libinput/test/test-utils.c

3413 lines
88 KiB
C
Raw Normal View History

/*
* Copyright © 2014 Red Hat, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
#include <config.h>
#include <errno.h>
#include <fcntl.h>
#include <unistd.h>
#include <valgrind/valgrind.h>
#include "util-bits.h"
#include "util-files.h"
#include "util-input-event.h"
#include "util-list.h"
#include "util-macros.h"
#include "util-matrix.h"
#include "util-mem.h"
#include "util-newtype.h"
#include "util-prop-parsers.h"
#include "util-range.h"
#include "util-ratelimit.h"
#include "util-stringbuf.h"
#include "util-strings.h"
#include "util-time.h"
#include "evdev-frame.h"
#include "litest-runner.h"
#include "litest.h"
#define TEST_VERSIONSORT
#include "libinput-versionsort.h"
START_TEST(auto_test)
{
/* This one is just a compile test */
auto tv = usec_to_timeval(usec_from_uint64_t(0));
tv.tv_sec = 0;
litest_assert_int_eq(tv.tv_sec, 0);
}
END_TEST
START_TEST(mkdir_p_test)
{
const char *testdir = "/tmp/litest_mkdir_test";
litest_assert_neg_errno_success(mkdir_p("/"));
rmdir(testdir);
litest_assert_neg_errno_success(mkdir_p(testdir));
/* EEXIST is not an error */
litest_assert_neg_errno_success(mkdir_p(testdir));
rmdir(testdir);
int ret = mkdir_p("/proc/foo");
litest_assert_msg(ret == -ENOENT || ret == -EACCES,
"mkdir_p(\"/proc/foo\") returned %d\n",
ret);
}
END_TEST
START_TEST(rmdir_r_test)
{
const char *testdir = "/tmp/litest_rmdir_test";
_autofree_ char *path = strdup_printf("%s/foo/bar/baz", testdir);
mkdir_p(path);
_autofree_ char *f1 = strdup_printf("%s/remain", testdir);
_autofree_ char *f2 = strdup_printf("%s/foo/remove", testdir);
_autofree_ char *f3 = strdup_printf("%s/foo/bar/to-remove", testdir);
_autofree_ char *f4 = strdup_printf("%s/foo/bar/baz/wipeme", testdir);
litest_assert_errno_success(close(open(f1, O_WRONLY | O_CREAT, 0644)));
litest_assert_errno_success(close(open(f2, O_WRONLY | O_CREAT, 0644)));
litest_assert_errno_success(close(open(f3, O_WRONLY | O_CREAT, 0644)));
litest_assert_errno_success(close(open(f4, O_WRONLY | O_CREAT, 0644)));
struct stat st;
litest_assert_errno_success(stat(f1, &st));
litest_assert_errno_success(stat(f2, &st));
litest_assert_errno_success(stat(f3, &st));
litest_assert_errno_success(stat(f4, &st));
_autofree_ char *rmpath = strdup_printf("%s/foo/", testdir);
int rc = rmdir_r(rmpath);
litest_assert_neg_errno_success(rc);
litest_assert_errno_success(stat(f1, &st));
litest_assert_errno_success(stat(testdir, &st));
rc = stat(f2, &st) < 0 ? -errno : 0;
litest_assert_int_eq(rc, -ENOENT);
rc = stat(f3, &st) < 0 ? -errno : 0;
litest_assert_int_eq(rc, -ENOENT);
rc = stat(f4, &st) < 0 ? -errno : 0;
litest_assert_int_eq(rc, -ENOENT);
}
END_TEST
START_TEST(tmpdir_test)
{
_autofree_ char *tmpdir_path = NULL;
{
_destroy_(tmpdir) *tmpdir = tmpdir_create(NULL);
tmpdir_path = safe_strdup(tmpdir->path);
_autofree_ char *f1 = strdup_printf("%s/wipeme", tmpdir_path);
litest_assert_errno_success(close(open(f1, O_WRONLY | O_CREAT, 0644)));
}
struct stat st;
int rc = stat(tmpdir_path, &st) < 0 ? -errno : 0;
litest_assert_int_eq(rc, -ENOENT);
}
END_TEST
START_TEST(find_files_test)
{
_autofree_ char *dirname = strdup("/tmp/litest_find_files_test.XXXXXX");
mkdtemp(dirname);
_autofree_ char *d1 = strdup_printf("%s/d1", dirname);
_autofree_ char *d2 = strdup_printf("%s/d2", dirname);
_autofree_ char *d3 = strdup_printf("%s/d3", dirname);
litest_assert_neg_errno_success(mkdir_p(d1));
litest_assert_neg_errno_success(mkdir_p(d2));
litest_assert_neg_errno_success(mkdir_p(d3));
/* clang-format off */
struct f {
const char *name;
const char *dir1;
const char *dir2;
const char *dir3;
char *expected;
} files[] = {
{ "10-abc.suf", d1, d2, d3 },
{ "20-def.suf", d1, NULL, d3 },
{ "30-ghi.suf", d1, d2, NULL },
{ "40-jkl.suf", NULL, d2, NULL },
{ "50-mno.suf", NULL, d2, d3 },
{ "60-pgr.suf", NULL, NULL, d3 },
{ "70-abc.suf", NULL, NULL, d3 },
{ "21-xyz.fix", NULL, NULL, d3 },
{ "35-uvw.fix", NULL, d2, d3 },
{ "70-rst.fix", d1, NULL, d3 },
{ NULL },
};
/* clang-format on */
for (struct f *f = files; f->name; f++) {
if (f->dir1) {
_autofree_ char *path =
strdup_printf("%s/%s", f->dir1, f->name);
close(open(path, O_WRONLY | O_CREAT, 0644));
f->expected = steal(&path);
}
if (f->dir2) {
_autofree_ char *path =
strdup_printf("%s/%s", f->dir2, f->name);
close(open(path, O_WRONLY | O_CREAT, 0644));
if (!f->expected)
f->expected = steal(&path);
}
if (f->dir3) {
_autofree_ char *path =
strdup_printf("%s/%s", f->dir3, f->name);
close(open(path, O_WRONLY | O_CREAT, 0644));
if (!f->expected)
f->expected = steal(&path);
}
}
const char *dirs[] = { d1, d2, d3, NULL };
size_t nfiles;
_autostrvfree_ char **paths = list_files(dirs, "suf", &nfiles);
litest_assert_int_eq(nfiles, (size_t)7);
litest_assert_str_eq(paths[0], files[0].expected);
litest_assert_str_eq(paths[1], files[1].expected);
litest_assert_str_eq(paths[2], files[2].expected);
litest_assert_str_eq(paths[3], files[3].expected);
litest_assert_str_eq(paths[4], files[4].expected);
litest_assert_str_eq(paths[5], files[5].expected);
litest_assert_str_eq(paths[6], files[6].expected);
litest_assert_str_eq(paths[7], NULL);
for (struct f *f = files; f->name; f++) {
if (f->dir1) {
_autofree_ char *path =
strdup_printf("%s/%s", f->dir1, f->name);
unlink(path);
}
if (f->dir2) {
_autofree_ char *path =
strdup_printf("%s/%s", f->dir2, f->name);
unlink(path);
}
if (f->dir3) {
_autofree_ char *path =
strdup_printf("%s/%s", f->dir3, f->name);
unlink(path);
}
free(f->expected);
}
rmdir(d1);
rmdir(d2);
rmdir(d3);
rmdir(dirname);
const char *empty[] = { NULL };
_autostrvfree_ char **empty_path = list_files(empty, "suf", &nfiles);
litest_assert_int_eq(nfiles, (size_t)0);
litest_assert_ptr_notnull(empty_path);
litest_assert_ptr_null(empty_path[0]);
_autostrvfree_ char **also_empty_path = list_files(NULL, "suf", &nfiles);
litest_assert_int_eq(nfiles, (size_t)0);
litest_assert_ptr_notnull(also_empty_path);
litest_assert_ptr_null(also_empty_path[0]);
}
END_TEST
START_TEST(array_for_each)
{
int ai[6];
char ac[10];
struct as {
int a;
char b;
int *ptr;
} as[32];
for (size_t i = 0; i < 6; i++)
ai[i] = 20 + i;
for (size_t i = 0; i < 10; i++)
ac[i] = 100 + i;
for (size_t i = 0; i < 32; i++) {
as[i].a = 10 + i;
as[i].b = 20 + i;
as[i].ptr = (int *)0xab + i;
}
int iexpected = 20;
ARRAY_FOR_EACH(ai, entry) {
litest_assert_int_eq(*entry, iexpected);
++iexpected;
}
litest_assert_int_eq(iexpected, 26);
int cexpected = 100;
ARRAY_FOR_EACH(ac, entry) {
litest_assert_int_eq(*entry, cexpected);
++cexpected;
}
litest_assert_int_eq(cexpected, 110);
struct as sexpected = {
.a = 10,
.b = 20,
.ptr = (int *)0xab,
};
ARRAY_FOR_EACH(as, entry) {
litest_assert_int_eq(entry->a, sexpected.a);
litest_assert_int_eq(entry->b, sexpected.b);
litest_assert_ptr_eq(entry->ptr, sexpected.ptr);
++sexpected.a;
++sexpected.b;
++sexpected.ptr;
}
litest_assert_int_eq(sexpected.a, 42);
}
END_TEST
START_TEST(bitfield_helpers)
{
/* This value has a bit set on all of the word boundaries we want to
* test: 0, 1, 7, 8, 31, 32, and 33
*/
unsigned char read_bitfield[] = { 0x83, 0x1, 0x0, 0x80, 0x3 };
unsigned char write_bitfield[ARRAY_LENGTH(read_bitfield)] = { 0 };
size_t i;
/* Now check that the bitfield we wrote to came out to be the same as
* the bitfield we were writing from */
for (i = 0; i < ARRAY_LENGTH(read_bitfield) * 8; i++) {
switch (i) {
case 0:
case 1:
case 7:
case 8:
case 31:
case 32:
case 33:
litest_assert(bit_is_set(read_bitfield, i));
set_bit(write_bitfield, i);
break;
default:
litest_assert(!bit_is_set(read_bitfield, i));
clear_bit(write_bitfield, i);
break;
}
}
litest_assert_int_eq(
memcmp(read_bitfield, write_bitfield, sizeof(read_bitfield)),
0);
}
END_TEST
START_TEST(bitmask_test)
{
{
bitmask_t mask1 = bitmask_from_u32(0x12345678U);
litest_assert(bitmask_as_u32(mask1) == 0x12345678U);
bitmask_t mask2 = bitmask_from_u32(0);
litest_assert_int_eq(bitmask_as_u32(mask2), 0U);
bitmask_t mask3 = bitmask_from_u32(0xFFFFFFFFU);
litest_assert_int_eq(bitmask_as_u32(mask3), 0xFFFFFFFFU);
}
{
bitmask_t mask1 = bitmask_new();
litest_assert(bitmask_is_empty(mask1));
bitmask_t mask2 = bitmask_from_u32(0x00000001U);
litest_assert(!bitmask_is_empty(mask2));
bitmask_t mask3 = bitmask_from_u32(0xFFFFFFFFU);
litest_assert(!bitmask_is_empty(mask3));
}
{
bitmask_t mask1 = bitmask_from_u32(0x0000000FU);
bitmask_t bits1 = bitmask_from_u32(0x00000003U);
litest_assert(bitmask_any(mask1, bits1));
bitmask_t mask2 = bitmask_from_u32(0x0000000FU);
bitmask_t bits2 = bitmask_from_u32(0x000000F0U);
litest_assert(!bitmask_any(mask2, bits2));
bitmask_t mask3 = bitmask_from_u32(0x00000000U);
bitmask_t bits3 = bitmask_from_u32(0x00000001U);
litest_assert(!bitmask_any(mask3, bits3));
bitmask_t mask4 = bitmask_from_u32(0xFFFFFFFFU);
bitmask_t bits4 = bitmask_from_u32(0xFFFFFFFFU);
litest_assert(bitmask_any(mask4, bits4));
bitmask_t mask5 = bitmask_from_u32(0x10000000U);
bitmask_t bits5 = bitmask_from_u32(0x10000000U);
litest_assert(bitmask_any(mask5, bits5));
}
{
bitmask_t mask1 = bitmask_from_u32(0x0000000FU);
bitmask_t bits1 = bitmask_from_u32(0x00000003U);
litest_assert(bitmask_all(mask1, bits1));
litest_assert(!bitmask_all(bits1, mask1));
bitmask_t mask2 = bitmask_from_u32(0x0000000FU);
bitmask_t bits2 = bitmask_from_u32(0x0000000FU);
litest_assert(bitmask_all(mask2, bits2));
litest_assert(bitmask_all(bits2, mask2));
bitmask_t mask3 = bitmask_from_u32(0x00000000U);
bitmask_t bits3 = bitmask_from_u32(0x00000000U);
litest_assert(!bitmask_all(mask3, bits3)); /* zero is special */
bitmask_t mask4 = bitmask_from_u32(0xFFFFFFFFU);
bitmask_t bits4 = bitmask_from_u32(0xFFFFFFFFU);
litest_assert(bitmask_all(mask4, bits4));
bitmask_t mask5 = bitmask_from_u32(0x10000000U);
bitmask_t bits5 = bitmask_from_u32(0x10000000U);
litest_assert(bitmask_all(mask5, bits5));
}
{
bitmask_t mask1 = bitmask_from_u32(0x0000000FU);
bitmask_t bits1 = bitmask_from_u32(0x000000F0U);
litest_assert(!bitmask_merge(&mask1, bits1));
litest_assert_int_eq(mask1.mask, 0x000000FFU);
bitmask_t mask2 = bitmask_from_u32(0x0000000FU);
bitmask_t bits2 = bitmask_from_u32(0x0000000FU);
litest_assert(bitmask_merge(&mask2, bits2));
litest_assert_int_eq(mask2.mask, 0x0000000FU);
bitmask_t mask3 = bitmask_new();
bitmask_t bits3 = bitmask_from_u32(0xFFFFFFFFU);
litest_assert(!bitmask_merge(&mask3, bits3));
litest_assert_int_eq(mask3.mask, 0xFFFFFFFFU);
bitmask_t mask4 = bitmask_from_u32(0x80000000U);
bitmask_t bits4 = bitmask_from_u32(0x00000001U);
litest_assert(!bitmask_merge(&mask4, bits4));
litest_assert_int_eq(mask4.mask, 0x80000001U);
}
{
bitmask_t mask1 = bitmask_from_u32(0x000000FFU);
bitmask_t bits1 = bitmask_from_u32(0x0000000FU);
litest_assert(bitmask_clear(&mask1, bits1));
litest_assert_int_eq(mask1.mask, 0x000000F0U);
bitmask_t mask2 = bitmask_from_u32(0x0000000FU);
bitmask_t bits2 = bitmask_from_u32(0x0000000FU);
litest_assert(bitmask_clear(&mask2, bits2));
litest_assert_int_eq(mask2.mask, 0x00000000U);
bitmask_t mask3 = bitmask_from_u32(0xFFFFFFFFU);
bitmask_t bits3 = bitmask_from_u32(0x00000000U);
litest_assert(!bitmask_clear(&mask3, bits3)); /* zero is special */
litest_assert_int_eq(mask3.mask, 0xFFFFFFFFU);
bitmask_t mask4 = bitmask_from_u32(0xFFFFFFFFU);
bitmask_t bits4 = bitmask_from_u32(0xFFFFFFFFU);
litest_assert(bitmask_clear(&mask4, bits4));
litest_assert_int_eq(mask4.mask, 0x0U);
}
{
bitmask_t mask1 = bitmask_from_u32(0x00000001U);
litest_assert(bitmask_bit_is_set(mask1, 0));
litest_assert(!bitmask_bit_is_set(mask1, 1));
bitmask_t mask2 = bitmask_from_u32(0x80000000U);
litest_assert(bitmask_bit_is_set(mask2, 31));
litest_assert(!bitmask_bit_is_set(mask2, 0));
bitmask_t mask3 = bitmask_from_u32(0xFFFFFFFFU);
litest_assert(bitmask_bit_is_set(mask3, 0));
litest_assert(bitmask_bit_is_set(mask3, 31));
litest_assert(bitmask_bit_is_set(mask3, 16));
bitmask_t mask4 = bitmask_new();
litest_assert(!bitmask_bit_is_set(mask4, 0));
litest_assert(!bitmask_bit_is_set(mask4, 1));
}
{
bitmask_t mask1 = bitmask_new();
litest_assert(!bitmask_set_bit(&mask1, 0));
litest_assert_int_eq(mask1.mask, 0x00000001U);
litest_assert(bitmask_set_bit(&mask1, 0));
litest_assert_int_eq(mask1.mask, 0x00000001U);
litest_assert(!bitmask_set_bit(&mask1, 31));
litest_assert_int_eq(mask1.mask, 0x80000001U);
bitmask_t mask2 = bitmask_from_u32(0x0000000FU);
litest_assert(!bitmask_set_bit(&mask2, 4));
litest_assert_int_eq(mask2.mask, 0x0000001FU);
litest_assert(bitmask_set_bit(&mask2, 4));
litest_assert_int_eq(mask2.mask, 0x0000001FU);
}
{
bitmask_t mask1 = bitmask_from_u32(0xFFFFFFFFU);
litest_assert(bitmask_clear_bit(&mask1, 0));
litest_assert_int_eq(mask1.mask, 0xFFFFFFFEU);
litest_assert(!bitmask_clear_bit(&mask1, 0));
litest_assert_int_eq(mask1.mask, 0xFFFFFFFEU);
litest_assert(bitmask_clear_bit(&mask1, 31));
litest_assert_int_eq(mask1.mask, 0x7FFFFFFEU);
bitmask_t mask2 = bitmask_from_u32(0x0000001FU);
litest_assert(bitmask_clear_bit(&mask2, 4));
litest_assert_int_eq(mask2.mask, 0x0000000FU);
litest_assert(!bitmask_clear_bit(&mask2, 4));
litest_assert_int_eq(mask2.mask, 0x0000000FU);
}
{
bitmask_t mask1 = bitmask_from_bit(0);
litest_assert_int_eq(mask1.mask, 0x00000001U);
bitmask_t mask2 = bitmask_from_bit(31);
litest_assert_int_eq(mask2.mask, 0x80000000U);
bitmask_t mask3 = bitmask_from_bit(16);
litest_assert_int_eq(mask3.mask, 0x00010000U);
}
{
bitmask_t mask1 = bitmask_from_u32(0x12345678U);
litest_assert_int_eq(mask1.mask, 0x12345678U);
bitmask_t mask2 = bitmask_from_u32(0);
litest_assert_int_eq(mask2.mask, 0U);
bitmask_t mask3 = bitmask_from_u32(0xFFFFFFFFU);
litest_assert_int_eq(mask3.mask, 0xFFFFFFFFU);
}
{
bitmask_t mask1 = bitmask_from_bits(1, 2, 5);
litest_assert_int_eq(mask1.mask, bit(1) | bit(2) | bit(5));
bitmask_t mask2 = bitmask_from_bits(0);
litest_assert_int_eq(mask2.mask, bit(0));
}
{
bitmask_t mask1 = bitmask_from_masks(0x1, 0x2, 0x8);
litest_assert_int_eq(mask1.mask, 0x0000000BU);
bitmask_t mask2 = bitmask_from_masks(0x0);
litest_assert_int_eq(mask2.mask, 0x00000000U);
}
}
END_TEST
START_TEST(matrix_helpers)
{
struct matrix m1, m2, m3;
float f[6] = { 1, 2, 3, 4, 5, 6 };
int x, y;
int row, col;
matrix_init_identity(&m1);
for (row = 0; row < 3; row++) {
for (col = 0; col < 3; col++) {
litest_assert_int_eq(m1.val[row][col], (row == col) ? 1 : 0);
}
}
litest_assert(matrix_is_identity(&m1));
matrix_from_farray6(&m2, f);
litest_assert_int_eq(m2.val[0][0], 1);
litest_assert_int_eq(m2.val[0][1], 2);
litest_assert_int_eq(m2.val[0][2], 3);
litest_assert_int_eq(m2.val[1][0], 4);
litest_assert_int_eq(m2.val[1][1], 5);
litest_assert_int_eq(m2.val[1][2], 6);
litest_assert_int_eq(m2.val[2][0], 0);
litest_assert_int_eq(m2.val[2][1], 0);
litest_assert_int_eq(m2.val[2][2], 1);
x = 100;
y = 5;
matrix_mult_vec(&m1, &x, &y);
litest_assert_int_eq(x, 100);
litest_assert_int_eq(y, 5);
matrix_mult(&m3, &m1, &m1);
litest_assert(matrix_is_identity(&m3));
matrix_init_scale(&m2, 2, 4);
litest_assert_int_eq(m2.val[0][0], 2);
litest_assert_int_eq(m2.val[0][1], 0);
litest_assert_int_eq(m2.val[0][2], 0);
litest_assert_int_eq(m2.val[1][0], 0);
litest_assert_int_eq(m2.val[1][1], 4);
litest_assert_int_eq(m2.val[1][2], 0);
litest_assert_int_eq(m2.val[2][0], 0);
litest_assert_int_eq(m2.val[2][1], 0);
litest_assert_int_eq(m2.val[2][2], 1);
matrix_mult_vec(&m2, &x, &y);
litest_assert_int_eq(x, 200);
litest_assert_int_eq(y, 20);
matrix_init_translate(&m2, 10, 100);
litest_assert_int_eq(m2.val[0][0], 1);
litest_assert_int_eq(m2.val[0][1], 0);
litest_assert_int_eq(m2.val[0][2], 10);
litest_assert_int_eq(m2.val[1][0], 0);
litest_assert_int_eq(m2.val[1][1], 1);
litest_assert_int_eq(m2.val[1][2], 100);
litest_assert_int_eq(m2.val[2][0], 0);
litest_assert_int_eq(m2.val[2][1], 0);
litest_assert_int_eq(m2.val[2][2], 1);
matrix_mult_vec(&m2, &x, &y);
litest_assert_int_eq(x, 210);
litest_assert_int_eq(y, 120);
matrix_to_farray6(&m2, f);
litest_assert_int_eq(f[0], 1);
litest_assert_int_eq(f[1], 0);
litest_assert_int_eq(f[2], 10);
litest_assert_int_eq(f[3], 0);
litest_assert_int_eq(f[4], 1);
litest_assert_int_eq(f[5], 100);
}
END_TEST
START_TEST(ratelimit_helpers)
{
struct ratelimit rl;
unsigned int i, j;
/* 10 attempts every 1000ms */
ratelimit_init(&rl, usec_from_millis(1000), 10);
for (j = 0; j < 3; ++j) {
/* a burst of 9 attempts must succeed */
for (i = 0; i < 9; ++i) {
litest_assert_enum_eq(ratelimit_test(&rl), RATELIMIT_PASS);
}
/* the 10th attempt reaches the threshold */
litest_assert_enum_eq(ratelimit_test(&rl), RATELIMIT_THRESHOLD);
/* ..then further attempts must fail.. */
litest_assert_enum_eq(ratelimit_test(&rl), RATELIMIT_EXCEEDED);
/* ..regardless of how often we try. */
for (i = 0; i < 100; ++i) {
litest_assert_enum_eq(ratelimit_test(&rl), RATELIMIT_EXCEEDED);
}
/* ..even after waiting 20ms */
msleep(100);
for (i = 0; i < 100; ++i) {
litest_assert_enum_eq(ratelimit_test(&rl), RATELIMIT_EXCEEDED);
}
/* but after 1000ms the counter is reset */
msleep(950); /* +50ms to account for time drifts */
}
}
END_TEST
struct parser_test {
char *tag;
int expected_value;
};
START_TEST(dpi_parser)
{
/* clang-format off */
struct parser_test tests[] = {
{ "450 *1800 3200", 1800 },
{ "*450 1800 3200", 450 },
{ "450 1800 *3200", 3200 },
{ "450 1800 3200", 3200 },
{ "450 1800 failboat", 0 },
{ "450 1800 *failboat", 0 },
{ "0 450 1800 *3200", 0 },
{ "450@37 1800@12 *3200@6", 3200 },
{ "450@125 1800@125 *3200@125 ", 3200 },
{ "450@125 *1800@125 3200@125", 1800 },
{ "*this @string fails", 0 },
{ "12@34 *45@", 0 },
{ "12@a *45@", 0 },
{ "12@a *45@25", 0 },
{ " * 12, 450, 800", 0 },
{ " *12, 450, 800", 12 },
{ "*12, *450, 800", 12 },
{ "*-23412, 450, 800", 0 },
{ "112@125, 450@125, 800@125, 900@-125", 0 },
{ "", 0 },
{ " ", 0 },
{ "* ", 0 },
{ NULL, 0 },
};
/* clang-format on */
int i, dpi;
for (i = 0; tests[i].tag != NULL; i++) {
dpi = parse_mouse_dpi_property(tests[i].tag);
litest_assert_int_eq(dpi, tests[i].expected_value);
}
dpi = parse_mouse_dpi_property(NULL);
litest_assert_int_eq(dpi, 0);
}
END_TEST
START_TEST(wheel_click_parser)
{
/* clang-format off */
struct parser_test tests[] = {
{ "1", 1 },
{ "10", 10 },
{ "-12", -12 },
{ "360", 360 },
{ "0", 0 },
{ "-0", 0 },
{ "a", 0 },
{ "10a", 0 },
{ "10-", 0 },
{ "sadfasfd", 0 },
{ "361", 0 },
{ NULL, 0 },
};
/* clang-format on */
int i, angle;
for (i = 0; tests[i].tag != NULL; i++) {
angle = parse_mouse_wheel_click_angle_property(tests[i].tag);
litest_assert_int_eq(angle, tests[i].expected_value);
}
}
END_TEST
START_TEST(wheel_click_count_parser)
{
/* clang-format off */
struct parser_test tests[] = {
{ "1", 1 },
{ "10", 10 },
{ "-12", -12 },
{ "360", 360 },
{ "0", 0 },
{ "-0", 0 },
{ "a", 0 },
{ "10a", 0 },
{ "10-", 0 },
{ "sadfasfd", 0 },
{ "361", 0 },
{ NULL, 0 }
};
/* clang-format on */
int i, angle;
for (i = 0; tests[i].tag != NULL; i++) {
angle = parse_mouse_wheel_click_count_property(tests[i].tag);
litest_assert_int_eq(angle, tests[i].expected_value);
}
angle = parse_mouse_wheel_click_count_property(NULL);
litest_assert_int_eq(angle, 0);
}
END_TEST
START_TEST(dimension_prop_parser)
{
/* clang-format off */
struct parser_test_dimension {
char *tag;
bool success;
size_t x, y;
} tests[] = {
{ "10x10", true, 10, 10 },
{ "1x20", true, 1, 20 },
{ "1x8000", true, 1, 8000 },
{ "238492x428210", true, 238492, 428210 },
{ "0x0", false, 0, 0 },
{ "-10x10", false, 0, 0 },
{ "-1", false, 0, 0 },
{ "1x-99", false, 0, 0 },
{ "0", false, 0, 0 },
{ "100", false, 0, 0 },
{ "", false, 0, 0 },
{ "abd", false, 0, 0 },
{ "xabd", false, 0, 0 },
{ "0xaf", false, 0, 0 },
{ "0x0x", false, 0, 0 },
{ "x10", false, 0, 0 },
{ NULL, false, 0, 0 },
};
/* clang-format on */
int i;
size_t x, y;
bool success;
for (i = 0; tests[i].tag != NULL; i++) {
x = y = 0xad;
success = parse_dimension_property(tests[i].tag, &x, &y);
litest_assert(success == tests[i].success);
if (success) {
litest_assert_int_eq(x, tests[i].x);
litest_assert_int_eq(y, tests[i].y);
} else {
litest_assert_int_eq(x, 0xadU);
litest_assert_int_eq(y, 0xadU);
}
}
success = parse_dimension_property(NULL, &x, &y);
litest_assert(success == false);
}
END_TEST
START_TEST(reliability_prop_parser)
{
/* clang-format off */
struct parser_test_reliability {
char *tag;
bool success;
enum switch_reliability reliability;
} tests[] = {
{ "reliable", true, RELIABILITY_RELIABLE },
{ "unreliable", true, RELIABILITY_UNRELIABLE },
{ "write_open", true, RELIABILITY_WRITE_OPEN },
{ "", false, 0 },
{ "0", false, 0 },
{ "1", false, 0 },
{ NULL, false, 0, },
};
/* clang-format on */
enum switch_reliability r;
bool success;
int i;
for (i = 0; tests[i].tag != NULL; i++) {
r = 0xaf;
success = parse_switch_reliability_property(tests[i].tag, &r);
litest_assert(success == tests[i].success);
if (success)
litest_assert_int_eq(r, tests[i].reliability);
else
litest_assert_int_eq(r, 0xafU);
}
success = parse_switch_reliability_property(NULL, &r);
litest_assert(success == true);
litest_assert_enum_eq(r, RELIABILITY_RELIABLE);
success = parse_switch_reliability_property("foo", NULL);
litest_assert(success == false);
}
END_TEST
START_TEST(calibration_prop_parser)
{
#define DEFAULT_VALUES { 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 }
const float untouched[6] = DEFAULT_VALUES;
/* clang-format off */
struct parser_test_calibration {
char *prop;
bool success;
float values[6];
} tests[] = {
{ "", false, DEFAULT_VALUES },
{ "banana", false, DEFAULT_VALUES },
{ "1 2 3 a 5 6", false, DEFAULT_VALUES },
{ "2", false, DEFAULT_VALUES },
{ "2 3 4 5 6", false, DEFAULT_VALUES },
{ "1 2 3 4 5 6", true, DEFAULT_VALUES },
{ "6.00012 3.244 4.238 5.2421 6.0134 8.860", true,
{ 6.00012, 3.244, 4.238, 5.2421, 6.0134, 8.860 }},
{ "0xff 2 3 4 5 6", false, DEFAULT_VALUES },
{ NULL, false, DEFAULT_VALUES },
};
/* clang-format on */
bool success;
float calibration[6];
int rc;
int i;
for (i = 0; tests[i].prop != NULL; i++) {
memcpy(calibration, untouched, sizeof(calibration));
success = parse_calibration_property(tests[i].prop, calibration);
litest_assert_int_eq(success, tests[i].success);
if (success)
rc = memcmp(tests[i].values, calibration, sizeof(calibration));
else
rc = memcmp(untouched, calibration, sizeof(calibration));
litest_assert_int_eq(rc, 0);
}
memcpy(calibration, untouched, sizeof(calibration));
success = parse_calibration_property(NULL, calibration);
litest_assert(success == false);
rc = memcmp(untouched, calibration, sizeof(calibration));
litest_assert_int_eq(rc, 0);
}
END_TEST
START_TEST(range_prop_parser)
{
/* clang-format off */
struct parser_test_range {
char *tag;
bool success;
int hi, lo;
} tests[] = {
{ "10:8", true, 10, 8 },
{ "100:-1", true, 100, -1 },
{ "-203813:-502023", true, -203813, -502023 },
{ "238492:28210", true, 238492, 28210 },
{ "none", true, 0, 0 },
{ "0:0", false, 0, 0 },
{ "", false, 0, 0 },
{ "abcd", false, 0, 0 },
{ "10:30:10", false, 0, 0 },
{ NULL, false, 0, 0 },
};
/* clang-format on */
int i;
int hi, lo;
bool success;
for (i = 0; tests[i].tag != NULL; i++) {
hi = lo = 0xad;
success = parse_range_property(tests[i].tag, &hi, &lo);
litest_assert(success == tests[i].success);
if (success) {
litest_assert_int_eq(hi, tests[i].hi);
litest_assert_int_eq(lo, tests[i].lo);
} else {
litest_assert_int_eq(hi, 0xad);
litest_assert_int_eq(lo, 0xad);
}
}
success = parse_range_property(NULL, NULL, NULL);
litest_assert(success == false);
}
END_TEST
START_TEST(boolean_prop_parser)
{
/* clang-format off */
struct parser_test_range {
char *tag;
bool success;
bool b;
} tests[] = {
{ "0", true, false },
{ "1", true, true },
{ "-1", false, false },
{ "2", false, false },
{ "abcd", false, false },
{ NULL, false, false },
};
/* clang-format on */
int i;
bool success, b;
for (i = 0; tests[i].tag != NULL; i++) {
b = false;
success = parse_boolean_property(tests[i].tag, &b);
litest_assert(success == tests[i].success);
if (success)
litest_assert_int_eq(b, tests[i].b);
else
litest_assert_int_eq(b, false);
}
success = parse_boolean_property(NULL, NULL);
litest_assert(success == false);
}
END_TEST
START_TEST(evcode_prop_parser)
{
/* clang-format off */
struct parser_test_tuple {
const char *prop;
bool success;
quirks: allow overriding of AttrEventCode and AttrInputProp This switches the quirk from AttrEventCodeEnable/Disable to just AttrEventCode with a +/- prefix for each entry. This switches the quirk from AttrInputPropEnable/Disable to just AttrInputProp with a +/- prefix for each entry. Previously, both event codes and input props would only apply the last-matching section entry for a device. Furthermore, an earlier Disable entry would take precedence over a later Enable entry. For example, a set of sections with these lines *should* enable left, right and middle: [first] AttrEventCodeEnable=BTN_LEFT;BTN_RIGHT;BTN_MIDDLE [second] AttrEventCodeDisable=BTN_RIGHT [third] AttrEventCodeEnable=BTN_LEFT;BTN_RIGHT; Alas: the first line was effectively ignored (quirks only returned the last-matching one, i.e. the one from "third"). And due to implementation details in evdev.c, the Disable attribute was processed after Enable, i.e. the device was enabled for left + right and then disabled for right. As a result, the device only had BTN_LEFT enabled. Fix this by changing the attribute to carry both enable/disable information and merging the commands together. Internally, all quirks matching a device are simply ref'd into an array in the struct quirks. The applied value is simply the last entry in the array corresponding to our quirk. For AttrEventCode and AttrInputProp instead do this: - switch them to a tuple with the code as first entry and a boolean enable/disable as second entry - if the struct quirk already has an entry for either, append the more recent one to the existing entry (instead of creating a new entry in the array). This way we have all entries that match and in-order of precedence - i.e. we can process them left-to-right to end up with the right state. Fixes: https://gitlab.freedesktop.org/libinput/libinput/-/issues/821 Signed-off-by: Peter Hutterer <peter.hutterer@who-t.net>
2022-11-15 13:53:43 +10:00
size_t nevents;
struct input_event events[20];
} tests[] = {
quirks: allow overriding of AttrEventCode and AttrInputProp This switches the quirk from AttrEventCodeEnable/Disable to just AttrEventCode with a +/- prefix for each entry. This switches the quirk from AttrInputPropEnable/Disable to just AttrInputProp with a +/- prefix for each entry. Previously, both event codes and input props would only apply the last-matching section entry for a device. Furthermore, an earlier Disable entry would take precedence over a later Enable entry. For example, a set of sections with these lines *should* enable left, right and middle: [first] AttrEventCodeEnable=BTN_LEFT;BTN_RIGHT;BTN_MIDDLE [second] AttrEventCodeDisable=BTN_RIGHT [third] AttrEventCodeEnable=BTN_LEFT;BTN_RIGHT; Alas: the first line was effectively ignored (quirks only returned the last-matching one, i.e. the one from "third"). And due to implementation details in evdev.c, the Disable attribute was processed after Enable, i.e. the device was enabled for left + right and then disabled for right. As a result, the device only had BTN_LEFT enabled. Fix this by changing the attribute to carry both enable/disable information and merging the commands together. Internally, all quirks matching a device are simply ref'd into an array in the struct quirks. The applied value is simply the last entry in the array corresponding to our quirk. For AttrEventCode and AttrInputProp instead do this: - switch them to a tuple with the code as first entry and a boolean enable/disable as second entry - if the struct quirk already has an entry for either, append the more recent one to the existing entry (instead of creating a new entry in the array). This way we have all entries that match and in-order of precedence - i.e. we can process them left-to-right to end up with the right state. Fixes: https://gitlab.freedesktop.org/libinput/libinput/-/issues/821 Signed-off-by: Peter Hutterer <peter.hutterer@who-t.net>
2022-11-15 13:53:43 +10:00
{ "+EV_KEY", true, 1, {{ .type = EV_KEY, .code = 0xffff, .value = 1 }} },
{ "-EV_ABS;", true, 1, {{ .type = EV_ABS, .code = 0xffff, .value = 0 }} },
{ "+ABS_X;", true, 1, {{ .type = EV_ABS, .code = ABS_X, .value = 1 }} },
{ "-SW_TABLET_MODE;", true, 1, {{ .type = EV_SW, .code = SW_TABLET_MODE, .value = 0 }} },
{ "+EV_SW", true, 1, {{ .type = EV_SW, .code = 0xffff, .value = 1 }} },
{ "-ABS_Y", true, 1, {{ .type = EV_ABS, .code = ABS_Y, .value = 0 }} },
{ "+EV_ABS:0x00", true, 1, {{ .type = EV_ABS, .code = ABS_X, .value = 1 }} },
{ "-EV_ABS:01", true, 1, {{ .type = EV_ABS, .code = ABS_Y, .value = 0 }} },
{ "+ABS_TILT_X;-ABS_TILT_Y;", true, 2,
{{ .type = EV_ABS, .code = ABS_TILT_X, .value = 1 },
{ .type = EV_ABS, .code = ABS_TILT_Y, .value = 0}} },
{ "+BTN_TOOL_DOUBLETAP;+EV_KEY;-KEY_A", true, 3,
{{ .type = EV_KEY, .code = BTN_TOOL_DOUBLETAP, .value = 1 } ,
{ .type = EV_KEY, .code = 0xffff, .value = 1 },
{ .type = EV_KEY, .code = KEY_A, .value = 0 }} },
{ "+REL_Y;-ABS_Z;+BTN_STYLUS", true, 3,
{{ .type = EV_REL, .code = REL_Y, .value = 1},
{ .type = EV_ABS, .code = ABS_Z, .value = 0},
{ .type = EV_KEY, .code = BTN_STYLUS, .value = 1 }} },
{ "-REL_Y;+EV_KEY:0x123;-BTN_STYLUS", true, 3,
{{ .type = EV_REL, .code = REL_Y, .value = 0 },
{ .type = EV_KEY, .code = 0x123, .value = 1 },
{ .type = EV_KEY, .code = BTN_STYLUS, .value = 0 }} },
{ .prop = "", .success = false },
quirks: allow overriding of AttrEventCode and AttrInputProp This switches the quirk from AttrEventCodeEnable/Disable to just AttrEventCode with a +/- prefix for each entry. This switches the quirk from AttrInputPropEnable/Disable to just AttrInputProp with a +/- prefix for each entry. Previously, both event codes and input props would only apply the last-matching section entry for a device. Furthermore, an earlier Disable entry would take precedence over a later Enable entry. For example, a set of sections with these lines *should* enable left, right and middle: [first] AttrEventCodeEnable=BTN_LEFT;BTN_RIGHT;BTN_MIDDLE [second] AttrEventCodeDisable=BTN_RIGHT [third] AttrEventCodeEnable=BTN_LEFT;BTN_RIGHT; Alas: the first line was effectively ignored (quirks only returned the last-matching one, i.e. the one from "third"). And due to implementation details in evdev.c, the Disable attribute was processed after Enable, i.e. the device was enabled for left + right and then disabled for right. As a result, the device only had BTN_LEFT enabled. Fix this by changing the attribute to carry both enable/disable information and merging the commands together. Internally, all quirks matching a device are simply ref'd into an array in the struct quirks. The applied value is simply the last entry in the array corresponding to our quirk. For AttrEventCode and AttrInputProp instead do this: - switch them to a tuple with the code as first entry and a boolean enable/disable as second entry - if the struct quirk already has an entry for either, append the more recent one to the existing entry (instead of creating a new entry in the array). This way we have all entries that match and in-order of precedence - i.e. we can process them left-to-right to end up with the right state. Fixes: https://gitlab.freedesktop.org/libinput/libinput/-/issues/821 Signed-off-by: Peter Hutterer <peter.hutterer@who-t.net>
2022-11-15 13:53:43 +10:00
{ .prop = "+", .success = false },
{ .prop = "-", .success = false },
{ .prop = "!", .success = false },
{ .prop = "+EV_FOO", .success = false },
{ .prop = "+EV_KEY;-EV_FOO", .success = false },
{ .prop = "+BTN_STYLUS;-EV_FOO", .success = false },
{ .prop = "-BTN_UNKNOWN", .success = false },
{ .prop = "+BTN_UNKNOWN;+EV_KEY", .success = false },
{ .prop = "-PR_UNKNOWN", .success = false },
{ .prop = "-BTN_STYLUS;+PR_UNKNOWN;-ABS_X", .success = false },
{ .prop = "-EV_REL:0xffff", .success = false },
{ .prop = "-EV_REL:0x123.", .success = false },
{ .prop = "-EV_REL:ffff", .success = false },
{ .prop = "-EV_REL:blah", .success = false },
{ .prop = "+KEY_A:0x11", .success = false },
{ .prop = "+EV_KEY:0x11 ", .success = false },
{ .prop = "+EV_KEY:0x11not", .success = false },
{ .prop = "none", .success = false },
{ .prop = NULL },
};
/* clang-format on */
struct parser_test_tuple *t;
for (int i = 0; tests[i].prop; i++) {
bool success;
struct input_event events[32];
size_t nevents = ARRAY_LENGTH(events);
t = &tests[i];
success = parse_evcode_property(t->prop, events, &nevents);
litest_assert(success == t->success);
if (!success)
continue;
litest_assert_int_eq(nevents, t->nevents);
for (size_t j = 0; j < nevents; j++) {
quirks: allow overriding of AttrEventCode and AttrInputProp This switches the quirk from AttrEventCodeEnable/Disable to just AttrEventCode with a +/- prefix for each entry. This switches the quirk from AttrInputPropEnable/Disable to just AttrInputProp with a +/- prefix for each entry. Previously, both event codes and input props would only apply the last-matching section entry for a device. Furthermore, an earlier Disable entry would take precedence over a later Enable entry. For example, a set of sections with these lines *should* enable left, right and middle: [first] AttrEventCodeEnable=BTN_LEFT;BTN_RIGHT;BTN_MIDDLE [second] AttrEventCodeDisable=BTN_RIGHT [third] AttrEventCodeEnable=BTN_LEFT;BTN_RIGHT; Alas: the first line was effectively ignored (quirks only returned the last-matching one, i.e. the one from "third"). And due to implementation details in evdev.c, the Disable attribute was processed after Enable, i.e. the device was enabled for left + right and then disabled for right. As a result, the device only had BTN_LEFT enabled. Fix this by changing the attribute to carry both enable/disable information and merging the commands together. Internally, all quirks matching a device are simply ref'd into an array in the struct quirks. The applied value is simply the last entry in the array corresponding to our quirk. For AttrEventCode and AttrInputProp instead do this: - switch them to a tuple with the code as first entry and a boolean enable/disable as second entry - if the struct quirk already has an entry for either, append the more recent one to the existing entry (instead of creating a new entry in the array). This way we have all entries that match and in-order of precedence - i.e. we can process them left-to-right to end up with the right state. Fixes: https://gitlab.freedesktop.org/libinput/libinput/-/issues/821 Signed-off-by: Peter Hutterer <peter.hutterer@who-t.net>
2022-11-15 13:53:43 +10:00
unsigned int type = events[j].type;
unsigned int code = events[j].code;
int value = events[j].value;
litest_assert_int_eq(t->events[j].type, type);
litest_assert_int_eq(t->events[j].code, code);
litest_assert_int_eq(t->events[j].value, value);
}
}
}
END_TEST
START_TEST(input_prop_parser)
{
/* clang-format off */
struct parser_test_val {
const char *prop;
bool success;
size_t nvals;
quirks: allow overriding of AttrEventCode and AttrInputProp This switches the quirk from AttrEventCodeEnable/Disable to just AttrEventCode with a +/- prefix for each entry. This switches the quirk from AttrInputPropEnable/Disable to just AttrInputProp with a +/- prefix for each entry. Previously, both event codes and input props would only apply the last-matching section entry for a device. Furthermore, an earlier Disable entry would take precedence over a later Enable entry. For example, a set of sections with these lines *should* enable left, right and middle: [first] AttrEventCodeEnable=BTN_LEFT;BTN_RIGHT;BTN_MIDDLE [second] AttrEventCodeDisable=BTN_RIGHT [third] AttrEventCodeEnable=BTN_LEFT;BTN_RIGHT; Alas: the first line was effectively ignored (quirks only returned the last-matching one, i.e. the one from "third"). And due to implementation details in evdev.c, the Disable attribute was processed after Enable, i.e. the device was enabled for left + right and then disabled for right. As a result, the device only had BTN_LEFT enabled. Fix this by changing the attribute to carry both enable/disable information and merging the commands together. Internally, all quirks matching a device are simply ref'd into an array in the struct quirks. The applied value is simply the last entry in the array corresponding to our quirk. For AttrEventCode and AttrInputProp instead do this: - switch them to a tuple with the code as first entry and a boolean enable/disable as second entry - if the struct quirk already has an entry for either, append the more recent one to the existing entry (instead of creating a new entry in the array). This way we have all entries that match and in-order of precedence - i.e. we can process them left-to-right to end up with the right state. Fixes: https://gitlab.freedesktop.org/libinput/libinput/-/issues/821 Signed-off-by: Peter Hutterer <peter.hutterer@who-t.net>
2022-11-15 13:53:43 +10:00
struct input_prop values[20];
} tests[] = {
quirks: allow overriding of AttrEventCode and AttrInputProp This switches the quirk from AttrEventCodeEnable/Disable to just AttrEventCode with a +/- prefix for each entry. This switches the quirk from AttrInputPropEnable/Disable to just AttrInputProp with a +/- prefix for each entry. Previously, both event codes and input props would only apply the last-matching section entry for a device. Furthermore, an earlier Disable entry would take precedence over a later Enable entry. For example, a set of sections with these lines *should* enable left, right and middle: [first] AttrEventCodeEnable=BTN_LEFT;BTN_RIGHT;BTN_MIDDLE [second] AttrEventCodeDisable=BTN_RIGHT [third] AttrEventCodeEnable=BTN_LEFT;BTN_RIGHT; Alas: the first line was effectively ignored (quirks only returned the last-matching one, i.e. the one from "third"). And due to implementation details in evdev.c, the Disable attribute was processed after Enable, i.e. the device was enabled for left + right and then disabled for right. As a result, the device only had BTN_LEFT enabled. Fix this by changing the attribute to carry both enable/disable information and merging the commands together. Internally, all quirks matching a device are simply ref'd into an array in the struct quirks. The applied value is simply the last entry in the array corresponding to our quirk. For AttrEventCode and AttrInputProp instead do this: - switch them to a tuple with the code as first entry and a boolean enable/disable as second entry - if the struct quirk already has an entry for either, append the more recent one to the existing entry (instead of creating a new entry in the array). This way we have all entries that match and in-order of precedence - i.e. we can process them left-to-right to end up with the right state. Fixes: https://gitlab.freedesktop.org/libinput/libinput/-/issues/821 Signed-off-by: Peter Hutterer <peter.hutterer@who-t.net>
2022-11-15 13:53:43 +10:00
{ "+INPUT_PROP_BUTTONPAD", true, 1, {{ INPUT_PROP_BUTTONPAD, true }}},
{ "+INPUT_PROP_BUTTONPAD;-INPUT_PROP_POINTER", true, 2,
{ { INPUT_PROP_BUTTONPAD, true },
{ INPUT_PROP_POINTER, false }}},
{ "+INPUT_PROP_BUTTONPAD;-0x00;+0x03", true, 3,
{ { INPUT_PROP_BUTTONPAD, true },
{ INPUT_PROP_POINTER, false },
{ INPUT_PROP_SEMI_MT, true }}},
{ .prop = "", .success = false },
{ .prop = "0xff", .success = false },
{ .prop = "INPUT_PROP", .success = false },
{ .prop = "INPUT_PROP_FOO", .success = false },
{ .prop = "INPUT_PROP_FOO;INPUT_PROP_FOO", .success = false },
{ .prop = "INPUT_PROP_POINTER;INPUT_PROP_FOO", .success = false },
{ .prop = "none", .success = false },
{ .prop = NULL },
};
/* clang-format on */
struct parser_test_val *t;
for (int i = 0; tests[i].prop; i++) {
bool success;
quirks: allow overriding of AttrEventCode and AttrInputProp This switches the quirk from AttrEventCodeEnable/Disable to just AttrEventCode with a +/- prefix for each entry. This switches the quirk from AttrInputPropEnable/Disable to just AttrInputProp with a +/- prefix for each entry. Previously, both event codes and input props would only apply the last-matching section entry for a device. Furthermore, an earlier Disable entry would take precedence over a later Enable entry. For example, a set of sections with these lines *should* enable left, right and middle: [first] AttrEventCodeEnable=BTN_LEFT;BTN_RIGHT;BTN_MIDDLE [second] AttrEventCodeDisable=BTN_RIGHT [third] AttrEventCodeEnable=BTN_LEFT;BTN_RIGHT; Alas: the first line was effectively ignored (quirks only returned the last-matching one, i.e. the one from "third"). And due to implementation details in evdev.c, the Disable attribute was processed after Enable, i.e. the device was enabled for left + right and then disabled for right. As a result, the device only had BTN_LEFT enabled. Fix this by changing the attribute to carry both enable/disable information and merging the commands together. Internally, all quirks matching a device are simply ref'd into an array in the struct quirks. The applied value is simply the last entry in the array corresponding to our quirk. For AttrEventCode and AttrInputProp instead do this: - switch them to a tuple with the code as first entry and a boolean enable/disable as second entry - if the struct quirk already has an entry for either, append the more recent one to the existing entry (instead of creating a new entry in the array). This way we have all entries that match and in-order of precedence - i.e. we can process them left-to-right to end up with the right state. Fixes: https://gitlab.freedesktop.org/libinput/libinput/-/issues/821 Signed-off-by: Peter Hutterer <peter.hutterer@who-t.net>
2022-11-15 13:53:43 +10:00
struct input_prop props[32];
size_t nprops = ARRAY_LENGTH(props);
t = &tests[i];
success = parse_input_prop_property(t->prop, props, &nprops);
litest_assert(success == t->success);
if (!success)
continue;
litest_assert_int_eq(nprops, t->nvals);
for (size_t j = 0; j < t->nvals; j++) {
litest_assert_int_eq(t->values[j].prop, props[j].prop);
litest_assert_int_eq(t->values[j].enabled, props[j].enabled);
}
}
}
END_TEST
START_TEST(evdev_abs_parser)
{
/* clang-format off */
struct test {
uint32_t which;
const char *prop;
int min, max, res, fuzz, flat;
} tests[] = {
{ .which = (ABS_MASK_MIN|ABS_MASK_MAX),
.prop = "1:2",
.min = 1, .max = 2 },
{ .which = (ABS_MASK_MIN|ABS_MASK_MAX),
.prop = "1:2:",
.min = 1, .max = 2 },
{ .which = (ABS_MASK_MIN|ABS_MASK_MAX|ABS_MASK_RES),
.prop = "10:20:30",
.min = 10, .max = 20, .res = 30 },
{ .which = (ABS_MASK_RES),
.prop = "::100",
.res = 100 },
{ .which = (ABS_MASK_MIN),
.prop = "10:",
.min = 10 },
{ .which = (ABS_MASK_MAX|ABS_MASK_RES),
.prop = ":10:1001",
.max = 10, .res = 1001 },
{ .which = (ABS_MASK_MIN|ABS_MASK_MAX|ABS_MASK_RES|ABS_MASK_FUZZ),
.prop = "1:2:3:4",
.min = 1, .max = 2, .res = 3, .fuzz = 4},
{ .which = (ABS_MASK_MIN|ABS_MASK_MAX|ABS_MASK_RES|ABS_MASK_FUZZ|ABS_MASK_FLAT),
.prop = "1:2:3:4:5",
.min = 1, .max = 2, .res = 3, .fuzz = 4, .flat = 5},
{ .which = (ABS_MASK_MIN|ABS_MASK_RES|ABS_MASK_FUZZ|ABS_MASK_FLAT),
.prop = "1::3:4:50",
.min = 1, .res = 3, .fuzz = 4, .flat = 50},
{ .which = ABS_MASK_FUZZ|ABS_MASK_FLAT,
.prop = ":::5:60",
.fuzz = 5, .flat = 60},
{ .which = ABS_MASK_FUZZ,
.prop = ":::5:",
.fuzz = 5 },
{ .which = ABS_MASK_RES, .prop = "::12::",
.res = 12 },
/* Malformed property but parsing this one makes us more
* future proof */
{ .which = (ABS_MASK_RES|ABS_MASK_FUZZ|ABS_MASK_FLAT),
.prop = "::12:1:2:3:4:5:6",
.res = 12, .fuzz = 1, .flat = 2 },
{ .which = 0, .prop = ":::::" },
{ .which = 0, .prop = ":" },
{ .which = 0, .prop = "" },
{ .which = 0, .prop = ":asb::::" },
{ .which = 0, .prop = "foo" },
};
/* clang-format on */
ARRAY_FOR_EACH(tests, t) {
struct input_absinfo abs;
uint32_t mask;
mask = parse_evdev_abs_prop(t->prop, &abs);
litest_assert_int_eq(mask, t->which);
if (t->which & ABS_MASK_MIN)
litest_assert_int_eq(abs.minimum, t->min);
if (t->which & ABS_MASK_MAX)
litest_assert_int_eq(abs.maximum, t->max);
if (t->which & ABS_MASK_RES)
litest_assert_int_eq(abs.resolution, t->res);
if (t->which & ABS_MASK_FUZZ)
litest_assert_int_eq(abs.fuzz, t->fuzz);
if (t->which & ABS_MASK_FLAT)
litest_assert_int_eq(abs.flat, t->flat);
}
}
END_TEST
START_TEST(time_conversion)
{
litest_assert_int_eq(usec_as_uint64_t(usec_from_uint64_t(0)), 0U);
litest_assert_int_eq(usec_as_uint64_t(usec_from_uint64_t(12345)), 12345U);
litest_assert_int_eq(usec_as_uint64_t(usec_from_uint64_t(999999)), 999999U);
litest_assert_int_eq(usec_as_uint64_t(usec_from_millis(0)), 0U);
litest_assert_int_eq(usec_as_uint64_t(usec_from_millis(1)), 1000U);
litest_assert_int_eq(usec_as_uint64_t(usec_from_millis(10)), 10000U);
litest_assert_int_eq(usec_as_uint64_t(usec_from_millis(1000)), 1000000U);
litest_assert_int_eq(usec_as_uint64_t(usec_from_seconds(0)), 0U);
litest_assert_int_eq(usec_as_uint64_t(usec_from_seconds(1)), 1000000U);
litest_assert_int_eq(usec_as_uint64_t(usec_from_seconds(10)), 10000000U);
litest_assert_int_eq(usec_as_uint64_t(usec_from_seconds(60)), 60000000U);
litest_assert_int_eq(usec_as_uint64_t(usec_from_hours(0)), 0ULL);
litest_assert_int_eq(usec_as_uint64_t(usec_from_hours(1)), 3600000000ULL);
{
struct timeval tv = { .tv_sec = 0, .tv_usec = 0 };
litest_assert_int_eq(usec_as_uint64_t(usec_from_timeval(&tv)), 0U);
tv.tv_sec = 1;
tv.tv_usec = 0;
litest_assert_int_eq(usec_as_uint64_t(usec_from_timeval(&tv)),
1000000U);
tv.tv_sec = 1;
tv.tv_usec = 234567;
litest_assert_int_eq(usec_as_uint64_t(usec_from_timeval(&tv)),
1234567U);
tv.tv_sec = 0;
tv.tv_usec = 999999;
litest_assert_int_eq(usec_as_uint64_t(usec_from_timeval(&tv)), 999999U);
}
{
struct timespec ts = { .tv_sec = 0, .tv_nsec = 0 };
litest_assert_int_eq(usec_as_uint64_t(usec_from_timespec(&ts)), 0U);
ts.tv_sec = 1;
ts.tv_nsec = 0;
litest_assert_int_eq(usec_as_uint64_t(usec_from_timespec(&ts)),
1000000U);
ts.tv_sec = 1;
ts.tv_nsec = 234567000;
litest_assert_int_eq(usec_as_uint64_t(usec_from_timespec(&ts)),
1234567U);
ts.tv_sec = 0;
ts.tv_nsec = 999999000;
litest_assert_int_eq(usec_as_uint64_t(usec_from_timespec(&ts)),
999999U);
}
litest_assert_int_eq(usec_to_millis(usec_from_uint64_t(0)), 0U);
litest_assert_int_eq(usec_to_millis(usec_from_uint64_t(1000)), 1U);
litest_assert_int_eq(usec_to_millis(usec_from_uint64_t(10000)), 10U);
litest_assert_int_eq(usec_to_millis(usec_from_uint64_t(123456)), 123U);
litest_assert_int_eq(usec_to_millis(usec_from_uint64_t(999)), 0U);
litest_assert_int_eq(usec_to_seconds(usec_from_uint64_t(0)), 0U);
litest_assert_int_eq(usec_to_seconds(usec_from_uint64_t(1000000)), 1U);
litest_assert_int_eq(usec_to_seconds(usec_from_uint64_t(5000000)), 5U);
litest_assert_int_eq(usec_to_seconds(usec_from_uint64_t(60000000)), 60U);
litest_assert_int_eq(usec_to_seconds(usec_from_uint64_t(999999)), 0U);
litest_assert_int_eq(usec_to_minutes(usec_from_uint64_t(0)), 0U);
litest_assert_int_eq(usec_to_minutes(usec_from_uint64_t(60000000)), 1U);
litest_assert_int_eq(usec_to_minutes(usec_from_uint64_t(120000000)), 2U);
litest_assert_int_eq(usec_to_minutes(usec_from_uint64_t(3600000000)), 60U);
litest_assert_int_eq(usec_to_minutes(usec_from_uint64_t(59999999)), 0U);
litest_assert_int_eq(usec_to_hours(usec_from_uint64_t(0)), 0U);
litest_assert_int_eq(usec_to_hours(usec_from_uint64_t(3600000000)), 1U);
litest_assert_int_eq(usec_to_hours(usec_from_uint64_t(7200000000)), 2U);
litest_assert_int_eq(usec_to_hours(usec_from_uint64_t(86400000000)), 24U);
litest_assert_int_eq(usec_to_hours(usec_from_uint64_t(3599999999)), 0U);
{
struct timeval tv;
tv = usec_to_timeval(usec_from_uint64_t(0));
litest_assert_int_eq(tv.tv_sec, 0);
litest_assert_int_eq(tv.tv_usec, 0);
tv = usec_to_timeval(usec_from_uint64_t(1000000));
litest_assert_int_eq(tv.tv_sec, 1);
litest_assert_int_eq(tv.tv_usec, 0);
tv = usec_to_timeval(usec_from_uint64_t(1234567));
litest_assert_int_eq(tv.tv_sec, 1);
litest_assert_int_eq(tv.tv_usec, 234567);
tv = usec_to_timeval(usec_from_uint64_t(999999));
litest_assert_int_eq(tv.tv_sec, 0);
litest_assert_int_eq(tv.tv_usec, 999999);
}
{
struct timespec ts;
ts = usec_to_timespec(usec_from_uint64_t(0));
litest_assert_int_eq(ts.tv_sec, 0);
litest_assert_int_eq(ts.tv_nsec, 0);
ts = usec_to_timespec(usec_from_uint64_t(1000000));
litest_assert_int_eq(ts.tv_sec, 1);
litest_assert_int_eq(ts.tv_nsec, 0);
ts = usec_to_timespec(usec_from_uint64_t(1234567));
litest_assert_int_eq(ts.tv_sec, 1);
litest_assert_int_eq(ts.tv_nsec, 234567000);
ts = usec_to_timespec(usec_from_uint64_t(999999));
litest_assert_int_eq(ts.tv_sec, 0);
litest_assert_int_eq(ts.tv_nsec, 999999000);
}
}
END_TEST
START_TEST(human_time)
{
/* clang-format off */
struct ht_tests {
usec_t interval;
unsigned int value;
const char *unit;
} tests[] = {
{ usec_from_uint64_t(0), 0, "us" },
{ usec_from_uint64_t(123), 123, "us" },
{ usec_from_millis(5), 5, "ms" },
{ usec_from_millis(100), 100, "ms" },
{ usec_from_seconds(5), 5, "s" },
{ usec_from_seconds(100), 100, "s" },
{ usec_from_seconds(120), 2, "min" },
{ usec_mul(usec_from_seconds(60), 5), 5, "min" },
{ usec_mul(usec_from_seconds(60), 120), 2, "h" },
{ usec_mul(usec_from_seconds(60), 5 * 60), 5, "h" },
{ usec_mul(usec_from_seconds(60), 48 * 60), 2, "d" },
{ usec_mul(usec_from_seconds(60), 1000 * 24 * 60), 1000, "d" },
{ usec_from_uint64_t(0), 0, NULL },
};
/* clang-format on */
for (int i = 0; tests[i].unit != NULL; i++) {
struct human_time ht;
ht = to_human_time(tests[i].interval);
litest_assert_int_eq(ht.value, tests[i].value);
litest_assert_str_eq(ht.unit, tests[i].unit);
}
}
END_TEST
struct atoi_test {
char *str;
bool success;
int val;
};
START_TEST(safe_atoi_test)
{
/* clang-format off */
struct atoi_test tests[] = {
{ "10", true, 10 },
{ "20", true, 20 },
{ "-1", true, -1 },
{ "2147483647", true, 2147483647 },
{ "-2147483648", true, -2147483648 },
{ "4294967295", false, 0 },
{ "0x0", false, 0 },
{ "-10x10", false, 0 },
{ "1x-99", false, 0 },
{ "", false, 0 },
{ "abd", false, 0 },
{ "xabd", false, 0 },
{ "0xaf", false, 0 },
{ "0x0x", false, 0 },
{ "x10", false, 0 },
{ NULL, false, 0 },
};
/* clang-format on */
int v;
bool success;
for (int i = 0; tests[i].str != NULL; i++) {
v = 0xad;
success = safe_atoi(tests[i].str, &v);
litest_assert(success == tests[i].success);
if (success)
litest_assert_int_eq(v, tests[i].val);
else
litest_assert_int_eq(v, 0xad);
}
}
END_TEST
START_TEST(safe_atoi_base_16_test)
{
/* clang-format off */
struct atoi_test tests[] = {
{ "10", true, 0x10 },
{ "20", true, 0x20 },
{ "-1", true, -1 },
{ "0x10", true, 0x10 },
{ "0xff", true, 0xff },
{ "abc", true, 0xabc },
{ "-10", true, -0x10 },
{ "0x0", true, 0 },
{ "0", true, 0 },
{ "0x-99", false, 0 },
{ "0xak", false, 0 },
{ "0x", false, 0 },
{ "x10", false, 0 },
{ NULL, false, 0 },
};
/* clang-format on */
int v;
bool success;
for (int i = 0; tests[i].str != NULL; i++) {
v = 0xad;
success = safe_atoi_base(tests[i].str, &v, 16);
litest_assert(success == tests[i].success);
if (success)
litest_assert_int_eq(v, tests[i].val);
else
litest_assert_int_eq(v, 0xad);
}
}
END_TEST
START_TEST(safe_atoi_base_8_test)
{
/* clang-format off */
struct atoi_test tests[] = {
{ "7", true, 07 },
{ "10", true, 010 },
{ "20", true, 020 },
{ "-1", true, -1 },
{ "010", true, 010 },
{ "0ff", false, 0 },
{ "abc", false, 0},
{ "0xabc", false, 0},
{ "-10", true, -010 },
{ "0", true, 0 },
{ "00", true, 0 },
{ "0x0", false, 0 },
{ "0x-99", false, 0 },
{ "0xak", false, 0 },
{ "0x", false, 0 },
{ "x10", false, 0 },
{ NULL, false, 0 },
};
/* clang-format on */
int v;
bool success;
for (int i = 0; tests[i].str != NULL; i++) {
v = 0xad;
success = safe_atoi_base(tests[i].str, &v, 8);
litest_assert(success == tests[i].success);
if (success)
litest_assert_int_eq(v, tests[i].val);
else
litest_assert_int_eq(v, 0xad);
}
}
END_TEST
struct atou_test {
char *str;
bool success;
unsigned int val;
};
START_TEST(safe_atou_test)
{
/* clang-format off */
struct atou_test tests[] = {
{ "10", true, 10 },
{ "20", true, 20 },
{ "-1", false, 0 },
{ "2147483647", true, 2147483647 },
{ "-2147483648", false, 0},
{ "0x0", false, 0 },
{ "-10x10", false, 0 },
{ "1x-99", false, 0 },
{ "", false, 0 },
{ "abd", false, 0 },
{ "xabd", false, 0 },
{ "0xaf", false, 0 },
{ "0x0x", false, 0 },
{ "x10", false, 0 },
{ NULL, false, 0 },
};
/* clang-format on */
unsigned int v;
bool success;
for (int i = 0; tests[i].str != NULL; i++) {
v = 0xad;
success = safe_atou(tests[i].str, &v);
litest_assert(success == tests[i].success);
if (success)
litest_assert_int_eq(v, tests[i].val);
else
litest_assert_int_eq(v, 0xadU);
}
}
END_TEST
START_TEST(safe_atou_base_16_test)
{
/* clang-format off */
struct atou_test tests[] = {
{ "10", true, 0x10 },
{ "20", true, 0x20 },
{ "-1", false, 0 },
{ "0x10", true, 0x10 },
{ "0xff", true, 0xff },
{ "abc", true, 0xabc },
{ "-10", false, 0 },
{ "0x0", true, 0 },
{ "0", true, 0 },
{ "0x-99", false, 0 },
{ "0xak", false, 0 },
{ "0x", false, 0 },
{ "x10", false, 0 },
{ NULL, false, 0 },
};
/* clang-format on */
unsigned int v;
bool success;
for (int i = 0; tests[i].str != NULL; i++) {
v = 0xad;
success = safe_atou_base(tests[i].str, &v, 16);
litest_assert(success == tests[i].success);
if (success)
litest_assert_int_eq(v, tests[i].val);
else
litest_assert_int_eq(v, 0xadU);
}
}
END_TEST
START_TEST(safe_atou_base_8_test)
{
/* clang-format off */
struct atou_test tests[] = {
{ "7", true, 07 },
{ "10", true, 010 },
{ "20", true, 020 },
{ "-1", false, 0 },
{ "010", true, 010 },
{ "0ff", false, 0 },
{ "abc", false, 0},
{ "0xabc", false, 0},
{ "-10", false, 0 },
{ "0", true, 0 },
{ "00", true, 0 },
{ "0x0", false, 0 },
{ "0x-99", false, 0 },
{ "0xak", false, 0 },
{ "0x", false, 0 },
{ "x10", false, 0 },
{ NULL, false, 0 },
};
/* clang-format on */
unsigned int v;
bool success;
for (int i = 0; tests[i].str != NULL; i++) {
v = 0xad;
success = safe_atou_base(tests[i].str, &v, 8);
litest_assert(success == tests[i].success);
if (success)
litest_assert_int_eq(v, tests[i].val);
else
litest_assert_int_eq(v, 0xadU);
}
}
END_TEST
struct atou64_test {
char *str;
bool success;
uint64_t val;
};
START_TEST(safe_atou64_test)
{
/* clang-format off */
struct atou64_test tests[] = {
{ "10", true, 10 },
{ "20", true, 20 },
{ "-1", false, 0 },
{ "9999999999", true, 9999999999 },
{ "2147483647", true, 2147483647 },
{ "-2147483648", false, 0},
{ "0x0", false, 0 },
{ "-10x10", false, 0 },
{ "1x-99", false, 0 },
{ "", false, 0 },
{ "abd", false, 0 },
{ "xabd", false, 0 },
{ "0xaf", false, 0 },
{ "0x0x", false, 0 },
{ "x10", false, 0 },
{ NULL, false, 0 },
};
/* clang-format on */
uint64_t v;
bool success;
for (int i = 0; tests[i].str != NULL; i++) {
v = 0xad;
success = safe_atou64(tests[i].str, &v);
litest_assert(success == tests[i].success);
if (success)
litest_assert_int_eq(v, tests[i].val);
else
litest_assert_int_eq(v, 0xadU);
}
}
END_TEST
START_TEST(safe_atod_test)
{
/* clang-format off */
struct atod_test {
char *str;
bool success;
double val;
} tests[] = {
{ "10", true, 10 },
{ "20", true, 20 },
{ "-1", true, -1 },
{ "2147483647", true, 2147483647 },
{ "-2147483648", true, -2147483648 },
{ "4294967295", true, 4294967295 },
{ "0x0", false, 0 },
{ "0x10", false, 0 },
{ "0xaf", false, 0 },
{ "x80", false, 0 },
{ "0.0", true, 0.0 },
{ "0.1", true, 0.1 },
{ "1.2", true, 1.2 },
{ "-324.9", true, -324.9 },
{ "9324.9", true, 9324.9 },
{ "NAN", false, 0 },
{ "INFINITY", false, 0 },
{ "-10x10", false, 0 },
{ "1x-99", false, 0 },
{ "", false, 0 },
{ "abd", false, 0 },
{ "xabd", false, 0 },
{ "0x0x", false, 0 },
{ NULL, false, 0 },
};
/* clang-format on */
double v;
bool success;
for (int i = 0; tests[i].str != NULL; i++) {
v = 0xad;
success = safe_atod(tests[i].str, &v);
litest_assert(success == tests[i].success);
if (success)
litest_assert_double_eq(v, tests[i].val);
else
litest_assert_int_eq(v, 0xad);
}
}
END_TEST
START_TEST(strsplit_test)
{
/* clang-format off */
struct strsplit_test {
const char *string;
const char *delim;
const char *results[10];
const size_t nresults;
} tests[] = {
{ "one two three", " ", { "one", "two", "three", NULL }, 3 },
{ "one two\tthree", " \t", { "one", "two", "three", NULL }, 3 },
{ "one", " ", { "one", NULL }, 1 },
{ "one two ", " ", { "one", "two", NULL }, 2 },
{ "one two", " ", { "one", "two", NULL }, 2 },
{ " one two", " ", { "one", "two", NULL }, 2 },
{ "one", "\t \r", { "one", NULL }, 1 },
{ "one two three", " t", { "one", "wo", "hree", NULL }, 3 },
{ " one two three", "te", { " on", " ", "wo ", "hr", NULL }, 4 },
{ "one", "ne", { "o", NULL }, 1 },
{ "onene", "ne", { "o", NULL }, 1 },
{ "+1-2++3--4++-+5-+-", "+-", { "1", "2", "3", "4", "5", NULL }, 5 },
/* special cases */
{ "", " ", { NULL }, 0 },
{ " ", " ", { NULL }, 0 },
{ " ", " ", { NULL }, 0 },
{ "oneoneone", "one", { NULL} , 0 },
{ NULL, NULL, { NULL }, 0},
};
/* clang-format on */
struct strsplit_test *t = tests;
while (t->string) {
size_t nelem;
char **strv = strv_from_string(t->string, t->delim, &nelem);
for (size_t idx = 0; idx < t->nresults; idx++)
litest_assert_str_eq(t->results[idx], strv[idx]);
litest_assert_int_eq(nelem, t->nresults);
/* When there are no elements validate return value is Null,
otherwise validate result array is Null terminated. */
if (t->nresults == 0)
litest_assert_ptr_eq(strv, NULL);
else
litest_assert_ptr_eq(strv[t->nresults], NULL);
strv_free(strv);
t++;
}
}
END_TEST
struct strv_test_data {
const char *terminate_at;
unsigned char bitmask[1];
};
static int
strv_test_set_bitmask(const char *str, size_t index, void *data)
{
struct strv_test_data *td = data;
if (streq(str, td->terminate_at))
return index + 1;
set_bit(td->bitmask, index);
return 0;
}
START_TEST(strv_for_each_test)
{
/* clang-format off */
struct test_data {
const char *terminator;
int index;
unsigned int bitmask;
} test_data[] = {
{ "one", 1, 0x0 },
{ "two", 2, 0x1 },
{ "three", 3, 0x3 },
{ "four", 4, 0x7 },
{ "five", 5, 0xf },
{ "does-not-exist", 0, 0x1f },
{ NULL, 0, 0x1f },
{ NULL, 0 },
};
/* clang-format on */
const char *array[] = { "one", "two", "three", "four", "five", NULL };
struct test_data *t = test_data;
while (t->terminator || t->bitmask) {
const int max = 3;
struct strv_test_data td = {
.terminate_at = t->terminator,
.bitmask = { 0 },
};
int rc = strv_for_each(array, strv_test_set_bitmask, &td);
litest_assert_int_eq(rc, t->index);
litest_assert_int_eq(td.bitmask[0], t->bitmask);
struct strv_test_data tdmax = {
.terminate_at = t->terminator,
.bitmask = { 0 },
};
rc = strv_for_each_n(array, max, strv_test_set_bitmask, &tdmax);
if (max < t->index)
litest_assert_int_eq(rc, 0);
else
litest_assert_int_eq(rc, t->index);
litest_assert_int_eq(tdmax.bitmask[0], t->bitmask & ((1 << max) - 1));
t++;
}
}
END_TEST
__attribute__((format(printf, 1, 0))) static char **
test_strv_appendv(char *format, ...)
{
va_list args;
va_start(args, format);
char **strv = NULL;
strv = strv_append_vprintf(strv, "%s %d", args);
va_end(args);
return strv;
}
START_TEST(strv_append_test)
{
{
char *test_strv1[] = { "a", "b", "c", NULL };
char **test_strv2 = NULL;
litest_assert_int_eq(strv_len(test_strv1), 4U);
litest_assert_int_eq(strv_len(test_strv2), 0U);
}
{
char **strv = NULL;
char *dup = safe_strdup("test");
strv = strv_append_take(strv, &dup);
litest_assert_ptr_null(dup);
litest_assert_ptr_notnull(strv);
litest_assert_str_eq(strv[0], "test");
litest_assert_ptr_eq(strv[1], NULL);
litest_assert_int_eq(strv_len(strv), 2U);
char *dup2 = safe_strdup("test2");
strv = strv_append_take(strv, &dup2);
litest_assert_ptr_null(dup2);
litest_assert_str_eq(strv[1], "test2");
litest_assert_ptr_eq(strv[2], NULL);
litest_assert_int_eq(strv_len(strv), 3U);
strv = strv_append_take(strv, NULL);
litest_assert_int_eq(strv_len(strv), 3U);
strv_free(strv);
}
{
char **strv = NULL;
strv = strv_append_strdup(strv, "banana");
litest_assert(strv != NULL);
litest_assert_str_eq(strv[0], "banana");
litest_assert_ptr_null(strv[1]);
litest_assert_int_eq(strv_len(strv), 2U);
strv_free(strv);
}
{
char **strv = test_strv_appendv("%s %d", "apple", 2);
litest_assert_ptr_notnull(strv);
litest_assert_str_eq(strv[0], "apple 2");
litest_assert_ptr_null(strv[1]);
litest_assert_int_eq(strv_len(strv), 2U);
strv_free(strv);
}
{
char **strv = NULL;
strv = strv_append_printf(strv, "coco%s", "nut");
litest_assert_ptr_notnull(strv);
litest_assert_str_eq(strv[0], "coconut");
litest_assert_ptr_null(strv[1]);
litest_assert_int_eq(strv_len(strv), 2U);
strv_free(strv);
}
}
END_TEST
START_TEST(strv_find_test)
{
char *strv[] = { "a", "b", "c", NULL };
bool rc;
size_t index;
rc = strv_find(strv, "a", &index);
litest_assert(rc);
litest_assert_int_eq(index, 0U);
rc = strv_find(strv, "b", &index);
litest_assert(rc);
litest_assert_int_eq(index, 1U);
rc = strv_find(strv, "a", NULL);
litest_assert(rc);
index = 0xffff;
rc = strv_find(strv, "d", &index);
litest_assert(!rc);
litest_assert_int_eq(index, 0xffffU);
rc = strv_find(strv, "d", NULL);
litest_assert(!rc);
rc = strv_find(NULL, "a", &index);
litest_assert(!rc);
litest_assert_int_eq(index, 0xffffU);
rc = strv_find(NULL, NULL, &index);
litest_assert(!rc);
litest_assert_int_eq(index, 0xffffU);
rc = strv_find(strv, NULL, &index);
litest_assert(!rc);
litest_assert_int_eq(index, 0xffffU);
}
END_TEST
START_TEST(strv_find_substring_test)
{
char *strv[] = { "a", "bc", "cccc", NULL };
bool rc;
size_t index;
rc = strv_find_substring(strv, "a", &index);
litest_assert(rc);
litest_assert_int_eq(index, 0U);
rc = strv_find_substring(strv, "b", &index);
litest_assert(rc);
litest_assert_int_eq(index, 1U);
rc = strv_find_substring(strv, "c", &index);
litest_assert(rc);
litest_assert_int_eq(index, 1U);
rc = strv_find_substring(strv, "a", NULL);
litest_assert(rc);
index = 0xffff;
rc = strv_find_substring(strv, "d", &index);
litest_assert(!rc);
litest_assert_int_eq(index, 0xffffU);
rc = strv_find_substring(strv, "d", NULL);
litest_assert(!rc);
rc = strv_find_substring(NULL, "a", &index);
litest_assert(!rc);
litest_assert_int_eq(index, 0xffffU);
rc = strv_find_substring(NULL, NULL, &index);
litest_assert(!rc);
litest_assert_int_eq(index, 0xffffU);
rc = strv_find_substring(strv, NULL, &index);
litest_assert(!rc);
litest_assert_int_eq(index, 0xffffU);
}
END_TEST
Introduce custom acceleration profile The custom acceleration profile allow the user to define custom acceleration functions for each movement type per device, giving full control over accelerations behavior at different speeds. This commit introduces 2 movement types which corresponds to the 2 profiles currently in use by libinput. regular filter is Motion type. constant filter is Fallback type. This allows possible expansion of new movement types for the different devices. The custom pointer acceleration profile gives the user full control over the acceleration behavior at different speeds. The user needs to provide a custom acceleration function f(x) where the x-axis is the device speed and the y-axis is the pointer speed. The user should take into account the native device dpi and screen dpi in order to achieve the desired behavior/feel of the acceleration. The custom acceleration function is defined using n points which are spaced uniformly along the x-axis, starting from 0 and continuing in constant steps. There by the points defining the custom function are: (0 * step, f[0]), (1 * step, f[1]), ..., ((n-1) * step, f[n-1]) where f is a list of n unitless values defining the acceleration factor for each velocity. When a velocity value does not lie exactly on those points, a linear interpolation of the two closest points will be calculated. When a velocity value is greater than the max point defined, a linear extrapolation of the two biggest points will be calculated. Signed-off-by: Yinon Burgansky <51504-Yinon@users.noreply.gitlab.freedesktop.org> Signed-off-by: Peter Hutterer <peter.hutterer@who-t.net>
2022-12-13 00:23:59 +02:00
START_TEST(double_array_from_string_test)
{
/* clang-format off */
Introduce custom acceleration profile The custom acceleration profile allow the user to define custom acceleration functions for each movement type per device, giving full control over accelerations behavior at different speeds. This commit introduces 2 movement types which corresponds to the 2 profiles currently in use by libinput. regular filter is Motion type. constant filter is Fallback type. This allows possible expansion of new movement types for the different devices. The custom pointer acceleration profile gives the user full control over the acceleration behavior at different speeds. The user needs to provide a custom acceleration function f(x) where the x-axis is the device speed and the y-axis is the pointer speed. The user should take into account the native device dpi and screen dpi in order to achieve the desired behavior/feel of the acceleration. The custom acceleration function is defined using n points which are spaced uniformly along the x-axis, starting from 0 and continuing in constant steps. There by the points defining the custom function are: (0 * step, f[0]), (1 * step, f[1]), ..., ((n-1) * step, f[n-1]) where f is a list of n unitless values defining the acceleration factor for each velocity. When a velocity value does not lie exactly on those points, a linear interpolation of the two closest points will be calculated. When a velocity value is greater than the max point defined, a linear extrapolation of the two biggest points will be calculated. Signed-off-by: Yinon Burgansky <51504-Yinon@users.noreply.gitlab.freedesktop.org> Signed-off-by: Peter Hutterer <peter.hutterer@who-t.net>
2022-12-13 00:23:59 +02:00
struct double_array_from_string_test {
const char *string;
const char *delim;
const double array[10];
const size_t len;
const bool result;
} tests[] = {
{ "1 2 3", " ", { 1, 2, 3 }, 3 },
{ "1", " ", { 1 }, 1 },
{ "1,2.5,", ",", { 1, 2.5 }, 2 },
{ "1.0 2", " ", { 1, 2.0 }, 2 },
{ " 1 2", " ", { 1, 2 }, 2 },
{ " ; 1;2 3.5 ;;4.1", "; ", { 1, 2, 3.5, 4.1 }, 4 },
/* special cases */
{ "1 two", " ", { 0 }, 0 },
{ "one two", " ", { 0 }, 0 },
{ "one 2", " ", { 0 }, 0 },
{ "", " ", { 0 }, 0 },
{ " ", " ", { 0 }, 0 },
{ " ", " ", { 0 }, 0 },
{ "", " ", { 0 }, 0 },
{ "oneoneone", "one", { 0 }, 0 },
{ NULL, NULL, { 0 }, 0 },
Introduce custom acceleration profile The custom acceleration profile allow the user to define custom acceleration functions for each movement type per device, giving full control over accelerations behavior at different speeds. This commit introduces 2 movement types which corresponds to the 2 profiles currently in use by libinput. regular filter is Motion type. constant filter is Fallback type. This allows possible expansion of new movement types for the different devices. The custom pointer acceleration profile gives the user full control over the acceleration behavior at different speeds. The user needs to provide a custom acceleration function f(x) where the x-axis is the device speed and the y-axis is the pointer speed. The user should take into account the native device dpi and screen dpi in order to achieve the desired behavior/feel of the acceleration. The custom acceleration function is defined using n points which are spaced uniformly along the x-axis, starting from 0 and continuing in constant steps. There by the points defining the custom function are: (0 * step, f[0]), (1 * step, f[1]), ..., ((n-1) * step, f[n-1]) where f is a list of n unitless values defining the acceleration factor for each velocity. When a velocity value does not lie exactly on those points, a linear interpolation of the two closest points will be calculated. When a velocity value is greater than the max point defined, a linear extrapolation of the two biggest points will be calculated. Signed-off-by: Yinon Burgansky <51504-Yinon@users.noreply.gitlab.freedesktop.org> Signed-off-by: Peter Hutterer <peter.hutterer@who-t.net>
2022-12-13 00:23:59 +02:00
};
/* clang-format on */
Introduce custom acceleration profile The custom acceleration profile allow the user to define custom acceleration functions for each movement type per device, giving full control over accelerations behavior at different speeds. This commit introduces 2 movement types which corresponds to the 2 profiles currently in use by libinput. regular filter is Motion type. constant filter is Fallback type. This allows possible expansion of new movement types for the different devices. The custom pointer acceleration profile gives the user full control over the acceleration behavior at different speeds. The user needs to provide a custom acceleration function f(x) where the x-axis is the device speed and the y-axis is the pointer speed. The user should take into account the native device dpi and screen dpi in order to achieve the desired behavior/feel of the acceleration. The custom acceleration function is defined using n points which are spaced uniformly along the x-axis, starting from 0 and continuing in constant steps. There by the points defining the custom function are: (0 * step, f[0]), (1 * step, f[1]), ..., ((n-1) * step, f[n-1]) where f is a list of n unitless values defining the acceleration factor for each velocity. When a velocity value does not lie exactly on those points, a linear interpolation of the two closest points will be calculated. When a velocity value is greater than the max point defined, a linear extrapolation of the two biggest points will be calculated. Signed-off-by: Yinon Burgansky <51504-Yinon@users.noreply.gitlab.freedesktop.org> Signed-off-by: Peter Hutterer <peter.hutterer@who-t.net>
2022-12-13 00:23:59 +02:00
struct double_array_from_string_test *t = tests;
while (t->string) {
size_t len;
double *array = double_array_from_string(t->string, t->delim, &len);
litest_assert_int_eq(len, t->len);
Introduce custom acceleration profile The custom acceleration profile allow the user to define custom acceleration functions for each movement type per device, giving full control over accelerations behavior at different speeds. This commit introduces 2 movement types which corresponds to the 2 profiles currently in use by libinput. regular filter is Motion type. constant filter is Fallback type. This allows possible expansion of new movement types for the different devices. The custom pointer acceleration profile gives the user full control over the acceleration behavior at different speeds. The user needs to provide a custom acceleration function f(x) where the x-axis is the device speed and the y-axis is the pointer speed. The user should take into account the native device dpi and screen dpi in order to achieve the desired behavior/feel of the acceleration. The custom acceleration function is defined using n points which are spaced uniformly along the x-axis, starting from 0 and continuing in constant steps. There by the points defining the custom function are: (0 * step, f[0]), (1 * step, f[1]), ..., ((n-1) * step, f[n-1]) where f is a list of n unitless values defining the acceleration factor for each velocity. When a velocity value does not lie exactly on those points, a linear interpolation of the two closest points will be calculated. When a velocity value is greater than the max point defined, a linear extrapolation of the two biggest points will be calculated. Signed-off-by: Yinon Burgansky <51504-Yinon@users.noreply.gitlab.freedesktop.org> Signed-off-by: Peter Hutterer <peter.hutterer@who-t.net>
2022-12-13 00:23:59 +02:00
for (size_t idx = 0; idx < len; idx++) {
litest_assert_ptr_notnull(array);
litest_assert_double_eq(array[idx], t->array[idx]);
}
Introduce custom acceleration profile The custom acceleration profile allow the user to define custom acceleration functions for each movement type per device, giving full control over accelerations behavior at different speeds. This commit introduces 2 movement types which corresponds to the 2 profiles currently in use by libinput. regular filter is Motion type. constant filter is Fallback type. This allows possible expansion of new movement types for the different devices. The custom pointer acceleration profile gives the user full control over the acceleration behavior at different speeds. The user needs to provide a custom acceleration function f(x) where the x-axis is the device speed and the y-axis is the pointer speed. The user should take into account the native device dpi and screen dpi in order to achieve the desired behavior/feel of the acceleration. The custom acceleration function is defined using n points which are spaced uniformly along the x-axis, starting from 0 and continuing in constant steps. There by the points defining the custom function are: (0 * step, f[0]), (1 * step, f[1]), ..., ((n-1) * step, f[n-1]) where f is a list of n unitless values defining the acceleration factor for each velocity. When a velocity value does not lie exactly on those points, a linear interpolation of the two closest points will be calculated. When a velocity value is greater than the max point defined, a linear extrapolation of the two biggest points will be calculated. Signed-off-by: Yinon Burgansky <51504-Yinon@users.noreply.gitlab.freedesktop.org> Signed-off-by: Peter Hutterer <peter.hutterer@who-t.net>
2022-12-13 00:23:59 +02:00
free(array);
t++;
}
}
END_TEST
START_TEST(strargv_test)
{
/* clang-format off */
struct argv_test {
int argc;
char *argv[10];
int expected;
} tests[] = {
{ 0, {NULL}, 0 },
{ 1, {"hello", "World"}, 1 },
{ 2, {"hello", "World"}, 2 },
{ 2, {"", " "}, 2 },
{ 2, {"", NULL}, 0 },
{ 2, {NULL, NULL}, 0 },
{ 1, {NULL, NULL}, 0 },
{ 3, {"hello", NULL, "World"}, 0 },
};
/* clang-format on */
ARRAY_FOR_EACH(tests, t) {
char **strv = strv_from_argv(t->argc, t->argv);
if (t->expected == 0) {
litest_assert(strv == NULL);
} else {
int count = 0;
char **s = strv;
while (*s) {
litest_assert_str_eq(*s, t->argv[count]);
count++;
s++;
}
litest_assert_int_eq(t->expected, count);
strv_free(strv);
}
}
}
END_TEST
START_TEST(kvsplit_double_test)
{
/* clang-format off */
struct kvsplit_dbl_test {
const char *string;
const char *psep;
const char *kvsep;
ssize_t nresults;
struct {
double a;
double b;
} results[32];
} tests[] = {
{ "1:2;3:4;5:6", ";", ":", 3, { {1, 2}, {3, 4}, {5, 6}}},
{ "1.0x2.3 -3.2x4.5 8.090909x-6.00", " ", "x", 3, { {1.0, 2.3}, {-3.2, 4.5}, {8.090909, -6}}},
{ "1:2", "x", ":", 1, {{1, 2}}},
{ "1:2", ":", "x", -1, {}},
{ "1:2", NULL, "x", -1, {}},
{ "1:2", "", "x", -1, {}},
{ "1:2", "x", NULL, -1, {}},
{ "1:2", "x", "", -1, {}},
{ "a:b", "x", ":", -1, {}},
{ "", " ", "x", -1, {}},
{ "1.2.3.4.5", ".", "", -1, {}},
{ NULL },
};
/* clang-format on */
struct kvsplit_dbl_test *t = tests;
while (t->string) {
struct key_value_double *result = NULL;
ssize_t npairs;
npairs = kv_double_from_string(t->string, t->psep, t->kvsep, &result);
litest_assert_int_eq(npairs, t->nresults);
for (ssize_t i = 0; i < npairs; i++) {
litest_assert_double_eq(t->results[i].a, result[i].key);
litest_assert_double_eq(t->results[i].b, result[i].value);
}
free(result);
t++;
}
}
END_TEST
START_TEST(strjoin_test)
{
/* clang-format off */
struct strjoin_test {
char *strv[10];
const char *joiner;
const char *result;
} tests[] = {
{ { "one", "two", "three", NULL }, " ", "one two three" },
{ { "one", NULL }, "x", "one" },
{ { "one", "two", NULL }, "x", "onextwo" },
{ { "one", "two", NULL }, ",", "one,two" },
{ { "one", "two", NULL }, ", ", "one, two" },
{ { "one", "two", NULL }, "one", "oneonetwo" },
{ { "one", "two", NULL }, NULL, NULL },
{ { "", "", "", NULL }, " ", " " },
{ { "a", "b", "c", NULL }, "", "abc" },
{ { "", "b", "c", NULL }, "x", "xbxc" },
{ { "", "", "", NULL }, "", "" },
{ { NULL }, NULL, NULL },
};
/* clang-format on */
struct strjoin_test *t = tests;
struct strjoin_test nulltest = { { NULL }, "x", NULL };
while (t->strv[0]) {
char *str;
str = strv_join(t->strv, t->joiner);
if (t->result == NULL)
litest_assert(str == NULL);
else
litest_assert_str_eq(str, t->result);
free(str);
t++;
}
litest_assert(strv_join(nulltest.strv, "x") == NULL);
}
END_TEST
START_TEST(strstrip_test)
{
/* clang-format off */
struct strstrip_test {
const char *string;
const char *expected;
const char *what;
} tests[] = {
{ "foo", "foo", "1234" },
{ "\"bar\"", "bar", "\"" },
{ "'bar'", "bar", "'" },
{ "\"bar\"", "\"bar\"", "'" },
{ "'bar'", "'bar'", "\"" },
{ "\"bar\"", "bar", "\"" },
{ "\"\"", "", "\"" },
{ "\"foo\"bar\"", "foo\"bar", "\"" },
{ "\"'foo\"bar\"", "foo\"bar", "\"'" },
{ "abcfooabcbarbca", "fooabcbar", "abc" },
{ "xxxxfoo", "foo", "x" },
{ "fooyyyy", "foo", "y" },
{ "xxxxfooyyyy", "foo", "xy" },
{ "x xfooy y", " xfooy ", "xy" },
{ " foo\n", "foo", " \n" },
{ "", "", "abc" },
{ "", "", "" },
{ NULL , NULL, NULL },
};
/* clang-format on */
struct strstrip_test *t = tests;
while (t->string) {
char *str;
str = strstrip(t->string, t->what);
litest_assert_str_eq(str, t->expected);
free(str);
t++;
}
}
END_TEST
START_TEST(strendswith_test)
{
/* clang-format off */
struct strendswith_test {
const char *string;
const char *suffix;
bool expected;
} tests[] = {
{ "foobar", "bar", true },
{ "foobar", "foo", false },
{ "foobar", "foobar", true },
{ "foo", "foobar", false },
{ "foobar", "", false },
{ "", "", false },
{ "", "foo", false },
{ NULL, NULL, false },
};
/* clang-format on */
for (struct strendswith_test *t = tests; t->string; t++) {
litest_assert_int_eq(strendswith(t->string, t->suffix), t->expected);
}
}
END_TEST
START_TEST(strstartswith_test)
{
/* clang-format off */
struct strstartswith_test {
const char *string;
const char *suffix;
bool expected;
} tests[] = {
{ "foobar", "foo", true },
{ "foobar", "bar", false },
{ "foobar", "foobar", true },
{ "foo", "foobar", false },
{ "foo", "", false },
{ "", "", false },
{ "foo", "", false },
{ NULL, NULL, false },
};
/* clang-format on */
for (struct strstartswith_test *t = tests; t->string; t++) {
litest_assert_int_eq(strstartswith(t->string, t->suffix), t->expected);
}
}
END_TEST
evdev: strip the device name of format directives This fixes a format string vulnerabilty. evdev_log_message() composes a format string consisting of a fixed prefix (including the rendered device name) and the passed-in format buffer. This format string is then passed with the arguments to the actual log handler, which usually and eventually ends up being printf. If the device name contains a printf-style format directive, these ended up in the format string and thus get interpreted correctly, e.g. for a device "Foo%sBar" the log message vs printf invocation ends up being: evdev_log_message(device, "some message %s", "some argument"); printf("event9 - Foo%sBar: some message %s", "some argument"); This can enable an attacker to execute malicious code with the privileges of the process using libinput. To exploit this, an attacker needs to be able to create a kernel device with a malicious name, e.g. through /dev/uinput or a Bluetooth device. To fix this, convert any potential format directives in the device name by duplicating percentages. Pre-rendering the device to avoid the issue altogether would be nicer but the current log level hooks do not easily allow for this. The device name is the only user-controlled part of the format string. A second potential issue is the sysname of the device which is also sanitized. This issue was found by Albin Eldstål-Ahrens and Benjamin Svensson from Assured AB, and independently by Lukas Lamster. Fixes #752 Signed-off-by: Peter Hutterer <peter.hutterer@who-t.net>
2022-03-30 09:25:22 +10:00
START_TEST(strsanitize_test)
{
/* clang-format off */
evdev: strip the device name of format directives This fixes a format string vulnerabilty. evdev_log_message() composes a format string consisting of a fixed prefix (including the rendered device name) and the passed-in format buffer. This format string is then passed with the arguments to the actual log handler, which usually and eventually ends up being printf. If the device name contains a printf-style format directive, these ended up in the format string and thus get interpreted correctly, e.g. for a device "Foo%sBar" the log message vs printf invocation ends up being: evdev_log_message(device, "some message %s", "some argument"); printf("event9 - Foo%sBar: some message %s", "some argument"); This can enable an attacker to execute malicious code with the privileges of the process using libinput. To exploit this, an attacker needs to be able to create a kernel device with a malicious name, e.g. through /dev/uinput or a Bluetooth device. To fix this, convert any potential format directives in the device name by duplicating percentages. Pre-rendering the device to avoid the issue altogether would be nicer but the current log level hooks do not easily allow for this. The device name is the only user-controlled part of the format string. A second potential issue is the sysname of the device which is also sanitized. This issue was found by Albin Eldstål-Ahrens and Benjamin Svensson from Assured AB, and independently by Lukas Lamster. Fixes #752 Signed-off-by: Peter Hutterer <peter.hutterer@who-t.net>
2022-03-30 09:25:22 +10:00
struct strsanitize_test {
const char *string;
const char *expected;
} tests[] = {
{ "foobar", "foobar" },
{ "", "" },
{ "%", "%%" },
{ "%%%%", "%%%%%%%%" },
{ "x %s", "x %%s" },
{ "x %", "x %%" },
{ "%sx", "%%sx" },
{ "%s%s", "%%s%%s" },
{ NULL, NULL },
};
/* clang-format on */
evdev: strip the device name of format directives This fixes a format string vulnerabilty. evdev_log_message() composes a format string consisting of a fixed prefix (including the rendered device name) and the passed-in format buffer. This format string is then passed with the arguments to the actual log handler, which usually and eventually ends up being printf. If the device name contains a printf-style format directive, these ended up in the format string and thus get interpreted correctly, e.g. for a device "Foo%sBar" the log message vs printf invocation ends up being: evdev_log_message(device, "some message %s", "some argument"); printf("event9 - Foo%sBar: some message %s", "some argument"); This can enable an attacker to execute malicious code with the privileges of the process using libinput. To exploit this, an attacker needs to be able to create a kernel device with a malicious name, e.g. through /dev/uinput or a Bluetooth device. To fix this, convert any potential format directives in the device name by duplicating percentages. Pre-rendering the device to avoid the issue altogether would be nicer but the current log level hooks do not easily allow for this. The device name is the only user-controlled part of the format string. A second potential issue is the sysname of the device which is also sanitized. This issue was found by Albin Eldstål-Ahrens and Benjamin Svensson from Assured AB, and independently by Lukas Lamster. Fixes #752 Signed-off-by: Peter Hutterer <peter.hutterer@who-t.net>
2022-03-30 09:25:22 +10:00
for (struct strsanitize_test *t = tests; t->string; t++) {
char *sanitized = str_sanitize(t->string);
litest_assert_str_eq(sanitized, t->expected);
evdev: strip the device name of format directives This fixes a format string vulnerabilty. evdev_log_message() composes a format string consisting of a fixed prefix (including the rendered device name) and the passed-in format buffer. This format string is then passed with the arguments to the actual log handler, which usually and eventually ends up being printf. If the device name contains a printf-style format directive, these ended up in the format string and thus get interpreted correctly, e.g. for a device "Foo%sBar" the log message vs printf invocation ends up being: evdev_log_message(device, "some message %s", "some argument"); printf("event9 - Foo%sBar: some message %s", "some argument"); This can enable an attacker to execute malicious code with the privileges of the process using libinput. To exploit this, an attacker needs to be able to create a kernel device with a malicious name, e.g. through /dev/uinput or a Bluetooth device. To fix this, convert any potential format directives in the device name by duplicating percentages. Pre-rendering the device to avoid the issue altogether would be nicer but the current log level hooks do not easily allow for this. The device name is the only user-controlled part of the format string. A second potential issue is the sysname of the device which is also sanitized. This issue was found by Albin Eldstål-Ahrens and Benjamin Svensson from Assured AB, and independently by Lukas Lamster. Fixes #752 Signed-off-by: Peter Hutterer <peter.hutterer@who-t.net>
2022-03-30 09:25:22 +10:00
free(sanitized);
}
}
END_TEST
START_TEST(list_test_insert)
{
struct list_test {
int val;
struct list node;
} tests[] = {
{ .val = 1 },
{ .val = 2 },
{ .val = 3 },
{ .val = 4 },
};
struct list_test *t;
struct list head;
int val;
list_init(&head);
ARRAY_FOR_EACH(tests, t) {
list_insert(&head, &t->node);
}
val = 4;
list_for_each(t, &head, node) {
litest_assert_int_eq(t->val, val);
val--;
}
litest_assert_int_eq(val, 0);
}
END_TEST
START_TEST(list_test_append)
{
struct list_test {
int val;
struct list node;
} tests[] = {
{ .val = 1 },
{ .val = 2 },
{ .val = 3 },
{ .val = 4 },
};
struct list_test *t;
struct list head;
int val;
list_init(&head);
ARRAY_FOR_EACH(tests, t) {
list_append(&head, &t->node);
}
val = 1;
list_for_each(t, &head, node) {
litest_assert_int_eq(t->val, val);
val++;
}
litest_assert_int_eq(val, 5);
}
END_TEST
START_TEST(list_test_chain)
{
struct list_test {
int val;
struct list node;
} tests[] = {
{ .val = 1 },
{ .val = 2 },
{ .val = 3 },
{ .val = 4 },
};
struct list l1, l2;
struct list_test *t;
int val;
list_init(&l1);
list_init(&l2);
list_chain(&l1, &l2);
litest_assert(list_empty(&l2));
list_append(&l2, &tests[0].node);
list_append(&l2, &tests[1].node);
list_chain(&l1, &l2);
litest_assert(list_empty(&l2));
val = 1;
list_for_each_safe(t, &l1, node) {
litest_assert_int_eq(t->val, val);
val++;
list_remove(&t->node);
}
litest_assert_int_eq(val, 3);
list_append(&l1, &tests[0].node);
list_append(&l1, &tests[1].node);
list_append(&l2, &tests[2].node);
list_append(&l2, &tests[3].node);
list_chain(&l1, &l2);
litest_assert(list_empty(&l2));
val = 1;
list_for_each(t, &l1, node) {
litest_assert_int_eq(t->val, val);
val++;
}
litest_assert_int_eq(val, 5);
}
END_TEST
START_TEST(list_test_foreach)
{
struct list_test {
int val;
struct list node;
} tests[] = {
{ .val = 1 },
{ .val = 2 },
{ .val = 3 },
{ .val = 4 },
};
struct list_test *t;
struct list head;
list_init(&head);
ARRAY_FOR_EACH(tests, t) {
list_append(&head, &t->node);
}
/* Make sure both loop macros are a single line statement */
if (false)
list_for_each(t, &head, node) {
litest_abort_msg("We should not get here");
}
if (false)
list_for_each_safe(t, &head, node) {
litest_abort_msg("We should not get here");
}
}
END_TEST
START_TEST(list_test_first_last)
{
struct list_test {
int val;
struct list node;
} tests[] = {
{ .val = 1 },
{ .val = 2 },
{ .val = 3 },
{ .val = 4 },
};
struct list head;
list_init(&head);
ARRAY_FOR_EACH(tests, t) {
list_append(&head, &t->node);
}
struct list_test *first;
struct list_test *last;
first = list_first_entry(&head, first, node);
last = list_last_entry(&head, last, node);
litest_assert_ptr_eq(first, &tests[0]);
litest_assert_ptr_eq(last, &tests[3]);
struct list_test *second;
struct list_test *penultimate;
second = list_first_entry(&first->node, first, node);
penultimate = list_last_entry(&last->node, last, node);
litest_assert_ptr_eq(second, &tests[1]);
litest_assert_ptr_eq(penultimate, &tests[2]);
/* Now remove nodes */
/* No change expected */
list_remove(&tests[2].node);
first = list_first_entry(&head, first, node);
last = list_last_entry(&head, last, node);
litest_assert_ptr_eq(first, &tests[0]);
litest_assert_ptr_eq(last, &tests[3]);
list_remove(&tests[3].node);
first = list_first_entry(&head, first, node);
last = list_last_entry(&head, last, node);
litest_assert_ptr_eq(first, &tests[0]);
litest_assert_ptr_eq(last, &tests[1]);
list_remove(&tests[0].node);
first = list_first_entry(&head, first, node);
last = list_last_entry(&head, last, node);
litest_assert_ptr_eq(first, &tests[1]);
litest_assert_ptr_eq(last, &tests[1]);
}
END_TEST
START_TEST(strverscmp_test)
{
litest_assert_int_eq(libinput_strverscmp("", ""), 0);
litest_assert_int_gt(libinput_strverscmp("0.0.1", ""), 0);
litest_assert_int_lt(libinput_strverscmp("", "0.0.1"), 0);
litest_assert_int_eq(libinput_strverscmp("0.0.1", "0.0.1"), 0);
litest_assert_int_eq(libinput_strverscmp("0.0.1", "0.0.2"), -1);
litest_assert_int_eq(libinput_strverscmp("0.0.2", "0.0.1"), 1);
litest_assert_int_eq(libinput_strverscmp("0.0.1", "0.1.0"), -1);
litest_assert_int_eq(libinput_strverscmp("0.1.0", "0.0.1"), 1);
}
END_TEST
START_TEST(streq_test)
{
litest_assert(streq("", "") == true);
litest_assert(streq(NULL, NULL) == true);
litest_assert(streq("0.0.1", "") == false);
litest_assert(streq("foo", NULL) == false);
litest_assert(streq(NULL, "foo") == false);
litest_assert(streq("0.0.1", "0.0.1") == true);
}
END_TEST
START_TEST(strneq_test)
{
litest_assert(strneq("", "", 1) == true);
litest_assert(strneq(NULL, NULL, 1) == true);
litest_assert(strneq("0.0.1", "", 6) == false);
litest_assert(strneq("foo", NULL, 5) == false);
litest_assert(strneq(NULL, "foo", 5) == false);
litest_assert(strneq("0.0.1", "0.0.1", 6) == true);
}
END_TEST
START_TEST(basename_test)
{
struct test {
const char *path;
const char *expected;
} tests[] = {
{ "a", "a" },
{ "foo.c", "foo.c" },
{ "foo", "foo" },
{ "/path/to/foo.h", "foo.h" },
{ "../bar.foo", "bar.foo" },
{ "./bar.foo.baz", "bar.foo.baz" },
{ "./", NULL },
{ "/", NULL },
{ "/bar/", NULL },
{ "/bar", "bar" },
{ "", NULL },
};
ARRAY_FOR_EACH(tests, t) {
const char *result = safe_basename(t->path);
if (t->expected == NULL)
litest_assert(result == NULL);
else
litest_assert_str_eq(result, t->expected);
}
}
END_TEST
START_TEST(trunkname_test)
{
struct test {
const char *path;
const char *expected;
} tests[] = {
{ "foo.c", "foo" },
{ "/path/to/foo.h", "foo" },
{ "/path/to/foo", "foo" },
{ "../bar.foo", "bar" },
{ "./bar.foo.baz", "bar.foo" },
{ "./", "" },
{ "/", "" },
{ "/bar/", "" },
{ "/bar", "bar" },
{ "", "" },
};
ARRAY_FOR_EACH(tests, t) {
char *result = trunkname(t->path);
litest_assert_str_eq(result, t->expected);
free(result);
}
}
END_TEST
START_TEST(absinfo_normalize_value_test)
{
struct input_absinfo abs = {
.minimum = 0,
.maximum = 100,
};
litest_assert_double_eq(absinfo_normalize_value(&abs, -100), 0.0);
litest_assert_double_eq(absinfo_normalize_value(&abs, -1), 0.0);
litest_assert_double_eq(absinfo_normalize_value(&abs, 0), 0.0);
litest_assert_double_gt(absinfo_normalize_value(&abs, 1), 0.0);
litest_assert_double_lt(absinfo_normalize_value(&abs, 99), 1.0);
litest_assert_double_eq(absinfo_normalize_value(&abs, 100), 1.0);
litest_assert_double_eq(absinfo_normalize_value(&abs, 101), 1.0);
litest_assert_double_eq(absinfo_normalize_value(&abs, 200), 1.0);
abs.minimum = -50;
abs.maximum = 50;
litest_assert_double_eq(absinfo_normalize_value(&abs, -51), 0.0);
litest_assert_double_eq(absinfo_normalize_value(&abs, -50), 0.0);
litest_assert_double_eq(absinfo_normalize_value(&abs, 0), 0.5);
litest_assert_double_eq(absinfo_normalize_value(&abs, 50), 1.0);
litest_assert_double_eq(absinfo_normalize_value(&abs, 51), 1.0);
abs.minimum = -50;
abs.maximum = 0;
litest_assert_double_eq(absinfo_normalize_value(&abs, -51), 0.0);
litest_assert_double_eq(absinfo_normalize_value(&abs, -50), 0.0);
litest_assert_double_gt(absinfo_normalize_value(&abs, -49), 0.0);
litest_assert_double_lt(absinfo_normalize_value(&abs, -1), 1.0);
litest_assert_double_eq(absinfo_normalize_value(&abs, 0), 1.0);
}
END_TEST
START_TEST(range_test)
{
struct range incl = range_init_inclusive(1, 100);
litest_assert_int_eq(incl.lower, 1);
litest_assert_int_eq(incl.upper, 101);
struct range excl = range_init_exclusive(1, 100);
litest_assert_int_eq(excl.lower, 1);
litest_assert_int_eq(excl.upper, 100);
struct range zero = range_init_exclusive(0, 0);
litest_assert_int_eq(zero.lower, 0);
litest_assert_int_eq(zero.upper, 0);
struct range empty = range_init_empty();
litest_assert_int_eq(empty.lower, 0);
litest_assert_int_eq(empty.upper, -1);
litest_assert(range_is_valid(&incl));
litest_assert(range_is_valid(&excl));
litest_assert(!range_is_valid(&zero));
litest_assert(!range_is_valid(&empty));
int expected = 1;
int r = 0;
range_for_each(&incl, r) {
litest_assert_int_eq(r, expected);
expected++;
}
litest_assert_int_eq(r, 101);
}
END_TEST
START_TEST(stringbuf_test)
{
struct stringbuf buf;
struct stringbuf *b = &buf;
int rc;
stringbuf_init(b);
litest_assert_int_eq(b->len, 0u);
rc = stringbuf_append_string(b, "foo");
litest_assert_neg_errno_success(rc);
rc = stringbuf_append_string(b, "bar");
litest_assert_neg_errno_success(rc);
rc = stringbuf_append_string(b, "baz");
litest_assert_neg_errno_success(rc);
litest_assert_str_eq(b->data, "foobarbaz");
litest_assert_int_eq(b->len, strlen("foobarbaz"));
rc = stringbuf_ensure_space(b, 500);
litest_assert_neg_errno_success(rc);
litest_assert_int_ge(b->sz, 500u);
rc = stringbuf_ensure_size(b, 0);
litest_assert_neg_errno_success(rc);
rc = stringbuf_ensure_size(b, 1024);
litest_assert_neg_errno_success(rc);
litest_assert_int_ge(b->sz, 1024u);
char *data = stringbuf_steal(b);
litest_assert_str_eq(data, "foobarbaz");
litest_assert_int_eq(b->sz, 0u);
litest_assert_int_eq(b->len, 0u);
litest_assert_ptr_null(b->data);
free(data);
const char *str = "1234567890";
rc = stringbuf_append_string(b, str);
litest_assert_neg_errno_success(rc);
litest_assert_str_eq(b->data, str);
litest_assert_int_eq(b->len, 10u);
stringbuf_reset(b);
/* intentional double-reset */
stringbuf_reset(b);
int pipefd[2];
rc = pipe2(pipefd, O_CLOEXEC | O_NONBLOCK);
litest_assert_neg_errno_success(rc);
str = "foo bar baz";
char *compare = NULL;
for (int i = 0; i < 100; i++) {
rc = write(pipefd[1], str, strlen(str));
litest_assert_neg_errno_success(rc);
rc = stringbuf_append_from_fd(b, pipefd[0], 64);
litest_assert_neg_errno_success(rc);
char *expected = strdup_printf("%s%s", compare ? compare : "", str);
litest_assert_ptr_notnull(expected);
litest_assert_str_eq(b->data, expected);
free(compare);
compare = expected;
}
free(compare);
close(pipefd[0]);
close(pipefd[1]);
stringbuf_reset(b);
rc = pipe2(pipefd, O_CLOEXEC | O_NONBLOCK);
litest_assert_neg_errno_success(rc);
const size_t stride = 256;
const size_t maxsize = 4096;
for (size_t i = 0; i < maxsize; i += stride) {
char buf[stride];
memset(buf, i / stride, sizeof(buf));
rc = write(pipefd[1], buf, sizeof(buf));
litest_assert_neg_errno_success(rc);
}
stringbuf_append_from_fd(b, pipefd[0], 0);
litest_assert_int_eq(b->len, maxsize);
litest_assert_int_ge(b->sz, maxsize);
for (size_t i = 0; i < maxsize; i += stride) {
char buf[stride];
memset(buf, i / stride, sizeof(buf));
litest_assert_int_eq(memcmp(buf, b->data + i, sizeof(buf)), 0);
}
close(pipefd[0]);
close(pipefd[1]);
stringbuf_reset(b);
}
END_TEST
START_TEST(multivalue_test)
{
{
struct multivalue v = multivalue_new_string("test");
litest_assert_int_eq(v.type, 's');
litest_assert_str_eq(v.value.s, "test");
const char *s;
multivalue_extract_typed(&v, 's', &s);
litest_assert_str_eq(s, "test");
litest_assert_ptr_eq(s, (const char *)v.value.s);
multivalue_extract(&v, &s);
litest_assert_str_eq(s, "test");
litest_assert_ptr_eq(s, (const char *)v.value.s);
struct multivalue copy = multivalue_copy(&v);
litest_assert_int_eq(copy.type, v.type);
litest_assert_str_eq(copy.value.s, v.value.s);
char *p1 = copy.value.s;
char *p2 = v.value.s;
litest_assert_ptr_ne(p1, p2);
test: implement support for parametrizing tests litest supports ranged tests but they are not enough, doubly so with tests where we want to parametrize across multiple options. This patch adds support for just that, in clunky C style. The typical invocation for a test is by giving the test parameter a name, a number of values and then the values themselves: struct litest_parameters *params = litest_parameters_new("axis", 's', 2, "ABS_X", "ABS_Y", "enabled", 'b', '2', true, false, "number", 'u', '2', 10, 11, NULL); litest_add_parametrized(sometest, LITEST_ANY, LITEST_ANY, params); litest_parameters_unref(params); Currently supported are u (uint32), i (int32), d (double), b (bool), c (char) and s (string). In the test itself, the `test_env->params` variable is available and retrieval of the parameters works like this: const char *axis; uint32_t number; bool enabled; litest_test_param_fetch(test_env->params, "axis", &axis, "enabled", &enabled, "number", &number, NULL); Note that since this is an effectively internal test-suite only functionality we don't do type-checking here, it's assumed that if you write the code to pass parameters into a test you remember the type of said params when you write the test code. Because we don't have hashmaps or anything useful other than lists the implementation is a bit clunky: we copy the parameter into the test during litest_add_*, permutate it for our test list which gives us yet another linked list C struct, and finally copy the actual value into the test and test environment as it's executed. Not pretty, but it works. A few tests are switched as simple demonstration. The name of the test has the parameters with their names and values appended now, e.g.: "pointer:pointer_scroll_wheel_hires_send_only_lores:ms-surface-cover:axis:ABS_X" "pointer:pointer_motion_relative_min_decel:mouse-roccat:direction:NW" Filtering by parameters can be done via globs of their string representation: libinput-test-suite --filter-params="axis:ABS_*,enabled:true,number:10*" Part-of: <https://gitlab.freedesktop.org/libinput/libinput/-/merge_requests/1109>
2024-12-22 00:06:19 +10:00
char *str = multivalue_as_str(&v);
litest_assert_str_eq(str, "test");
free(str);
}
{
struct multivalue v = multivalue_new_char('x');
litest_assert_int_eq(v.type, 'c');
litest_assert_int_eq(v.value.c, 'x');
char c;
multivalue_extract_typed(&v, 'c', &c);
litest_assert_int_eq(c, 'x');
multivalue_extract(&v, &c);
litest_assert_int_eq(c, 'x');
struct multivalue copy = multivalue_copy(&v);
litest_assert_int_eq(copy.type, v.type);
litest_assert_int_eq(copy.value.c, v.value.c);
test: implement support for parametrizing tests litest supports ranged tests but they are not enough, doubly so with tests where we want to parametrize across multiple options. This patch adds support for just that, in clunky C style. The typical invocation for a test is by giving the test parameter a name, a number of values and then the values themselves: struct litest_parameters *params = litest_parameters_new("axis", 's', 2, "ABS_X", "ABS_Y", "enabled", 'b', '2', true, false, "number", 'u', '2', 10, 11, NULL); litest_add_parametrized(sometest, LITEST_ANY, LITEST_ANY, params); litest_parameters_unref(params); Currently supported are u (uint32), i (int32), d (double), b (bool), c (char) and s (string). In the test itself, the `test_env->params` variable is available and retrieval of the parameters works like this: const char *axis; uint32_t number; bool enabled; litest_test_param_fetch(test_env->params, "axis", &axis, "enabled", &enabled, "number", &number, NULL); Note that since this is an effectively internal test-suite only functionality we don't do type-checking here, it's assumed that if you write the code to pass parameters into a test you remember the type of said params when you write the test code. Because we don't have hashmaps or anything useful other than lists the implementation is a bit clunky: we copy the parameter into the test during litest_add_*, permutate it for our test list which gives us yet another linked list C struct, and finally copy the actual value into the test and test environment as it's executed. Not pretty, but it works. A few tests are switched as simple demonstration. The name of the test has the parameters with their names and values appended now, e.g.: "pointer:pointer_scroll_wheel_hires_send_only_lores:ms-surface-cover:axis:ABS_X" "pointer:pointer_motion_relative_min_decel:mouse-roccat:direction:NW" Filtering by parameters can be done via globs of their string representation: libinput-test-suite --filter-params="axis:ABS_*,enabled:true,number:10*" Part-of: <https://gitlab.freedesktop.org/libinput/libinput/-/merge_requests/1109>
2024-12-22 00:06:19 +10:00
char *str = multivalue_as_str(&v);
litest_assert_str_eq(str, "x");
free(str);
}
{
struct multivalue v = multivalue_new_u32(0x1234);
litest_assert_int_eq(v.type, 'u');
litest_assert_int_eq(v.value.u, 0x1234u);
uint32_t c;
multivalue_extract_typed(&v, 'u', &c);
litest_assert_int_eq(c, 0x1234u);
multivalue_extract(&v, &c);
litest_assert_int_eq(c, 0x1234u);
struct multivalue copy = multivalue_copy(&v);
litest_assert_int_eq(copy.type, v.type);
litest_assert_int_eq(copy.value.u, v.value.u);
test: implement support for parametrizing tests litest supports ranged tests but they are not enough, doubly so with tests where we want to parametrize across multiple options. This patch adds support for just that, in clunky C style. The typical invocation for a test is by giving the test parameter a name, a number of values and then the values themselves: struct litest_parameters *params = litest_parameters_new("axis", 's', 2, "ABS_X", "ABS_Y", "enabled", 'b', '2', true, false, "number", 'u', '2', 10, 11, NULL); litest_add_parametrized(sometest, LITEST_ANY, LITEST_ANY, params); litest_parameters_unref(params); Currently supported are u (uint32), i (int32), d (double), b (bool), c (char) and s (string). In the test itself, the `test_env->params` variable is available and retrieval of the parameters works like this: const char *axis; uint32_t number; bool enabled; litest_test_param_fetch(test_env->params, "axis", &axis, "enabled", &enabled, "number", &number, NULL); Note that since this is an effectively internal test-suite only functionality we don't do type-checking here, it's assumed that if you write the code to pass parameters into a test you remember the type of said params when you write the test code. Because we don't have hashmaps or anything useful other than lists the implementation is a bit clunky: we copy the parameter into the test during litest_add_*, permutate it for our test list which gives us yet another linked list C struct, and finally copy the actual value into the test and test environment as it's executed. Not pretty, but it works. A few tests are switched as simple demonstration. The name of the test has the parameters with their names and values appended now, e.g.: "pointer:pointer_scroll_wheel_hires_send_only_lores:ms-surface-cover:axis:ABS_X" "pointer:pointer_motion_relative_min_decel:mouse-roccat:direction:NW" Filtering by parameters can be done via globs of their string representation: libinput-test-suite --filter-params="axis:ABS_*,enabled:true,number:10*" Part-of: <https://gitlab.freedesktop.org/libinput/libinput/-/merge_requests/1109>
2024-12-22 00:06:19 +10:00
char *str = multivalue_as_str(&v);
litest_assert_str_eq(str, "4660");
free(str);
}
{
struct multivalue v = multivalue_new_i32(-123);
litest_assert_int_eq(v.type, 'i');
litest_assert_int_eq(v.value.i, -123);
int32_t c;
multivalue_extract_typed(&v, 'i', &c);
litest_assert_int_eq(c, -123);
multivalue_extract(&v, &c);
litest_assert_int_eq(c, -123);
struct multivalue copy = multivalue_copy(&v);
litest_assert_int_eq(copy.type, v.type);
litest_assert_int_eq(copy.value.i, v.value.i);
test: implement support for parametrizing tests litest supports ranged tests but they are not enough, doubly so with tests where we want to parametrize across multiple options. This patch adds support for just that, in clunky C style. The typical invocation for a test is by giving the test parameter a name, a number of values and then the values themselves: struct litest_parameters *params = litest_parameters_new("axis", 's', 2, "ABS_X", "ABS_Y", "enabled", 'b', '2', true, false, "number", 'u', '2', 10, 11, NULL); litest_add_parametrized(sometest, LITEST_ANY, LITEST_ANY, params); litest_parameters_unref(params); Currently supported are u (uint32), i (int32), d (double), b (bool), c (char) and s (string). In the test itself, the `test_env->params` variable is available and retrieval of the parameters works like this: const char *axis; uint32_t number; bool enabled; litest_test_param_fetch(test_env->params, "axis", &axis, "enabled", &enabled, "number", &number, NULL); Note that since this is an effectively internal test-suite only functionality we don't do type-checking here, it's assumed that if you write the code to pass parameters into a test you remember the type of said params when you write the test code. Because we don't have hashmaps or anything useful other than lists the implementation is a bit clunky: we copy the parameter into the test during litest_add_*, permutate it for our test list which gives us yet another linked list C struct, and finally copy the actual value into the test and test environment as it's executed. Not pretty, but it works. A few tests are switched as simple demonstration. The name of the test has the parameters with their names and values appended now, e.g.: "pointer:pointer_scroll_wheel_hires_send_only_lores:ms-surface-cover:axis:ABS_X" "pointer:pointer_motion_relative_min_decel:mouse-roccat:direction:NW" Filtering by parameters can be done via globs of their string representation: libinput-test-suite --filter-params="axis:ABS_*,enabled:true,number:10*" Part-of: <https://gitlab.freedesktop.org/libinput/libinput/-/merge_requests/1109>
2024-12-22 00:06:19 +10:00
char *str = multivalue_as_str(&v);
litest_assert_str_eq(str, "-123");
free(str);
}
{
struct multivalue v = multivalue_new_bool(true);
litest_assert_int_eq(v.type, 'b');
litest_assert_int_eq(v.value.b, true);
bool c;
multivalue_extract_typed(&v, 'b', &c);
litest_assert_int_eq(c, true);
multivalue_extract(&v, &c);
litest_assert_int_eq(c, true);
struct multivalue copy = multivalue_copy(&v);
litest_assert_int_eq(copy.type, v.type);
litest_assert_int_eq(copy.value.b, v.value.b);
test: implement support for parametrizing tests litest supports ranged tests but they are not enough, doubly so with tests where we want to parametrize across multiple options. This patch adds support for just that, in clunky C style. The typical invocation for a test is by giving the test parameter a name, a number of values and then the values themselves: struct litest_parameters *params = litest_parameters_new("axis", 's', 2, "ABS_X", "ABS_Y", "enabled", 'b', '2', true, false, "number", 'u', '2', 10, 11, NULL); litest_add_parametrized(sometest, LITEST_ANY, LITEST_ANY, params); litest_parameters_unref(params); Currently supported are u (uint32), i (int32), d (double), b (bool), c (char) and s (string). In the test itself, the `test_env->params` variable is available and retrieval of the parameters works like this: const char *axis; uint32_t number; bool enabled; litest_test_param_fetch(test_env->params, "axis", &axis, "enabled", &enabled, "number", &number, NULL); Note that since this is an effectively internal test-suite only functionality we don't do type-checking here, it's assumed that if you write the code to pass parameters into a test you remember the type of said params when you write the test code. Because we don't have hashmaps or anything useful other than lists the implementation is a bit clunky: we copy the parameter into the test during litest_add_*, permutate it for our test list which gives us yet another linked list C struct, and finally copy the actual value into the test and test environment as it's executed. Not pretty, but it works. A few tests are switched as simple demonstration. The name of the test has the parameters with their names and values appended now, e.g.: "pointer:pointer_scroll_wheel_hires_send_only_lores:ms-surface-cover:axis:ABS_X" "pointer:pointer_motion_relative_min_decel:mouse-roccat:direction:NW" Filtering by parameters can be done via globs of their string representation: libinput-test-suite --filter-params="axis:ABS_*,enabled:true,number:10*" Part-of: <https://gitlab.freedesktop.org/libinput/libinput/-/merge_requests/1109>
2024-12-22 00:06:19 +10:00
char *str = multivalue_as_str(&v);
litest_assert_str_eq(str, "true");
free(str);
}
{
struct multivalue v = multivalue_new_double(0.1234);
litest_assert_int_eq(v.type, 'd');
litest_assert_double_eq(v.value.d, 0.1234);
double c;
multivalue_extract_typed(&v, 'd', &c);
litest_assert_double_eq(c, 0.1234);
multivalue_extract(&v, &c);
litest_assert_double_eq(c, 0.1234);
struct multivalue copy = multivalue_copy(&v);
litest_assert_int_eq(copy.type, v.type);
litest_assert_double_eq(copy.value.d, v.value.d);
test: implement support for parametrizing tests litest supports ranged tests but they are not enough, doubly so with tests where we want to parametrize across multiple options. This patch adds support for just that, in clunky C style. The typical invocation for a test is by giving the test parameter a name, a number of values and then the values themselves: struct litest_parameters *params = litest_parameters_new("axis", 's', 2, "ABS_X", "ABS_Y", "enabled", 'b', '2', true, false, "number", 'u', '2', 10, 11, NULL); litest_add_parametrized(sometest, LITEST_ANY, LITEST_ANY, params); litest_parameters_unref(params); Currently supported are u (uint32), i (int32), d (double), b (bool), c (char) and s (string). In the test itself, the `test_env->params` variable is available and retrieval of the parameters works like this: const char *axis; uint32_t number; bool enabled; litest_test_param_fetch(test_env->params, "axis", &axis, "enabled", &enabled, "number", &number, NULL); Note that since this is an effectively internal test-suite only functionality we don't do type-checking here, it's assumed that if you write the code to pass parameters into a test you remember the type of said params when you write the test code. Because we don't have hashmaps or anything useful other than lists the implementation is a bit clunky: we copy the parameter into the test during litest_add_*, permutate it for our test list which gives us yet another linked list C struct, and finally copy the actual value into the test and test environment as it's executed. Not pretty, but it works. A few tests are switched as simple demonstration. The name of the test has the parameters with their names and values appended now, e.g.: "pointer:pointer_scroll_wheel_hires_send_only_lores:ms-surface-cover:axis:ABS_X" "pointer:pointer_motion_relative_min_decel:mouse-roccat:direction:NW" Filtering by parameters can be done via globs of their string representation: libinput-test-suite --filter-params="axis:ABS_*,enabled:true,number:10*" Part-of: <https://gitlab.freedesktop.org/libinput/libinput/-/merge_requests/1109>
2024-12-22 00:06:19 +10:00
char *str = multivalue_as_str(&v);
litest_assert_str_eq(str, "0.123400");
free(str);
}
}
END_TEST
DECLARE_NEWTYPE(newint, int);
DECLARE_NEWTYPE(newdouble, double);
START_TEST(newtype_test)
{
{
newint_t n1 = newint_from_int(1);
newint_t n2 = newint_from_int(2);
litest_assert_int_eq(newint(n1), 1);
litest_assert_int_eq(newint_as_int(n1), 1);
litest_assert_int_eq(newint(n2), 2);
litest_assert_int_eq(newint_as_int(n2), 2);
litest_assert_int_eq(newint_cmp(n1, n2), -1);
litest_assert_int_eq(newint_cmp(n1, n1), 0);
litest_assert_int_eq(newint_cmp(n2, n1), 1);
newint_t copy = newint_copy(n1);
litest_assert_int_eq(newint_cmp(n1, copy), 0);
newint_t min = newint_min(n1, n2);
newint_t max = newint_max(n1, n2);
litest_assert_int_eq(newint_cmp(min, n1), 0);
litest_assert_int_eq(newint_cmp(max, n2), 0);
litest_assert(newint_gt(n1, 0));
litest_assert(newint_eq(n1, 1));
litest_assert(newint_ge(n1, 1));
litest_assert(newint_le(n1, 1));
litest_assert(newint_ne(n1, 2));
litest_assert(newint_lt(n1, 2));
litest_assert(!newint_gt(n1, 1));
litest_assert(!newint_eq(n1, 0));
litest_assert(!newint_ge(n1, 2));
litest_assert(!newint_le(n1, 0));
litest_assert(!newint_ne(n1, 1));
litest_assert(!newint_lt(n1, 1));
}
{
newdouble_t n1 = newdouble_from_double(1.2);
newdouble_t n2 = newdouble_from_double(2.3);
litest_assert_double_eq(newdouble(n1), 1.2);
litest_assert_double_eq(newdouble_as_double(n1), 1.2);
litest_assert_double_eq(newdouble(n2), 2.3);
litest_assert_double_eq(newdouble_as_double(n2), 2.3);
litest_assert_int_eq(newdouble_cmp(n1, n2), -1);
litest_assert_int_eq(newdouble_cmp(n1, n1), 0);
litest_assert_int_eq(newdouble_cmp(n2, n1), 1);
newdouble_t copy = newdouble_copy(n1);
litest_assert_int_eq(newdouble_cmp(n1, copy), 0);
newdouble_t min = newdouble_min(n1, n2);
newdouble_t max = newdouble_max(n1, n2);
litest_assert_int_eq(newdouble_cmp(min, n1), 0);
litest_assert_int_eq(newdouble_cmp(max, n2), 0);
litest_assert(newdouble_gt(n1, 0.0));
litest_assert(newdouble_eq(n1, 1.2));
litest_assert(newdouble_ge(n1, 1.2));
litest_assert(newdouble_le(n1, 1.2));
litest_assert(newdouble_ne(n1, 2.3));
litest_assert(newdouble_lt(n1, 2.3));
litest_assert(!newdouble_gt(n1, 1.2));
litest_assert(!newdouble_eq(n1, 0.0));
litest_assert(!newdouble_ge(n1, 2.3));
litest_assert(!newdouble_le(n1, 0.0));
litest_assert(!newdouble_ne(n1, 1.2));
litest_assert(!newdouble_lt(n1, 1.2));
}
}
END_TEST
struct sunref {};
struct sdestroy {};
struct sfree {};
static void
sunref_unref(struct sunref *s)
{
free(s);
}
static void
sdestroy_destroy(struct sdestroy *s)
{
free(s);
}
static void
sfree_free(struct sfree *s)
{
free(s);
}
DEFINE_UNREF_CLEANUP_FUNC(sunref);
DEFINE_DESTROY_CLEANUP_FUNC(sdestroy);
DEFINE_FREE_CLEANUP_FUNC(sfree);
START_TEST(attribute_cleanup)
{
/* These tests will likely only show up in valgrind,
* the various asserts are just to shut up the compiler
* about unused variables
*/
{
_autofree_ char *autofree = zalloc(64);
litest_assert(autofree);
}
{
_autofree_ char *stolen = zalloc(64);
free(steal(&stolen));
}
{
_autoclose_ int fd = open("/proc/self/cmdline", O_RDONLY);
litest_assert_int_ge(fd, 0);
_autoclose_ int badfd = -1;
litest_assert_int_eq(badfd, -1);
_autoclose_ int stealfd = open("/proc/self/cmdline", O_RDONLY);
steal_fd(&stealfd);
litest_assert_int_eq(stealfd, -1);
}
{
_autostrvfree_ char **strv = zalloc(3 * sizeof(*strv));
for (int i = 0; i < 2; i++) {
strv[i] = strdup_printf("element %d", i);
}
_autostrvfree_ char **badstrv = NULL;
litest_assert_ptr_null(badstrv);
}
{
_autofclose_ FILE *fp = fopen("/proc/self/cmdline", "r");
litest_assert_ptr_notnull(fp);
_autofclose_ FILE *badfd = NULL;
litest_assert_ptr_null(badfd);
}
{
_unref_(sunref) *s = zalloc(sizeof(*s));
}
{
_destroy_(sdestroy) *s = zalloc(sizeof(*s));
}
{
_free_(sfree) *s = zalloc(sizeof(*s));
}
}
END_TEST
START_TEST(macros_expand)
{
#define _A1(_1) _1, #_1
#define _A2(_1, _2) _1, _2
#define A(...) _VARIABLE_MACRO(_A, __VA_ARGS__)
char buf[64];
snprintf(buf, sizeof(buf), "%d:%s", A(0));
litest_assert_str_eq(buf, "0:0");
snprintf(buf, sizeof(buf), "%d:%s", A(100));
litest_assert_str_eq(buf, "100:100");
snprintf(buf, sizeof(buf), "%d:%s", A(100, "hundred"));
litest_assert_str_eq(buf, "100:hundred");
#undef _A1
#undef _A2
#undef A
}
END_TEST
START_TEST(evdev_frames)
{
#define U(u_) evdev_usage_from_uint32_t(u_)
{
evdev_frame_unref(NULL); /* unref on NULL is permitted */
}
{
_unref_(evdev_frame) *frame = evdev_frame_new(3);
litest_assert_int_eq(evdev_frame_get_count(frame), 1U); /* SYN_REPORT */
litest_assert_ptr_eq(evdev_frame_ref(frame), frame);
litest_assert_ptr_eq(evdev_frame_unref(frame), NULL);
}
{
_unref_(evdev_frame) *frame = evdev_frame_new(3);
struct evdev_event toobig[] = {
{
.usage = U(EVDEV_ABS_X),
.value = 1,
},
{
.usage = U(EVDEV_ABS_Y),
.value = 2,
},
{
.usage = U(EVDEV_ABS_Z),
.value = 3,
},
{
.usage = U(EVDEV_SYN_REPORT),
.value = 0,
},
};
int rc = evdev_frame_set(frame, toobig, ARRAY_LENGTH(toobig));
litest_assert_int_eq(rc, -ENOMEM);
}
{
struct evdev_event events[] = {
{
.usage = U(EVDEV_ABS_X),
.value = 1,
},
{
.usage = U(EVDEV_ABS_Y),
.value = 2,
},
{
.usage = U(EVDEV_SYN_REPORT),
.value = 0,
},
};
_unref_(evdev_frame) *frame = evdev_frame_new(3);
int rc = evdev_frame_set(frame, events, ARRAY_LENGTH(events));
litest_assert_neg_errno_success(rc);
litest_assert_int_eq(evdev_frame_get_count(frame),
ARRAY_LENGTH(events));
litest_assert_int_eq(frame->max_size, ARRAY_LENGTH(events));
size_t nevents;
rc = memcmp(evdev_frame_get_events(frame, &nevents),
events,
sizeof(events));
litest_assert_int_eq(rc, 0);
litest_assert_int_eq(nevents, ARRAY_LENGTH(events));
/* Already full, can't append */
rc = evdev_frame_append(frame, events, 1);
litest_assert_int_eq(rc, -ENOMEM);
}
{
struct evdev_event events[] = {
{
.usage = U(EVDEV_ABS_X),
.value = 1,
},
{
.usage = U(EVDEV_ABS_Y),
.value = 2,
},
{
.usage = U(EVDEV_SYN_REPORT),
.value = 0,
},
};
_unref_(evdev_frame) *frame = evdev_frame_new(3);
int rc = evdev_frame_set(frame, events, 1);
litest_assert_neg_errno_success(rc);
litest_assert_int_eq(evdev_frame_get_count(frame),
2U); /* we appended SYN_REPORT */
rc = evdev_frame_append(frame, events + 1, 1);
litest_assert_neg_errno_success(rc);
litest_assert_int_eq(evdev_frame_get_count(frame),
3U); /* we appended SYN_REPORT */
rc = evdev_frame_append(frame, events + 2, 1);
litest_assert_neg_errno_success(rc);
litest_assert_int_eq(evdev_frame_get_count(frame),
3U); /* SYN_REPORT already there */
}
{
struct evdev_event interrupted[] = {
{
.usage = U(EVDEV_ABS_X),
.value = 1,
},
{
.usage = U(EVDEV_ABS_Y),
.value = 2,
},
{
.usage = U(EVDEV_SYN_REPORT),
.value = 0,
},
{
.usage = U(EVDEV_ABS_RX),
.value = 1,
},
{
.usage = U(EVDEV_ABS_RY),
.value = 2,
},
{
.usage = U(EVDEV_SYN_REPORT),
.value = 0,
},
};
_unref_(evdev_frame) *frame = evdev_frame_new(5);
int rc = evdev_frame_set(frame, interrupted, ARRAY_LENGTH(interrupted));
litest_assert_neg_errno_success(rc);
litest_assert_int_eq(evdev_frame_get_count(frame), 3U);
rc = evdev_frame_set(frame, &interrupted[2], 1);
litest_assert_neg_errno_success(rc);
litest_assert_int_eq(evdev_frame_get_count(frame), 1U);
rc = evdev_frame_set(frame,
&interrupted[1],
ARRAY_LENGTH(interrupted) - 1);
litest_assert_neg_errno_success(rc);
litest_assert_int_eq(evdev_frame_get_count(frame), 2U);
/* We never appended a timestamp */
litest_assert(usec_cmp(evdev_frame_get_time(frame),
usec_from_uint64_t(0)) == 0);
}
{
struct evdev_event events[] = {
{
.usage = U(EVDEV_ABS_X),
.value = 1,
},
{
.usage = U(EVDEV_ABS_Y),
.value = 2,
},
{
.usage = U(EVDEV_SYN_REPORT),
.value = 0,
},
};
_unref_(evdev_frame) *frame = evdev_frame_new(3);
int rc = evdev_frame_append_one(frame, U(EVDEV_ABS_X), 1);
litest_assert_neg_errno_success(rc);
rc = evdev_frame_append_one(frame, U(EVDEV_ABS_Y), 2);
litest_assert_neg_errno_success(rc);
rc = evdev_frame_append_one(frame, U(EV_SYN), 0);
litest_assert_neg_errno_success(rc);
litest_assert_int_eq(evdev_frame_get_count(frame),
ARRAY_LENGTH(events));
litest_assert_int_eq(frame->max_size, ARRAY_LENGTH(events));
size_t nevents;
rc = memcmp(evdev_frame_get_events(frame, &nevents),
events,
sizeof(events));
litest_assert_int_eq(rc, 0);
litest_assert_int_eq(nevents, ARRAY_LENGTH(events));
/* Already full, can't append */
rc = evdev_frame_append_one(frame, U(EVDEV_ABS_Z), 1);
litest_assert_int_eq(rc, -ENOMEM);
/* Appending SYN_REPORT is a noop */
rc = evdev_frame_append_one(frame, U(EVDEV_SYN_REPORT), 0);
litest_assert_neg_errno_success(rc);
litest_assert_int_eq(evdev_frame_get_count(frame),
ARRAY_LENGTH(events));
litest_assert_int_eq(frame->max_size, ARRAY_LENGTH(events));
}
}
END_TEST
START_TEST(infmask_test)
{
/* Test empty mask */
infmask_t empty = infmask_new();
litest_assert(infmask_is_empty(&empty));
litest_assert(!infmask_bit_is_set(&empty, 0));
litest_assert(!infmask_bit_is_set(&empty, 100));
infmask_reset(&empty);
/* Test single bit operations */
infmask_t single = infmask_new();
litest_assert(!infmask_set_bit(&single, 5));
litest_assert(infmask_bit_is_set(&single, 5));
litest_assert(!infmask_bit_is_set(&single, 4));
litest_assert(!infmask_bit_is_set(&single, 6));
litest_assert(!infmask_is_empty(&single));
litest_assert(infmask_clear_bit(&single, 5));
litest_assert(!infmask_bit_is_set(&single, 5));
litest_assert(infmask_is_empty(&single));
infmask_reset(&single);
/* Test from_bit constructor */
infmask_t from_bit = infmask_from_bit(7);
litest_assert(infmask_bit_is_set(&from_bit, 7));
litest_assert(!infmask_bit_is_set(&from_bit, 6));
litest_assert(!infmask_bit_is_set(&from_bit, 8));
infmask_reset(&from_bit);
/* Test from_bits constructor */
infmask_t from_bits = infmask_from_bits(1, 3, 5);
litest_assert(infmask_bit_is_set(&from_bits, 1));
litest_assert(!infmask_bit_is_set(&from_bits, 2));
litest_assert(infmask_bit_is_set(&from_bits, 3));
litest_assert(!infmask_bit_is_set(&from_bits, 4));
litest_assert(infmask_bit_is_set(&from_bits, 5));
infmask_reset(&from_bits);
/* Test high bit operations */
infmask_t high = infmask_new();
litest_assert(!infmask_set_bit(&high, 100));
litest_assert(infmask_bit_is_set(&high, 100));
litest_assert(!infmask_bit_is_set(&high, 99));
litest_assert(!infmask_bit_is_set(&high, 101));
litest_assert(infmask_clear_bit(&high, 100));
litest_assert(!infmask_bit_is_set(&high, 100));
infmask_reset(&high);
/* Test any/all operations */
infmask_t mask1 = infmask_from_bits(1, 2, 3);
infmask_t mask2 = infmask_from_bits(2, 3, 4);
infmask_t mask3 = infmask_from_bits(2, 3);
litest_assert(infmask_any(&mask1, &mask2));
litest_assert(!infmask_all(&mask1, &mask2));
litest_assert(infmask_all(&mask1, &mask3));
litest_assert(infmask_any(&mask1, &mask3));
infmask_reset(&mask1);
infmask_reset(&mask2);
infmask_reset(&mask3);
/* Test merge operation */
infmask_t merge1 = infmask_from_bits(1, 2);
infmask_t merge2 = infmask_from_bits(2, 3);
litest_assert(!infmask_merge(&merge1, &merge2));
litest_assert(infmask_bit_is_set(&merge1, 1));
litest_assert(infmask_bit_is_set(&merge1, 2));
litest_assert(infmask_bit_is_set(&merge1, 3));
infmask_reset(&merge1);
infmask_reset(&merge2);
/* Test clear operation */
infmask_t clear1 = infmask_from_bits(1, 2, 3);
infmask_t clear2 = infmask_from_bits(2, 3);
litest_assert(infmask_clear(&clear1, &clear2));
litest_assert(infmask_bit_is_set(&clear1, 1));
litest_assert(!infmask_bit_is_set(&clear1, 2));
litest_assert(!infmask_bit_is_set(&clear1, 3));
infmask_reset(&clear1);
infmask_reset(&clear2);
/* Test growing behavior */
infmask_t grow = infmask_new();
litest_assert(!infmask_set_bit(&grow, 5));
litest_assert(grow.nmasks == 1);
litest_assert(!infmask_set_bit(&grow, 35));
litest_assert(grow.nmasks == 2);
litest_assert(!infmask_set_bit(&grow, 65));
litest_assert(grow.nmasks == 3);
litest_assert(infmask_bit_is_set(&grow, 5));
litest_assert(infmask_bit_is_set(&grow, 35));
litest_assert(infmask_bit_is_set(&grow, 65));
infmask_reset(&grow);
}
END_TEST
START_TEST(evdev_mask_test)
{
_destroy_(evdev_mask) *mask = evdev_mask_new();
evdev_mask_reset(mask);
litest_assert(bitmask_is_empty(mask->ev));
litest_assert(bitmask_is_empty(mask->rel));
litest_assert(bitmask_is_empty(mask->sw));
litest_assert(infmask_is_empty(&mask->key));
litest_assert(infmask_is_empty(&mask->btn));
litest_assert(infmask_is_empty(&mask->abs));
evdev_mask_set_enum(mask, EVDEV_BTN_TOOL_PEN);
evdev_mask_set_enum(mask, EVDEV_BTN_TOOL_AIRBRUSH);
litest_assert(bitmask_bit_is_set(mask->ev, EV_KEY));
/* Verify these are in btn, not key */
litest_assert(!infmask_is_empty(&mask->btn));
litest_assert(infmask_is_empty(&mask->key));
litest_assert(evdev_mask_is_set(mask, evdev_usage_from(EVDEV_BTN_TOOL_PEN)));
litest_assert(
!evdev_mask_is_set(mask, evdev_usage_from(EVDEV_BTN_TOOL_RUBBER)));
litest_assert(
evdev_mask_is_set(mask, evdev_usage_from(EVDEV_BTN_TOOL_AIRBRUSH)));
/* Test regular key (should go into key field) */
evdev_mask_set_enum(mask, EVDEV_KEY_ESC);
litest_assert(!infmask_is_empty(&mask->key));
litest_assert(evdev_mask_is_set(mask, evdev_usage_from(EVDEV_KEY_ESC)));
evdev_mask_set_enum(mask, EVDEV_REL_X);
litest_assert(bitmask_bit_is_set(mask->ev, EV_REL));
litest_assert(bitmask_bit_is_set(mask->rel, REL_X));
litest_assert(evdev_mask_is_set(mask, evdev_usage_from(EVDEV_REL_X)));
evdev_mask_set_enum(mask, EVDEV_ABS_X);
litest_assert(bitmask_bit_is_set(mask->ev, EV_ABS));
litest_assert(!infmask_is_empty(&mask->abs));
litest_assert(evdev_mask_is_set(mask, evdev_usage_from(EVDEV_ABS_X)));
}
END_TEST
int
main(void)
{
struct litest_runner *runner = litest_runner_new();
/* not worth forking the tests here */
litest_runner_set_num_parallel(runner, 0);
#define ADD_TEST(func_) do { \
struct litest_runner_test_description tdesc = { \
.func = func_, \
};\
snprintf(tdesc.name, sizeof(tdesc.name), # func_); \
litest_runner_add_test(runner, &tdesc); \
} while(0)
ADD_TEST(auto_test);
ADD_TEST(mkdir_p_test);
ADD_TEST(rmdir_r_test);
ADD_TEST(tmpdir_test);
ADD_TEST(find_files_test);
ADD_TEST(array_for_each);
ADD_TEST(bitfield_helpers);
ADD_TEST(bitmask_test);
ADD_TEST(matrix_helpers);
ADD_TEST(ratelimit_helpers);
ADD_TEST(dpi_parser);
ADD_TEST(wheel_click_parser);
ADD_TEST(wheel_click_count_parser);
ADD_TEST(dimension_prop_parser);
ADD_TEST(reliability_prop_parser);
ADD_TEST(calibration_prop_parser);
ADD_TEST(range_prop_parser);
ADD_TEST(boolean_prop_parser);
ADD_TEST(evcode_prop_parser);
ADD_TEST(input_prop_parser);
ADD_TEST(evdev_abs_parser);
ADD_TEST(safe_atoi_test);
ADD_TEST(safe_atoi_base_16_test);
ADD_TEST(safe_atoi_base_8_test);
ADD_TEST(safe_atou_test);
ADD_TEST(safe_atou_base_16_test);
ADD_TEST(safe_atou_base_8_test);
ADD_TEST(safe_atou64_test);
ADD_TEST(safe_atod_test);
ADD_TEST(strsplit_test);
ADD_TEST(strv_for_each_test);
ADD_TEST(strv_append_test);
ADD_TEST(strv_find_test);
ADD_TEST(strv_find_substring_test);
ADD_TEST(double_array_from_string_test);
ADD_TEST(strargv_test);
ADD_TEST(kvsplit_double_test);
ADD_TEST(strjoin_test);
ADD_TEST(strstrip_test);
ADD_TEST(strendswith_test);
ADD_TEST(strstartswith_test);
ADD_TEST(strsanitize_test);
ADD_TEST(time_conversion);
ADD_TEST(human_time);
ADD_TEST(list_test_insert);
ADD_TEST(list_test_append);
ADD_TEST(list_test_foreach);
ADD_TEST(list_test_first_last);
ADD_TEST(list_test_chain);
ADD_TEST(strverscmp_test);
ADD_TEST(streq_test);
ADD_TEST(strneq_test);
ADD_TEST(trunkname_test);
ADD_TEST(basename_test);
ADD_TEST(absinfo_normalize_value_test);
ADD_TEST(range_test);
ADD_TEST(stringbuf_test);
ADD_TEST(multivalue_test);
ADD_TEST(newtype_test);
ADD_TEST(attribute_cleanup);
ADD_TEST(macros_expand);
ADD_TEST(evdev_frames);
ADD_TEST(infmask_test);
ADD_TEST(evdev_mask_test);
enum litest_runner_result result = litest_runner_run_tests(runner);
litest_runner_destroy(runner);
if (result == LITEST_SKIP)
return 77;
return result - LITEST_PASS;
}