mesa/src/vulkan/gen8_cmd_buffer.c

1099 lines
43 KiB
C
Raw Normal View History

/*
* Copyright © 2015 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include <assert.h>
#include <stdbool.h>
#include <string.h>
#include <unistd.h>
#include <fcntl.h>
#include "anv_private.h"
#include "gen8_pack.h"
#include "gen9_pack.h"
static void
cmd_buffer_flush_push_constants(struct anv_cmd_buffer *cmd_buffer)
{
static const uint32_t push_constant_opcodes[] = {
[MESA_SHADER_VERTEX] = 21,
[MESA_SHADER_TESS_CTRL] = 25, /* HS */
[MESA_SHADER_TESS_EVAL] = 26, /* DS */
[MESA_SHADER_GEOMETRY] = 22,
[MESA_SHADER_FRAGMENT] = 23,
[MESA_SHADER_COMPUTE] = 0,
};
VkShaderStageFlags flushed = 0;
anv_foreach_stage(stage, cmd_buffer->state.push_constants_dirty) {
if (stage == MESA_SHADER_COMPUTE)
continue;
struct anv_state state = anv_cmd_buffer_push_constants(cmd_buffer, stage);
if (state.offset == 0)
continue;
anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_CONSTANT_VS),
._3DCommandSubOpcode = push_constant_opcodes[stage],
.ConstantBody = {
.PointerToConstantBuffer0 = { .offset = state.offset },
.ConstantBuffer0ReadLength = DIV_ROUND_UP(state.alloc_size, 32),
});
flushed |= mesa_to_vk_shader_stage(stage);
}
cmd_buffer->state.push_constants_dirty &= ~flushed;
}
#if ANV_GEN == 8
static void
emit_viewport_state(struct anv_cmd_buffer *cmd_buffer,
uint32_t count, const VkViewport *viewports)
{
struct anv_state sf_clip_state =
anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, count * 64, 64);
struct anv_state cc_state =
anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, count * 8, 32);
for (uint32_t i = 0; i < count; i++) {
const VkViewport *vp = &viewports[i];
/* The gen7 state struct has just the matrix and guardband fields, the
* gen8 struct adds the min/max viewport fields. */
struct GENX(SF_CLIP_VIEWPORT) sf_clip_viewport = {
.ViewportMatrixElementm00 = vp->width / 2,
.ViewportMatrixElementm11 = vp->height / 2,
.ViewportMatrixElementm22 = (vp->maxDepth - vp->minDepth) / 2,
.ViewportMatrixElementm30 = vp->x + vp->width / 2,
.ViewportMatrixElementm31 = vp->y + vp->height / 2,
.ViewportMatrixElementm32 = (vp->maxDepth + vp->minDepth) / 2,
.XMinClipGuardband = -1.0f,
.XMaxClipGuardband = 1.0f,
.YMinClipGuardband = -1.0f,
.YMaxClipGuardband = 1.0f,
.XMinViewPort = vp->x,
.XMaxViewPort = vp->x + vp->width - 1,
.YMinViewPort = vp->y,
.YMaxViewPort = vp->y + vp->height - 1,
};
struct GENX(CC_VIEWPORT) cc_viewport = {
.MinimumDepth = vp->minDepth,
.MaximumDepth = vp->maxDepth
};
GENX(SF_CLIP_VIEWPORT_pack)(NULL, sf_clip_state.map + i * 64,
&sf_clip_viewport);
GENX(CC_VIEWPORT_pack)(NULL, cc_state.map + i * 32, &cc_viewport);
}
2015-12-01 15:37:12 -08:00
if (!cmd_buffer->device->info.has_llc) {
anv_state_clflush(sf_clip_state);
anv_state_clflush(cc_state);
}
anv_batch_emit(&cmd_buffer->batch,
GENX(3DSTATE_VIEWPORT_STATE_POINTERS_CC),
.CCViewportPointer = cc_state.offset);
anv_batch_emit(&cmd_buffer->batch,
GENX(3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP),
.SFClipViewportPointer = sf_clip_state.offset);
}
void
gen8_cmd_buffer_emit_viewport(struct anv_cmd_buffer *cmd_buffer)
{
if (cmd_buffer->state.dynamic.viewport.count > 0) {
emit_viewport_state(cmd_buffer, cmd_buffer->state.dynamic.viewport.count,
cmd_buffer->state.dynamic.viewport.viewports);
} else {
/* If viewport count is 0, this is taken to mean "use the default" */
emit_viewport_state(cmd_buffer, 1,
&(VkViewport) {
.x = 0.0f,
.y = 0.0f,
.width = cmd_buffer->state.framebuffer->width,
.height = cmd_buffer->state.framebuffer->height,
.minDepth = 0.0f,
.maxDepth = 1.0f,
});
}
}
#endif
static void
cmd_buffer_flush_state(struct anv_cmd_buffer *cmd_buffer)
{
struct anv_pipeline *pipeline = cmd_buffer->state.pipeline;
uint32_t *p;
uint32_t vb_emit = cmd_buffer->state.vb_dirty & pipeline->vb_used;
assert((pipeline->active_stages & VK_SHADER_STAGE_COMPUTE_BIT) == 0);
if (cmd_buffer->state.current_pipeline != _3D) {
anv_batch_emit(&cmd_buffer->batch, GENX(PIPELINE_SELECT),
#if ANV_GEN >= 9
.MaskBits = 3,
#endif
.PipelineSelection = _3D);
cmd_buffer->state.current_pipeline = _3D;
}
if (vb_emit) {
const uint32_t num_buffers = __builtin_popcount(vb_emit);
const uint32_t num_dwords = 1 + num_buffers * 4;
p = anv_batch_emitn(&cmd_buffer->batch, num_dwords,
GENX(3DSTATE_VERTEX_BUFFERS));
uint32_t vb, i = 0;
for_each_bit(vb, vb_emit) {
struct anv_buffer *buffer = cmd_buffer->state.vertex_bindings[vb].buffer;
uint32_t offset = cmd_buffer->state.vertex_bindings[vb].offset;
struct GENX(VERTEX_BUFFER_STATE) state = {
.VertexBufferIndex = vb,
.MemoryObjectControlState = GENX(MOCS),
.AddressModifyEnable = true,
.BufferPitch = pipeline->binding_stride[vb],
.BufferStartingAddress = { buffer->bo, buffer->offset + offset },
.BufferSize = buffer->size - offset
};
GENX(VERTEX_BUFFER_STATE_pack)(&cmd_buffer->batch, &p[1 + i * 4], &state);
i++;
}
}
if (cmd_buffer->state.dirty & ANV_CMD_DIRTY_PIPELINE) {
/* If somebody compiled a pipeline after starting a command buffer the
* scratch bo may have grown since we started this cmd buffer (and
* emitted STATE_BASE_ADDRESS). If we're binding that pipeline now,
* reemit STATE_BASE_ADDRESS so that we use the bigger scratch bo. */
if (cmd_buffer->state.scratch_size < pipeline->total_scratch)
anv_cmd_buffer_emit_state_base_address(cmd_buffer);
anv_batch_emit_batch(&cmd_buffer->batch, &pipeline->batch);
}
#if ANV_GEN >= 9
/* On SKL+ the new constants don't take effect until the next corresponding
* 3DSTATE_BINDING_TABLE_POINTER_* command is parsed so we need to ensure
* that is sent. As it is, we re-emit binding tables but we could hold on
* to the offset of the most recent binding table and only re-emit the
* 3DSTATE_BINDING_TABLE_POINTER_* command.
*/
cmd_buffer->state.descriptors_dirty |=
cmd_buffer->state.push_constants_dirty &
cmd_buffer->state.pipeline->active_stages;
#endif
if (cmd_buffer->state.descriptors_dirty)
gen7_cmd_buffer_flush_descriptor_sets(cmd_buffer);
if (cmd_buffer->state.push_constants_dirty)
cmd_buffer_flush_push_constants(cmd_buffer);
if (cmd_buffer->state.dirty & ANV_CMD_DIRTY_DYNAMIC_VIEWPORT)
gen8_cmd_buffer_emit_viewport(cmd_buffer);
if (cmd_buffer->state.dirty & ANV_CMD_DIRTY_DYNAMIC_SCISSOR)
gen7_cmd_buffer_emit_scissor(cmd_buffer);
if (cmd_buffer->state.dirty & (ANV_CMD_DIRTY_PIPELINE |
ANV_CMD_DIRTY_DYNAMIC_LINE_WIDTH)) {
uint32_t sf_dw[GENX(3DSTATE_SF_length)];
struct GENX(3DSTATE_SF) sf = {
GENX(3DSTATE_SF_header),
.LineWidth = cmd_buffer->state.dynamic.line_width,
};
GENX(3DSTATE_SF_pack)(NULL, sf_dw, &sf);
/* FIXME: gen9.fs */
anv_batch_emit_merge(&cmd_buffer->batch, sf_dw, pipeline->gen8.sf);
}
if (cmd_buffer->state.dirty & (ANV_CMD_DIRTY_PIPELINE |
ANV_CMD_DIRTY_DYNAMIC_DEPTH_BIAS)){
bool enable_bias = cmd_buffer->state.dynamic.depth_bias.bias != 0.0f ||
2015-11-30 14:19:41 -08:00
cmd_buffer->state.dynamic.depth_bias.slope != 0.0f;
uint32_t raster_dw[GENX(3DSTATE_RASTER_length)];
struct GENX(3DSTATE_RASTER) raster = {
GENX(3DSTATE_RASTER_header),
.GlobalDepthOffsetEnableSolid = enable_bias,
.GlobalDepthOffsetEnableWireframe = enable_bias,
.GlobalDepthOffsetEnablePoint = enable_bias,
.GlobalDepthOffsetConstant = cmd_buffer->state.dynamic.depth_bias.bias,
2015-11-30 14:19:41 -08:00
.GlobalDepthOffsetScale = cmd_buffer->state.dynamic.depth_bias.slope,
.GlobalDepthOffsetClamp = cmd_buffer->state.dynamic.depth_bias.clamp
};
GENX(3DSTATE_RASTER_pack)(NULL, raster_dw, &raster);
anv_batch_emit_merge(&cmd_buffer->batch, raster_dw,
pipeline->gen8.raster);
}
/* Stencil reference values moved from COLOR_CALC_STATE in gen8 to
* 3DSTATE_WM_DEPTH_STENCIL in gen9. That means the dirty bits gets split
* across different state packets for gen8 and gen9. We handle that by
* using a big old #if switch here.
*/
#if ANV_GEN == 8
if (cmd_buffer->state.dirty & (ANV_CMD_DIRTY_DYNAMIC_BLEND_CONSTANTS |
ANV_CMD_DIRTY_DYNAMIC_STENCIL_REFERENCE)) {
struct anv_state cc_state =
anv_cmd_buffer_alloc_dynamic_state(cmd_buffer,
GEN8_COLOR_CALC_STATE_length, 64);
struct GEN8_COLOR_CALC_STATE cc = {
.BlendConstantColorRed = cmd_buffer->state.dynamic.blend_constants[0],
.BlendConstantColorGreen = cmd_buffer->state.dynamic.blend_constants[1],
.BlendConstantColorBlue = cmd_buffer->state.dynamic.blend_constants[2],
.BlendConstantColorAlpha = cmd_buffer->state.dynamic.blend_constants[3],
.StencilReferenceValue =
cmd_buffer->state.dynamic.stencil_reference.front,
.BackFaceStencilReferenceValue =
cmd_buffer->state.dynamic.stencil_reference.back,
};
GEN8_COLOR_CALC_STATE_pack(NULL, cc_state.map, &cc);
2015-12-01 15:37:12 -08:00
if (!cmd_buffer->device->info.has_llc)
anv_state_clflush(cc_state);
anv_batch_emit(&cmd_buffer->batch,
GEN8_3DSTATE_CC_STATE_POINTERS,
.ColorCalcStatePointer = cc_state.offset,
.ColorCalcStatePointerValid = true);
}
if (cmd_buffer->state.dirty & (ANV_CMD_DIRTY_PIPELINE |
ANV_CMD_DIRTY_DYNAMIC_STENCIL_COMPARE_MASK |
ANV_CMD_DIRTY_DYNAMIC_STENCIL_WRITE_MASK)) {
uint32_t wm_depth_stencil_dw[GEN8_3DSTATE_WM_DEPTH_STENCIL_length];
struct GEN8_3DSTATE_WM_DEPTH_STENCIL wm_depth_stencil = {
GEN8_3DSTATE_WM_DEPTH_STENCIL_header,
/* Is this what we need to do? */
.StencilBufferWriteEnable =
cmd_buffer->state.dynamic.stencil_write_mask.front != 0,
.StencilTestMask =
cmd_buffer->state.dynamic.stencil_compare_mask.front & 0xff,
.StencilWriteMask =
cmd_buffer->state.dynamic.stencil_write_mask.front & 0xff,
.BackfaceStencilTestMask =
cmd_buffer->state.dynamic.stencil_compare_mask.back & 0xff,
.BackfaceStencilWriteMask =
cmd_buffer->state.dynamic.stencil_write_mask.back & 0xff,
};
GEN8_3DSTATE_WM_DEPTH_STENCIL_pack(NULL, wm_depth_stencil_dw,
&wm_depth_stencil);
anv_batch_emit_merge(&cmd_buffer->batch, wm_depth_stencil_dw,
pipeline->gen8.wm_depth_stencil);
}
#else
if (cmd_buffer->state.dirty & ANV_CMD_DIRTY_DYNAMIC_BLEND_CONSTANTS) {
struct anv_state cc_state =
anv_cmd_buffer_alloc_dynamic_state(cmd_buffer,
GEN9_COLOR_CALC_STATE_length, 64);
struct GEN9_COLOR_CALC_STATE cc = {
.BlendConstantColorRed = cmd_buffer->state.dynamic.blend_constants[0],
.BlendConstantColorGreen = cmd_buffer->state.dynamic.blend_constants[1],
.BlendConstantColorBlue = cmd_buffer->state.dynamic.blend_constants[2],
.BlendConstantColorAlpha = cmd_buffer->state.dynamic.blend_constants[3],
};
GEN9_COLOR_CALC_STATE_pack(NULL, cc_state.map, &cc);
2015-12-01 15:37:12 -08:00
if (!cmd_buffer->device->info.has_llc)
anv_state_clflush(cc_state);
anv_batch_emit(&cmd_buffer->batch,
GEN9_3DSTATE_CC_STATE_POINTERS,
.ColorCalcStatePointer = cc_state.offset,
.ColorCalcStatePointerValid = true);
}
if (cmd_buffer->state.dirty & (ANV_CMD_DIRTY_PIPELINE |
ANV_CMD_DIRTY_DYNAMIC_STENCIL_COMPARE_MASK |
ANV_CMD_DIRTY_DYNAMIC_STENCIL_WRITE_MASK |
ANV_CMD_DIRTY_DYNAMIC_STENCIL_REFERENCE)) {
uint32_t dwords[GEN9_3DSTATE_WM_DEPTH_STENCIL_length];
struct anv_dynamic_state *d = &cmd_buffer->state.dynamic;
struct GEN9_3DSTATE_WM_DEPTH_STENCIL wm_depth_stencil = {
GEN9_3DSTATE_WM_DEPTH_STENCIL_header,
.StencilBufferWriteEnable = d->stencil_write_mask.front != 0,
.StencilTestMask = d->stencil_compare_mask.front & 0xff,
.StencilWriteMask = d->stencil_write_mask.front & 0xff,
.BackfaceStencilTestMask = d->stencil_compare_mask.back & 0xff,
.BackfaceStencilWriteMask = d->stencil_write_mask.back & 0xff,
.StencilReferenceValue = d->stencil_reference.front,
.BackfaceStencilReferenceValue = d->stencil_reference.back
};
GEN9_3DSTATE_WM_DEPTH_STENCIL_pack(NULL, dwords, &wm_depth_stencil);
anv_batch_emit_merge(&cmd_buffer->batch, dwords,
pipeline->gen9.wm_depth_stencil);
}
#endif
if (cmd_buffer->state.dirty & (ANV_CMD_DIRTY_PIPELINE |
ANV_CMD_DIRTY_INDEX_BUFFER)) {
anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_VF),
.IndexedDrawCutIndexEnable = pipeline->primitive_restart,
.CutIndex = cmd_buffer->state.restart_index,
);
}
cmd_buffer->state.vb_dirty &= ~vb_emit;
cmd_buffer->state.dirty = 0;
}
void genX(CmdDraw)(
VkCommandBuffer commandBuffer,
uint32_t vertexCount,
uint32_t instanceCount,
uint32_t firstVertex,
uint32_t firstInstance)
{
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
cmd_buffer_flush_state(cmd_buffer);
anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE),
.VertexAccessType = SEQUENTIAL,
.VertexCountPerInstance = vertexCount,
.StartVertexLocation = firstVertex,
.InstanceCount = instanceCount,
.StartInstanceLocation = firstInstance,
.BaseVertexLocation = 0);
}
void genX(CmdDrawIndexed)(
VkCommandBuffer commandBuffer,
uint32_t indexCount,
uint32_t instanceCount,
uint32_t firstIndex,
int32_t vertexOffset,
uint32_t firstInstance)
{
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
cmd_buffer_flush_state(cmd_buffer);
anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE),
.VertexAccessType = RANDOM,
.VertexCountPerInstance = indexCount,
.StartVertexLocation = firstIndex,
.InstanceCount = instanceCount,
.StartInstanceLocation = firstInstance,
.BaseVertexLocation = vertexOffset);
}
static void
emit_lrm(struct anv_batch *batch,
uint32_t reg, struct anv_bo *bo, uint32_t offset)
{
anv_batch_emit(batch, GENX(MI_LOAD_REGISTER_MEM),
.RegisterAddress = reg,
.MemoryAddress = { bo, offset });
}
static void
emit_lri(struct anv_batch *batch, uint32_t reg, uint32_t imm)
{
anv_batch_emit(batch, GENX(MI_LOAD_REGISTER_IMM),
.RegisterOffset = reg,
.DataDWord = imm);
}
/* Auto-Draw / Indirect Registers */
#define GEN7_3DPRIM_END_OFFSET 0x2420
#define GEN7_3DPRIM_START_VERTEX 0x2430
#define GEN7_3DPRIM_VERTEX_COUNT 0x2434
#define GEN7_3DPRIM_INSTANCE_COUNT 0x2438
#define GEN7_3DPRIM_START_INSTANCE 0x243C
#define GEN7_3DPRIM_BASE_VERTEX 0x2440
void genX(CmdDrawIndirect)(
VkCommandBuffer commandBuffer,
VkBuffer _buffer,
VkDeviceSize offset,
uint32_t drawCount,
uint32_t stride)
{
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
struct anv_bo *bo = buffer->bo;
uint32_t bo_offset = buffer->offset + offset;
cmd_buffer_flush_state(cmd_buffer);
emit_lrm(&cmd_buffer->batch, GEN7_3DPRIM_VERTEX_COUNT, bo, bo_offset);
emit_lrm(&cmd_buffer->batch, GEN7_3DPRIM_INSTANCE_COUNT, bo, bo_offset + 4);
emit_lrm(&cmd_buffer->batch, GEN7_3DPRIM_START_VERTEX, bo, bo_offset + 8);
emit_lrm(&cmd_buffer->batch, GEN7_3DPRIM_START_INSTANCE, bo, bo_offset + 12);
emit_lri(&cmd_buffer->batch, GEN7_3DPRIM_BASE_VERTEX, 0);
anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE),
.IndirectParameterEnable = true,
.VertexAccessType = SEQUENTIAL);
}
void genX(CmdBindIndexBuffer)(
VkCommandBuffer commandBuffer,
VkBuffer _buffer,
VkDeviceSize offset,
VkIndexType indexType)
{
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
static const uint32_t vk_to_gen_index_type[] = {
[VK_INDEX_TYPE_UINT16] = INDEX_WORD,
[VK_INDEX_TYPE_UINT32] = INDEX_DWORD,
};
static const uint32_t restart_index_for_type[] = {
[VK_INDEX_TYPE_UINT16] = UINT16_MAX,
[VK_INDEX_TYPE_UINT32] = UINT32_MAX,
};
cmd_buffer->state.restart_index = restart_index_for_type[indexType];
anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_INDEX_BUFFER),
.IndexFormat = vk_to_gen_index_type[indexType],
.MemoryObjectControlState = GENX(MOCS),
.BufferStartingAddress = { buffer->bo, buffer->offset + offset },
.BufferSize = buffer->size - offset);
cmd_buffer->state.dirty |= ANV_CMD_DIRTY_INDEX_BUFFER;
}
static VkResult
flush_compute_descriptor_set(struct anv_cmd_buffer *cmd_buffer)
{
struct anv_device *device = cmd_buffer->device;
struct anv_pipeline *pipeline = cmd_buffer->state.compute_pipeline;
struct anv_state surfaces = { 0, }, samplers = { 0, };
VkResult result;
result = anv_cmd_buffer_emit_samplers(cmd_buffer,
MESA_SHADER_COMPUTE, &samplers);
if (result != VK_SUCCESS)
return result;
result = anv_cmd_buffer_emit_binding_table(cmd_buffer,
MESA_SHADER_COMPUTE, &surfaces);
if (result != VK_SUCCESS)
return result;
struct anv_state push_state = anv_cmd_buffer_cs_push_constants(cmd_buffer);
const struct brw_cs_prog_data *cs_prog_data = &pipeline->cs_prog_data;
const struct brw_stage_prog_data *prog_data = &cs_prog_data->base;
unsigned local_id_dwords = cs_prog_data->local_invocation_id_regs * 8;
unsigned push_constant_data_size =
(prog_data->nr_params + local_id_dwords) * 4;
unsigned reg_aligned_constant_size = ALIGN(push_constant_data_size, 32);
unsigned push_constant_regs = reg_aligned_constant_size / 32;
if (push_state.alloc_size) {
anv_batch_emit(&cmd_buffer->batch, GENX(MEDIA_CURBE_LOAD),
.CURBETotalDataLength = push_state.alloc_size,
.CURBEDataStartAddress = push_state.offset);
}
struct anv_state state =
2015-12-01 15:37:12 -08:00
anv_state_pool_emit(&device->dynamic_state_pool,
GENX(INTERFACE_DESCRIPTOR_DATA), 64,
.KernelStartPointer = pipeline->cs_simd,
.KernelStartPointerHigh = 0,
.BindingTablePointer = surfaces.offset,
.BindingTableEntryCount = 0,
.SamplerStatePointer = samplers.offset,
.SamplerCount = 0,
.ConstantIndirectURBEntryReadLength = push_constant_regs,
.ConstantURBEntryReadOffset = 0,
2015-12-01 15:37:12 -08:00
.NumberofThreadsinGPGPUThreadGroup = 0);
2015-12-01 15:37:12 -08:00
uint32_t size = GENX(INTERFACE_DESCRIPTOR_DATA_length) * sizeof(uint32_t);
anv_batch_emit(&cmd_buffer->batch, GENX(MEDIA_INTERFACE_DESCRIPTOR_LOAD),
.InterfaceDescriptorTotalLength = size,
.InterfaceDescriptorDataStartAddress = state.offset);
return VK_SUCCESS;
}
static void
cmd_buffer_flush_compute_state(struct anv_cmd_buffer *cmd_buffer)
{
struct anv_pipeline *pipeline = cmd_buffer->state.compute_pipeline;
VkResult result;
assert(pipeline->active_stages == VK_SHADER_STAGE_COMPUTE_BIT);
if (cmd_buffer->state.current_pipeline != GPGPU) {
anv_batch_emit(&cmd_buffer->batch, GENX(PIPELINE_SELECT),
#if ANV_GEN >= 9
.MaskBits = 3,
#endif
.PipelineSelection = GPGPU);
cmd_buffer->state.current_pipeline = GPGPU;
}
if (cmd_buffer->state.compute_dirty & ANV_CMD_DIRTY_PIPELINE)
anv_batch_emit_batch(&cmd_buffer->batch, &pipeline->batch);
if ((cmd_buffer->state.descriptors_dirty & VK_SHADER_STAGE_COMPUTE_BIT) ||
(cmd_buffer->state.compute_dirty & ANV_CMD_DIRTY_PIPELINE)) {
result = flush_compute_descriptor_set(cmd_buffer);
assert(result == VK_SUCCESS);
cmd_buffer->state.descriptors_dirty &= ~VK_SHADER_STAGE_COMPUTE_BIT;
}
cmd_buffer->state.compute_dirty = 0;
}
void genX(CmdDrawIndexedIndirect)(
VkCommandBuffer commandBuffer,
VkBuffer _buffer,
VkDeviceSize offset,
uint32_t drawCount,
uint32_t stride)
{
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
struct anv_bo *bo = buffer->bo;
uint32_t bo_offset = buffer->offset + offset;
cmd_buffer_flush_state(cmd_buffer);
emit_lrm(&cmd_buffer->batch, GEN7_3DPRIM_VERTEX_COUNT, bo, bo_offset);
emit_lrm(&cmd_buffer->batch, GEN7_3DPRIM_INSTANCE_COUNT, bo, bo_offset + 4);
emit_lrm(&cmd_buffer->batch, GEN7_3DPRIM_START_VERTEX, bo, bo_offset + 8);
emit_lrm(&cmd_buffer->batch, GEN7_3DPRIM_BASE_VERTEX, bo, bo_offset + 12);
emit_lrm(&cmd_buffer->batch, GEN7_3DPRIM_START_INSTANCE, bo, bo_offset + 16);
anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE),
.IndirectParameterEnable = true,
.VertexAccessType = RANDOM);
}
void genX(CmdDispatch)(
VkCommandBuffer commandBuffer,
uint32_t x,
uint32_t y,
uint32_t z)
{
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
struct anv_pipeline *pipeline = cmd_buffer->state.compute_pipeline;
struct brw_cs_prog_data *prog_data = &pipeline->cs_prog_data;
if (prog_data->uses_num_work_groups) {
struct anv_state state =
anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, 12, 4);
uint32_t *sizes = state.map;
sizes[0] = x;
sizes[1] = y;
sizes[2] = z;
if (!cmd_buffer->device->info.has_llc)
anv_state_clflush(state);
cmd_buffer->state.num_workgroups_offset = state.offset;
cmd_buffer->state.num_workgroups_bo =
&cmd_buffer->device->dynamic_state_block_pool.bo;
}
cmd_buffer_flush_compute_state(cmd_buffer);
anv_batch_emit(&cmd_buffer->batch, GENX(GPGPU_WALKER),
.SIMDSize = prog_data->simd_size / 16,
.ThreadDepthCounterMaximum = 0,
.ThreadHeightCounterMaximum = 0,
.ThreadWidthCounterMaximum = pipeline->cs_thread_width_max - 1,
.ThreadGroupIDXDimension = x,
.ThreadGroupIDYDimension = y,
.ThreadGroupIDZDimension = z,
.RightExecutionMask = pipeline->cs_right_mask,
.BottomExecutionMask = 0xffffffff);
anv_batch_emit(&cmd_buffer->batch, GENX(MEDIA_STATE_FLUSH));
}
#define GPGPU_DISPATCHDIMX 0x2500
#define GPGPU_DISPATCHDIMY 0x2504
#define GPGPU_DISPATCHDIMZ 0x2508
void genX(CmdDispatchIndirect)(
VkCommandBuffer commandBuffer,
VkBuffer _buffer,
VkDeviceSize offset)
{
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
struct anv_pipeline *pipeline = cmd_buffer->state.compute_pipeline;
struct brw_cs_prog_data *prog_data = &pipeline->cs_prog_data;
struct anv_bo *bo = buffer->bo;
uint32_t bo_offset = buffer->offset + offset;
if (prog_data->uses_num_work_groups) {
cmd_buffer->state.num_workgroups_offset = bo_offset;
cmd_buffer->state.num_workgroups_bo = bo;
}
cmd_buffer_flush_compute_state(cmd_buffer);
emit_lrm(&cmd_buffer->batch, GPGPU_DISPATCHDIMX, bo, bo_offset);
emit_lrm(&cmd_buffer->batch, GPGPU_DISPATCHDIMY, bo, bo_offset + 4);
emit_lrm(&cmd_buffer->batch, GPGPU_DISPATCHDIMZ, bo, bo_offset + 8);
anv_batch_emit(&cmd_buffer->batch, GENX(GPGPU_WALKER),
.IndirectParameterEnable = true,
.SIMDSize = prog_data->simd_size / 16,
.ThreadDepthCounterMaximum = 0,
.ThreadHeightCounterMaximum = 0,
.ThreadWidthCounterMaximum = pipeline->cs_thread_width_max - 1,
.RightExecutionMask = pipeline->cs_right_mask,
.BottomExecutionMask = 0xffffffff);
anv_batch_emit(&cmd_buffer->batch, GENX(MEDIA_STATE_FLUSH));
}
static void
cmd_buffer_emit_depth_stencil(struct anv_cmd_buffer *cmd_buffer)
{
const struct anv_framebuffer *fb = cmd_buffer->state.framebuffer;
const struct anv_image_view *iview =
anv_cmd_buffer_get_depth_stencil_view(cmd_buffer);
const struct anv_image *image = iview ? iview->image : NULL;
const bool has_depth = iview && iview->format->depth_format;
const bool has_stencil = iview && iview->format->has_stencil;
/* FIXME: Implement the PMA stall W/A */
/* FIXME: Width and Height are wrong */
/* Emit 3DSTATE_DEPTH_BUFFER */
if (has_depth) {
anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_DEPTH_BUFFER),
.SurfaceType = SURFTYPE_2D,
.DepthWriteEnable = iview->format->depth_format,
.StencilWriteEnable = has_stencil,
.HierarchicalDepthBufferEnable = false,
.SurfaceFormat = iview->format->depth_format,
.SurfacePitch = image->depth_surface.isl.row_pitch - 1,
.SurfaceBaseAddress = {
.bo = image->bo,
.offset = image->depth_surface.offset,
},
.Height = fb->height - 1,
.Width = fb->width - 1,
.LOD = 0,
.Depth = 1 - 1,
.MinimumArrayElement = 0,
.DepthBufferObjectControlState = GENX(MOCS),
.RenderTargetViewExtent = 1 - 1,
.SurfaceQPitch = isl_surf_get_array_pitch_el_rows(&image->depth_surface.isl) >> 2);
} else {
/* Even when no depth buffer is present, the hardware requires that
* 3DSTATE_DEPTH_BUFFER be programmed correctly. The Broadwell PRM says:
*
* If a null depth buffer is bound, the driver must instead bind depth as:
* 3DSTATE_DEPTH.SurfaceType = SURFTYPE_2D
* 3DSTATE_DEPTH.Width = 1
* 3DSTATE_DEPTH.Height = 1
* 3DSTATE_DEPTH.SuraceFormat = D16_UNORM
* 3DSTATE_DEPTH.SurfaceBaseAddress = 0
* 3DSTATE_DEPTH.HierarchicalDepthBufferEnable = 0
* 3DSTATE_WM_DEPTH_STENCIL.DepthTestEnable = 0
* 3DSTATE_WM_DEPTH_STENCIL.DepthBufferWriteEnable = 0
*
* The PRM is wrong, though. The width and height must be programmed to
* actual framebuffer's width and height, even when neither depth buffer
* nor stencil buffer is present.
*/
anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_DEPTH_BUFFER),
.SurfaceType = SURFTYPE_2D,
.SurfaceFormat = D16_UNORM,
.Width = fb->width - 1,
.Height = fb->height - 1,
.StencilWriteEnable = has_stencil);
}
/* Emit 3DSTATE_STENCIL_BUFFER */
if (has_stencil) {
anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_STENCIL_BUFFER),
.StencilBufferEnable = true,
.StencilBufferObjectControlState = GENX(MOCS),
/* Stencil buffers have strange pitch. The PRM says:
*
* The pitch must be set to 2x the value computed based on width,
* as the stencil buffer is stored with two rows interleaved.
*/
.SurfacePitch = 2 * image->stencil_surface.isl.row_pitch - 1,
.SurfaceBaseAddress = {
.bo = image->bo,
.offset = image->offset + image->stencil_surface.offset,
},
.SurfaceQPitch = isl_surf_get_array_pitch_el_rows(&image->stencil_surface.isl) >> 2);
} else {
anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_STENCIL_BUFFER));
}
/* Disable hierarchial depth buffers. */
anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_HIER_DEPTH_BUFFER));
/* Clear the clear params. */
anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_CLEAR_PARAMS));
}
void
genX(cmd_buffer_begin_subpass)(struct anv_cmd_buffer *cmd_buffer,
struct anv_subpass *subpass)
{
cmd_buffer->state.subpass = subpass;
cmd_buffer->state.descriptors_dirty |= VK_SHADER_STAGE_FRAGMENT_BIT;
cmd_buffer_emit_depth_stencil(cmd_buffer);
}
void genX(CmdBeginRenderPass)(
VkCommandBuffer commandBuffer,
const VkRenderPassBeginInfo* pRenderPassBegin,
VkSubpassContents contents)
{
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
ANV_FROM_HANDLE(anv_render_pass, pass, pRenderPassBegin->renderPass);
ANV_FROM_HANDLE(anv_framebuffer, framebuffer, pRenderPassBegin->framebuffer);
cmd_buffer->state.framebuffer = framebuffer;
cmd_buffer->state.pass = pass;
const VkRect2D *render_area = &pRenderPassBegin->renderArea;
anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_DRAWING_RECTANGLE),
.ClippedDrawingRectangleYMin = render_area->offset.y,
.ClippedDrawingRectangleXMin = render_area->offset.x,
.ClippedDrawingRectangleYMax =
render_area->offset.y + render_area->extent.height - 1,
.ClippedDrawingRectangleXMax =
render_area->offset.x + render_area->extent.width - 1,
.DrawingRectangleOriginY = 0,
.DrawingRectangleOriginX = 0);
anv_cmd_buffer_clear_attachments(cmd_buffer, pass,
pRenderPassBegin->pClearValues);
genX(cmd_buffer_begin_subpass)(cmd_buffer, pass->subpasses);
}
void genX(CmdNextSubpass)(
VkCommandBuffer commandBuffer,
VkSubpassContents contents)
{
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
assert(cmd_buffer->level == VK_COMMAND_BUFFER_LEVEL_PRIMARY);
genX(cmd_buffer_begin_subpass)(cmd_buffer, cmd_buffer->state.subpass + 1);
}
void genX(CmdEndRenderPass)(
VkCommandBuffer commandBuffer)
{
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
/* Emit a flushing pipe control at the end of a pass. This is kind of a
* hack but it ensures that render targets always actually get written.
* Eventually, we should do flushing based on image format transitions
* or something of that nature.
*/
anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL),
.PostSyncOperation = NoWrite,
.RenderTargetCacheFlushEnable = true,
.InstructionCacheInvalidateEnable = true,
.DepthCacheFlushEnable = true,
.VFCacheInvalidationEnable = true,
.TextureCacheInvalidationEnable = true,
.CommandStreamerStallEnable = true);
}
static void
emit_ps_depth_count(struct anv_batch *batch,
struct anv_bo *bo, uint32_t offset)
{
anv_batch_emit(batch, GENX(PIPE_CONTROL),
.DestinationAddressType = DAT_PPGTT,
.PostSyncOperation = WritePSDepthCount,
.Address = { bo, offset });
}
void genX(CmdBeginQuery)(
VkCommandBuffer commandBuffer,
VkQueryPool queryPool,
uint32_t entry,
VkQueryControlFlags flags)
{
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
ANV_FROM_HANDLE(anv_query_pool, pool, queryPool);
switch (pool->type) {
case VK_QUERY_TYPE_OCCLUSION:
emit_ps_depth_count(&cmd_buffer->batch, &pool->bo,
entry * sizeof(struct anv_query_pool_slot));
break;
case VK_QUERY_TYPE_PIPELINE_STATISTICS:
default:
unreachable("");
}
}
void genX(CmdEndQuery)(
VkCommandBuffer commandBuffer,
VkQueryPool queryPool,
uint32_t entry)
{
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
ANV_FROM_HANDLE(anv_query_pool, pool, queryPool);
switch (pool->type) {
case VK_QUERY_TYPE_OCCLUSION:
emit_ps_depth_count(&cmd_buffer->batch, &pool->bo,
entry * sizeof(struct anv_query_pool_slot) + 8);
break;
case VK_QUERY_TYPE_PIPELINE_STATISTICS:
default:
unreachable("");
}
}
#define TIMESTAMP 0x2358
void genX(CmdWriteTimestamp)(
VkCommandBuffer commandBuffer,
VkPipelineStageFlagBits pipelineStage,
VkQueryPool queryPool,
uint32_t entry)
{
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
ANV_FROM_HANDLE(anv_query_pool, pool, queryPool);
assert(pool->type == VK_QUERY_TYPE_TIMESTAMP);
switch (pipelineStage) {
case VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT:
anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_REGISTER_MEM),
.RegisterAddress = TIMESTAMP,
.MemoryAddress = { &pool->bo, entry * 8 });
anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_REGISTER_MEM),
.RegisterAddress = TIMESTAMP + 4,
.MemoryAddress = { &pool->bo, entry * 8 + 4 });
break;
default:
/* Everything else is bottom-of-pipe */
anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL),
.DestinationAddressType = DAT_PPGTT,
.PostSyncOperation = WriteTimestamp,
.Address = { &pool->bo, entry * 8 });
break;
}
}
#define alu_opcode(v) __gen_field((v), 20, 31)
#define alu_operand1(v) __gen_field((v), 10, 19)
#define alu_operand2(v) __gen_field((v), 0, 9)
#define alu(opcode, operand1, operand2) \
alu_opcode(opcode) | alu_operand1(operand1) | alu_operand2(operand2)
#define OPCODE_NOOP 0x000
#define OPCODE_LOAD 0x080
#define OPCODE_LOADINV 0x480
#define OPCODE_LOAD0 0x081
#define OPCODE_LOAD1 0x481
#define OPCODE_ADD 0x100
#define OPCODE_SUB 0x101
#define OPCODE_AND 0x102
#define OPCODE_OR 0x103
#define OPCODE_XOR 0x104
#define OPCODE_STORE 0x180
#define OPCODE_STOREINV 0x580
#define OPERAND_R0 0x00
#define OPERAND_R1 0x01
#define OPERAND_R2 0x02
#define OPERAND_R3 0x03
#define OPERAND_R4 0x04
#define OPERAND_SRCA 0x20
#define OPERAND_SRCB 0x21
#define OPERAND_ACCU 0x31
#define OPERAND_ZF 0x32
#define OPERAND_CF 0x33
#define CS_GPR(n) (0x2600 + (n) * 8)
static void
emit_load_alu_reg_u64(struct anv_batch *batch, uint32_t reg,
struct anv_bo *bo, uint32_t offset)
{
anv_batch_emit(batch, GENX(MI_LOAD_REGISTER_MEM),
.RegisterAddress = reg,
.MemoryAddress = { bo, offset });
anv_batch_emit(batch, GENX(MI_LOAD_REGISTER_MEM),
.RegisterAddress = reg + 4,
.MemoryAddress = { bo, offset + 4 });
}
void genX(CmdCopyQueryPoolResults)(
VkCommandBuffer commandBuffer,
VkQueryPool queryPool,
uint32_t startQuery,
uint32_t queryCount,
VkBuffer destBuffer,
VkDeviceSize destOffset,
VkDeviceSize destStride,
VkQueryResultFlags flags)
{
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
ANV_FROM_HANDLE(anv_query_pool, pool, queryPool);
ANV_FROM_HANDLE(anv_buffer, buffer, destBuffer);
uint32_t slot_offset, dst_offset;
if (flags & VK_QUERY_RESULT_WITH_AVAILABILITY_BIT) {
/* Where is the availabilty info supposed to go? */
anv_finishme("VK_QUERY_RESULT_WITH_AVAILABILITY_BIT");
return;
}
assert(pool->type == VK_QUERY_TYPE_OCCLUSION);
/* FIXME: If we're not waiting, should we just do this on the CPU? */
if (flags & VK_QUERY_RESULT_WAIT_BIT)
anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL),
.CommandStreamerStallEnable = true,
.StallAtPixelScoreboard = true);
dst_offset = buffer->offset + destOffset;
for (uint32_t i = 0; i < queryCount; i++) {
slot_offset = (startQuery + i) * sizeof(struct anv_query_pool_slot);
emit_load_alu_reg_u64(&cmd_buffer->batch, CS_GPR(0), &pool->bo, slot_offset);
emit_load_alu_reg_u64(&cmd_buffer->batch, CS_GPR(1), &pool->bo, slot_offset + 8);
/* FIXME: We need to clamp the result for 32 bit. */
uint32_t *dw = anv_batch_emitn(&cmd_buffer->batch, 5, GENX(MI_MATH));
dw[1] = alu(OPCODE_LOAD, OPERAND_SRCA, OPERAND_R1);
dw[2] = alu(OPCODE_LOAD, OPERAND_SRCB, OPERAND_R0);
dw[3] = alu(OPCODE_SUB, 0, 0);
dw[4] = alu(OPCODE_STORE, OPERAND_R2, OPERAND_ACCU);
anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_REGISTER_MEM),
.RegisterAddress = CS_GPR(2),
.MemoryAddress = { buffer->bo, dst_offset });
if (flags & VK_QUERY_RESULT_64_BIT)
anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_REGISTER_MEM),
.RegisterAddress = CS_GPR(2) + 4,
.MemoryAddress = { buffer->bo, dst_offset + 4 });
dst_offset += destStride;
}
}
void genX(CmdSetEvent)(
VkCommandBuffer commandBuffer,
VkEvent _event,
VkPipelineStageFlags stageMask)
{
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
ANV_FROM_HANDLE(anv_event, event, _event);
anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL),
.DestinationAddressType = DAT_PPGTT,
.PostSyncOperation = WriteImmediateData,
.Address = {
&cmd_buffer->device->dynamic_state_block_pool.bo,
event->state.offset
},
.ImmediateData = VK_EVENT_SET);
}
void genX(CmdResetEvent)(
VkCommandBuffer commandBuffer,
VkEvent _event,
VkPipelineStageFlags stageMask)
{
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
ANV_FROM_HANDLE(anv_event, event, _event);
anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL),
.DestinationAddressType = DAT_PPGTT,
.PostSyncOperation = WriteImmediateData,
.Address = {
&cmd_buffer->device->dynamic_state_block_pool.bo,
event->state.offset
},
.ImmediateData = VK_EVENT_RESET);
}
void genX(CmdWaitEvents)(
VkCommandBuffer commandBuffer,
uint32_t eventCount,
const VkEvent* pEvents,
VkPipelineStageFlags srcStageMask,
VkPipelineStageFlags destStageMask,
uint32_t memBarrierCount,
const void* const* ppMemBarriers)
{
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
for (uint32_t i = 0; i < eventCount; i++) {
ANV_FROM_HANDLE(anv_event, event, pEvents[i]);
anv_batch_emit(&cmd_buffer->batch, GENX(MI_SEMAPHORE_WAIT),
.WaitMode = PollingMode,
.CompareOperation = SAD_EQUAL_SDD,
.SemaphoreDataDword = VK_EVENT_SET,
.SemaphoreAddress = {
&cmd_buffer->device->dynamic_state_block_pool.bo,
event->state.offset
});
}
genX(CmdPipelineBarrier)(commandBuffer, srcStageMask, destStageMask,
false, /* byRegion */
memBarrierCount, ppMemBarriers);
}