2014-12-12 11:28:05 -08:00
|
|
|
/*
|
|
|
|
|
* Mesa 3-D graphics library
|
|
|
|
|
*
|
|
|
|
|
* Copyright 2012 Intel Corporation
|
|
|
|
|
* Copyright 2013 Google
|
|
|
|
|
*
|
|
|
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
|
|
|
* copy of this software and associated documentation files (the
|
|
|
|
|
* "Software"), to deal in the Software without restriction, including
|
|
|
|
|
* without limitation the rights to use, copy, modify, merge, publish,
|
|
|
|
|
* distribute, sub license, and/or sell copies of the Software, and to
|
|
|
|
|
* permit persons to whom the Software is furnished to do so, subject to
|
|
|
|
|
* the following conditions:
|
|
|
|
|
*
|
|
|
|
|
* The above copyright notice and this permission notice (including the
|
|
|
|
|
* next paragraph) shall be included in all copies or substantial portions
|
|
|
|
|
* of the Software.
|
|
|
|
|
*
|
|
|
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
|
|
|
|
|
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
|
|
|
|
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
|
|
|
|
|
* IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
|
|
|
|
|
* ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
|
|
|
|
|
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
|
|
|
|
|
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
|
|
|
|
*
|
|
|
|
|
* Authors:
|
|
|
|
|
* Chad Versace <chad.versace@linux.intel.com>
|
|
|
|
|
* Frank Henigman <fjhenigman@google.com>
|
|
|
|
|
*/
|
|
|
|
|
|
|
|
|
|
#include <string.h>
|
|
|
|
|
|
|
|
|
|
#include "util/macros.h"
|
|
|
|
|
|
|
|
|
|
#include "brw_context.h"
|
|
|
|
|
#include "intel_tiled_memcpy.h"
|
|
|
|
|
|
|
|
|
|
#ifdef __SSSE3__
|
|
|
|
|
#include <tmmintrin.h>
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
#define FILE_DEBUG_FLAG DEBUG_TEXTURE
|
|
|
|
|
|
|
|
|
|
#define ALIGN_DOWN(a, b) ROUND_DOWN_TO(a, b)
|
|
|
|
|
#define ALIGN_UP(a, b) ALIGN(a, b)
|
|
|
|
|
|
|
|
|
|
/* Tile dimensions. Width and span are in bytes, height is in pixels (i.e.
|
|
|
|
|
* unitless). A "span" is the most number of bytes we can copy from linear
|
|
|
|
|
* to tiled without needing to calculate a new destination address.
|
|
|
|
|
*/
|
|
|
|
|
static const uint32_t xtile_width = 512;
|
|
|
|
|
static const uint32_t xtile_height = 8;
|
|
|
|
|
static const uint32_t xtile_span = 64;
|
|
|
|
|
static const uint32_t ytile_width = 128;
|
|
|
|
|
static const uint32_t ytile_height = 32;
|
|
|
|
|
static const uint32_t ytile_span = 16;
|
|
|
|
|
|
|
|
|
|
#ifdef __SSSE3__
|
|
|
|
|
static const uint8_t rgba8_permutation[16] =
|
|
|
|
|
{ 2,1,0,3, 6,5,4,7, 10,9,8,11, 14,13,12,15 };
|
|
|
|
|
|
|
|
|
|
/* NOTE: dst must be 16 byte aligned */
|
|
|
|
|
#define rgba8_copy_16(dst, src) \
|
|
|
|
|
*(__m128i *)(dst) = _mm_shuffle_epi8( \
|
|
|
|
|
(__m128i) _mm_loadu_ps((float *)(src)), \
|
|
|
|
|
*(__m128i *) rgba8_permutation \
|
|
|
|
|
)
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* Copy RGBA to BGRA - swap R and B.
|
|
|
|
|
*/
|
|
|
|
|
static inline void *
|
|
|
|
|
rgba8_copy(void *dst, const void *src, size_t bytes)
|
|
|
|
|
{
|
|
|
|
|
uint8_t *d = dst;
|
|
|
|
|
uint8_t const *s = src;
|
|
|
|
|
|
|
|
|
|
#ifdef __SSSE3__
|
|
|
|
|
/* Fast copying for tile spans.
|
|
|
|
|
*
|
|
|
|
|
* As long as the destination texture is 16 aligned,
|
|
|
|
|
* any 16 or 64 spans we get here should also be 16 aligned.
|
|
|
|
|
*/
|
|
|
|
|
|
|
|
|
|
if (bytes == 16) {
|
|
|
|
|
assert(!(((uintptr_t)dst) & 0xf));
|
|
|
|
|
rgba8_copy_16(d+ 0, s+ 0);
|
|
|
|
|
return dst;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (bytes == 64) {
|
|
|
|
|
assert(!(((uintptr_t)dst) & 0xf));
|
|
|
|
|
rgba8_copy_16(d+ 0, s+ 0);
|
|
|
|
|
rgba8_copy_16(d+16, s+16);
|
|
|
|
|
rgba8_copy_16(d+32, s+32);
|
|
|
|
|
rgba8_copy_16(d+48, s+48);
|
|
|
|
|
return dst;
|
|
|
|
|
}
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
while (bytes >= 4) {
|
|
|
|
|
d[0] = s[2];
|
|
|
|
|
d[1] = s[1];
|
|
|
|
|
d[2] = s[0];
|
|
|
|
|
d[3] = s[3];
|
|
|
|
|
d += 4;
|
|
|
|
|
s += 4;
|
|
|
|
|
bytes -= 4;
|
|
|
|
|
}
|
|
|
|
|
return dst;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* Each row from y0 to y1 is copied in three parts: [x0,x1), [x1,x2), [x2,x3).
|
|
|
|
|
* These ranges are in bytes, i.e. pixels * bytes-per-pixel.
|
|
|
|
|
* The first and last ranges must be shorter than a "span" (the longest linear
|
|
|
|
|
* stretch within a tile) and the middle must equal a whole number of spans.
|
|
|
|
|
* Ranges may be empty. The region copied must land entirely within one tile.
|
|
|
|
|
* 'dst' is the start of the tile and 'src' is the corresponding
|
|
|
|
|
* address to copy from, though copying begins at (x0, y0).
|
|
|
|
|
* To enable swizzling 'swizzle_bit' must be 1<<6, otherwise zero.
|
|
|
|
|
* Swizzling flips bit 6 in the copy destination offset, when certain other
|
|
|
|
|
* bits are set in it.
|
|
|
|
|
*/
|
|
|
|
|
typedef void (*tile_copy_fn)(uint32_t x0, uint32_t x1, uint32_t x2, uint32_t x3,
|
|
|
|
|
uint32_t y0, uint32_t y1,
|
|
|
|
|
char *dst, const char *src,
|
|
|
|
|
uint32_t src_pitch,
|
|
|
|
|
uint32_t swizzle_bit,
|
|
|
|
|
mem_copy_fn mem_copy);
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* Copy texture data from linear to X tile layout.
|
|
|
|
|
*
|
|
|
|
|
* \copydoc tile_copy_fn
|
|
|
|
|
*/
|
|
|
|
|
static inline void
|
|
|
|
|
linear_to_xtiled(uint32_t x0, uint32_t x1, uint32_t x2, uint32_t x3,
|
|
|
|
|
uint32_t y0, uint32_t y1,
|
|
|
|
|
char *dst, const char *src,
|
|
|
|
|
uint32_t src_pitch,
|
|
|
|
|
uint32_t swizzle_bit,
|
|
|
|
|
mem_copy_fn mem_copy)
|
|
|
|
|
{
|
|
|
|
|
/* The copy destination offset for each range copied is the sum of
|
|
|
|
|
* an X offset 'x0' or 'xo' and a Y offset 'yo.'
|
|
|
|
|
*/
|
|
|
|
|
uint32_t xo, yo;
|
|
|
|
|
|
|
|
|
|
src += y0 * src_pitch;
|
|
|
|
|
|
|
|
|
|
for (yo = y0 * xtile_width; yo < y1 * xtile_width; yo += xtile_width) {
|
|
|
|
|
/* Bits 9 and 10 of the copy destination offset control swizzling.
|
|
|
|
|
* Only 'yo' contributes to those bits in the total offset,
|
|
|
|
|
* so calculate 'swizzle' just once per row.
|
|
|
|
|
* Move bits 9 and 10 three and four places respectively down
|
|
|
|
|
* to bit 6 and xor them.
|
|
|
|
|
*/
|
|
|
|
|
uint32_t swizzle = ((yo >> 3) ^ (yo >> 4)) & swizzle_bit;
|
|
|
|
|
|
|
|
|
|
mem_copy(dst + ((x0 + yo) ^ swizzle), src + x0, x1 - x0);
|
|
|
|
|
|
|
|
|
|
for (xo = x1; xo < x2; xo += xtile_span) {
|
|
|
|
|
mem_copy(dst + ((xo + yo) ^ swizzle), src + xo, xtile_span);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
mem_copy(dst + ((xo + yo) ^ swizzle), src + x2, x3 - x2);
|
|
|
|
|
|
|
|
|
|
src += src_pitch;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* Copy texture data from linear to Y tile layout.
|
|
|
|
|
*
|
|
|
|
|
* \copydoc tile_copy_fn
|
|
|
|
|
*/
|
|
|
|
|
static inline void
|
|
|
|
|
linear_to_ytiled(uint32_t x0, uint32_t x1, uint32_t x2, uint32_t x3,
|
|
|
|
|
uint32_t y0, uint32_t y1,
|
|
|
|
|
char *dst, const char *src,
|
|
|
|
|
uint32_t src_pitch,
|
|
|
|
|
uint32_t swizzle_bit,
|
|
|
|
|
mem_copy_fn mem_copy)
|
|
|
|
|
{
|
|
|
|
|
/* Y tiles consist of columns that are 'ytile_span' wide (and the same height
|
|
|
|
|
* as the tile). Thus the destination offset for (x,y) is the sum of:
|
|
|
|
|
* (x % column_width) // position within column
|
|
|
|
|
* (x / column_width) * bytes_per_column // column number * bytes per column
|
|
|
|
|
* y * column_width
|
|
|
|
|
*
|
|
|
|
|
* The copy destination offset for each range copied is the sum of
|
|
|
|
|
* an X offset 'xo0' or 'xo' and a Y offset 'yo.'
|
|
|
|
|
*/
|
|
|
|
|
const uint32_t column_width = ytile_span;
|
|
|
|
|
const uint32_t bytes_per_column = column_width * ytile_height;
|
|
|
|
|
|
|
|
|
|
uint32_t xo0 = (x0 % ytile_span) + (x0 / ytile_span) * bytes_per_column;
|
|
|
|
|
uint32_t xo1 = (x1 % ytile_span) + (x1 / ytile_span) * bytes_per_column;
|
|
|
|
|
|
|
|
|
|
/* Bit 9 of the destination offset control swizzling.
|
|
|
|
|
* Only the X offset contributes to bit 9 of the total offset,
|
|
|
|
|
* so swizzle can be calculated in advance for these X positions.
|
|
|
|
|
* Move bit 9 three places down to bit 6.
|
|
|
|
|
*/
|
|
|
|
|
uint32_t swizzle0 = (xo0 >> 3) & swizzle_bit;
|
|
|
|
|
uint32_t swizzle1 = (xo1 >> 3) & swizzle_bit;
|
|
|
|
|
|
|
|
|
|
uint32_t x, yo;
|
|
|
|
|
|
|
|
|
|
src += y0 * src_pitch;
|
|
|
|
|
|
|
|
|
|
for (yo = y0 * column_width; yo < y1 * column_width; yo += column_width) {
|
|
|
|
|
uint32_t xo = xo1;
|
|
|
|
|
uint32_t swizzle = swizzle1;
|
|
|
|
|
|
|
|
|
|
mem_copy(dst + ((xo0 + yo) ^ swizzle0), src + x0, x1 - x0);
|
|
|
|
|
|
|
|
|
|
/* Step by spans/columns. As it happens, the swizzle bit flips
|
|
|
|
|
* at each step so we don't need to calculate it explicitly.
|
|
|
|
|
*/
|
|
|
|
|
for (x = x1; x < x2; x += ytile_span) {
|
|
|
|
|
mem_copy(dst + ((xo + yo) ^ swizzle), src + x, ytile_span);
|
|
|
|
|
xo += bytes_per_column;
|
|
|
|
|
swizzle ^= swizzle_bit;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
mem_copy(dst + ((xo + yo) ^ swizzle), src + x2, x3 - x2);
|
|
|
|
|
|
|
|
|
|
src += src_pitch;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
2015-01-03 11:16:08 -08:00
|
|
|
/**
|
|
|
|
|
* Copy texture data from X tile layout to linear.
|
|
|
|
|
*
|
|
|
|
|
* \copydoc tile_copy_fn
|
|
|
|
|
*/
|
|
|
|
|
static inline void
|
|
|
|
|
xtiled_to_linear(uint32_t x0, uint32_t x1, uint32_t x2, uint32_t x3,
|
|
|
|
|
uint32_t y0, uint32_t y1,
|
|
|
|
|
char *dst, const char *src,
|
|
|
|
|
uint32_t dst_pitch,
|
|
|
|
|
uint32_t swizzle_bit,
|
|
|
|
|
mem_copy_fn mem_copy)
|
|
|
|
|
{
|
|
|
|
|
/* The copy destination offset for each range copied is the sum of
|
|
|
|
|
* an X offset 'x0' or 'xo' and a Y offset 'yo.'
|
|
|
|
|
*/
|
|
|
|
|
uint32_t xo, yo;
|
|
|
|
|
|
|
|
|
|
dst += y0 * dst_pitch;
|
|
|
|
|
|
|
|
|
|
for (yo = y0 * xtile_width; yo < y1 * xtile_width; yo += xtile_width) {
|
|
|
|
|
/* Bits 9 and 10 of the copy destination offset control swizzling.
|
|
|
|
|
* Only 'yo' contributes to those bits in the total offset,
|
|
|
|
|
* so calculate 'swizzle' just once per row.
|
|
|
|
|
* Move bits 9 and 10 three and four places respectively down
|
|
|
|
|
* to bit 6 and xor them.
|
|
|
|
|
*/
|
|
|
|
|
uint32_t swizzle = ((yo >> 3) ^ (yo >> 4)) & swizzle_bit;
|
|
|
|
|
|
|
|
|
|
mem_copy(dst + x0, src + ((x0 + yo) ^ swizzle), x1 - x0);
|
|
|
|
|
|
|
|
|
|
for (xo = x1; xo < x2; xo += xtile_span) {
|
|
|
|
|
mem_copy(dst + xo, src + ((xo + yo) ^ swizzle), xtile_span);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
mem_copy(dst + x2, src + ((xo + yo) ^ swizzle), x3 - x2);
|
|
|
|
|
|
|
|
|
|
dst += dst_pitch;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* Copy texture data from Y tile layout to linear.
|
|
|
|
|
*
|
|
|
|
|
* \copydoc tile_copy_fn
|
|
|
|
|
*/
|
|
|
|
|
static inline void
|
|
|
|
|
ytiled_to_linear(uint32_t x0, uint32_t x1, uint32_t x2, uint32_t x3,
|
|
|
|
|
uint32_t y0, uint32_t y1,
|
|
|
|
|
char *dst, const char *src,
|
|
|
|
|
uint32_t dst_pitch,
|
|
|
|
|
uint32_t swizzle_bit,
|
|
|
|
|
mem_copy_fn mem_copy)
|
|
|
|
|
{
|
|
|
|
|
/* Y tiles consist of columns that are 'ytile_span' wide (and the same height
|
|
|
|
|
* as the tile). Thus the destination offset for (x,y) is the sum of:
|
|
|
|
|
* (x % column_width) // position within column
|
|
|
|
|
* (x / column_width) * bytes_per_column // column number * bytes per column
|
|
|
|
|
* y * column_width
|
|
|
|
|
*
|
|
|
|
|
* The copy destination offset for each range copied is the sum of
|
|
|
|
|
* an X offset 'xo0' or 'xo' and a Y offset 'yo.'
|
|
|
|
|
*/
|
|
|
|
|
const uint32_t column_width = ytile_span;
|
|
|
|
|
const uint32_t bytes_per_column = column_width * ytile_height;
|
|
|
|
|
|
|
|
|
|
uint32_t xo0 = (x0 % ytile_span) + (x0 / ytile_span) * bytes_per_column;
|
|
|
|
|
uint32_t xo1 = (x1 % ytile_span) + (x1 / ytile_span) * bytes_per_column;
|
|
|
|
|
|
|
|
|
|
/* Bit 9 of the destination offset control swizzling.
|
|
|
|
|
* Only the X offset contributes to bit 9 of the total offset,
|
|
|
|
|
* so swizzle can be calculated in advance for these X positions.
|
|
|
|
|
* Move bit 9 three places down to bit 6.
|
|
|
|
|
*/
|
|
|
|
|
uint32_t swizzle0 = (xo0 >> 3) & swizzle_bit;
|
|
|
|
|
uint32_t swizzle1 = (xo1 >> 3) & swizzle_bit;
|
|
|
|
|
|
|
|
|
|
uint32_t x, yo;
|
|
|
|
|
|
|
|
|
|
dst += y0 * dst_pitch;
|
|
|
|
|
|
|
|
|
|
for (yo = y0 * column_width; yo < y1 * column_width; yo += column_width) {
|
|
|
|
|
uint32_t xo = xo1;
|
|
|
|
|
uint32_t swizzle = swizzle1;
|
|
|
|
|
|
|
|
|
|
mem_copy(dst + x0, src + ((xo0 + yo) ^ swizzle0), x1 - x0);
|
|
|
|
|
|
|
|
|
|
/* Step by spans/columns. As it happens, the swizzle bit flips
|
|
|
|
|
* at each step so we don't need to calculate it explicitly.
|
|
|
|
|
*/
|
|
|
|
|
for (x = x1; x < x2; x += ytile_span) {
|
|
|
|
|
mem_copy(dst + x, src + ((xo + yo) ^ swizzle), ytile_span);
|
|
|
|
|
xo += bytes_per_column;
|
|
|
|
|
swizzle ^= swizzle_bit;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
mem_copy(dst + x2, src + ((xo + yo) ^ swizzle), x3 - x2);
|
|
|
|
|
|
|
|
|
|
dst += dst_pitch;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
2014-12-12 11:28:05 -08:00
|
|
|
/**
|
|
|
|
|
* Copy texture data from linear to X tile layout, faster.
|
|
|
|
|
*
|
|
|
|
|
* Same as \ref linear_to_xtiled but faster, because it passes constant
|
|
|
|
|
* parameters for common cases, allowing the compiler to inline code
|
|
|
|
|
* optimized for those cases.
|
|
|
|
|
*
|
|
|
|
|
* \copydoc tile_copy_fn
|
|
|
|
|
*/
|
|
|
|
|
static FLATTEN void
|
|
|
|
|
linear_to_xtiled_faster(uint32_t x0, uint32_t x1, uint32_t x2, uint32_t x3,
|
|
|
|
|
uint32_t y0, uint32_t y1,
|
|
|
|
|
char *dst, const char *src,
|
|
|
|
|
uint32_t src_pitch,
|
|
|
|
|
uint32_t swizzle_bit,
|
|
|
|
|
mem_copy_fn mem_copy)
|
|
|
|
|
{
|
|
|
|
|
if (x0 == 0 && x3 == xtile_width && y0 == 0 && y1 == xtile_height) {
|
|
|
|
|
if (mem_copy == memcpy)
|
|
|
|
|
return linear_to_xtiled(0, 0, xtile_width, xtile_width, 0, xtile_height,
|
|
|
|
|
dst, src, src_pitch, swizzle_bit, memcpy);
|
|
|
|
|
else if (mem_copy == rgba8_copy)
|
|
|
|
|
return linear_to_xtiled(0, 0, xtile_width, xtile_width, 0, xtile_height,
|
|
|
|
|
dst, src, src_pitch, swizzle_bit, rgba8_copy);
|
|
|
|
|
} else {
|
|
|
|
|
if (mem_copy == memcpy)
|
|
|
|
|
return linear_to_xtiled(x0, x1, x2, x3, y0, y1,
|
|
|
|
|
dst, src, src_pitch, swizzle_bit, memcpy);
|
|
|
|
|
else if (mem_copy == rgba8_copy)
|
|
|
|
|
return linear_to_xtiled(x0, x1, x2, x3, y0, y1,
|
|
|
|
|
dst, src, src_pitch, swizzle_bit, rgba8_copy);
|
|
|
|
|
}
|
|
|
|
|
linear_to_xtiled(x0, x1, x2, x3, y0, y1,
|
|
|
|
|
dst, src, src_pitch, swizzle_bit, mem_copy);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* Copy texture data from linear to Y tile layout, faster.
|
|
|
|
|
*
|
|
|
|
|
* Same as \ref linear_to_ytiled but faster, because it passes constant
|
|
|
|
|
* parameters for common cases, allowing the compiler to inline code
|
|
|
|
|
* optimized for those cases.
|
|
|
|
|
*
|
|
|
|
|
* \copydoc tile_copy_fn
|
|
|
|
|
*/
|
|
|
|
|
static FLATTEN void
|
|
|
|
|
linear_to_ytiled_faster(uint32_t x0, uint32_t x1, uint32_t x2, uint32_t x3,
|
|
|
|
|
uint32_t y0, uint32_t y1,
|
|
|
|
|
char *dst, const char *src,
|
|
|
|
|
uint32_t src_pitch,
|
|
|
|
|
uint32_t swizzle_bit,
|
|
|
|
|
mem_copy_fn mem_copy)
|
|
|
|
|
{
|
|
|
|
|
if (x0 == 0 && x3 == ytile_width && y0 == 0 && y1 == ytile_height) {
|
|
|
|
|
if (mem_copy == memcpy)
|
|
|
|
|
return linear_to_ytiled(0, 0, ytile_width, ytile_width, 0, ytile_height,
|
|
|
|
|
dst, src, src_pitch, swizzle_bit, memcpy);
|
|
|
|
|
else if (mem_copy == rgba8_copy)
|
|
|
|
|
return linear_to_ytiled(0, 0, ytile_width, ytile_width, 0, ytile_height,
|
|
|
|
|
dst, src, src_pitch, swizzle_bit, rgba8_copy);
|
|
|
|
|
} else {
|
|
|
|
|
if (mem_copy == memcpy)
|
|
|
|
|
return linear_to_ytiled(x0, x1, x2, x3, y0, y1,
|
|
|
|
|
dst, src, src_pitch, swizzle_bit, memcpy);
|
|
|
|
|
else if (mem_copy == rgba8_copy)
|
|
|
|
|
return linear_to_ytiled(x0, x1, x2, x3, y0, y1,
|
|
|
|
|
dst, src, src_pitch, swizzle_bit, rgba8_copy);
|
|
|
|
|
}
|
|
|
|
|
linear_to_ytiled(x0, x1, x2, x3, y0, y1,
|
|
|
|
|
dst, src, src_pitch, swizzle_bit, mem_copy);
|
|
|
|
|
}
|
|
|
|
|
|
2015-01-03 11:16:08 -08:00
|
|
|
/**
|
|
|
|
|
* Copy texture data from X tile layout to linear, faster.
|
|
|
|
|
*
|
|
|
|
|
* Same as \ref xtile_to_linear but faster, because it passes constant
|
|
|
|
|
* parameters for common cases, allowing the compiler to inline code
|
|
|
|
|
* optimized for those cases.
|
|
|
|
|
*
|
|
|
|
|
* \copydoc tile_copy_fn
|
|
|
|
|
*/
|
|
|
|
|
static FLATTEN void
|
|
|
|
|
xtiled_to_linear_faster(uint32_t x0, uint32_t x1, uint32_t x2, uint32_t x3,
|
|
|
|
|
uint32_t y0, uint32_t y1,
|
|
|
|
|
char *dst, const char *src,
|
|
|
|
|
uint32_t dst_pitch,
|
|
|
|
|
uint32_t swizzle_bit,
|
|
|
|
|
mem_copy_fn mem_copy)
|
|
|
|
|
{
|
|
|
|
|
if (x0 == 0 && x3 == xtile_width && y0 == 0 && y1 == xtile_height) {
|
|
|
|
|
if (mem_copy == memcpy)
|
|
|
|
|
return xtiled_to_linear(0, 0, xtile_width, xtile_width, 0, xtile_height,
|
|
|
|
|
dst, src, dst_pitch, swizzle_bit, memcpy);
|
|
|
|
|
else if (mem_copy == rgba8_copy)
|
|
|
|
|
return xtiled_to_linear(0, 0, xtile_width, xtile_width, 0, xtile_height,
|
|
|
|
|
dst, src, dst_pitch, swizzle_bit, rgba8_copy);
|
|
|
|
|
} else {
|
|
|
|
|
if (mem_copy == memcpy)
|
|
|
|
|
return xtiled_to_linear(x0, x1, x2, x3, y0, y1,
|
|
|
|
|
dst, src, dst_pitch, swizzle_bit, memcpy);
|
|
|
|
|
else if (mem_copy == rgba8_copy)
|
|
|
|
|
return xtiled_to_linear(x0, x1, x2, x3, y0, y1,
|
|
|
|
|
dst, src, dst_pitch, swizzle_bit, rgba8_copy);
|
|
|
|
|
}
|
|
|
|
|
xtiled_to_linear(x0, x1, x2, x3, y0, y1,
|
|
|
|
|
dst, src, dst_pitch, swizzle_bit, mem_copy);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* Copy texture data from Y tile layout to linear, faster.
|
|
|
|
|
*
|
|
|
|
|
* Same as \ref ytile_to_linear but faster, because it passes constant
|
|
|
|
|
* parameters for common cases, allowing the compiler to inline code
|
|
|
|
|
* optimized for those cases.
|
|
|
|
|
*
|
|
|
|
|
* \copydoc tile_copy_fn
|
|
|
|
|
*/
|
|
|
|
|
static FLATTEN void
|
|
|
|
|
ytiled_to_linear_faster(uint32_t x0, uint32_t x1, uint32_t x2, uint32_t x3,
|
|
|
|
|
uint32_t y0, uint32_t y1,
|
|
|
|
|
char *dst, const char *src,
|
|
|
|
|
uint32_t dst_pitch,
|
|
|
|
|
uint32_t swizzle_bit,
|
|
|
|
|
mem_copy_fn mem_copy)
|
|
|
|
|
{
|
|
|
|
|
if (x0 == 0 && x3 == ytile_width && y0 == 0 && y1 == ytile_height) {
|
|
|
|
|
if (mem_copy == memcpy)
|
|
|
|
|
return ytiled_to_linear(0, 0, ytile_width, ytile_width, 0, ytile_height,
|
|
|
|
|
dst, src, dst_pitch, swizzle_bit, memcpy);
|
|
|
|
|
else if (mem_copy == rgba8_copy)
|
|
|
|
|
return ytiled_to_linear(0, 0, ytile_width, ytile_width, 0, ytile_height,
|
|
|
|
|
dst, src, dst_pitch, swizzle_bit, rgba8_copy);
|
|
|
|
|
} else {
|
|
|
|
|
if (mem_copy == memcpy)
|
|
|
|
|
return ytiled_to_linear(x0, x1, x2, x3, y0, y1,
|
|
|
|
|
dst, src, dst_pitch, swizzle_bit, memcpy);
|
|
|
|
|
else if (mem_copy == rgba8_copy)
|
|
|
|
|
return ytiled_to_linear(x0, x1, x2, x3, y0, y1,
|
|
|
|
|
dst, src, dst_pitch, swizzle_bit, rgba8_copy);
|
|
|
|
|
}
|
|
|
|
|
ytiled_to_linear(x0, x1, x2, x3, y0, y1,
|
|
|
|
|
dst, src, dst_pitch, swizzle_bit, mem_copy);
|
|
|
|
|
}
|
2014-12-12 11:28:05 -08:00
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* Copy from linear to tiled texture.
|
|
|
|
|
*
|
|
|
|
|
* Divide the region given by X range [xt1, xt2) and Y range [yt1, yt2) into
|
|
|
|
|
* pieces that do not cross tile boundaries and copy each piece with a tile
|
|
|
|
|
* copy function (\ref tile_copy_fn).
|
|
|
|
|
* The X range is in bytes, i.e. pixels * bytes-per-pixel.
|
|
|
|
|
* The Y range is in pixels (i.e. unitless).
|
|
|
|
|
* 'dst' is the start of the texture and 'src' is the corresponding
|
|
|
|
|
* address to copy from, though copying begins at (xt1, yt1).
|
|
|
|
|
*/
|
|
|
|
|
void
|
|
|
|
|
linear_to_tiled(uint32_t xt1, uint32_t xt2,
|
|
|
|
|
uint32_t yt1, uint32_t yt2,
|
|
|
|
|
char *dst, const char *src,
|
|
|
|
|
uint32_t dst_pitch, uint32_t src_pitch,
|
|
|
|
|
bool has_swizzling,
|
|
|
|
|
uint32_t tiling,
|
|
|
|
|
mem_copy_fn mem_copy)
|
|
|
|
|
{
|
|
|
|
|
tile_copy_fn tile_copy;
|
|
|
|
|
uint32_t xt0, xt3;
|
|
|
|
|
uint32_t yt0, yt3;
|
|
|
|
|
uint32_t xt, yt;
|
|
|
|
|
uint32_t tw, th, span;
|
|
|
|
|
uint32_t swizzle_bit = has_swizzling ? 1<<6 : 0;
|
|
|
|
|
|
|
|
|
|
if (tiling == I915_TILING_X) {
|
|
|
|
|
tw = xtile_width;
|
|
|
|
|
th = xtile_height;
|
|
|
|
|
span = xtile_span;
|
|
|
|
|
tile_copy = linear_to_xtiled_faster;
|
|
|
|
|
} else if (tiling == I915_TILING_Y) {
|
|
|
|
|
tw = ytile_width;
|
|
|
|
|
th = ytile_height;
|
|
|
|
|
span = ytile_span;
|
|
|
|
|
tile_copy = linear_to_ytiled_faster;
|
|
|
|
|
} else {
|
|
|
|
|
unreachable("unsupported tiling");
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Round out to tile boundaries. */
|
|
|
|
|
xt0 = ALIGN_DOWN(xt1, tw);
|
|
|
|
|
xt3 = ALIGN_UP (xt2, tw);
|
|
|
|
|
yt0 = ALIGN_DOWN(yt1, th);
|
|
|
|
|
yt3 = ALIGN_UP (yt2, th);
|
|
|
|
|
|
|
|
|
|
/* Loop over all tiles to which we have something to copy.
|
|
|
|
|
* 'xt' and 'yt' are the origin of the destination tile, whether copying
|
|
|
|
|
* copying a full or partial tile.
|
|
|
|
|
* tile_copy() copies one tile or partial tile.
|
|
|
|
|
* Looping x inside y is the faster memory access pattern.
|
|
|
|
|
*/
|
|
|
|
|
for (yt = yt0; yt < yt3; yt += th) {
|
|
|
|
|
for (xt = xt0; xt < xt3; xt += tw) {
|
|
|
|
|
/* The area to update is [x0,x3) x [y0,y1).
|
|
|
|
|
* May not want the whole tile, hence the min and max.
|
|
|
|
|
*/
|
|
|
|
|
uint32_t x0 = MAX2(xt1, xt);
|
|
|
|
|
uint32_t y0 = MAX2(yt1, yt);
|
|
|
|
|
uint32_t x3 = MIN2(xt2, xt + tw);
|
|
|
|
|
uint32_t y1 = MIN2(yt2, yt + th);
|
|
|
|
|
|
|
|
|
|
/* [x0,x3) is split into [x0,x1), [x1,x2), [x2,x3) such that
|
|
|
|
|
* the middle interval is the longest span-aligned part.
|
|
|
|
|
* The sub-ranges could be empty.
|
|
|
|
|
*/
|
|
|
|
|
uint32_t x1, x2;
|
|
|
|
|
x1 = ALIGN_UP(x0, span);
|
|
|
|
|
if (x1 > x3)
|
|
|
|
|
x1 = x2 = x3;
|
|
|
|
|
else
|
|
|
|
|
x2 = ALIGN_DOWN(x3, span);
|
|
|
|
|
|
|
|
|
|
assert(x0 <= x1 && x1 <= x2 && x2 <= x3);
|
|
|
|
|
assert(x1 - x0 < span && x3 - x2 < span);
|
|
|
|
|
assert(x3 - x0 <= tw);
|
|
|
|
|
assert((x2 - x1) % span == 0);
|
|
|
|
|
|
|
|
|
|
/* Translate by (xt,yt) for single-tile copier. */
|
|
|
|
|
tile_copy(x0-xt, x1-xt, x2-xt, x3-xt,
|
|
|
|
|
y0-yt, y1-yt,
|
|
|
|
|
dst + (ptrdiff_t) xt * th + (ptrdiff_t) yt * dst_pitch,
|
|
|
|
|
src + (ptrdiff_t) xt + (ptrdiff_t) yt * src_pitch,
|
|
|
|
|
src_pitch,
|
|
|
|
|
swizzle_bit,
|
|
|
|
|
mem_copy);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
2015-01-03 11:16:08 -08:00
|
|
|
/**
|
|
|
|
|
* Copy from tiled to linear texture.
|
|
|
|
|
*
|
|
|
|
|
* Divide the region given by X range [xt1, xt2) and Y range [yt1, yt2) into
|
|
|
|
|
* pieces that do not cross tile boundaries and copy each piece with a tile
|
|
|
|
|
* copy function (\ref tile_copy_fn).
|
|
|
|
|
* The X range is in bytes, i.e. pixels * bytes-per-pixel.
|
|
|
|
|
* The Y range is in pixels (i.e. unitless).
|
|
|
|
|
* 'dst' is the start of the texture and 'src' is the corresponding
|
|
|
|
|
* address to copy from, though copying begins at (xt1, yt1).
|
|
|
|
|
*/
|
|
|
|
|
void
|
|
|
|
|
tiled_to_linear(uint32_t xt1, uint32_t xt2,
|
|
|
|
|
uint32_t yt1, uint32_t yt2,
|
|
|
|
|
char *dst, const char *src,
|
|
|
|
|
uint32_t dst_pitch, uint32_t src_pitch,
|
|
|
|
|
bool has_swizzling,
|
|
|
|
|
uint32_t tiling,
|
|
|
|
|
mem_copy_fn mem_copy)
|
|
|
|
|
{
|
|
|
|
|
tile_copy_fn tile_copy;
|
|
|
|
|
uint32_t xt0, xt3;
|
|
|
|
|
uint32_t yt0, yt3;
|
|
|
|
|
uint32_t xt, yt;
|
|
|
|
|
uint32_t tw, th, span;
|
|
|
|
|
uint32_t swizzle_bit = has_swizzling ? 1<<6 : 0;
|
|
|
|
|
|
|
|
|
|
if (tiling == I915_TILING_X) {
|
|
|
|
|
tw = xtile_width;
|
|
|
|
|
th = xtile_height;
|
|
|
|
|
span = xtile_span;
|
|
|
|
|
tile_copy = xtiled_to_linear_faster;
|
|
|
|
|
} else if (tiling == I915_TILING_Y) {
|
|
|
|
|
tw = ytile_width;
|
|
|
|
|
th = ytile_height;
|
|
|
|
|
span = ytile_span;
|
|
|
|
|
tile_copy = ytiled_to_linear_faster;
|
|
|
|
|
} else {
|
|
|
|
|
unreachable("unsupported tiling");
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Round out to tile boundaries. */
|
|
|
|
|
xt0 = ALIGN_DOWN(xt1, tw);
|
|
|
|
|
xt3 = ALIGN_UP (xt2, tw);
|
|
|
|
|
yt0 = ALIGN_DOWN(yt1, th);
|
|
|
|
|
yt3 = ALIGN_UP (yt2, th);
|
|
|
|
|
|
|
|
|
|
/* Loop over all tiles to which we have something to copy.
|
|
|
|
|
* 'xt' and 'yt' are the origin of the destination tile, whether copying
|
|
|
|
|
* copying a full or partial tile.
|
|
|
|
|
* tile_copy() copies one tile or partial tile.
|
|
|
|
|
* Looping x inside y is the faster memory access pattern.
|
|
|
|
|
*/
|
|
|
|
|
for (yt = yt0; yt < yt3; yt += th) {
|
|
|
|
|
for (xt = xt0; xt < xt3; xt += tw) {
|
|
|
|
|
/* The area to update is [x0,x3) x [y0,y1).
|
|
|
|
|
* May not want the whole tile, hence the min and max.
|
|
|
|
|
*/
|
|
|
|
|
uint32_t x0 = MAX2(xt1, xt);
|
|
|
|
|
uint32_t y0 = MAX2(yt1, yt);
|
|
|
|
|
uint32_t x3 = MIN2(xt2, xt + tw);
|
|
|
|
|
uint32_t y1 = MIN2(yt2, yt + th);
|
|
|
|
|
|
|
|
|
|
/* [x0,x3) is split into [x0,x1), [x1,x2), [x2,x3) such that
|
|
|
|
|
* the middle interval is the longest span-aligned part.
|
|
|
|
|
* The sub-ranges could be empty.
|
|
|
|
|
*/
|
|
|
|
|
uint32_t x1, x2;
|
|
|
|
|
x1 = ALIGN_UP(x0, span);
|
|
|
|
|
if (x1 > x3)
|
|
|
|
|
x1 = x2 = x3;
|
|
|
|
|
else
|
|
|
|
|
x2 = ALIGN_DOWN(x3, span);
|
|
|
|
|
|
|
|
|
|
assert(x0 <= x1 && x1 <= x2 && x2 <= x3);
|
|
|
|
|
assert(x1 - x0 < span && x3 - x2 < span);
|
|
|
|
|
assert(x3 - x0 <= tw);
|
|
|
|
|
assert((x2 - x1) % span == 0);
|
|
|
|
|
|
|
|
|
|
/* Translate by (xt,yt) for single-tile copier. */
|
|
|
|
|
tile_copy(x0-xt, x1-xt, x2-xt, x3-xt,
|
|
|
|
|
y0-yt, y1-yt,
|
|
|
|
|
dst + (ptrdiff_t) xt + (ptrdiff_t) yt * dst_pitch,
|
|
|
|
|
src + (ptrdiff_t) xt * th + (ptrdiff_t) yt * src_pitch,
|
|
|
|
|
dst_pitch,
|
|
|
|
|
swizzle_bit,
|
|
|
|
|
mem_copy);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
2014-12-12 11:28:05 -08:00
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* Determine which copy function to use for the given format combination
|
|
|
|
|
*
|
2015-01-03 11:16:08 -08:00
|
|
|
* The only two possible copy functions which are ever returned are a
|
|
|
|
|
* direct memcpy and a RGBA <-> BGRA copy function. Since RGBA -> BGRA and
|
|
|
|
|
* BGRA -> RGBA are exactly the same operation (and memcpy is obviously
|
|
|
|
|
* symmetric), it doesn't matter whether the copy is from the tiled image
|
|
|
|
|
* to the untiled or vice versa. The copy function required is the same in
|
|
|
|
|
* either case so this function can be used.
|
|
|
|
|
*
|
2014-12-12 11:28:05 -08:00
|
|
|
* \param[in] tiledFormat The format of the tiled image
|
|
|
|
|
* \param[in] format The GL format of the client data
|
|
|
|
|
* \param[in] type The GL type of the client data
|
|
|
|
|
* \param[out] mem_copy Will be set to one of either the standard
|
|
|
|
|
* library's memcpy or a different copy function
|
|
|
|
|
* that performs an RGBA to BGRA conversion
|
|
|
|
|
* \param[out] cpp Number of bytes per channel
|
|
|
|
|
*
|
|
|
|
|
* \return true if the format and type combination are valid
|
|
|
|
|
*/
|
|
|
|
|
bool intel_get_memcpy(mesa_format tiledFormat, GLenum format,
|
|
|
|
|
GLenum type, mem_copy_fn* mem_copy, uint32_t* cpp)
|
|
|
|
|
{
|
|
|
|
|
if (type == GL_UNSIGNED_INT_8_8_8_8_REV &&
|
|
|
|
|
!(format == GL_RGBA || format == GL_BGRA))
|
|
|
|
|
return false; /* Invalid type/format combination */
|
|
|
|
|
|
|
|
|
|
if ((tiledFormat == MESA_FORMAT_L_UNORM8 && format == GL_LUMINANCE) ||
|
|
|
|
|
(tiledFormat == MESA_FORMAT_A_UNORM8 && format == GL_ALPHA)) {
|
|
|
|
|
*cpp = 1;
|
|
|
|
|
*mem_copy = memcpy;
|
|
|
|
|
} else if ((tiledFormat == MESA_FORMAT_B8G8R8A8_UNORM) ||
|
|
|
|
|
(tiledFormat == MESA_FORMAT_B8G8R8X8_UNORM)) {
|
|
|
|
|
*cpp = 4;
|
|
|
|
|
if (format == GL_BGRA) {
|
|
|
|
|
*mem_copy = memcpy;
|
|
|
|
|
} else if (format == GL_RGBA) {
|
|
|
|
|
*mem_copy = rgba8_copy;
|
|
|
|
|
}
|
|
|
|
|
} else if ((tiledFormat == MESA_FORMAT_R8G8B8A8_UNORM) ||
|
|
|
|
|
(tiledFormat == MESA_FORMAT_R8G8B8X8_UNORM)) {
|
|
|
|
|
*cpp = 4;
|
|
|
|
|
if (format == GL_BGRA) {
|
|
|
|
|
/* Copying from RGBA to BGRA is the same as BGRA to RGBA so we can
|
|
|
|
|
* use the same function.
|
|
|
|
|
*/
|
|
|
|
|
*mem_copy = rgba8_copy;
|
|
|
|
|
} else if (format == GL_RGBA) {
|
|
|
|
|
*mem_copy = memcpy;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (!(*mem_copy))
|
|
|
|
|
return false;
|
|
|
|
|
|
|
|
|
|
return true;
|
|
|
|
|
}
|