp_state->viewports[i].m1 = y_scale;
ppp_state->viewports[i].a2 = z_center;
ppp_state->viewports[i].m2 = z_scale;
header->pres_viewport = true;
}
}
}
static void pvr_setup_ppp_control(struct pvr_cmd_buffer *const cmd_buffer)
{
struct vk_dynamic_graphics_state *const dynamic_state =
&cmd_buffer->vk.dynamic_graphics_state;
const VkPrimitiveTopology topology = dynamic_state->ia.primitive_topology;
struct pvr_cmd_buffer_state *const state = &cmd_buffer->state;
struct PVRX(TA_STATE_HEADER) *const header = &state->emit_header;
struct pvr_ppp_state *const ppp_state = &state->ppp_state;
uint32_t ppp_control;
pvr_csb_pack (&ppp_control, TA_STATE_PPP_CTRL, control) {
control.drawclippededges = true;
control.wclampen = true;
if (topology == VK_PRIMITIVE_TOPOLOGY_TRIANGLE_FAN)
control.flatshade_vtx = PVRX(TA_FLATSHADE_VTX_VERTEX_1);
else
control.flatshade_vtx = PVRX(TA_FLATSHADE_VTX_VERTEX_0);
if (dynamic_state->rs.depth_clamp_enable)
control.clip_mode = PVRX(TA_CLIP_MODE_NO_FRONT_OR_REAR);
else
control.clip_mode = PVRX(TA_CLIP_MODE_FRONT_REAR);
/* +--- FrontIsCCW?
* | +--- Cull Front?
* v v
* 0|0 CULLMODE_CULL_CCW,
* 0|1 CULLMODE_CULL_CW,
* 1|0 CULLMODE_CULL_CW,
* 1|1 CULLMODE_CULL_CCW,
*/
switch (dynamic_state->rs.cull_mode) {
case VK_CULL_MODE_BACK_BIT:
case VK_CULL_MODE_FRONT_BIT:
if ((dynamic_state->rs.front_face == VK_FRONT_FACE_COUNTER_CLOCKWISE) ^
(dynamic_state->rs.cull_mode == VK_CULL_MODE_FRONT_BIT)) {
control.cullmode = PVRX(TA_CULLMODE_CULL_CW);
} else {
control.cullmode = PVRX(TA_CULLMODE_CULL_CCW);
}
break;
case VK_CULL_MODE_FRONT_AND_BACK:
case VK_CULL_MODE_NONE:
control.cullmode = PVRX(TA_CULLMODE_NO_CULLING);
break;
default:
unreachable("Unsupported cull mode!");
}
}
if (ppp_control != ppp_state->ppp_control) {
ppp_state->ppp_control = ppp_control;
header->pres_ppp_ctrl = true;
}
}
/* Largest valid PPP State update in words = 31
* 1 - Header
* 3 - Stream Out Config words 0, 1 and 2
* 1 - PPP Control word
* 3 - Varying Config words 0, 1 and 2
* 1 - Output Select
* 1 - WClamp
* 6 - Viewport Transform words
* 2 - Region Clip words
* 3 - PDS State for fragment phase (PDSSTATEPTR 1-3)
* 4 - PDS State for fragment phase (PDSSTATEPTR0)
* 6 - ISP Control Words
*/
#define PVR_MAX_PPP_STATE_DWORDS 31
static VkResult pvr_emit_ppp_state(struct pvr_cmd_buffer *const cmd_buffer,
struct pvr_sub_cmd_gfx *const sub_cmd)
{
const bool deferred_secondary = pvr_cmd_uses_deferred_cs_cmds(cmd_buffer);
struct pvr_cmd_buffer_state *const state = &cmd_buffer->state;
struct PVRX(TA_STATE_HEADER) *const header = &state->emit_header;
struct pvr_csb *const control_stream = &sub_cmd->control_stream;
struct pvr_ppp_state *const ppp_state = &state->ppp_state;
uint32_t ppp_state_words[PVR_MAX_PPP_STATE_DWORDS];
const bool emit_dbsc = header->pres_ispctl_dbsc;
uint32_t *buffer_ptr = ppp_state_words;
uint32_t dbsc_patching_offset = 0;
uint32_t ppp_state_words_count;
struct pvr_bo *pvr_bo;
VkResult result;
#if !defined(NDEBUG)
struct PVRX(TA_STATE_HEADER) emit_mask = *header;
uint32_t packed_emit_mask;
static_assert(pvr_cmd_length(TA_STATE_HEADER) == 1,
"EMIT_MASK_IS_CLEAR assumes 1 dword sized header.");
# define EMIT_MASK_GET(field) (emit_mask.field)
# define EMIT_MASK_SET(field, value) (emit_mask.field = (value))
# define EMIT_MASK_IS_CLEAR \
(pvr_cmd_pack(TA_STATE_HEADER)(&packed_emit_mask, &emit_mask), \
packed_emit_mask == 0)
#else
# define EMIT_MASK_GET(field)
# define EMIT_MASK_SET(field, value)
#endif
header->view_port_count =
(ppp_state->viewport_count == 0) ? 0U : (ppp_state->viewport_count - 1);
header->pres_ispctl_fa = header->pres_ispctl;
/* If deferred_secondary is true then we do a separate state update
* which gets patched in vkCmdExecuteCommands().
*/
header->pres_ispctl_dbsc &= !deferred_secondary;
pvr_csb_write_struct(buffer_ptr, TA_STATE_HEADER, header);
static_assert(pvr_cmd_length(TA_STATE_HEADER) == 1,
"Following header check assumes 1 dword sized header.");
/* If the header is empty we exit early and prevent a bo alloc of 0 size. */
if (ppp_state_words[0] == 0)
return VK_SUCCESS;
if (header->pres_ispctl) {
pvr_csb_write_value(buffer_ptr, TA_STATE_ISPCTL, ppp_state->isp.control);
assert(header->pres_ispctl_fa);
/* This is not a mistake. FA, BA have the ISPA format, and FB, BB have the
* ISPB format.
*/
pvr_csb_write_value(buffer_ptr, TA_STATE_ISPA, ppp_state->isp.front_a);
EMIT_MASK_SET(pres_ispctl_fa, false);
if (header->pres_ispctl_fb) {
pvr_csb_write_value(buffer_ptr, TA_STATE_ISPB, ppp_state->isp.front_b);
EMIT_MASK_SET(pres_ispctl_fb, false);
}
if (header->pres_ispctl_ba) {
pvr_csb_write_value(buffer_ptr, TA_STATE_ISPA, ppp_state->isp.back_a);
EMIT_MASK_SET(pres_ispctl_ba, false);
}
if (header->pres_ispctl_bb) {
pvr_csb_write_value(buffer_ptr, TA_STATE_ISPB, ppp_state->isp.back_b);
EMIT_MASK_SET(pres_ispctl_bb, false);
}
EMIT_MASK_SET(pres_ispctl, false);
}
if (header->pres_ispctl_dbsc) {
assert(!deferred_secondary);
dbsc_patching_offset = buffer_ptr - ppp_state_words;
pvr_csb_pack (buffer_ptr, TA_STATE_ISPDBSC, ispdbsc) {
ispdbsc.dbindex = ppp_state->depthbias_scissor_indices.depthbias_index;
ispdbsc.scindex = ppp_state->depthbias_scissor_indices.scissor_index;
}
buffer_ptr += pvr_cmd_length(TA_STATE_ISPDBSC);
EMIT_MASK_SET(pres_ispctl_dbsc, false);
}
if (header->pres_pds_state_ptr0) {
pvr_csb_write_value(buffer_ptr,
TA_STATE_PDS_SHADERBASE,
ppp_state->pds.pixel_shader_base);
pvr_csb_write_value(buffer_ptr,
TA_STATE_PDS_TEXUNICODEBASE,
ppp_state->pds.texture_uniform_code_base);
pvr_csb_write_value(buffer_ptr,
TA_STATE_PDS_SIZEINFO1,
ppp_state->pds.size_info1);
pvr_csb_write_value(buffer_ptr,
TA_STATE_PDS_SIZEINFO2,
ppp_state->pds.size_info2);
EMIT_MASK_SET(pres_pds_state_ptr0, false);
}
if (header->pres_pds_state_ptr1) {
pvr_csb_write_value(buffer_ptr,
TA_STATE_PDS_VARYINGBASE,
ppp_state->pds.varying_base);
EMIT_MASK_SET(pres_pds_state_ptr1, false);
}
/* We don't use pds_state_ptr2 (texture state programs) control word, but
* this doesn't mean we need to set it to 0. This is because the hardware
* runs the texture state program only when
* ROGUE_TA_STATE_PDS_SIZEINFO1.pds_texturestatesize is non-zero.
*/
assert(pvr_csb_unpack(&ppp_state->pds.size_info1, TA_STATE_PDS_SIZEINFO1)
.pds_texturestatesize == 0);
if (header->pres_pds_state_ptr3) {
pvr_csb_write_value(buffer_ptr,
TA_STATE_PDS_UNIFORMDATABASE,
ppp_state->pds.uniform_state_data_base);
EMIT_MASK_SET(pres_pds_state_ptr3, false);
}
if (header->pres_region_clip) {
pvr_csb_write_value(buffer_ptr,
TA_REGION_CLIP0,
ppp_state->region_clipping.word0);
pvr_csb_write_value(buffer_ptr,
TA_REGION_CLIP1,
ppp_state->region_clipping.word1);
EMIT_MASK_SET(pres_region_clip, false);
}
if (header->pres_viewport) {
const uint32_t viewports = MAX2(1, ppp_state->viewport_count);
EMIT_MASK_SET(view_port_count, viewports);
for (uint32_t i = 0; i < viewports; i++) {
/* These don't have any definitions in the csbgen xml files and none
* will be added.
*/
*buffer_ptr++ = ppp_state->viewports[i].a0;
*buffer_ptr++ = ppp_state->viewports[i].m0;
*buffer_ptr++ = ppp_state->viewports[i].a1;
*buffer_ptr++ = ppp_state->viewports[i].m1;
*buffer_ptr++ = ppp_state->viewports[i].a2;
*buffer_ptr++ = ppp_state->viewports[i].m2;
EMIT_MASK_SET(view_port_count, EMIT_MASK_GET(view_port_count) - 1);
}
EMIT_MASK_SET(pres_viewport, false);
}
if (header->pres_wclamp) {
pvr_csb_pack (buffer_ptr, TA_WCLAMP, wclamp) {
wclamp.val = fui(0.00001f);
}
buffer_ptr += pvr_cmd_length(TA_WCLAMP);
EMIT_MASK_SET(pres_wclamp, false);
}
if (header->pres_outselects) {
pvr_csb_write_value(buffer_ptr, TA_OUTPUT_SEL, ppp_state->output_selects);
EMIT_MASK_SET(pres_outselects, false);
}
if (header->pres_varying_word0) {
pvr_csb_write_value(buffer_ptr,
TA_STATE_VARYING0,
ppp_state->varying_word[0]);
EMIT_MASK_SET(pres_varying_word0, false);
}
if (header->pres_varying_word1) {
pvr_csb_write_value(buffer_ptr,
TA_STATE_VARYING1,
ppp_state->varying_word[1]);
EMIT_MASK_SET(pres_varying_word1, false);
}
/* We only emit this on the first draw of a render job to prevent us from
* inheriting a non-zero value set elsewhere.
*/
if (header->pres_varying_word2) {
pvr_csb_write_value(buffer_ptr, TA_STATE_VARYING2, 0);
EMIT_MASK_SET(pres_varying_word2, false);
}
if (header->pres_ppp_ctrl) {
pvr_csb_write_value(buffer_ptr,
TA_STATE_PPP_CTRL,
ppp_state->ppp_control);
EMIT_MASK_SET(pres_ppp_ctrl, false);
}
/* We only emit this on the first draw of a render job to prevent us from
* inheriting a non-zero value set elsewhere.
*/
if (header->pres_stream_out_size) {
pvr_csb_write_value(buffer_ptr, TA_STATE_STREAM_OUT0, 0);
EMIT_MASK_SET(pres_stream_out_size, false);
}
assert(EMIT_MASK_IS_CLEAR);
#undef EMIT_MASK_GET
#undef EMIT_MASK_SET
#if !defined(NDEBUG)
# undef EMIT_MASK_IS_CLEAR
#endif
ppp_state_words_count = buffer_ptr - ppp_state_words;
assert(ppp_state_words_count <= PVR_MAX_PPP_STATE_DWORDS);
result = pvr_cmd_buffer_alloc_mem(cmd_buffer,
cmd_buffer->device->heaps.general_heap,
ppp_state_words_count * sizeof(uint32_t),
PVR_BO_ALLOC_FLAG_CPU_MAPPED,
&pvr_bo);
if (result != VK_SUCCESS)
return result;
memcpy(pvr_bo->bo->map,
ppp_state_words,
ppp_state_words_count * sizeof(uint32_t));
/* Write the VDM state update into the VDM control stream. */
pvr_csb_emit (control_stream, VDMCTRL_PPP_STATE0, state0) {
state0.word_count = ppp_state_words_count;
state0.addrmsb = pvr_bo->vma->dev_addr;
}
pvr_csb_emit (control_stream, VDMCTRL_PPP_STATE1, state1) {
state1.addrlsb = pvr_bo->vma->dev_addr;
}
if (emit_dbsc && cmd_buffer->vk.level == VK_COMMAND_BUFFER_LEVEL_SECONDARY) {
struct pvr_deferred_cs_command cmd;
if (deferred_secondary) {
const uint32_t num_dwords = pvr_cmd_length(VDMCTRL_PPP_STATE0) +
pvr_cmd_length(VDMCTRL_PPP_STATE1);
uint32_t *vdm_state = pvr_csb_alloc_dwords(control_stream, num_dwords);
if (!vdm_state) {
cmd_buffer->state.status = pvr_csb_get_status(control_stream);
return cmd_buffer->state.status;
}
cmd = (struct pvr_deferred_cs_command){
.type = PVR_DEFERRED_CS_COMMAND_TYPE_DBSC,
.dbsc = {
.state = ppp_state->depthbias_scissor_indices,
.vdm_state = vdm_state,
},
};
} else {
cmd = (struct pvr_deferred_cs_command){
.type = PVR_DEFERRED_CS_COMMAND_TYPE_DBSC2,
.dbsc2 = {
.state = ppp_state->depthbias_scissor_indices,
.ppp_cs_bo = pvr_bo,
.patch_offset = dbsc_patching_offset,
},
};
}
util_dynarray_append(&cmd_buffer->deferred_csb_commands,
struct pvr_deferred_cs_command,
cmd);
}
state->emit_header = (struct PVRX(TA_STATE_HEADER)){ 0 };
return VK_SUCCESS;
}
static inline bool
pvr_ppp_state_update_required(const struct pvr_cmd_buffer *cmd_buffer)
{
const BITSET_WORD *const dynamic_dirty =
cmd_buffer->vk.dynamic_graphics_state.dirty;
const struct pvr_cmd_buffer_state *const state = &cmd_buffer->state;
const struct PVRX(TA_STATE_HEADER) *const header = &state->emit_header;
return header->pres_ppp_ctrl || header->pres_ispctl ||
header->pres_ispctl_fb || header->pres_ispctl_ba ||
header->pres_ispctl_bb || header->pres_ispctl_dbsc ||
header->pres_pds_state_ptr0 || header->pres_pds_state_ptr1 ||
header->pres_pds_state_ptr2 || header->pres_pds_state_ptr3 ||
header->pres_region_clip || header->pres_viewport ||
header->pres_wclamp || header->pres_outselects ||
header->pres_varying_word0 || header->pres_varying_word1 ||
header->pres_varying_word2 || header->pres_stream_out_program ||
state->dirty.fragment_descriptors ||
state->dirty.gfx_pipeline_binding || state->dirty.isp_userpass ||
BITSET_TEST(dynamic_dirty, MESA_VK_DYNAMIC_DS_STENCIL_COMPARE_MASK) ||
BITSET_TEST(dynamic_dirty, MESA_VK_DYNAMIC_DS_STENCIL_WRITE_MASK) ||
BITSET_TEST(dynamic_dirty, MESA_VK_DYNAMIC_DS_STENCIL_REFERENCE) ||
BITSET_TEST(dynamic_dirty, MESA_VK_DYNAMIC_RS_DEPTH_BIAS_ENABLE) ||
BITSET_TEST(dynamic_dirty, MESA_VK_DYNAMIC_RS_DEPTH_BIAS_FACTORS) ||
BITSET_TEST(dynamic_dirty, MESA_VK_DYNAMIC_RS_LINE_WIDTH) ||
BITSET_TEST(dynamic_dirty, MESA_VK_DYNAMIC_VP_SCISSORS) ||
BITSET_TEST(dynamic_dirty, MESA_VK_DYNAMIC_VP_SCISSOR_COUNT) ||
BITSET_TEST(dynamic_dirty, MESA_VK_DYNAMIC_VP_VIEWPORTS) ||
BITSET_TEST(dynamic_dirty, MESA_VK_DYNAMIC_VP_VIEWPORT_COUNT);
}
static VkResult
pvr_emit_dirty_ppp_state(struct pvr_cmd_buffer *const cmd_buffer,
struct pvr_sub_cmd_gfx *const sub_cmd)
{
struct pvr_cmd_buffer_state *const state = &cmd_buffer->state;
struct vk_dynamic_graphics_state *const dynamic_state =
&cmd_buffer->vk.dynamic_graphics_state;
VkResult result;
/* TODO: The emit_header will be dirty only if
* pvr_reset_graphics_dirty_state() was called before this (so when command
* buffer begins recording or when it's reset). Otherwise it will have been
* zeroed out by the previous pvr_emit_ppp_state(). We can probably set a
* flag in there and check it here instead of checking the header.
* Check if this is true and implement the flag.
*/
if (!pvr_ppp_state_update_required(cmd_buffer))
return VK_SUCCESS;
if (state->dirty.gfx_pipeline_binding) {
struct PVRX(TA_STATE_ISPA) ispa;
pvr_setup_output_select(cmd_buffer);
pvr_setup_isp_faces_and_control(cmd_buffer, &ispa);
pvr_setup_triangle_merging_flag(cmd_buffer, &ispa);
} else if (BITSET_TEST(dynamic_state->dirty,
MESA_VK_DYNAMIC_DS_STENCIL_COMPARE_MASK) ||
BITSET_TEST(dynamic_state->dirty,
MESA_VK_DYNAMIC_DS_STENCIL_REFERENCE) ||
BITSET_TEST(dynamic_state->dirty,
MESA_VK_DYNAMIC_DS_STENCIL_WRITE_MASK) ||
BITSET_TEST(dynamic_state->dirty,
MESA_VK_DYNAMIC_RS_LINE_WIDTH) ||
state->dirty.isp_userpass) {
pvr_setup_isp_faces_and_control(cmd_buffer, NULL);
}
if (!dynamic_state->rs.rasterizer_discard_enable &&
state->dirty.fragment_descriptors &&
state->gfx_pipeline->shader_state.fragment.bo) {
pvr_setup_fragment_state_pointers(cmd_buffer, sub_cmd);
}
pvr_setup_isp_depth_bias_scissor_state(cmd_buffer);
if (BITSET_TEST(dynamic_state->dirty, MESA_VK_DYNAMIC_VP_VIEWPORTS) ||
BITSET_TEST(dynamic_state->dirty, MESA_VK_DYNAMIC_VP_VIEWPORT_COUNT))
pvr_setup_viewport(cmd_buffer);
pvr_setup_ppp_control(cmd_buffer);
/* The hardware doesn't have an explicit mode for this so we use a
* negative viewport to make sure all objects are culled out early.
*/
if (dynamic_state->rs.cull_mode == VK_CULL_MODE_FRONT_AND_BACK) {
/* Shift the viewport out of the guard-band culling everything. */
const uint32_t negative_vp_val = fui(-2.0f);
state->ppp_state.viewports[0].a0 = negative_vp_val;
state->ppp_state.viewports[0].m0 = 0;
state->ppp_state.viewports[0].a1 = negative_vp_val;
state->ppp_state.viewports[0].m1 = 0;
state->ppp_state.viewports[0].a2 = negative_vp_val;
state->ppp_state.viewports[0].m2 = 0;
state->ppp_state.viewport_count = 1;
state->emit_header.pres_viewport = true;
}
result = pvr_emit_ppp_state(cmd_buffer, sub_cmd);
if (result != VK_SUCCESS)
return result;
return VK_SUCCESS;
}
void pvr_calculate_vertex_cam_size(const struct pvr_device_info *dev_info,
const uint32_t vs_output_size,
const bool raster_enable,
uint32_t *const cam_size_out,
uint32_t *const vs_max_instances_out)
{
/* First work out the size of a vertex in the UVS and multiply by 4 for
* column ordering.
*/
const uint32_t uvs_vertex_vector_size_in_dwords =
(vs_output_size + 1U + raster_enable * 4U) * 4U;
const uint32_t vdm_cam_size =
PVR_GET_FEATURE_VALUE(dev_info, vdm_cam_size, 32U);
/* This is a proxy for 8XE. */
if (PVR_HAS_FEATURE(dev_info, simple_internal_parameter_format) &&
vdm_cam_size < 96U) {
/* Comparisons are based on size including scratch per vertex vector. */
if (uvs_vertex_vector_size_in_dwords < (14U * 4U)) {
*cam_size_out = MIN2(31U, vdm_cam_size - 1U);
*vs_max_instances_out = 16U;
} else if (uvs_vertex_vector_size_in_dwords < (20U * 4U)) {
*cam_size_out = 15U;
*vs_max_instances_out = 16U;
} else if (uvs_vertex_vector_size_in_dwords < (28U * 4U)) {
*cam_size_out = 11U;
*vs_max_instances_out = 12U;
} else if (uvs_vertex_vector_size_in_dwords < (44U * 4U)) {
*cam_size_out = 7U;
*vs_max_instances_out = 8U;
} else if (PVR_HAS_FEATURE(dev_info,
simple_internal_parameter_format_v2) ||
uvs_vertex_vector_size_in_dwords < (64U * 4U)) {
*cam_size_out = 7U;
*vs_max_instances_out = 4U;
} else {
*cam_size_out = 3U;
*vs_max_instances_out = 2U;
}
} else {
/* Comparisons are based on size including scratch per vertex vector. */
if (uvs_vertex_vector_size_in_dwords <= (32U * 4U)) {
/* output size <= 27 + 5 scratch. */
*cam_size_out = MIN2(95U, vdm_cam_size - 1U);
*vs_max_instances_out = 0U;
} else if (uvs_vertex_vector_size_in_dwords <= 48U * 4U) {
/* output size <= 43 + 5 scratch */
*cam_size_out = 63U;
if (PVR_GET_FEATURE_VALUE(dev_info, uvs_vtx_entries, 144U) < 288U)
*vs_max_instances_out = 16U;
else
*vs_max_instances_out = 0U;
} else if (uvs_vertex_vector_size_in_dwords <= 64U * 4U) {
/* output size <= 59 + 5 scratch. */
*cam_size_out = 31U;
if (PVR_GET_FEATURE_VALUE(dev_info, uvs_vtx_entries, 144U) < 288U)
*vs_max_instances_out = 16U;
else
*vs_max_instances_out = 0U;
} else {
*cam_size_out = 15U;
*vs_max_instances_out = 16U;
}
}
}
static void pvr_emit_dirty_vdm_state(struct pvr_cmd_buffer *const cmd_buffer,
struct pvr_sub_cmd_gfx *const sub_cmd)
{
/* FIXME: Assume all state is dirty for the moment. */
struct pvr_device_info *const dev_info =
&cmd_buffer->device->pdevice->dev_info;
ASSERTED const uint32_t max_user_vertex_output_components =
pvr_get_max_user_vertex_output_components(dev_info);
struct PVRX(VDMCTRL_VDM_STATE0)
header = { pvr_cmd_header(VDMCTRL_VDM_STATE0) };
struct vk_dynamic_graphics_state *const dynamic_state =
&cmd_buffer->vk.dynamic_graphics_state;
const struct pvr_cmd_buffer_state *const state = &cmd_buffer->state;
const struct pvr_vertex_shader_state *const vertex_shader_state =
&state->gfx_pipeline->shader_state.vertex;
struct pvr_csb *const csb = &sub_cmd->control_stream;
uint32_t vs_output_size;
uint32_t max_instances;
uint32_t cam_size;
/* CAM Calculations and HW state take vertex size aligned to DWORDS. */
vs_output_size =
DIV_ROUND_UP(vertex_shader_state->vertex_output_size,
PVRX(VDMCTRL_VDM_STATE4_VS_OUTPUT_SIZE_UNIT_SIZE));
assert(vs_output_size <= max_user_vertex_output_components);
pvr_calculate_vertex_cam_size(dev_info,
vs_output_size,
true,
&cam_size,
&max_instances);
pvr_csb_emit (csb, VDMCTRL_VDM_STATE0, state0) {
state0.cam_size = cam_size;
if (dynamic_state->ia.primitive_restart_enable) {
state0.cut_index_enable = true;
state0.cut_index_present = true;
}
switch (dynamic_state->ia.primitive_topology) {
case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_FAN:
state0.flatshade_control = PVRX(VDMCTRL_FLATSHADE_CONTROL_VERTEX_1);
break;
default:
state0.flatshade_control = PVRX(VDMCTRL_FLATSHADE_CONTROL_VERTEX_0);
break;
}
/* If we've bound a different vertex buffer, or this draw-call requires
* a different PDS attrib data-section from the last draw call (changed
* base_instance) then we need to specify a new data section. This is
* also the case if we've switched pipeline or attrib program as the
* data-section layout will be different.
*/
state0.vs_data_addr_present =
state->dirty.gfx_pipeline_binding || state->dirty.vertex_bindings ||
state->dirty.draw_base_instance || state->dirty.draw_variant;
/* Need to specify new PDS Attrib program if we've bound a different
* pipeline or we needed a different PDS Attrib variant for this
* draw-call.
*/
state0.vs_other_present = state->dirty.gfx_pipeline_binding ||
state->dirty.draw_variant;
/* UVB_SCRATCH_SELECT_ONE with no rasterization is only valid when
* stream output is enabled. We use UVB_SCRATCH_SELECT_FIVE because
* Vulkan doesn't support stream output and the vertex position is
* always emitted to the UVB.
*/
state0.uvs_scratch_size_select =
PVRX(VDMCTRL_UVS_SCRATCH_SIZE_SELECT_FIVE);
header = state0;
}
if (header.cut_index_present) {
pvr_csb_emit (csb, VDMCTRL_VDM_STATE1, state1) {
switch (state->index_buffer_binding.type) {
case VK_INDEX_TYPE_UINT32:
/* FIXME: Defines for these? These seem to come from the Vulkan
* spec. for VkPipelineInputAssemblyStateCreateInfo
* primitiveRestartEnable.
*/
state1.cut_index = 0xFFFFFFFF;
break;
case VK_INDEX_TYPE_UINT16:
state1.cut_index = 0xFFFF;
break;
default:
unreachable(!"Invalid index type");
}
}
}
if (header.vs_data_addr_present) {
pvr_csb_emit (csb, VDMCTRL_VDM_STATE2, state2) {
state2.vs_pds_data_base_addr =
PVR_DEV_ADDR(state->pds_vertex_attrib_offset);
}
}
if (header.vs_other_present) {
const uint32_t usc_unified_store_size_in_bytes =
vertex_shader_state->vertex_input_size << 2;
pvr_csb_emit (csb, VDMCTRL_VDM_STATE3, state3) {
state3.vs_pds_code_base_addr =
PVR_DEV_ADDR(state->pds_shader.code_offset);
}
pvr_csb_emit (csb, VDMCTRL_VDM_STATE4, state4) {
state4.vs_output_size = vs_output_size;
}
pvr_csb_emit (csb, VDMCTRL_VDM_STATE5, state5) {
state5.vs_max_instances = max_instances;
state5.vs_usc_common_size = 0U;
state5.vs_usc_unified_size = DIV_ROUND_UP(
usc_unified_store_size_in_bytes,
PVRX(VDMCTRL_VDM_STATE5_VS_USC_UNIFIED_SIZE_UNIT_SIZE));
state5.vs_pds_temp_size =
DIV_ROUND_UP(state->pds_shader.info->temps_required << 2,
PVRX(VDMCTRL_VDM_STATE5_VS_PDS_TEMP_SIZE_UNIT_SIZE));
state5.vs_pds_data_size =
DIV_ROUND_UP(state->pds_shader.info->data_size_in_dwords << 2,
PVRX(VDMCTRL_VDM_STATE5_VS_PDS_DATA_SIZE_UNIT_SIZE));
}
}
}
static VkResult pvr_validate_draw_state(struct pvr_cmd_buffer *cmd_buffer)
{
struct pvr_cmd_buffer_state *const state = &cmd_buffer->state;
struct vk_dynamic_graphics_state *const dynamic_state =
&cmd_buffer->vk.dynamic_graphics_state;
const struct pvr_graphics_pipeline *const gfx_pipeline = state->gfx_pipeline;
const struct pvr_pipeline_stage_state *const fragment_state =
&gfx_pipeline->shader_state.fragment.stage_state;
const struct pvr_pipeline_stage_state *const vertex_state =
&gfx_pipeline->shader_state.vertex.stage_state;
const struct pvr_pipeline_layout *const pipeline_layout =
gfx_pipeline->base.layout;
struct pvr_sub_cmd_gfx *sub_cmd;
bool fstencil_writemask_zero;
bool bstencil_writemask_zero;
bool fstencil_keep;
bool bstencil_keep;
VkResult result;
pvr_cmd_buffer_start_sub_cmd(cmd_buffer, PVR_SUB_CMD_TYPE_GRAPHICS);
sub_cmd = &state->current_sub_cmd->gfx;
sub_cmd->empty_cmd = false;
/* Determine pipeline depth/stencil usage. If a pipeline uses depth or
* stencil testing, those attachments are using their loaded values, and
* the loadOps cannot be optimized out.
*/
/* Pipeline uses depth testing. */
if (sub_cmd->depth_usage == PVR_DEPTH_STENCIL_USAGE_UNDEFINED &&
dynamic_state->ds.depth.compare_op != VK_COMPARE_OP_ALWAYS) {
sub_cmd->depth_usage = PVR_DEPTH_STENCIL_USAGE_NEEDED;
}
/* Pipeline uses stencil testing. */
if (sub_cmd->stencil_usage == PVR_DEPTH_STENCIL_USAGE_UNDEFINED &&
(dynamic_state->ds.stencil.front.op.compare != VK_COMPARE_OP_ALWAYS ||
dynamic_state->ds.stencil.back.op.compare != VK_COMPARE_OP_ALWAYS)) {
sub_cmd->stencil_usage = PVR_DEPTH_STENCIL_USAGE_NEEDED;
}
if (PVR_HAS_FEATURE(&cmd_buffer->device->pdevice->dev_info,
compute_overlap)) {
uint32_t coefficient_size =
DIV_ROUND_UP(fragment_state->coefficient_size,
PVRX(TA_STATE_PDS_SIZEINFO1_USC_VARYINGSIZE_UNIT_SIZE));
if (coefficient_size >
PVRX(TA_STATE_PDS_SIZEINFO1_USC_VARYINGSIZE_MAX_SIZE))
sub_cmd->disable_compute_overlap = true;
}
sub_cmd->frag_uses_atomic_ops |= fragment_state->uses_atomic_ops;
sub_cmd->frag_has_side_effects |= fragment_state->has_side_effects;
sub_cmd->frag_uses_texture_rw |= fragment_state->uses_texture_rw;
sub_cmd->vertex_uses_texture_rw |= vertex_state->uses_texture_rw;
fstencil_keep =
(dynamic_state->ds.stencil.front.op.fail == VK_STENCIL_OP_KEEP) &&
(dynamic_state->ds.stencil.front.op.pass == VK_STENCIL_OP_KEEP);
bstencil_keep =
(dynamic_state->ds.stencil.back.op.fail == VK_STENCIL_OP_KEEP) &&
(dynamic_state->ds.stencil.back.op.pass == VK_STENCIL_OP_KEEP);
fstencil_writemask_zero = (dynamic_state->ds.stencil.front.write_mask == 0);
bstencil_writemask_zero = (dynamic_state->ds.stencil.back.write_mask == 0);
/* Set stencil modified flag if:
* - Neither front nor back-facing stencil has a fail_op/pass_op of KEEP.
* - Neither front nor back-facing stencil has a write_mask of zero.
*/
if (!(fstencil_keep && bstencil_keep) &&
!(fstencil_writemask_zero && bstencil_writemask_zero)) {
sub_cmd->modifies_stencil = true;
}
/* Set depth modified flag if depth write is enabled. */
if (dynamic_state->ds.depth.write_enable)
sub_cmd->modifies_depth = true;
/* If either the data or code changes for pds vertex attribs, regenerate the
* data segment.
*/
if (state->dirty.vertex_bindings || state->dirty.gfx_pipeline_binding ||
state->dirty.draw_variant || state->dirty.draw_base_instance) {
enum pvr_pds_vertex_attrib_program_type prog_type;
const struct pvr_pds_attrib_program *program;
if (state->draw_state.draw_indirect)
prog_type = PVR_PDS_VERTEX_ATTRIB_PROGRAM_DRAW_INDIRECT;
else if (state->draw_state.base_instance)
prog_type = PVR_PDS_VERTEX_ATTRIB_PROGRAM_BASE_INSTANCE;
else
prog_type = PVR_PDS_VERTEX_ATTRIB_PROGRAM_BASIC;
program =
&gfx_pipeline->shader_state.vertex.pds_attrib_programs[prog_type];
state->pds_shader.info = &program->info;
state->pds_shader.code_offset = program->program.code_offset;
state->max_shared_regs =
MAX2(state->max_shared_regs, pvr_calc_shared_regs_count(gfx_pipeline));
pvr_setup_vertex_buffers(cmd_buffer, gfx_pipeline);
}
/* TODO: Check for dirty push constants */
state->dirty.vertex_descriptors = state->dirty.gfx_pipeline_binding;
state->dirty.fragment_descriptors = state->dirty.vertex_descriptors;
/* Account for dirty descriptor set. */
state->dirty.vertex_descriptors |=
state->dirty.gfx_desc_dirty &&
pipeline_layout
->per_stage_descriptor_masks[PVR_STAGE_ALLOCATION_VERTEX_GEOMETRY];
state->dirty.fragment_descriptors |=
state->dirty.gfx_desc_dirty &&
pipeline_layout->per_stage_descriptor_masks[PVR_STAGE_ALLOCATION_FRAGMENT];
if (BITSET_TEST(dynamic_state->dirty, MESA_VK_DYNAMIC_CB_BLEND_CONSTANTS))
state->dirty.fragment_descriptors = true;
if (state->dirty.fragment_descriptors) {
result = pvr_setup_descriptor_mappings(
cmd_buffer,
PVR_STAGE_ALLOCATION_FRAGMENT,
&state->gfx_pipeline->shader_state.fragment.descriptor_state,
NULL,
&state->pds_fragment_descriptor_data_offset);
if (result != VK_SUCCESS) {
mesa_loge("Could not setup fragment descriptor mappings.");
return result;
}
}
if (state->dirty.vertex_descriptors) {
uint32_t pds_vertex_descriptor_data_offset;
result = pvr_setup_descriptor_mappings(
cmd_buffer,
PVR_STAGE_ALLOCATION_VERTEX_GEOMETRY,
&state->gfx_pipeline->shader_state.vertex.descriptor_state,
NULL,
&pds_vertex_descriptor_data_offset);
if (result != VK_SUCCESS) {
mesa_loge("Could not setup vertex descriptor mappings.");
return result;
}
pvr_emit_dirty_pds_state(cmd_buffer,
sub_cmd,
pds_vertex_descriptor_data_offset);
}
pvr_emit_dirty_ppp_state(cmd_buffer, sub_cmd);
pvr_emit_dirty_vdm_state(cmd_buffer, sub_cmd);
vk_dynamic_graphics_state_clear_dirty(dynamic_state);
state->dirty.gfx_desc_dirty = false;
state->dirty.draw_base_instance = false;
state->dirty.draw_variant = false;
state->dirty.fragment_descriptors = false;
state->dirty.gfx_pipeline_binding = false;
state->dirty.isp_userpass = false;
state->dirty.vertex_bindings = false;
return VK_SUCCESS;
}
static uint32_t pvr_get_hw_primitive_topology(VkPrimitiveTopology topology)
{
switch (topology) {
case VK_PRIMITIVE_TOPOLOGY_POINT_LIST:
return PVRX(VDMCTRL_PRIMITIVE_TOPOLOGY_POINT_LIST);
case VK_PRIMITIVE_TOPOLOGY_LINE_LIST:
return PVRX(VDMCTRL_PRIMITIVE_TOPOLOGY_LINE_LIST);
case VK_PRIMITIVE_TOPOLOGY_LINE_STRIP:
return PVRX(VDMCTRL_PRIMITIVE_TOPOLOGY_LINE_STRIP);
case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST:
return PVRX(VDMCTRL_PRIMITIVE_TOPOLOGY_TRI_LIST);
case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP:
return PVRX(VDMCTRL_PRIMITIVE_TOPOLOGY_TRI_STRIP);
case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_FAN:
return PVRX(VDMCTRL_PRIMITIVE_TOPOLOGY_TRI_FAN);
case VK_PRIMITIVE_TOPOLOGY_LINE_LIST_WITH_ADJACENCY:
return PVRX(VDMCTRL_PRIMITIVE_TOPOLOGY_LINE_LIST_ADJ);
case VK_PRIMITIVE_TOPOLOGY_LINE_STRIP_WITH_ADJACENCY:
return PVRX(VDMCTRL_PRIMITIVE_TOPOLOGY_LINE_STRIP_ADJ);
case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST_WITH_ADJACENCY:
return PVRX(VDMCTRL_PRIMITIVE_TOPOLOGY_TRI_LIST_ADJ);
case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP_WITH_ADJACENCY:
return PVRX(VDMCTRL_PRIMITIVE_TOPOLOGY_TRI_STRIP_ADJ);
case VK_PRIMITIVE_TOPOLOGY_PATCH_LIST:
return PVRX(VDMCTRL_PRIMITIVE_TOPOLOGY_PATCH_LIST);
default:
unreachable("Undefined primitive topology");
}
}
/* TODO: Rewrite this in terms of ALIGN_POT() and pvr_cmd_length(). */
/* Aligned to 128 bit for PDS loads / stores */
#define DUMMY_VDM_CONTROL_STREAM_BLOCK_SIZE 8
static VkResult
pvr_write_draw_indirect_vdm_stream(struct pvr_cmd_buffer *cmd_buffer,
struct pvr_csb *const csb,
pvr_dev_addr_t idx_buffer_addr,
uint32_t idx_stride,
struct PVRX(VDMCTRL_INDEX_LIST0) * list_hdr,
struct pvr_buffer *buffer,
VkDeviceSize offset,
uint32_t count,
uint32_t stride)
{
struct pvr_pds_drawindirect_program pds_prog = { 0 };
uint32_t word0;
/* Draw indirect always has index offset and instance count... */
list_hdr->index_offset_present = true;
list_hdr->index_instance_count_present = true;
/* ...and requires a zeroed index_base_addr. */
list_hdr->index_base_addrmsb = PVR_DEV_ADDR_INVALID;
assert(!list_hdr->index_addr_present);
pvr_cmd_pack(VDMCTRL_INDEX_LIST0)(&word0, list_hdr);
pds_prog.support_base_instance = true;
pds_prog.arg_buffer = buffer->dev_addr.addr + offset;
pds_prog.index_buffer = idx_buffer_addr.addr;
pds_prog.index_block_header = word0;
pds_prog.index_stride = idx_stride;
pds_prog.num_views = 1U;
/* TODO: See if we can pre-upload the code section of all the pds programs
* and reuse them here.
*/
/* Generate and upload the PDS programs (code + data). */
for (uint32_t i = 0U; i < count; i++) {
const struct pvr_device_info *dev_info =
&cmd_buffer->device->pdevice->dev_info;
struct pvr_cmd_buffer_state *state = &cmd_buffer->state;
struct pvr_bo *dummy_bo;
uint32_t *dummy_stream;
struct pvr_bo *pds_bo;
uint32_t *pds_base;
uint32_t pds_size;
VkResult result;
pds_prog.increment_draw_id = (i != 0);
if (state->draw_state.draw_indexed) {
pvr_pds_generate_draw_elements_indirect(&pds_prog,
0,
PDS_GENERATE_SIZES,
dev_info);
} else {
pvr_pds_generate_draw_arrays_indirect(&pds_prog,
0,
PDS_GENERATE_SIZES,
dev_info);
}
pds_size = (pds_prog.program.data_size_aligned +
pds_prog.program.code_size_aligned)
<< 2;
result = pvr_cmd_buffer_alloc_mem(cmd_buffer,
cmd_buffer->device->heaps.pds_heap,
pds_size,
PVR_BO_ALLOC_FLAG_CPU_MAPPED,
&pds_bo);
if (result != VK_SUCCESS)
return result;
pds_base = pds_bo->bo->map;
memcpy(pds_base,
pds_prog.program.code,
pds_prog.program.code_size_aligned << 2);
if (state->draw_state.draw_indexed) {
pvr_pds_generate_draw_elements_indirect(
&pds_prog,
pds_base + pds_prog.program.code_size_aligned,
PDS_GENERATE_DATA_SEGMENT,
dev_info);
} else {
pvr_pds_generate_draw_arrays_indirect(
&pds_prog,
pds_base + pds_prog.program.code_size_aligned,
PDS_GENERATE_DATA_SEGMENT,
dev_info);
}
pvr_bo_cpu_unmap(cmd_buffer->device, pds_bo);
/* Write the VDM state update. */
pvr_csb_emit (csb, VDMCTRL_PDS_STATE0, state0) {
state0.usc_target = PVRX(VDMCTRL_USC_TARGET_ANY);
state0.pds_temp_size =
DIV_ROUND_UP(pds_prog.program.temp_size_aligned << 2,
PVRX(VDMCTRL_PDS_STATE0_PDS_TEMP_SIZE_UNIT_SIZE));
state0.pds_data_size =
DIV_ROUND_UP(pds_prog.program.data_size_aligned << 2,
PVRX(VDMCTRL_PDS_STATE0_PDS_DATA_SIZE_UNIT_SIZE));
}
pvr_csb_emit (csb, VDMCTRL_PDS_STATE1, state1) {
const uint32_t data_offset =
pds_bo->vma->dev_addr.addr + (pds_prog.program.code_size << 2) -
cmd_buffer->device->heaps.pds_heap->base_addr.addr;
state1.pds_data_addr = PVR_DEV_ADDR(data_offset);
state1.sd_type = PVRX(VDMCTRL_SD_TYPE_PDS);
state1.sd_next_type = PVRX(VDMCTRL_SD_TYPE_NONE);
}
pvr_csb_emit (csb, VDMCTRL_PDS_STATE2, state2) {
const uint32_t code_offset =
pds_bo->vma->dev_addr.addr -
cmd_buffer->device->heaps.pds_heap->base_addr.addr;
state2.pds_code_addr = PVR_DEV_ADDR(code_offset);
}
/* Sync task to ensure the VDM doesn't start reading the dummy blocks
* before they are ready.
*/
pvr_csb_emit (csb, VDMCTRL_INDEX_LIST0, list0) {
list0.primitive_topology = PVRX(VDMCTRL_PRIMITIVE_TOPOLOGY_TRI_LIST);
}
result = pvr_cmd_buffer_alloc_mem(cmd_buffer,
cmd_buffer->device->heaps.general_heap,
DUMMY_VDM_CONTROL_STREAM_BLOCK_SIZE,
PVR_BO_ALLOC_FLAG_CPU_MAPPED,
&dummy_bo);
if (result != VK_SUCCESS)
return result;
dummy_stream = dummy_bo->bo->map;
/* For indexed draw cmds fill in the dummy's header (as it won't change
* based on the indirect args) and increment by the in-use size of each
* dummy block.
*/
if (!state->draw_state.draw_indexed) {
dummy_stream[0] = word0;
dummy_stream += 4;
} else {
dummy_stream += 5;
}
/* clang-format off */
pvr_csb_pack (dummy_stream, VDMCTRL_STREAM_RETURN, word);
/* clang-format on */
pvr_bo_cpu_unmap(cmd_buffer->device, dummy_bo);
/* Stream link to the first dummy which forces the VDM to discard any
* prefetched (dummy) control stream.
*/
pvr_csb_emit (csb, VDMCTRL_STREAM_LINK0, link) {
link.with_return = true;
link.link_addrmsb = dummy_bo->vma->dev_addr;
}
pvr_csb_emit (csb, VDMCTRL_STREAM_LINK1, link) {
link.link_addrlsb = dummy_bo->vma->dev_addr;
}
/* Point the pds program to the next argument buffer and the next VDM
* dummy buffer.
*/
pds_prog.arg_buffer += stride;
}
return VK_SUCCESS;
}
#undef DUMMY_VDM_CONTROL_STREAM_BLOCK_SIZE
static void pvr_emit_vdm_index_list(struct pvr_cmd_buffer *cmd_buffer,
struct pvr_sub_cmd_gfx *const sub_cmd,
VkPrimitiveTopology topology,
uint32_t index_offset,
uint32_t first_index,
uint32_t index_count,
uint32_t instance_count,
struct pvr_buffer *buffer,
VkDeviceSize offset,
uint32_t count,
uint32_t stride)
{
struct pvr_cmd_buffer_state *state = &cmd_buffer->state;
const bool vertex_shader_has_side_effects =
state->gfx_pipeline->shader_state.vertex.stage_state.has_side_effects;
struct PVRX(VDMCTRL_INDEX_LIST0)
list_hdr = { pvr_cmd_header(VDMCTRL_INDEX_LIST0) };
pvr_dev_addr_t index_buffer_addr = PVR_DEV_ADDR_INVALID;
struct pvr_csb *const csb = &sub_cmd->control_stream;
unsigned int index_stride = 0;
list_hdr.primitive_topology = pvr_get_hw_primitive_topology(topology);
/* firstInstance is not handled here in the VDM state, it's implemented as
* an addition in the PDS vertex fetch using
* PVR_PDS_CONST_MAP_ENTRY_TYPE_BASE_INSTANCE entry type.
*/
list_hdr.index_count_present = true;
if (instance_count > 1)
list_hdr.index_instance_count_present = true;
if (index_offset)
list_hdr.index_offset_present = true;
if (state->draw_state.draw_indexed) {
switch (state->index_buffer_binding.type) {
case VK_INDEX_TYPE_UINT32:
list_hdr.index_size = PVRX(VDMCTRL_INDEX_SIZE_B32);
index_stride = 4;
break;
case VK_INDEX_TYPE_UINT16:
list_hdr.index_size = PVRX(VDMCTRL_INDEX_SIZE_B16);
index_stride = 2;
break;
default:
unreachable("Invalid index type");
}
index_buffer_addr = PVR_DEV_ADDR_OFFSET(
state->index_buffer_binding.buffer->dev_addr,
state->index_buffer_binding.offset + first_index * index_stride);
list_hdr.index_addr_present = true;
list_hdr.index_base_addrmsb = index_buffer_addr;
}
list_hdr.degen_cull_enable =
PVR_HAS_FEATURE(&cmd_buffer->device->pdevice->dev_info,
vdm_degenerate_culling) &&
!vertex_shader_has_side_effects;
if (state->draw_state.draw_indirect) {
assert(buffer);
pvr_write_draw_indirect_vdm_stream(cmd_buffer,
csb,
index_buffer_addr,
index_stride,
&list_hdr,
buffer,
offset,
count,
stride);
return;
}
pvr_csb_emit (csb, VDMCTRL_INDEX_LIST0, list0) {
list0 = list_hdr;
}
if (list_hdr.index_addr_present) {
pvr_csb_emit (csb, VDMCTRL_INDEX_LIST1, list1) {
list1.index_base_addrlsb = index_buffer_addr;
}
}
if (list_hdr.index_count_present) {
pvr_csb_emit (csb, VDMCTRL_INDEX_LIST2, list2) {
list2.index_count = index_count;
}
}
if (list_hdr.index_instance_count_present) {
pvr_csb_emit (csb, VDMCTRL_INDEX_LIST3, list3) {
list3.instance_count = instance_count - 1;
}
}
if (list_hdr.index_offset_present) {
pvr_csb_emit (csb, VDMCTRL_INDEX_LIST4, list4) {
list4.index_offset = index_offset;
}
}
}
void pvr_CmdDraw(VkCommandBuffer commandBuffer,
uint32_t vertexCount,
uint32_t instanceCount,
uint32_t firstVertex,
uint32_t firstInstance)
{
const struct pvr_cmd_buffer_draw_state draw_state = {
.base_vertex = firstVertex,
.base_instance = firstInstance,
};
PVR_FROM_HANDLE(pvr_cmd_buffer, cmd_buffer, commandBuffer);
struct vk_dynamic_graphics_state *const dynamic_state =
&cmd_buffer->vk.dynamic_graphics_state;
struct pvr_cmd_buffer_state *state = &cmd_buffer->state;
VkResult result;
PVR_CHECK_COMMAND_BUFFER_BUILDING_STATE(cmd_buffer);
pvr_update_draw_state(state, &draw_state);
result = pvr_validate_draw_state(cmd_buffer);
if (result != VK_SUCCESS)
return;
/* Write the VDM control stream for the primitive. */
pvr_emit_vdm_index_list(cmd_buffer,
&state->current_sub_cmd->gfx,
dynamic_state->ia.primitive_topology,
firstVertex,
0U,
vertexCount,
instanceCount,
NULL,
0U,
0U,
0U);
}
void pvr_CmdDrawIndexed(VkCommandBuffer commandBuffer,
uint32_t indexCount,
uint32_t instanceCount,
uint32_t firstIndex,
int32_t vertexOffset,
uint32_t firstInstance)
{
const struct pvr_cmd_buffer_draw_state draw_state = {
.base_vertex = vertexOffset,
.base_instance = firstInstance,
.draw_indexed = true,
};
PVR_FROM_HANDLE(pvr_cmd_buffer, cmd_buffer, commandBuffer);
struct vk_dynamic_graphics_state *const dynamic_state =
&cmd_buffer->vk.dynamic_graphics_state;
struct pvr_cmd_buffer_state *state = &cmd_buffer->state;
VkResult result;
PVR_CHECK_COMMAND_BUFFER_BUILDING_STATE(cmd_buffer);
pvr_update_draw_state(state, &draw_state);
result = pvr_validate_draw_state(cmd_buffer);
if (result != VK_SUCCESS)
return;
/* Write the VDM control stream for the primitive. */
pvr_emit_vdm_index_list(cmd_buffer,
&state->current_sub_cmd->gfx,
dynamic_state->ia.primitive_topology,
vertexOffset,
firstIndex,
indexCount,
instanceCount,
NULL,
0U,
0U,
0U);
}
void pvr_CmdDrawIndexedIndirect(VkCommandBuffer commandBuffer,
VkBuffer _buffer,
VkDeviceSize offset,
uint32_t drawCount,
uint32_t stride)
{
const struct pvr_cmd_buffer_draw_state draw_state = {
.draw_indirect = true,
.draw_indexed = true,
};
PVR_FROM_HANDLE(pvr_cmd_buffer, cmd_buffer, commandBuffer);
struct pvr_cmd_buffer_state *state = &cmd_buffer->state;
struct vk_dynamic_graphics_state *const dynamic_state =
&cmd_buffer->vk.dynamic_graphics_state;
PVR_FROM_HANDLE(pvr_buffer, buffer, _buffer);
VkResult result;
PVR_CHECK_COMMAND_BUFFER_BUILDING_STATE(cmd_buffer);
pvr_update_draw_state(state, &draw_state);
result = pvr_validate_draw_state(cmd_buffer);
if (result != VK_SUCCESS)
return;
/* Write the VDM control stream for the primitive. */
pvr_emit_vdm_index_list(cmd_buffer,
&state->current_sub_cmd->gfx,
dynamic_state->ia.primitive_topology,
0U,
0U,
0U,
0U,
buffer,
offset,
drawCount,
stride);
}
void pvr_CmdDrawIndirect(VkCommandBuffer commandBuffer,
VkBuffer _buffer,
VkDeviceSize offset,
uint32_t drawCount,
uint32_t stride)
{
const struct pvr_cmd_buffer_draw_state draw_state = {
.draw_indirect = true,
};
PVR_FROM_HANDLE(pvr_cmd_buffer, cmd_buffer, commandBuffer);
struct pvr_cmd_buffer_state *state = &cmd_buffer->state;
PVR_FROM_HANDLE(pvr_buffer, buffer, _buffer);
struct vk_dynamic_graphics_state *const dynamic_state =
&cmd_buffer->vk.dynamic_graphics_state;
VkResult result;
PVR_CHECK_COMMAND_BUFFER_BUILDING_STATE(cmd_buffer);
pvr_update_draw_state(state, &draw_state);
result = pvr_validate_draw_state(cmd_buffer);
if (result != VK_SUCCESS)
return;
/* Write the VDM control stream for the primitive. */
pvr_emit_vdm_index_list(cmd_buffer,
&state->current_sub_cmd->gfx,
dynamic_state->ia.primitive_topology,
0U,
0U,
0U,
0U,
buffer,
offset,
drawCount,
stride);
}
static VkResult
pvr_resolve_unemitted_resolve_attachments(struct pvr_cmd_buffer *cmd_buffer,
struct pvr_render_pass_info *info)
{
struct pvr_cmd_buffer_state *state = &cmd_buffer->state;
const struct pvr_renderpass_hwsetup_render *hw_render =
&state->render_pass_info.pass->hw_setup->renders[info->current_hw_subpass];
for (uint32_t i = 0U; i < hw_render->eot_surface_count; i++) {
const struct pvr_renderpass_hwsetup_eot_surface *surface =
&hw_render->eot_surfaces[i];
const uint32_t color_attach_idx = surface->src_attachment_idx;
const uint32_t resolve_attach_idx = surface->attachment_idx;
VkImageSubresourceLayers src_subresource;
VkImageSubresourceLayers dst_subresource;
struct pvr_image_view *dst_view;
struct pvr_image_view *src_view;
VkFormat src_format;
VkFormat dst_format;
VkImageCopy2 region;
VkResult result;
if (!surface->need_resolve ||
surface->resolve_type != PVR_RESOLVE_TYPE_TRANSFER)
continue;
dst_view = info->attachments[resolve_attach_idx];
src_view = info->attachments[color_attach_idx];
src_subresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
src_subresource.mipLevel = src_view->vk.base_mip_level;
src_subresource.baseArrayLayer = src_view->vk.base_array_layer;
src_subresource.layerCount = src_view->vk.layer_count;
dst_subresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
dst_subresource.mipLevel = dst_view->vk.base_mip_level;
dst_subresource.baseArrayLayer = dst_view->vk.base_array_layer;
dst_subresource.layerCount = dst_view->vk.layer_count;
region.srcOffset = (VkOffset3D){ info->render_area.offset.x,
info->render_area.offset.y,
0 };
region.dstOffset = (VkOffset3D){ info->render_area.offset.x,
info->render_area.offset.y,
0 };
region.extent = (VkExtent3D){ info->render_area.extent.width,
info->render_area.extent.height,
1 };
region.srcSubresource = src_subresource;
region.dstSubresource = dst_subresource;
/* TODO: if ERN_46863 is supported, Depth and stencil are sampled
* separately from images with combined depth+stencil. Add logic here to
* handle it using appropriate format from image view.
*/
src_format = src_view->vk.image->format;
dst_format = dst_view->vk.image->format;
src_view->vk.image->format = src_view->vk.format;
dst_view->vk.image->format = dst_view->vk.format;
result = pvr_copy_or_resolve_color_image_region(
cmd_buffer,
vk_to_pvr_image(src_view->vk.image),
vk_to_pvr_image(dst_view->vk.image),
&region);
src_view->vk.image->format = src_format;
dst_view->vk.image->format = dst_format;
state->current_sub_cmd->flags |=
PVR_SUB_COMMAND_FLAG_WAIT_ON_PREVIOUS_FRAG;
if (result != VK_SUCCESS)
return result;
}
return pvr_cmd_buffer_end_sub_cmd(cmd_buffer);
}
void pvr_CmdEndRenderPass2(VkCommandBuffer commandBuffer,
const VkSubpassEndInfo *pSubpassEndInfo)
{
PVR_FROM_HANDLE(pvr_cmd_buffer, cmd_buffer, commandBuffer);
struct pvr_cmd_buffer_state *state = &cmd_buffer->state;
struct pvr_image_view **attachments;
VkClearValue *clear_values;
VkResult result;
PVR_CHECK_COMMAND_BUFFER_BUILDING_STATE(cmd_buffer);
assert(state->render_pass_info.pass);
assert(state->render_pass_info.framebuffer);
/* TODO: Investigate why pvr_cmd_buffer_end_sub_cmd/EndSubCommand is called
* twice in this path, one here and one from
* pvr_resolve_unemitted_resolve_attachments.
*/
result = pvr_cmd_buffer_end_sub_cmd(cmd_buffer);
if (result != VK_SUCCESS)
return;
result = pvr_resolve_unemitted_resolve_attachments(cmd_buffer,
&state->render_pass_info);
if (result != VK_SUCCESS)
return;
/* Save the required fields before clearing render_pass_info struct. */
attachments = state->render_pass_info.attachments;
clear_values = state->render_pass_info.clear_values;
memset(&state->render_pass_info, 0, sizeof(state->render_pass_info));
state->render_pass_info.attachments = attachments;
state->render_pass_info.clear_values = clear_values;
}
static VkResult
pvr_execute_deferred_cmd_buffer(struct pvr_cmd_buffer *cmd_buffer,
const struct pvr_cmd_buffer *sec_cmd_buffer)
{
struct vk_dynamic_graphics_state *const dynamic_state =
&cmd_buffer->vk.dynamic_graphics_state;
const uint32_t prim_db_elems =
util_dynarray_num_elements(&cmd_buffer->depth_bias_array,
struct pvr_depth_bias_state);
const uint32_t prim_scissor_elems =
util_dynarray_num_elements(&cmd_buffer->scissor_array,
struct pvr_scissor_words);
const uint32_t sec_db_size =
util_dynarray_num_elements(&sec_cmd_buffer->depth_bias_array, char);
const uint32_t sec_scissor_size =
util_dynarray_num_elements(&sec_cmd_buffer->scissor_array, char);
uint32_t *addr;
util_dynarray_foreach (&sec_cmd_buffer->deferred_csb_commands,
struct pvr_deferred_cs_command,
cmd) {
switch (cmd->type) {
case PVR_DEFERRED_CS_COMMAND_TYPE_DBSC: {
const uint32_t scissor_idx =
prim_scissor_elems + cmd->dbsc.state.scissor_index;
const uint32_t db_idx =
prim_db_elems + cmd->dbsc.state.depthbias_index;
const uint32_t num_dwords =
pvr_cmd_length(TA_STATE_HEADER) + pvr_cmd_length(TA_STATE_ISPDBSC);
uint32_t ppp_state[num_dwords];
struct pvr_bo *pvr_bo;
VkResult result;
pvr_csb_pack (&ppp_state[0], TA_STATE_HEADER, header) {
header.pres_ispctl_dbsc = true;
}
pvr_csb_pack (&ppp_state[1], TA_STATE_ISPDBSC, ispdbsc) {
ispdbsc.dbindex = db_idx;
ispdbsc.scindex = scissor_idx;
}
result = pvr_cmd_buffer_upload_general(cmd_buffer,
&ppp_state[0],
sizeof(ppp_state),
&pvr_bo);
if (result != VK_SUCCESS)
return result;
pvr_csb_pack (&cmd->dbsc.vdm_state[0], VDMCTRL_PPP_STATE0, state) {
state.word_count = num_dwords;
state.addrmsb = pvr_bo->vma->dev_addr;
}
pvr_csb_pack (&cmd->dbsc.vdm_state[1], VDMCTRL_PPP_STATE1, state) {
state.addrlsb = pvr_bo->vma->dev_addr;
}
break;
}
case PVR_DEFERRED_CS_COMMAND_TYPE_DBSC2: {
const uint32_t scissor_idx =
prim_scissor_elems + cmd->dbsc2.state.scissor_index;
const uint32_t db_idx =
prim_db_elems + cmd->dbsc2.state.depthbias_index;
assert(cmd->dbsc2.ppp_cs_bo->bo->map);
addr = cmd->dbsc2.ppp_cs_bo->bo->map + cmd->dbsc2.patch_offset;
pvr_csb_pack (addr, TA_STATE_ISPDBSC, ispdbsc) {
ispdbsc.dbindex = db_idx;
ispdbsc.scindex = scissor_idx;
}
break;
}
default:
unreachable("Invalid deferred control stream command type.");
break;
}
}
addr =
util_dynarray_grow_bytes(&cmd_buffer->depth_bias_array, 1, sec_db_size);
memcpy(addr,
util_dynarray_begin(&sec_cmd_buffer->depth_bias_array),
sec_db_size);
addr =
util_dynarray_grow_bytes(&cmd_buffer->scissor_array, 1, sec_scissor_size);
memcpy(addr,
util_dynarray_begin(&sec_cmd_buffer->scissor_array),
sec_scissor_size);
BITSET_SET(dynamic_state->dirty, MESA_VK_DYNAMIC_RS_DEPTH_BIAS_FACTORS);
cmd_buffer->scissor_words = (struct pvr_scissor_words){ 0 };
return VK_SUCCESS;
}
/* Caller needs to make sure that it ends the current sub_cmd. This function
* only creates a copy of sec_sub_cmd and links it to the cmd_buffer's
* sub_cmd list.
*/
static VkResult pvr_execute_sub_cmd(struct pvr_cmd_buffer *cmd_buffer,
struct pvr_sub_cmd *sec_sub_cmd)
{
struct pvr_sub_cmd *primary_sub_cmd =
vk_zalloc(&cmd_buffer->vk.pool->alloc,
sizeof(*primary_sub_cmd),
8,
VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
if (!primary_sub_cmd) {
cmd_buffer->state.status =
vk_error(cmd_buffer, VK_ERROR_OUT_OF_HOST_MEMORY);
return cmd_buffer->state.status;
}
primary_sub_cmd->type = sec_sub_cmd->type;
primary_sub_cmd->owned = false;
primary_sub_cmd->flags = sec_sub_cmd->flags;
list_addtail(&primary_sub_cmd->link, &cmd_buffer->sub_cmds);
switch (sec_sub_cmd->type) {
case PVR_SUB_CMD_TYPE_GRAPHICS:
primary_sub_cmd->gfx = sec_sub_cmd->gfx;
break;
case PVR_SUB_CMD_TYPE_COMPUTE:
primary_sub_cmd->compute = sec_sub_cmd->compute;
break;
case PVR_SUB_CMD_TYPE_TRANSFER:
primary_sub_cmd->transfer = sec_sub_cmd->transfer;
break;
case PVR_SUB_CMD_TYPE_EVENT:
primary_sub_cmd->event = sec_sub_cmd->event;
break;
default:
unreachable("Unsupported sub-command type");
}
return VK_SUCCESS;
}
static void
pvr_execute_graphics_cmd_buffer(struct pvr_cmd_buffer *cmd_buffer,
const struct pvr_cmd_buffer *sec_cmd_buffer)
{
const struct pvr_device_info *dev_info =
&cmd_buffer->device->pdevice->dev_info;
struct pvr_cmd_buffer_state *state = &cmd_buffer->state;
struct pvr_sub_cmd *primary_sub_cmd = state->current_sub_cmd;
VkResult result;
if (list_is_empty(&sec_cmd_buffer->sub_cmds))
return;
list_for_each_entry (struct pvr_sub_cmd,
sec_sub_cmd,
&sec_cmd_buffer->sub_cmds,
link) {
/* Only graphics secondary execution supported within a renderpass. */
assert(sec_sub_cmd->type == PVR_SUB_CMD_TYPE_GRAPHICS);
if (!sec_sub_cmd->gfx.empty_cmd)
primary_sub_cmd->gfx.empty_cmd = false;
if (pvr_cmd_uses_deferred_cs_cmds(sec_cmd_buffer)) {
/* TODO: In case if secondary buffer is created with
* VK_COMMAND_BUFFER_USAGE_SIMULTANEOUS_USE_BIT, then we patch the
* stream and copy it to primary stream using pvr_csb_copy below.
* This will need locking if the same secondary command buffer is
* executed in multiple primary buffers at the same time.
*/
result = pvr_execute_deferred_cmd_buffer(cmd_buffer, sec_cmd_buffer);
if (result != VK_SUCCESS)
return;
result = pvr_csb_copy(&primary_sub_cmd->gfx.control_stream,
&sec_sub_cmd->gfx.control_stream);
if (result != VK_SUCCESS) {
cmd_buffer->state.status = result;
return;
}
} else {
result = pvr_execute_deferred_cmd_buffer(cmd_buffer, sec_cmd_buffer);
if (result != VK_SUCCESS)
return;
pvr_csb_emit_link(
&primary_sub_cmd->gfx.control_stream,
pvr_csb_get_start_address(&sec_sub_cmd->gfx.control_stream),
true);
}
if (PVR_HAS_FEATURE(&cmd_buffer->device->pdevice->dev_info,
compute_overlap)) {
primary_sub_cmd->gfx.job.disable_compute_overlap |=
sec_sub_cmd->gfx.job.disable_compute_overlap;
}
primary_sub_cmd->gfx.max_tiles_in_flight =
MIN2(primary_sub_cmd->gfx.max_tiles_in_flight,
sec_sub_cmd->gfx.max_tiles_in_flight);
/* Pass loaded depth/stencil usage from secondary command buffer. */
if (sec_sub_cmd->gfx.depth_usage == PVR_DEPTH_STENCIL_USAGE_NEEDED)
primary_sub_cmd->gfx.depth_usage = PVR_DEPTH_STENCIL_USAGE_NEEDED;
if (sec_sub_cmd->gfx.stencil_usage == PVR_DEPTH_STENCIL_USAGE_NEEDED)
primary_sub_cmd->gfx.stencil_usage = PVR_DEPTH_STENCIL_USAGE_NEEDED;
/* Pass depth/stencil modification state from secondary command buffer. */
if (sec_sub_cmd->gfx.modifies_depth)
primary_sub_cmd->gfx.modifies_depth = true;
if (sec_sub_cmd->gfx.modifies_stencil)
primary_sub_cmd->gfx.modifies_stencil = true;
pvr_finishme(
"Copy barrier related load/store information from secondary to primary command buffer.");
if (!PVR_HAS_FEATURE(dev_info, gs_rta_support))
pvr_finishme("Unimplemented path.");
}
}
void pvr_CmdExecuteCommands(VkCommandBuffer commandBuffer,
uint32_t commandBufferCount,
const VkCommandBuffer *pCommandBuffers)
{
PVR_FROM_HANDLE(pvr_cmd_buffer, cmd_buffer, commandBuffer);
struct pvr_cmd_buffer_state *state = &cmd_buffer->state;
struct pvr_cmd_buffer *last_cmd_buffer;
PVR_CHECK_COMMAND_BUFFER_BUILDING_STATE(cmd_buffer);
assert(cmd_buffer->vk.level == VK_COMMAND_BUFFER_LEVEL_PRIMARY);
/* Reset the CPU copy of the most recent PPP state of the primary command
* buffer.
*
* The next draw call in the primary after CmdExecuteCommands may send
* redundant state, if it all goes in the same geom job.
*
* Can't just copy state from the secondary because the recording state of
* the secondary command buffers would have been deleted at this point.
*/
pvr_reset_graphics_dirty_state(cmd_buffer, false);
if (state->current_sub_cmd &&
state->current_sub_cmd->type == PVR_SUB_CMD_TYPE_GRAPHICS) {
for (uint32_t i = 0; i < commandBufferCount; i++) {
PVR_FROM_HANDLE(pvr_cmd_buffer, sec_cmd_buffer, pCommandBuffers[i]);
assert(sec_cmd_buffer->vk.level == VK_COMMAND_BUFFER_LEVEL_SECONDARY);
pvr_execute_graphics_cmd_buffer(cmd_buffer, sec_cmd_buffer);
}
last_cmd_buffer =
pvr_cmd_buffer_from_handle(pCommandBuffers[commandBufferCount - 1]);
/* Set barriers from final command secondary command buffer. */
for (uint32_t i = 0; i != PVR_NUM_SYNC_PIPELINE_STAGES; i++) {
state->barriers_needed[i] |=
last_cmd_buffer->state.barriers_needed[i] &
PVR_PIPELINE_STAGE_ALL_GRAPHICS_BITS;
}
} else {
for (uint32_t i = 0; i < commandBufferCount; i++) {
PVR_FROM_HANDLE(pvr_cmd_buffer, sec_cmd_buffer, pCommandBuffers[i]);
VkResult result;
assert(sec_cmd_buffer->vk.level == VK_COMMAND_BUFFER_LEVEL_SECONDARY);
result = pvr_cmd_buffer_end_sub_cmd(cmd_buffer);
if (result != VK_SUCCESS)
return;
list_for_each_entry_safe (struct pvr_sub_cmd,
sec_sub_cmd,
&sec_cmd_buffer->sub_cmds,
link) {
result = pvr_execute_sub_cmd(cmd_buffer, sec_sub_cmd);
if (result != VK_SUCCESS)
return;
}
}
last_cmd_buffer =
pvr_cmd_buffer_from_handle(pCommandBuffers[commandBufferCount - 1]);
memcpy(state->barriers_needed,
last_cmd_buffer->state.barriers_needed,
sizeof(state->barriers_needed));
}
}
static void pvr_insert_transparent_obj(struct pvr_cmd_buffer *const cmd_buffer,
struct pvr_sub_cmd_gfx *const sub_cmd)
{
struct pvr_device *const device = cmd_buffer->device;
/* Yes we want a copy. The user could be recording multiple command buffers
* in parallel so writing the template in place could cause problems.
*/
struct pvr_static_clear_ppp_template clear =
device->static_clear_state.ppp_templates[PVR_STATIC_CLEAR_COLOR_BIT];
uint32_t pds_state[PVR_STATIC_CLEAR_PDS_STATE_COUNT] = { 0 };
struct pvr_csb *csb = &sub_cmd->control_stream;
struct pvr_bo *ppp_bo;
assert(clear.requires_pds_state);
/* Patch the template. */
pvr_csb_pack (&pds_state[PVR_STATIC_CLEAR_PPP_PDS_TYPE_SHADERBASE],
TA_STATE_PDS_SHADERBASE,
shaderbase) {
shaderbase.addr = PVR_DEV_ADDR(device->nop_program.pds.data_offset);
}
clear.config.pds_state = &pds_state;
clear.config.ispctl.upass = cmd_buffer->state.render_pass_info.isp_userpass;
/* Emit PPP state from template. */
pvr_emit_ppp_from_template(csb, &clear, &ppp_bo);
list_add(&ppp_bo->link, &cmd_buffer->bo_list);
/* Emit VDM state. */
static_assert(sizeof(device->static_clear_state.large_clear_vdm_words) >=
PVR_CLEAR_VDM_STATE_DWORD_COUNT * sizeof(uint32_t),
"Large clear VDM control stream word length mismatch");
static_assert(sizeof(device->static_clear_state.vdm_words) ==
PVR_CLEAR_VDM_STATE_DWORD_COUNT * sizeof(uint32_t),
"Clear VDM control stream word length mismatch");
pvr_emit_clear_words(cmd_buffer, sub_cmd);
/* Reset graphics state. */
pvr_reset_graphics_dirty_state(cmd_buffer, false);
}
static inline struct pvr_render_subpass *
pvr_get_current_subpass(const struct pvr_cmd_buffer_state *const state)
{
const uint32_t subpass_idx = state->render_pass_info.subpass_idx;
return &state->render_pass_info.pass->subpasses[subpass_idx];
}
void pvr_CmdNextSubpass2(VkCommandBuffer commandBuffer,
const VkSubpassBeginInfo *pSubpassBeginInfo,
const VkSubpassEndInfo *pSubpassEndInfo)
{
PVR_FROM_HANDLE(pvr_cmd_buffer, cmd_buffer, commandBuffer);
struct pvr_cmd_buffer_state *state = &cmd_buffer->state;
struct pvr_render_pass_info *rp_info = &state->render_pass_info;
const struct pvr_renderpass_hwsetup_subpass *hw_subpass;
struct pvr_renderpass_hwsetup_render *next_hw_render;
const struct pvr_render_pass *pass = rp_info->pass;
const struct pvr_renderpass_hw_map *current_map;
const struct pvr_renderpass_hw_map *next_map;
struct pvr_load_op *hw_subpass_load_op;
VkResult result;
PVR_CHECK_COMMAND_BUFFER_BUILDING_STATE(cmd_buffer);
current_map = &pass->hw_setup->subpass_map[rp_info->subpass_idx];
next_map = &pass->hw_setup->subpass_map[rp_info->subpass_idx + 1];
next_hw_render = &pass->hw_setup->renders[next_map->render];
if (current_map->render != next_map->render) {
result = pvr_cmd_buffer_end_sub_cmd(cmd_buffer);
if (result != VK_SUCCESS)
return;
result = pvr_resolve_unemitted_resolve_attachments(cmd_buffer, rp_info);
if (result != VK_SUCCESS)
return;
rp_info->current_hw_subpass = next_map->render;
result =
pvr_cmd_buffer_start_sub_cmd(cmd_buffer, PVR_SUB_CMD_TYPE_GRAPHICS);
if (result != VK_SUCCESS)
return;
rp_info->enable_bg_tag = false;
rp_info->process_empty_tiles = false;
/* If this subpass contains any load ops the HW Background Object must be
* run to do the clears/loads.
*/
if (next_hw_render->color_init_count > 0) {
rp_info->enable_bg_tag = true;
for (uint32_t i = 0; i < next_hw_render->color_init_count; i++) {
/* Empty tiles need to be cleared too. */
if (next_hw_render->color_init[i].op ==
VK_ATTACHMENT_LOAD_OP_CLEAR) {
rp_info->process_empty_tiles = true;
break;
}
}
}
/* Set isp_userpass to zero for new hw_render. This will be used to set
* ROGUE_CR_ISP_CTL::upass_start.
*/
rp_info->isp_userpass = 0;
}
hw_subpass = &next_hw_render->subpasses[next_map->subpass];
hw_subpass_load_op = hw_subpass->load_op;
if (hw_subpass_load_op) {
result = pvr_cs_write_load_op(cmd_buffer,
&state->current_sub_cmd->gfx,
hw_subpass_load_op,
rp_info->isp_userpass);
}
/* Pipelines are created for a particular subpass so unbind but leave the
* vertex and descriptor bindings intact as they are orthogonal to the
* subpass.
*/
state->gfx_pipeline = NULL;
/* User-pass spawn is 4 bits so if the driver has to wrap it, it will emit a
* full screen transparent object to flush all tags up until now, then the
* user-pass spawn value will implicitly be reset to 0 because
* pvr_render_subpass::isp_userpass values are stored ANDed with
* ROGUE_CR_ISP_CTL_UPASS_START_SIZE_MAX.
*/
/* If hw_subpass_load_op is valid then pvr_write_load_op_control_stream
* has already done a full-screen transparent object.
*/
if (rp_info->isp_userpass == PVRX(CR_ISP_CTL_UPASS_START_SIZE_MAX) &&
!hw_subpass_load_op) {
pvr_insert_transparent_obj(cmd_buffer, &state->current_sub_cmd->gfx);
}
rp_info->subpass_idx++;
rp_info->isp_userpass = pass->subpasses[rp_info->subpass_idx].isp_userpass;
state->dirty.isp_userpass = true;
rp_info->pipeline_bind_point =
pass->subpasses[rp_info->subpass_idx].pipeline_bind_point;
pvr_stash_depth_format(state, &state->current_sub_cmd->gfx);
}
static bool
pvr_stencil_has_self_dependency(const struct pvr_cmd_buffer_state *const state)
{
const struct pvr_render_subpass *const current_subpass =
pvr_get_current_subpass(state);
const uint32_t *const input_attachments = current_subpass->input_attachments;
/* We only need to check the current software subpass as we don't support
* merging to/from a subpass with self-dep stencil.
*/
for (uint32_t i = 0; i < current_subpass->input_count; i++) {
if (input_attachments[i] == *current_subpass->depth_stencil_attachment)
return true;
}
return false;
}
static bool pvr_is_stencil_store_load_needed(
const struct pvr_cmd_buffer_state *const state,
VkPipelineStageFlags2 vk_src_stage_mask,
VkPipelineStageFlags2 vk_dst_stage_mask,
uint32_t memory_barrier_count,
const VkMemoryBarrier2 *const memory_barriers,
uint32_t image_barrier_count,
const VkImageMemoryBarrier2 *const image_barriers)
{
const uint32_t fragment_test_stages =
VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT |
VK_PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BIT;
const struct pvr_render_pass *const pass = state->render_pass_info.pass;
const struct pvr_renderpass_hwsetup_render *hw_render;
struct pvr_image_view **const attachments =
state->render_pass_info.attachments;
const struct pvr_image_view *attachment;
uint32_t hw_render_idx;
if (!pass)
return false;
hw_render_idx = state->current_sub_cmd->gfx.hw_render_idx;
hw_render = &pass->hw_setup->renders[hw_render_idx];
attachment = attachments[hw_render->ds_attach_idx];
if (!(vk_src_stage_mask & fragment_test_stages) &&
vk_dst_stage_mask & VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT)
return false;
if (hw_render->ds_attach_idx == VK_ATTACHMENT_UNUSED)
return false;
for (uint32_t i = 0; i < memory_barrier_count; i++) {
const uint32_t stencil_write_bit =
VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT;
const uint32_t input_attachment_read_bit =
VK_ACCESS_INPUT_ATTACHMENT_READ_BIT;
if (!(memory_barriers[i].srcAccessMask & stencil_write_bit))
continue;
if (!(memory_barriers[i].dstAccessMask & input_attachment_read_bit))
continue;
return pvr_stencil_has_self_dependency(state);
}
for (uint32_t i = 0; i < image_barrier_count; i++) {
PVR_FROM_HANDLE(pvr_image, image, image_barriers[i].image);
const uint32_t stencil_bit = VK_IMAGE_ASPECT_STENCIL_BIT;
if (!(image_barriers[i].subresourceRange.aspectMask & stencil_bit))
continue;
if (attachment && image != vk_to_pvr_image(attachment->vk.image))
continue;
if (!vk_format_has_stencil(image->vk.format))
continue;
return pvr_stencil_has_self_dependency(state);
}
return false;
}
static VkResult
pvr_cmd_buffer_insert_mid_frag_barrier_event(struct pvr_cmd_buffer *cmd_buffer,
uint32_t src_stage_mask,
uint32_t dst_stage_mask)
{
struct pvr_sub_cmd_event *sub_cmd;
VkResult result;
assert(cmd_buffer->state.current_sub_cmd->type == PVR_SUB_CMD_TYPE_GRAPHICS);
cmd_buffer->state.current_sub_cmd->gfx.empty_cmd = false;
pvr_finishme("Handle mid frag barrier stencil store.");
pvr_cmd_buffer_end_sub_cmd(cmd_buffer);
result = pvr_cmd_buffer_start_sub_cmd(cmd_buffer, PVR_SUB_CMD_TYPE_EVENT);
if (result != VK_SUCCESS)
return result;
sub_cmd = &cmd_buffer->state.current_sub_cmd->event;
sub_cmd->type = PVR_EVENT_TYPE_BARRIER;
sub_cmd->barrier.in_render_pass = true;
sub_cmd->barrier.wait_for_stage_mask = src_stage_mask;
sub_cmd->barrier.wait_at_stage_mask = dst_stage_mask;
pvr_cmd_buffer_end_sub_cmd(cmd_buffer);
pvr_cmd_buffer_start_sub_cmd(cmd_buffer, PVR_SUB_CMD_TYPE_GRAPHICS);
pvr_finishme("Handle mid frag barrier color attachment load.");
return VK_SUCCESS;
}
static VkResult
pvr_cmd_buffer_insert_barrier_event(struct pvr_cmd_buffer *cmd_buffer,
uint32_t src_stage_mask,
uint32_t dst_stage_mask)
{
struct pvr_sub_cmd_event *sub_cmd;
VkResult result;
result = pvr_cmd_buffer_start_sub_cmd(cmd_buffer, PVR_SUB_CMD_TYPE_EVENT);
if (result != VK_SUCCESS)
return result;
sub_cmd = &cmd_buffer->state.current_sub_cmd->event;
sub_cmd->type = PVR_EVENT_TYPE_BARRIER;
sub_cmd->barrier.wait_for_stage_mask = src_stage_mask;
sub_cmd->barrier.wait_at_stage_mask = dst_stage_mask;
return pvr_cmd_buffer_end_sub_cmd(cmd_buffer);
}
/* This is just enough to handle vkCmdPipelineBarrier().
* TODO: Complete?
*/
void pvr_CmdPipelineBarrier2(VkCommandBuffer commandBuffer,
const VkDependencyInfo *pDependencyInfo)
{
PVR_FROM_HANDLE(pvr_cmd_buffer, cmd_buffer, commandBuffer);
struct pvr_cmd_buffer_state *const state = &cmd_buffer->state;
const struct pvr_render_pass *const render_pass =
state->render_pass_info.pass;
VkPipelineStageFlags vk_src_stage_mask = 0U;
VkPipelineStageFlags vk_dst_stage_mask = 0U;
bool is_stencil_store_load_needed;
uint32_t required_stage_mask = 0U;
uint32_t src_stage_mask;
uint32_t dst_stage_mask;
bool is_barrier_needed;
PVR_CHECK_COMMAND_BUFFER_BUILDING_STATE(cmd_buffer);
for (uint32_t i = 0; i < pDependencyInfo->memoryBarrierCount; i++) {
vk_src_stage_mask |= pDependencyInfo->pMemoryBarriers[i].srcStageMask;
vk_dst_stage_mask |= pDependencyInfo->pMemoryBarriers[i].dstStageMask;
}
for (uint32_t i = 0; i < pDependencyInfo->bufferMemoryBarrierCount; i++) {
vk_src_stage_mask |=
pDependencyInfo->pBufferMemoryBarriers[i].srcStageMask;
vk_dst_stage_mask |=
pDependencyInfo->pBufferMemoryBarriers[i].dstStageMask;
}
for (uint32_t i = 0; i < pDependencyInfo->imageMemoryBarrierCount; i++) {
vk_src_stage_mask |=
pDependencyInfo->pImageMemoryBarriers[i].srcStageMask;
vk_dst_stage_mask |=
pDependencyInfo->pImageMemoryBarriers[i].dstStageMask;
}
src_stage_mask = pvr_stage_mask_src(vk_src_stage_mask);
dst_stage_mask = pvr_stage_mask_dst(vk_dst_stage_mask);
for (uint32_t stage = 0U; stage != PVR_NUM_SYNC_PIPELINE_STAGES; stage++) {
if (!(dst_stage_mask & BITFIELD_BIT(stage)))
continue;
required_stage_mask |= state->barriers_needed[stage];
}
src_stage_mask &= required_stage_mask;
for (uint32_t stage = 0U; stage != PVR_NUM_SYNC_PIPELINE_STAGES; stage++) {
if (!(dst_stage_mask & BITFIELD_BIT(stage)))
continue;
state->barriers_needed[stage] &= ~src_stage_mask;
}
if (src_stage_mask == 0 || dst_stage_mask == 0) {
is_barrier_needed = false;
} else if (src_stage_mask == PVR_PIPELINE_STAGE_GEOM_BIT &&
dst_stage_mask == PVR_PIPELINE_STAGE_FRAG_BIT) {
/* This is implicit so no need to barrier. */
is_barrier_needed = false;
} else if (src_stage_mask == dst_stage_mask &&
util_bitcount(src_stage_mask) == 1) {
struct pvr_sub_cmd *const current_sub_cmd = state->current_sub_cmd;
switch (src_stage_mask) {
case PVR_PIPELINE_STAGE_FRAG_BIT:
is_barrier_needed = true;
if (!render_pass)
break;
assert(current_sub_cmd->type == PVR_SUB_CMD_TYPE_GRAPHICS);
/* Flush all fragment work up to this point. */
pvr_insert_transparent_obj(cmd_buffer, &current_sub_cmd->gfx);
break;
case PVR_PIPELINE_STAGE_COMPUTE_BIT:
is_barrier_needed = false;
if (!current_sub_cmd ||
current_sub_cmd->type != PVR_SUB_CMD_TYPE_COMPUTE) {
break;
}
/* Multiple dispatches can be merged into a single job. When back to
* back dispatches have a sequential dependency (Compute -> compute
* pipeline barrier) we need to do the following.
* - Dispatch a kernel which fences all previous memory writes and
* flushes the MADD cache.
* - Issue a compute fence which ensures all previous tasks emitted
* by the compute data master are completed before starting
* anything new.
*/
/* Issue Data Fence, Wait for Data Fence (IDFWDF) makes the PDS wait
* for data.
*/
pvr_compute_generate_idfwdf(cmd_buffer, &current_sub_cmd->compute);
pvr_compute_generate_fence(cmd_buffer,
&current_sub_cmd->compute,
false);
break;
default:
is_barrier_needed = false;
break;
};
} else {
is_barrier_needed = true;
}
is_stencil_store_load_needed =
pvr_is_stencil_store_load_needed(state,
vk_src_stage_mask,
vk_dst_stage_mask,
pDependencyInfo->memoryBarrierCount,
pDependencyInfo->pMemoryBarriers,
pDependencyInfo->imageMemoryBarrierCount,
pDependencyInfo->pImageMemoryBarriers);
if (is_stencil_store_load_needed) {
VkResult result;
result = pvr_cmd_buffer_insert_mid_frag_barrier_event(cmd_buffer,
src_stage_mask,
dst_stage_mask);
if (result != VK_SUCCESS)
mesa_loge("Failed to insert mid frag barrier event.");
} else {
if (is_barrier_needed) {
VkResult result;
result = pvr_cmd_buffer_insert_barrier_event(cmd_buffer,
src_stage_mask,
dst_stage_mask);
if (result != VK_SUCCESS)
mesa_loge("Failed to insert pipeline barrier event.");
}
}
}
void pvr_CmdResetEvent2(VkCommandBuffer commandBuffer,
VkEvent _event,
VkPipelineStageFlags2 stageMask)
{
PVR_FROM_HANDLE(pvr_cmd_buffer, cmd_buffer, commandBuffer);
PVR_FROM_HANDLE(pvr_event, event, _event);
struct pvr_sub_cmd_event *sub_cmd;
VkResult result;
PVR_CHECK_COMMAND_BUFFER_BUILDING_STATE(cmd_buffer);
result = pvr_cmd_buffer_start_sub_cmd(cmd_buffer, PVR_SUB_CMD_TYPE_EVENT);
if (result != VK_SUCCESS)
return;
sub_cmd = &cmd_buffer->state.current_sub_cmd->event;
sub_cmd->type = PVR_EVENT_TYPE_RESET;
sub_cmd->reset.event = event;
sub_cmd->reset.wait_for_stage_mask = pvr_stage_mask_src(stageMask);
pvr_cmd_buffer_end_sub_cmd(cmd_buffer);
}
void pvr_CmdSetEvent2(VkCommandBuffer commandBuffer,
VkEvent _event,
const VkDependencyInfo *pDependencyInfo)
{
PVR_FROM_HANDLE(pvr_cmd_buffer, cmd_buffer, commandBuffer);
PVR_FROM_HANDLE(pvr_event, event, _event);
VkPipelineStageFlags2 stage_mask = 0;
struct pvr_sub_cmd_event *sub_cmd;
VkResult result;
PVR_CHECK_COMMAND_BUFFER_BUILDING_STATE(cmd_buffer);
result = pvr_cmd_buffer_start_sub_cmd(cmd_buffer, PVR_SUB_CMD_TYPE_EVENT);
if (result != VK_SUCCESS)
return;
for (uint32_t i = 0; i < pDependencyInfo->memoryBarrierCount; i++)
stage_mask |= pDependencyInfo->pMemoryBarriers[i].srcStageMask;
for (uint32_t i = 0; i < pDependencyInfo->bufferMemoryBarrierCount; i++)
stage_mask |= pDependencyInfo->pBufferMemoryBarriers[i].srcStageMask;
for (uint32_t i = 0; i < pDependencyInfo->imageMemoryBarrierCount; i++)
stage_mask |= pDependencyInfo->pImageMemoryBarriers[i].srcStageMask;
sub_cmd = &cmd_buffer->state.current_sub_cmd->event;
sub_cmd->type = PVR_EVENT_TYPE_SET;
sub_cmd->set.event = event;
sub_cmd->set.wait_for_stage_mask = pvr_stage_mask_dst(stage_mask);
pvr_cmd_buffer_end_sub_cmd(cmd_buffer);
}
void pvr_CmdWaitEvents2(VkCommandBuffer commandBuffer,
uint32_t eventCount,
const VkEvent *pEvents,
const VkDependencyInfo *pDependencyInfos)
{
PVR_FROM_HANDLE(pvr_cmd_buffer, cmd_buffer, commandBuffer);
struct pvr_sub_cmd_event *sub_cmd;
struct pvr_event **events_array;
uint32_t *stage_masks;
VkResult result;
PVR_CHECK_COMMAND_BUFFER_BUILDING_STATE(cmd_buffer);
VK_MULTIALLOC(ma);
vk_multialloc_add(&ma, &events_array, __typeof__(*events_array), eventCount);
vk_multialloc_add(&ma, &stage_masks, __typeof__(*stage_masks), eventCount);
if (!vk_multialloc_alloc(&ma,
&cmd_buffer->vk.pool->alloc,
VK_SYSTEM_ALLOCATION_SCOPE_OBJECT)) {
cmd_buffer->state.status =
vk_error(cmd_buffer, VK_ERROR_OUT_OF_HOST_MEMORY);
return;
}
result = pvr_cmd_buffer_start_sub_cmd(cmd_buffer, PVR_SUB_CMD_TYPE_EVENT);
if (result != VK_SUCCESS) {
vk_free(&cmd_buffer->vk.pool->alloc, events_array);
return;
}
memcpy(events_array, pEvents, sizeof(*events_array) * eventCount);
for (uint32_t i = 0; i < eventCount; i++) {
const VkDependencyInfo *info = &pDependencyInfos[i];
VkPipelineStageFlags2 mask = 0;
for (uint32_t j = 0; j < info->memoryBarrierCount; j++)
mask |= info->pMemoryBarriers[j].dstStageMask;
for (uint32_t j = 0; j < info->bufferMemoryBarrierCount; j++)
mask |= info->pBufferMemoryBarriers[j].dstStageMask;
for (uint32_t j = 0; j < info->imageMemoryBarrierCount; j++)
mask |= info->pImageMemoryBarriers[j].dstStageMask;
stage_masks[i] = pvr_stage_mask_dst(mask);
}
sub_cmd = &cmd_buffer->state.current_sub_cmd->event;
sub_cmd->type = PVR_EVENT_TYPE_WAIT;
sub_cmd->wait.count = eventCount;
sub_cmd->wait.events = events_array;
sub_cmd->wait.wait_at_stage_masks = stage_masks;
pvr_cmd_buffer_end_sub_cmd(cmd_buffer);
}
void pvr_CmdWriteTimestamp2KHR(VkCommandBuffer commandBuffer,
VkPipelineStageFlags2 stage,
VkQueryPool queryPool,
uint32_t query)
{
unreachable("Timestamp queries are not supported.");
}
VkResult pvr_EndCommandBuffer(VkCommandBuffer commandBuffer)
{
PVR_FROM_HANDLE(pvr_cmd_buffer, cmd_buffer, commandBuffer);
struct pvr_cmd_buffer_state *state = &cmd_buffer->state;
VkResult result;
/* From the Vulkan 1.0 spec:
*
* CommandBuffer must be in the recording state.
*/
assert(cmd_buffer->vk.state == MESA_VK_COMMAND_BUFFER_STATE_RECORDING);
if (state->status != VK_SUCCESS)
return state->status;
result = pvr_cmd_buffer_end_sub_cmd(cmd_buffer);
if (result != VK_SUCCESS)
return result;
return vk_command_buffer_end(&cmd_buffer->vk);
}