libinput/src/filter.c
Peter Hutterer 68f94c6ba4 filter: use a tmp variable for the accel factor
No real effect, just makes the diff for debugging printfs smaller.

Signed-off-by: Peter Hutterer <peter.hutterer@who-t.net>
2015-06-26 11:10:29 +10:00

454 lines
12 KiB
C

/*
* Copyright © 2006-2009 Simon Thum
* Copyright © 2012 Jonas Ådahl
* Copyright © 2014-2015 Red Hat, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
#include "config.h"
#include <assert.h>
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <limits.h>
#include <math.h>
#include "filter.h"
#include "libinput-util.h"
#include "filter-private.h"
struct normalized_coords
filter_dispatch(struct motion_filter *filter,
const struct normalized_coords *unaccelerated,
void *data, uint64_t time)
{
return filter->interface->filter(filter, unaccelerated, data, time);
}
void
filter_restart(struct motion_filter *filter,
void *data, uint64_t time)
{
filter->interface->restart(filter, data, time);
}
void
filter_destroy(struct motion_filter *filter)
{
if (!filter)
return;
filter->interface->destroy(filter);
}
bool
filter_set_speed(struct motion_filter *filter,
double speed)
{
return filter->interface->set_speed(filter, speed);
}
double
filter_get_speed(struct motion_filter *filter)
{
return filter->speed;
}
/*
* Default parameters for pointer acceleration profiles.
*/
#define DEFAULT_THRESHOLD 0.4 /* in units/ms */
#define DEFAULT_ACCELERATION 2.0 /* unitless factor */
#define DEFAULT_INCLINE 1.1 /* unitless factor */
/*
* Pointer acceleration filter constants
*/
#define MAX_VELOCITY_DIFF 1.0 /* units/ms */
#define MOTION_TIMEOUT 1000 /* (ms) */
#define NUM_POINTER_TRACKERS 16
struct pointer_tracker {
struct normalized_coords delta; /* delta to most recent event */
uint64_t time; /* ms */
int dir;
};
struct pointer_accelerator;
struct pointer_accelerator {
struct motion_filter base;
accel_profile_func_t profile;
double velocity; /* units/ms */
double last_velocity; /* units/ms */
struct normalized_coords last;
struct pointer_tracker *trackers;
int cur_tracker;
double threshold; /* units/ms */
double accel; /* unitless factor */
double incline; /* incline of the function */
};
static void
feed_trackers(struct pointer_accelerator *accel,
const struct normalized_coords *delta,
uint64_t time)
{
int i, current;
struct pointer_tracker *trackers = accel->trackers;
for (i = 0; i < NUM_POINTER_TRACKERS; i++) {
trackers[i].delta.x += delta->x;
trackers[i].delta.y += delta->y;
}
current = (accel->cur_tracker + 1) % NUM_POINTER_TRACKERS;
accel->cur_tracker = current;
trackers[current].delta.x = 0.0;
trackers[current].delta.y = 0.0;
trackers[current].time = time;
trackers[current].dir = normalized_get_direction(*delta);
}
static struct pointer_tracker *
tracker_by_offset(struct pointer_accelerator *accel, unsigned int offset)
{
unsigned int index =
(accel->cur_tracker + NUM_POINTER_TRACKERS - offset)
% NUM_POINTER_TRACKERS;
return &accel->trackers[index];
}
static double
calculate_tracker_velocity(struct pointer_tracker *tracker, uint64_t time)
{
double tdelta = time - tracker->time + 1;
return normalized_length(tracker->delta) / tdelta; /* units/ms */
}
static inline double
calculate_velocity_after_timeout(struct pointer_tracker *tracker)
{
/* First movement after timeout needs special handling.
*
* When we trigger the timeout, the last event is too far in the
* past to use it for velocity calculation across multiple tracker
* values.
*
* Use the motion timeout itself to calculate the speed rather than
* the last tracker time. This errs on the side of being too fast
* for really slow movements but provides much more useful initial
* movement in normal use-cases (pause, move, pause, move)
*/
return calculate_tracker_velocity(tracker,
tracker->time + MOTION_TIMEOUT);
}
static double
calculate_velocity(struct pointer_accelerator *accel, uint64_t time)
{
struct pointer_tracker *tracker;
double velocity;
double result = 0.0;
double initial_velocity = 0.0;
double velocity_diff;
unsigned int offset;
unsigned int dir = tracker_by_offset(accel, 0)->dir;
/* Find least recent vector within a timelimit, maximum velocity diff
* and direction threshold. */
for (offset = 1; offset < NUM_POINTER_TRACKERS; offset++) {
tracker = tracker_by_offset(accel, offset);
/* Stop if too far away in time */
if (time - tracker->time > MOTION_TIMEOUT ||
tracker->time > time) {
if (offset == 1)
result = calculate_velocity_after_timeout(tracker);
break;
}
velocity = calculate_tracker_velocity(tracker, time);
/* Stop if direction changed */
dir &= tracker->dir;
if (dir == 0) {
/* First movement after dirchange - velocity is that
* of the last movement */
if (offset == 1)
result = velocity;
break;
}
if (initial_velocity == 0.0) {
result = initial_velocity = velocity;
} else {
/* Stop if velocity differs too much from initial */
velocity_diff = fabs(initial_velocity - velocity);
if (velocity_diff > MAX_VELOCITY_DIFF)
break;
result = velocity;
}
}
return result; /* units/ms */
}
static double
acceleration_profile(struct pointer_accelerator *accel,
void *data, double velocity, uint64_t time)
{
return accel->profile(&accel->base, data, velocity, time);
}
static double
calculate_acceleration(struct pointer_accelerator *accel,
void *data,
double velocity,
double last_velocity,
uint64_t time)
{
double factor;
/* Use Simpson's rule to calculate the avarage acceleration between
* the previous motion and the most recent. */
factor = acceleration_profile(accel, data, velocity, time);
factor += acceleration_profile(accel, data, last_velocity, time);
factor += 4.0 *
acceleration_profile(accel, data,
(last_velocity + velocity) / 2,
time);
factor = factor / 6.0;
return factor; /* unitless factor */
}
static struct normalized_coords
accelerator_filter(struct motion_filter *filter,
const struct normalized_coords *unaccelerated,
void *data, uint64_t time)
{
struct pointer_accelerator *accel =
(struct pointer_accelerator *) filter;
double velocity; /* units/ms */
double accel_value; /* unitless factor */
struct normalized_coords accelerated;
feed_trackers(accel, unaccelerated, time);
velocity = calculate_velocity(accel, time);
accel_value = calculate_acceleration(accel,
data,
velocity,
accel->last_velocity,
time);
accelerated.x = accel_value * unaccelerated->x;
accelerated.y = accel_value * unaccelerated->y;
accel->last = *unaccelerated;
accel->last_velocity = velocity;
return accelerated;
}
static void
accelerator_restart(struct motion_filter *filter,
void *data,
uint64_t time)
{
struct pointer_accelerator *accel =
(struct pointer_accelerator *) filter;
unsigned int offset;
struct pointer_tracker *tracker;
for (offset = 1; offset < NUM_POINTER_TRACKERS; offset++) {
tracker = tracker_by_offset(accel, offset);
tracker->time = 0;
tracker->dir = 0;
tracker->delta.x = 0;
tracker->delta.y = 0;
}
tracker = tracker_by_offset(accel, 0);
tracker->time = time;
tracker->dir = UNDEFINED_DIRECTION;
}
static void
accelerator_destroy(struct motion_filter *filter)
{
struct pointer_accelerator *accel =
(struct pointer_accelerator *) filter;
free(accel->trackers);
free(accel);
}
static bool
accelerator_set_speed(struct motion_filter *filter,
double speed)
{
struct pointer_accelerator *accel_filter =
(struct pointer_accelerator *)filter;
assert(speed >= -1.0 && speed <= 1.0);
/* delay when accel kicks in */
accel_filter->threshold = DEFAULT_THRESHOLD - speed / 4.0;
if (accel_filter->threshold < 0.2)
accel_filter->threshold = 0.2;
/* adjust max accel factor */
accel_filter->accel = DEFAULT_ACCELERATION + speed * 1.5;
/* higher speed -> faster to reach max */
accel_filter->incline = DEFAULT_INCLINE + speed * 0.75;
filter->speed = speed;
return true;
}
struct motion_filter_interface accelerator_interface = {
accelerator_filter,
accelerator_restart,
accelerator_destroy,
accelerator_set_speed,
};
struct motion_filter *
create_pointer_accelerator_filter(accel_profile_func_t profile)
{
struct pointer_accelerator *filter;
filter = zalloc(sizeof *filter);
if (filter == NULL)
return NULL;
filter->base.interface = &accelerator_interface;
filter->profile = profile;
filter->last_velocity = 0.0;
filter->last.x = 0;
filter->last.y = 0;
filter->trackers =
calloc(NUM_POINTER_TRACKERS, sizeof *filter->trackers);
filter->cur_tracker = 0;
filter->threshold = DEFAULT_THRESHOLD;
filter->accel = DEFAULT_ACCELERATION;
filter->incline = DEFAULT_INCLINE;
return &filter->base;
}
double
pointer_accel_profile_linear(struct motion_filter *filter,
void *data,
double speed_in,
uint64_t time)
{
struct pointer_accelerator *accel_filter =
(struct pointer_accelerator *)filter;
double s1, s2;
const double max_accel = accel_filter->accel; /* unitless factor */
const double threshold = accel_filter->threshold; /* units/ms */
const double incline = accel_filter->incline;
double factor;
s1 = min(1, 0.3 + speed_in * 4);
s2 = 1 + (speed_in - threshold) * incline;
factor = min(max_accel, s2 > 1 ? s2 : s1);
return factor;
}
double
touchpad_accel_profile_linear(struct motion_filter *filter,
void *data,
double speed_in,
uint64_t time)
{
/* Once normalized, touchpads see the same
acceleration as mice. that is technically correct but
subjectively wrong, we expect a touchpad to be a lot
slower than a mouse. Apply a magic factor here and proceed
as normal. */
const double TP_MAGIC_SLOWDOWN = 0.4;
double speed_out;
speed_in *= TP_MAGIC_SLOWDOWN;
speed_out = pointer_accel_profile_linear(filter, data, speed_in, time);
return speed_out * TP_MAGIC_SLOWDOWN;
}
double
touchpad_lenovo_x230_accel_profile(struct motion_filter *filter,
void *data,
double speed_in,
uint64_t time)
{
/* Keep the magic factor from touchpad_accel_profile_linear. */
const double TP_MAGIC_SLOWDOWN = 0.4;
/* Those touchpads presents an actual lower resolution that what is
* advertised. We see some jumps from the cursor due to the big steps
* in X and Y when we are receiving data.
* Apply a factor to minimize those jumps at low speed, and try
* keeping the same feeling as regular touchpads at high speed.
* It still feels slower but it is usable at least */
const double TP_MAGIC_LOW_RES_FACTOR = 4.0;
double speed_out;
struct pointer_accelerator *accel_filter =
(struct pointer_accelerator *)filter;
double s1, s2;
const double max_accel = accel_filter->accel *
TP_MAGIC_LOW_RES_FACTOR; /* unitless factor */
const double threshold = accel_filter->threshold /
TP_MAGIC_LOW_RES_FACTOR; /* units/ms */
const double incline = accel_filter->incline * TP_MAGIC_LOW_RES_FACTOR;
speed_in *= TP_MAGIC_SLOWDOWN / TP_MAGIC_LOW_RES_FACTOR;
s1 = min(1, speed_in * 5);
s2 = 1 + (speed_in - threshold) * incline;
speed_out = min(max_accel, s2 > 1 ? s2 : s1);
return speed_out * TP_MAGIC_SLOWDOWN / TP_MAGIC_LOW_RES_FACTOR;
}