libinput/test/test-utils.c

1764 lines
42 KiB
C
Raw Normal View History

/*
* Copyright © 2014 Red Hat, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
#include <config.h>
#include <check.h>
#include <valgrind/valgrind.h>
#include "util-list.h"
#include "util-strings.h"
#include "util-time.h"
#include "util-prop-parsers.h"
#include "util-macros.h"
#include "util-bits.h"
#include "util-ratelimit.h"
#include "util-matrix.h"
#include "util-input-event.h"
#define TEST_VERSIONSORT
#include "libinput-versionsort.h"
#include "check-double-macros.h"
START_TEST(array_for_each)
{
int ai[6];
char ac[10];
struct as {
int a;
char b;
int *ptr;
} as[32];
for (size_t i = 0; i < 6; i++)
ai[i] = 20 + i;
for (size_t i = 0; i < 10; i++)
ac[i] = 100 + i;
for (size_t i = 0; i < 32; i++) {
as[i].a = 10 + i;
as[i].b = 20 + i;
as[i].ptr = (int*)0xab + i;
}
int iexpected = 20;
ARRAY_FOR_EACH(ai, entry) {
ck_assert_int_eq(*entry, iexpected);
++iexpected;
}
ck_assert_int_eq(iexpected, 26);
int cexpected = 100;
ARRAY_FOR_EACH(ac, entry) {
ck_assert_int_eq(*entry, cexpected);
++cexpected;
}
ck_assert_int_eq(cexpected, 110);
struct as sexpected = {
.a = 10,
.b = 20,
.ptr = (int*)0xab,
};
ARRAY_FOR_EACH(as, entry) {
ck_assert_int_eq(entry->a, sexpected.a);
ck_assert_int_eq(entry->b, sexpected.b);
ck_assert_ptr_eq(entry->ptr, sexpected.ptr);
++sexpected.a;
++sexpected.b;
++sexpected.ptr;
}
ck_assert_int_eq(sexpected.a, 42);
}
END_TEST
START_TEST(bitfield_helpers)
{
/* This value has a bit set on all of the word boundaries we want to
* test: 0, 1, 7, 8, 31, 32, and 33
*/
unsigned char read_bitfield[] = { 0x83, 0x1, 0x0, 0x80, 0x3 };
unsigned char write_bitfield[ARRAY_LENGTH(read_bitfield)] = {0};
size_t i;
/* Now check that the bitfield we wrote to came out to be the same as
* the bitfield we were writing from */
for (i = 0; i < ARRAY_LENGTH(read_bitfield) * 8; i++) {
switch (i) {
case 0:
case 1:
case 7:
case 8:
case 31:
case 32:
case 33:
ck_assert(bit_is_set(read_bitfield, i));
set_bit(write_bitfield, i);
break;
default:
ck_assert(!bit_is_set(read_bitfield, i));
clear_bit(write_bitfield, i);
break;
}
}
ck_assert_int_eq(memcmp(read_bitfield,
write_bitfield,
sizeof(read_bitfield)),
0);
}
END_TEST
START_TEST(matrix_helpers)
{
struct matrix m1, m2, m3;
float f[6] = { 1, 2, 3, 4, 5, 6 };
int x, y;
int row, col;
matrix_init_identity(&m1);
for (row = 0; row < 3; row++) {
for (col = 0; col < 3; col++) {
ck_assert_int_eq(m1.val[row][col],
(row == col) ? 1 : 0);
}
}
ck_assert(matrix_is_identity(&m1));
matrix_from_farray6(&m2, f);
ck_assert_int_eq(m2.val[0][0], 1);
ck_assert_int_eq(m2.val[0][1], 2);
ck_assert_int_eq(m2.val[0][2], 3);
ck_assert_int_eq(m2.val[1][0], 4);
ck_assert_int_eq(m2.val[1][1], 5);
ck_assert_int_eq(m2.val[1][2], 6);
ck_assert_int_eq(m2.val[2][0], 0);
ck_assert_int_eq(m2.val[2][1], 0);
ck_assert_int_eq(m2.val[2][2], 1);
x = 100;
y = 5;
matrix_mult_vec(&m1, &x, &y);
ck_assert_int_eq(x, 100);
ck_assert_int_eq(y, 5);
matrix_mult(&m3, &m1, &m1);
ck_assert(matrix_is_identity(&m3));
matrix_init_scale(&m2, 2, 4);
ck_assert_int_eq(m2.val[0][0], 2);
ck_assert_int_eq(m2.val[0][1], 0);
ck_assert_int_eq(m2.val[0][2], 0);
ck_assert_int_eq(m2.val[1][0], 0);
ck_assert_int_eq(m2.val[1][1], 4);
ck_assert_int_eq(m2.val[1][2], 0);
ck_assert_int_eq(m2.val[2][0], 0);
ck_assert_int_eq(m2.val[2][1], 0);
ck_assert_int_eq(m2.val[2][2], 1);
matrix_mult_vec(&m2, &x, &y);
ck_assert_int_eq(x, 200);
ck_assert_int_eq(y, 20);
matrix_init_translate(&m2, 10, 100);
ck_assert_int_eq(m2.val[0][0], 1);
ck_assert_int_eq(m2.val[0][1], 0);
ck_assert_int_eq(m2.val[0][2], 10);
ck_assert_int_eq(m2.val[1][0], 0);
ck_assert_int_eq(m2.val[1][1], 1);
ck_assert_int_eq(m2.val[1][2], 100);
ck_assert_int_eq(m2.val[2][0], 0);
ck_assert_int_eq(m2.val[2][1], 0);
ck_assert_int_eq(m2.val[2][2], 1);
matrix_mult_vec(&m2, &x, &y);
ck_assert_int_eq(x, 210);
ck_assert_int_eq(y, 120);
matrix_to_farray6(&m2, f);
ck_assert_int_eq(f[0], 1);
ck_assert_int_eq(f[1], 0);
ck_assert_int_eq(f[2], 10);
ck_assert_int_eq(f[3], 0);
ck_assert_int_eq(f[4], 1);
ck_assert_int_eq(f[5], 100);
}
END_TEST
START_TEST(ratelimit_helpers)
{
struct ratelimit rl;
unsigned int i, j;
/* 10 attempts every 1000ms */
ratelimit_init(&rl, ms2us(1000), 10);
for (j = 0; j < 3; ++j) {
/* a burst of 9 attempts must succeed */
for (i = 0; i < 9; ++i) {
ck_assert_int_eq(ratelimit_test(&rl),
RATELIMIT_PASS);
}
/* the 10th attempt reaches the threshold */
ck_assert_int_eq(ratelimit_test(&rl), RATELIMIT_THRESHOLD);
/* ..then further attempts must fail.. */
ck_assert_int_eq(ratelimit_test(&rl), RATELIMIT_EXCEEDED);
/* ..regardless of how often we try. */
for (i = 0; i < 100; ++i) {
ck_assert_int_eq(ratelimit_test(&rl),
RATELIMIT_EXCEEDED);
}
/* ..even after waiting 20ms */
msleep(100);
for (i = 0; i < 100; ++i) {
ck_assert_int_eq(ratelimit_test(&rl),
RATELIMIT_EXCEEDED);
}
/* but after 1000ms the counter is reset */
msleep(950); /* +50ms to account for time drifts */
}
}
END_TEST
struct parser_test {
char *tag;
int expected_value;
};
START_TEST(dpi_parser)
{
struct parser_test tests[] = {
{ "450 *1800 3200", 1800 },
{ "*450 1800 3200", 450 },
{ "450 1800 *3200", 3200 },
{ "450 1800 3200", 3200 },
{ "450 1800 failboat", 0 },
{ "450 1800 *failboat", 0 },
{ "0 450 1800 *3200", 0 },
{ "450@37 1800@12 *3200@6", 3200 },
{ "450@125 1800@125 *3200@125 ", 3200 },
{ "450@125 *1800@125 3200@125", 1800 },
{ "*this @string fails", 0 },
{ "12@34 *45@", 0 },
{ "12@a *45@", 0 },
{ "12@a *45@25", 0 },
{ " * 12, 450, 800", 0 },
{ " *12, 450, 800", 12 },
{ "*12, *450, 800", 12 },
{ "*-23412, 450, 800", 0 },
{ "112@125, 450@125, 800@125, 900@-125", 0 },
{ "", 0 },
{ " ", 0 },
{ "* ", 0 },
{ NULL, 0 }
};
int i, dpi;
for (i = 0; tests[i].tag != NULL; i++) {
dpi = parse_mouse_dpi_property(tests[i].tag);
ck_assert_int_eq(dpi, tests[i].expected_value);
}
dpi = parse_mouse_dpi_property(NULL);
ck_assert_int_eq(dpi, 0);
}
END_TEST
START_TEST(wheel_click_parser)
{
struct parser_test tests[] = {
{ "1", 1 },
{ "10", 10 },
{ "-12", -12 },
{ "360", 360 },
{ "0", 0 },
{ "-0", 0 },
{ "a", 0 },
{ "10a", 0 },
{ "10-", 0 },
{ "sadfasfd", 0 },
{ "361", 0 },
{ NULL, 0 }
};
int i, angle;
for (i = 0; tests[i].tag != NULL; i++) {
angle = parse_mouse_wheel_click_angle_property(tests[i].tag);
ck_assert_int_eq(angle, tests[i].expected_value);
}
}
END_TEST
START_TEST(wheel_click_count_parser)
{
struct parser_test tests[] = {
{ "1", 1 },
{ "10", 10 },
{ "-12", -12 },
{ "360", 360 },
{ "0", 0 },
{ "-0", 0 },
{ "a", 0 },
{ "10a", 0 },
{ "10-", 0 },
{ "sadfasfd", 0 },
{ "361", 0 },
{ NULL, 0 }
};
int i, angle;
for (i = 0; tests[i].tag != NULL; i++) {
angle = parse_mouse_wheel_click_count_property(tests[i].tag);
ck_assert_int_eq(angle, tests[i].expected_value);
}
angle = parse_mouse_wheel_click_count_property(NULL);
ck_assert_int_eq(angle, 0);
}
END_TEST
START_TEST(dimension_prop_parser)
{
struct parser_test_dimension {
char *tag;
bool success;
size_t x, y;
} tests[] = {
{ "10x10", true, 10, 10 },
{ "1x20", true, 1, 20 },
{ "1x8000", true, 1, 8000 },
{ "238492x428210", true, 238492, 428210 },
{ "0x0", false, 0, 0 },
{ "-10x10", false, 0, 0 },
{ "-1", false, 0, 0 },
{ "1x-99", false, 0, 0 },
{ "0", false, 0, 0 },
{ "100", false, 0, 0 },
{ "", false, 0, 0 },
{ "abd", false, 0, 0 },
{ "xabd", false, 0, 0 },
{ "0xaf", false, 0, 0 },
{ "0x0x", false, 0, 0 },
{ "x10", false, 0, 0 },
{ NULL, false, 0, 0 }
};
int i;
size_t x, y;
bool success;
for (i = 0; tests[i].tag != NULL; i++) {
x = y = 0xad;
success = parse_dimension_property(tests[i].tag, &x, &y);
ck_assert(success == tests[i].success);
if (success) {
ck_assert_int_eq(x, tests[i].x);
ck_assert_int_eq(y, tests[i].y);
} else {
ck_assert_int_eq(x, 0xad);
ck_assert_int_eq(y, 0xad);
}
}
success = parse_dimension_property(NULL, &x, &y);
ck_assert(success == false);
}
END_TEST
START_TEST(reliability_prop_parser)
{
struct parser_test_reliability {
char *tag;
bool success;
enum switch_reliability reliability;
} tests[] = {
{ "reliable", true, RELIABILITY_RELIABLE },
{ "unreliable", true, RELIABILITY_UNRELIABLE },
{ "write_open", true, RELIABILITY_WRITE_OPEN },
{ "", false, 0 },
{ "0", false, 0 },
{ "1", false, 0 },
{ NULL, false, 0, }
};
enum switch_reliability r;
bool success;
int i;
for (i = 0; tests[i].tag != NULL; i++) {
r = 0xaf;
success = parse_switch_reliability_property(tests[i].tag, &r);
ck_assert(success == tests[i].success);
if (success)
ck_assert_int_eq(r, tests[i].reliability);
else
ck_assert_int_eq(r, 0xaf);
}
success = parse_switch_reliability_property(NULL, &r);
ck_assert(success == true);
ck_assert_int_eq(r, RELIABILITY_RELIABLE);
success = parse_switch_reliability_property("foo", NULL);
ck_assert(success == false);
}
END_TEST
START_TEST(calibration_prop_parser)
{
#define DEFAULT_VALUES { 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 }
const float untouched[6] = DEFAULT_VALUES;
struct parser_test_calibration {
char *prop;
bool success;
float values[6];
} tests[] = {
{ "", false, DEFAULT_VALUES },
{ "banana", false, DEFAULT_VALUES },
{ "1 2 3 a 5 6", false, DEFAULT_VALUES },
{ "2", false, DEFAULT_VALUES },
{ "2 3 4 5 6", false, DEFAULT_VALUES },
{ "1 2 3 4 5 6", true, DEFAULT_VALUES },
{ "6.00012 3.244 4.238 5.2421 6.0134 8.860", true,
{ 6.00012, 3.244, 4.238, 5.2421, 6.0134, 8.860 }},
{ "0xff 2 3 4 5 6", false, DEFAULT_VALUES },
{ NULL, false, DEFAULT_VALUES }
};
bool success;
float calibration[6];
int rc;
int i;
for (i = 0; tests[i].prop != NULL; i++) {
memcpy(calibration, untouched, sizeof(calibration));
success = parse_calibration_property(tests[i].prop,
calibration);
ck_assert_int_eq(success, tests[i].success);
if (success)
rc = memcmp(tests[i].values,
calibration,
sizeof(calibration));
else
rc = memcmp(untouched,
calibration,
sizeof(calibration));
ck_assert_int_eq(rc, 0);
}
memcpy(calibration, untouched, sizeof(calibration));
success = parse_calibration_property(NULL, calibration);
ck_assert(success == false);
rc = memcmp(untouched, calibration, sizeof(calibration));
ck_assert_int_eq(rc, 0);
}
END_TEST
START_TEST(range_prop_parser)
{
struct parser_test_range {
char *tag;
bool success;
int hi, lo;
} tests[] = {
{ "10:8", true, 10, 8 },
{ "100:-1", true, 100, -1 },
{ "-203813:-502023", true, -203813, -502023 },
{ "238492:28210", true, 238492, 28210 },
{ "none", true, 0, 0 },
{ "0:0", false, 0, 0 },
{ "", false, 0, 0 },
{ "abcd", false, 0, 0 },
{ "10:30:10", false, 0, 0 },
{ NULL, false, 0, 0 }
};
int i;
int hi, lo;
bool success;
for (i = 0; tests[i].tag != NULL; i++) {
hi = lo = 0xad;
success = parse_range_property(tests[i].tag, &hi, &lo);
ck_assert(success == tests[i].success);
if (success) {
ck_assert_int_eq(hi, tests[i].hi);
ck_assert_int_eq(lo, tests[i].lo);
} else {
ck_assert_int_eq(hi, 0xad);
ck_assert_int_eq(lo, 0xad);
}
}
success = parse_range_property(NULL, NULL, NULL);
ck_assert(success == false);
}
END_TEST
START_TEST(boolean_prop_parser)
{
struct parser_test_range {
char *tag;
bool success;
bool b;
} tests[] = {
{ "0", true, false },
{ "1", true, true },
{ "-1", false, false },
{ "2", false, false },
{ "abcd", false, false },
{ NULL, false, false }
};
int i;
bool success, b;
for (i = 0; tests[i].tag != NULL; i++) {
b = false;
success = parse_boolean_property(tests[i].tag, &b);
ck_assert(success == tests[i].success);
if (success)
ck_assert_int_eq(b, tests[i].b);
else
ck_assert_int_eq(b, false);
}
success = parse_boolean_property(NULL, NULL);
ck_assert(success == false);
}
END_TEST
START_TEST(evcode_prop_parser)
{
struct parser_test_tuple {
const char *prop;
bool success;
quirks: allow overriding of AttrEventCode and AttrInputProp This switches the quirk from AttrEventCodeEnable/Disable to just AttrEventCode with a +/- prefix for each entry. This switches the quirk from AttrInputPropEnable/Disable to just AttrInputProp with a +/- prefix for each entry. Previously, both event codes and input props would only apply the last-matching section entry for a device. Furthermore, an earlier Disable entry would take precedence over a later Enable entry. For example, a set of sections with these lines *should* enable left, right and middle: [first] AttrEventCodeEnable=BTN_LEFT;BTN_RIGHT;BTN_MIDDLE [second] AttrEventCodeDisable=BTN_RIGHT [third] AttrEventCodeEnable=BTN_LEFT;BTN_RIGHT; Alas: the first line was effectively ignored (quirks only returned the last-matching one, i.e. the one from "third"). And due to implementation details in evdev.c, the Disable attribute was processed after Enable, i.e. the device was enabled for left + right and then disabled for right. As a result, the device only had BTN_LEFT enabled. Fix this by changing the attribute to carry both enable/disable information and merging the commands together. Internally, all quirks matching a device are simply ref'd into an array in the struct quirks. The applied value is simply the last entry in the array corresponding to our quirk. For AttrEventCode and AttrInputProp instead do this: - switch them to a tuple with the code as first entry and a boolean enable/disable as second entry - if the struct quirk already has an entry for either, append the more recent one to the existing entry (instead of creating a new entry in the array). This way we have all entries that match and in-order of precedence - i.e. we can process them left-to-right to end up with the right state. Fixes: https://gitlab.freedesktop.org/libinput/libinput/-/issues/821 Signed-off-by: Peter Hutterer <peter.hutterer@who-t.net>
2022-11-15 13:53:43 +10:00
size_t nevents;
struct input_event events[20];
} tests[] = {
quirks: allow overriding of AttrEventCode and AttrInputProp This switches the quirk from AttrEventCodeEnable/Disable to just AttrEventCode with a +/- prefix for each entry. This switches the quirk from AttrInputPropEnable/Disable to just AttrInputProp with a +/- prefix for each entry. Previously, both event codes and input props would only apply the last-matching section entry for a device. Furthermore, an earlier Disable entry would take precedence over a later Enable entry. For example, a set of sections with these lines *should* enable left, right and middle: [first] AttrEventCodeEnable=BTN_LEFT;BTN_RIGHT;BTN_MIDDLE [second] AttrEventCodeDisable=BTN_RIGHT [third] AttrEventCodeEnable=BTN_LEFT;BTN_RIGHT; Alas: the first line was effectively ignored (quirks only returned the last-matching one, i.e. the one from "third"). And due to implementation details in evdev.c, the Disable attribute was processed after Enable, i.e. the device was enabled for left + right and then disabled for right. As a result, the device only had BTN_LEFT enabled. Fix this by changing the attribute to carry both enable/disable information and merging the commands together. Internally, all quirks matching a device are simply ref'd into an array in the struct quirks. The applied value is simply the last entry in the array corresponding to our quirk. For AttrEventCode and AttrInputProp instead do this: - switch them to a tuple with the code as first entry and a boolean enable/disable as second entry - if the struct quirk already has an entry for either, append the more recent one to the existing entry (instead of creating a new entry in the array). This way we have all entries that match and in-order of precedence - i.e. we can process them left-to-right to end up with the right state. Fixes: https://gitlab.freedesktop.org/libinput/libinput/-/issues/821 Signed-off-by: Peter Hutterer <peter.hutterer@who-t.net>
2022-11-15 13:53:43 +10:00
{ "+EV_KEY", true, 1, {{ .type = EV_KEY, .code = 0xffff, .value = 1 }} },
{ "-EV_ABS;", true, 1, {{ .type = EV_ABS, .code = 0xffff, .value = 0 }} },
{ "+ABS_X;", true, 1, {{ .type = EV_ABS, .code = ABS_X, .value = 1 }} },
{ "-SW_TABLET_MODE;", true, 1, {{ .type = EV_SW, .code = SW_TABLET_MODE, .value = 0 }} },
{ "+EV_SW", true, 1, {{ .type = EV_SW, .code = 0xffff, .value = 1 }} },
{ "-ABS_Y", true, 1, {{ .type = EV_ABS, .code = ABS_Y, .value = 0 }} },
{ "+EV_ABS:0x00", true, 1, {{ .type = EV_ABS, .code = ABS_X, .value = 1 }} },
{ "-EV_ABS:01", true, 1, {{ .type = EV_ABS, .code = ABS_Y, .value = 0 }} },
{ "+ABS_TILT_X;-ABS_TILT_Y;", true, 2,
{{ .type = EV_ABS, .code = ABS_TILT_X, .value = 1 },
{ .type = EV_ABS, .code = ABS_TILT_Y, .value = 0}} },
{ "+BTN_TOOL_DOUBLETAP;+EV_KEY;-KEY_A", true, 3,
{{ .type = EV_KEY, .code = BTN_TOOL_DOUBLETAP, .value = 1 } ,
{ .type = EV_KEY, .code = 0xffff, .value = 1 },
{ .type = EV_KEY, .code = KEY_A, .value = 0 }} },
{ "+REL_Y;-ABS_Z;+BTN_STYLUS", true, 3,
{{ .type = EV_REL, .code = REL_Y, .value = 1},
{ .type = EV_ABS, .code = ABS_Z, .value = 0},
{ .type = EV_KEY, .code = BTN_STYLUS, .value = 1 }} },
{ "-REL_Y;+EV_KEY:0x123;-BTN_STYLUS", true, 3,
{{ .type = EV_REL, .code = REL_Y, .value = 0 },
{ .type = EV_KEY, .code = 0x123, .value = 1 },
{ .type = EV_KEY, .code = BTN_STYLUS, .value = 0 }} },
{ .prop = "", .success = false },
quirks: allow overriding of AttrEventCode and AttrInputProp This switches the quirk from AttrEventCodeEnable/Disable to just AttrEventCode with a +/- prefix for each entry. This switches the quirk from AttrInputPropEnable/Disable to just AttrInputProp with a +/- prefix for each entry. Previously, both event codes and input props would only apply the last-matching section entry for a device. Furthermore, an earlier Disable entry would take precedence over a later Enable entry. For example, a set of sections with these lines *should* enable left, right and middle: [first] AttrEventCodeEnable=BTN_LEFT;BTN_RIGHT;BTN_MIDDLE [second] AttrEventCodeDisable=BTN_RIGHT [third] AttrEventCodeEnable=BTN_LEFT;BTN_RIGHT; Alas: the first line was effectively ignored (quirks only returned the last-matching one, i.e. the one from "third"). And due to implementation details in evdev.c, the Disable attribute was processed after Enable, i.e. the device was enabled for left + right and then disabled for right. As a result, the device only had BTN_LEFT enabled. Fix this by changing the attribute to carry both enable/disable information and merging the commands together. Internally, all quirks matching a device are simply ref'd into an array in the struct quirks. The applied value is simply the last entry in the array corresponding to our quirk. For AttrEventCode and AttrInputProp instead do this: - switch them to a tuple with the code as first entry and a boolean enable/disable as second entry - if the struct quirk already has an entry for either, append the more recent one to the existing entry (instead of creating a new entry in the array). This way we have all entries that match and in-order of precedence - i.e. we can process them left-to-right to end up with the right state. Fixes: https://gitlab.freedesktop.org/libinput/libinput/-/issues/821 Signed-off-by: Peter Hutterer <peter.hutterer@who-t.net>
2022-11-15 13:53:43 +10:00
{ .prop = "+", .success = false },
{ .prop = "-", .success = false },
{ .prop = "!", .success = false },
{ .prop = "+EV_FOO", .success = false },
{ .prop = "+EV_KEY;-EV_FOO", .success = false },
{ .prop = "+BTN_STYLUS;-EV_FOO", .success = false },
{ .prop = "-BTN_UNKNOWN", .success = false },
{ .prop = "+BTN_UNKNOWN;+EV_KEY", .success = false },
{ .prop = "-PR_UNKNOWN", .success = false },
{ .prop = "-BTN_STYLUS;+PR_UNKNOWN;-ABS_X", .success = false },
{ .prop = "-EV_REL:0xffff", .success = false },
{ .prop = "-EV_REL:0x123.", .success = false },
{ .prop = "-EV_REL:ffff", .success = false },
{ .prop = "-EV_REL:blah", .success = false },
{ .prop = "+KEY_A:0x11", .success = false },
{ .prop = "+EV_KEY:0x11 ", .success = false },
{ .prop = "+EV_KEY:0x11not", .success = false },
{ .prop = "none", .success = false },
{ .prop = NULL },
};
struct parser_test_tuple *t;
for (int i = 0; tests[i].prop; i++) {
bool success;
struct input_event events[32];
size_t nevents = ARRAY_LENGTH(events);
t = &tests[i];
success = parse_evcode_property(t->prop, events, &nevents);
ck_assert(success == t->success);
if (!success)
continue;
quirks: allow overriding of AttrEventCode and AttrInputProp This switches the quirk from AttrEventCodeEnable/Disable to just AttrEventCode with a +/- prefix for each entry. This switches the quirk from AttrInputPropEnable/Disable to just AttrInputProp with a +/- prefix for each entry. Previously, both event codes and input props would only apply the last-matching section entry for a device. Furthermore, an earlier Disable entry would take precedence over a later Enable entry. For example, a set of sections with these lines *should* enable left, right and middle: [first] AttrEventCodeEnable=BTN_LEFT;BTN_RIGHT;BTN_MIDDLE [second] AttrEventCodeDisable=BTN_RIGHT [third] AttrEventCodeEnable=BTN_LEFT;BTN_RIGHT; Alas: the first line was effectively ignored (quirks only returned the last-matching one, i.e. the one from "third"). And due to implementation details in evdev.c, the Disable attribute was processed after Enable, i.e. the device was enabled for left + right and then disabled for right. As a result, the device only had BTN_LEFT enabled. Fix this by changing the attribute to carry both enable/disable information and merging the commands together. Internally, all quirks matching a device are simply ref'd into an array in the struct quirks. The applied value is simply the last entry in the array corresponding to our quirk. For AttrEventCode and AttrInputProp instead do this: - switch them to a tuple with the code as first entry and a boolean enable/disable as second entry - if the struct quirk already has an entry for either, append the more recent one to the existing entry (instead of creating a new entry in the array). This way we have all entries that match and in-order of precedence - i.e. we can process them left-to-right to end up with the right state. Fixes: https://gitlab.freedesktop.org/libinput/libinput/-/issues/821 Signed-off-by: Peter Hutterer <peter.hutterer@who-t.net>
2022-11-15 13:53:43 +10:00
ck_assert_int_eq(nevents, t->nevents);
for (size_t j = 0; j < nevents; j++) {
quirks: allow overriding of AttrEventCode and AttrInputProp This switches the quirk from AttrEventCodeEnable/Disable to just AttrEventCode with a +/- prefix for each entry. This switches the quirk from AttrInputPropEnable/Disable to just AttrInputProp with a +/- prefix for each entry. Previously, both event codes and input props would only apply the last-matching section entry for a device. Furthermore, an earlier Disable entry would take precedence over a later Enable entry. For example, a set of sections with these lines *should* enable left, right and middle: [first] AttrEventCodeEnable=BTN_LEFT;BTN_RIGHT;BTN_MIDDLE [second] AttrEventCodeDisable=BTN_RIGHT [third] AttrEventCodeEnable=BTN_LEFT;BTN_RIGHT; Alas: the first line was effectively ignored (quirks only returned the last-matching one, i.e. the one from "third"). And due to implementation details in evdev.c, the Disable attribute was processed after Enable, i.e. the device was enabled for left + right and then disabled for right. As a result, the device only had BTN_LEFT enabled. Fix this by changing the attribute to carry both enable/disable information and merging the commands together. Internally, all quirks matching a device are simply ref'd into an array in the struct quirks. The applied value is simply the last entry in the array corresponding to our quirk. For AttrEventCode and AttrInputProp instead do this: - switch them to a tuple with the code as first entry and a boolean enable/disable as second entry - if the struct quirk already has an entry for either, append the more recent one to the existing entry (instead of creating a new entry in the array). This way we have all entries that match and in-order of precedence - i.e. we can process them left-to-right to end up with the right state. Fixes: https://gitlab.freedesktop.org/libinput/libinput/-/issues/821 Signed-off-by: Peter Hutterer <peter.hutterer@who-t.net>
2022-11-15 13:53:43 +10:00
unsigned int type = events[j].type;
unsigned int code = events[j].code;
int value = events[j].value;
ck_assert_int_eq(t->events[j].type, type);
ck_assert_int_eq(t->events[j].code, code);
ck_assert_int_eq(t->events[j].value, value);
}
}
}
END_TEST
START_TEST(input_prop_parser)
{
struct parser_test_val {
const char *prop;
bool success;
size_t nvals;
quirks: allow overriding of AttrEventCode and AttrInputProp This switches the quirk from AttrEventCodeEnable/Disable to just AttrEventCode with a +/- prefix for each entry. This switches the quirk from AttrInputPropEnable/Disable to just AttrInputProp with a +/- prefix for each entry. Previously, both event codes and input props would only apply the last-matching section entry for a device. Furthermore, an earlier Disable entry would take precedence over a later Enable entry. For example, a set of sections with these lines *should* enable left, right and middle: [first] AttrEventCodeEnable=BTN_LEFT;BTN_RIGHT;BTN_MIDDLE [second] AttrEventCodeDisable=BTN_RIGHT [third] AttrEventCodeEnable=BTN_LEFT;BTN_RIGHT; Alas: the first line was effectively ignored (quirks only returned the last-matching one, i.e. the one from "third"). And due to implementation details in evdev.c, the Disable attribute was processed after Enable, i.e. the device was enabled for left + right and then disabled for right. As a result, the device only had BTN_LEFT enabled. Fix this by changing the attribute to carry both enable/disable information and merging the commands together. Internally, all quirks matching a device are simply ref'd into an array in the struct quirks. The applied value is simply the last entry in the array corresponding to our quirk. For AttrEventCode and AttrInputProp instead do this: - switch them to a tuple with the code as first entry and a boolean enable/disable as second entry - if the struct quirk already has an entry for either, append the more recent one to the existing entry (instead of creating a new entry in the array). This way we have all entries that match and in-order of precedence - i.e. we can process them left-to-right to end up with the right state. Fixes: https://gitlab.freedesktop.org/libinput/libinput/-/issues/821 Signed-off-by: Peter Hutterer <peter.hutterer@who-t.net>
2022-11-15 13:53:43 +10:00
struct input_prop values[20];
} tests[] = {
quirks: allow overriding of AttrEventCode and AttrInputProp This switches the quirk from AttrEventCodeEnable/Disable to just AttrEventCode with a +/- prefix for each entry. This switches the quirk from AttrInputPropEnable/Disable to just AttrInputProp with a +/- prefix for each entry. Previously, both event codes and input props would only apply the last-matching section entry for a device. Furthermore, an earlier Disable entry would take precedence over a later Enable entry. For example, a set of sections with these lines *should* enable left, right and middle: [first] AttrEventCodeEnable=BTN_LEFT;BTN_RIGHT;BTN_MIDDLE [second] AttrEventCodeDisable=BTN_RIGHT [third] AttrEventCodeEnable=BTN_LEFT;BTN_RIGHT; Alas: the first line was effectively ignored (quirks only returned the last-matching one, i.e. the one from "third"). And due to implementation details in evdev.c, the Disable attribute was processed after Enable, i.e. the device was enabled for left + right and then disabled for right. As a result, the device only had BTN_LEFT enabled. Fix this by changing the attribute to carry both enable/disable information and merging the commands together. Internally, all quirks matching a device are simply ref'd into an array in the struct quirks. The applied value is simply the last entry in the array corresponding to our quirk. For AttrEventCode and AttrInputProp instead do this: - switch them to a tuple with the code as first entry and a boolean enable/disable as second entry - if the struct quirk already has an entry for either, append the more recent one to the existing entry (instead of creating a new entry in the array). This way we have all entries that match and in-order of precedence - i.e. we can process them left-to-right to end up with the right state. Fixes: https://gitlab.freedesktop.org/libinput/libinput/-/issues/821 Signed-off-by: Peter Hutterer <peter.hutterer@who-t.net>
2022-11-15 13:53:43 +10:00
{ "+INPUT_PROP_BUTTONPAD", true, 1, {{ INPUT_PROP_BUTTONPAD, true }}},
{ "+INPUT_PROP_BUTTONPAD;-INPUT_PROP_POINTER", true, 2,
{ { INPUT_PROP_BUTTONPAD, true },
{ INPUT_PROP_POINTER, false }}},
{ "+INPUT_PROP_BUTTONPAD;-0x00;+0x03", true, 3,
{ { INPUT_PROP_BUTTONPAD, true },
{ INPUT_PROP_POINTER, false },
{ INPUT_PROP_SEMI_MT, true }}},
{ .prop = "", .success = false },
{ .prop = "0xff", .success = false },
{ .prop = "INPUT_PROP", .success = false },
{ .prop = "INPUT_PROP_FOO", .success = false },
{ .prop = "INPUT_PROP_FOO;INPUT_PROP_FOO", .success = false },
{ .prop = "INPUT_PROP_POINTER;INPUT_PROP_FOO", .success = false },
{ .prop = "none", .success = false },
{ .prop = NULL },
};
struct parser_test_val *t;
for (int i = 0; tests[i].prop; i++) {
bool success;
quirks: allow overriding of AttrEventCode and AttrInputProp This switches the quirk from AttrEventCodeEnable/Disable to just AttrEventCode with a +/- prefix for each entry. This switches the quirk from AttrInputPropEnable/Disable to just AttrInputProp with a +/- prefix for each entry. Previously, both event codes and input props would only apply the last-matching section entry for a device. Furthermore, an earlier Disable entry would take precedence over a later Enable entry. For example, a set of sections with these lines *should* enable left, right and middle: [first] AttrEventCodeEnable=BTN_LEFT;BTN_RIGHT;BTN_MIDDLE [second] AttrEventCodeDisable=BTN_RIGHT [third] AttrEventCodeEnable=BTN_LEFT;BTN_RIGHT; Alas: the first line was effectively ignored (quirks only returned the last-matching one, i.e. the one from "third"). And due to implementation details in evdev.c, the Disable attribute was processed after Enable, i.e. the device was enabled for left + right and then disabled for right. As a result, the device only had BTN_LEFT enabled. Fix this by changing the attribute to carry both enable/disable information and merging the commands together. Internally, all quirks matching a device are simply ref'd into an array in the struct quirks. The applied value is simply the last entry in the array corresponding to our quirk. For AttrEventCode and AttrInputProp instead do this: - switch them to a tuple with the code as first entry and a boolean enable/disable as second entry - if the struct quirk already has an entry for either, append the more recent one to the existing entry (instead of creating a new entry in the array). This way we have all entries that match and in-order of precedence - i.e. we can process them left-to-right to end up with the right state. Fixes: https://gitlab.freedesktop.org/libinput/libinput/-/issues/821 Signed-off-by: Peter Hutterer <peter.hutterer@who-t.net>
2022-11-15 13:53:43 +10:00
struct input_prop props[32];
size_t nprops = ARRAY_LENGTH(props);
t = &tests[i];
success = parse_input_prop_property(t->prop, props, &nprops);
ck_assert(success == t->success);
if (!success)
continue;
ck_assert_int_eq(nprops, t->nvals);
for (size_t j = 0; j < t->nvals; j++) {
quirks: allow overriding of AttrEventCode and AttrInputProp This switches the quirk from AttrEventCodeEnable/Disable to just AttrEventCode with a +/- prefix for each entry. This switches the quirk from AttrInputPropEnable/Disable to just AttrInputProp with a +/- prefix for each entry. Previously, both event codes and input props would only apply the last-matching section entry for a device. Furthermore, an earlier Disable entry would take precedence over a later Enable entry. For example, a set of sections with these lines *should* enable left, right and middle: [first] AttrEventCodeEnable=BTN_LEFT;BTN_RIGHT;BTN_MIDDLE [second] AttrEventCodeDisable=BTN_RIGHT [third] AttrEventCodeEnable=BTN_LEFT;BTN_RIGHT; Alas: the first line was effectively ignored (quirks only returned the last-matching one, i.e. the one from "third"). And due to implementation details in evdev.c, the Disable attribute was processed after Enable, i.e. the device was enabled for left + right and then disabled for right. As a result, the device only had BTN_LEFT enabled. Fix this by changing the attribute to carry both enable/disable information and merging the commands together. Internally, all quirks matching a device are simply ref'd into an array in the struct quirks. The applied value is simply the last entry in the array corresponding to our quirk. For AttrEventCode and AttrInputProp instead do this: - switch them to a tuple with the code as first entry and a boolean enable/disable as second entry - if the struct quirk already has an entry for either, append the more recent one to the existing entry (instead of creating a new entry in the array). This way we have all entries that match and in-order of precedence - i.e. we can process them left-to-right to end up with the right state. Fixes: https://gitlab.freedesktop.org/libinput/libinput/-/issues/821 Signed-off-by: Peter Hutterer <peter.hutterer@who-t.net>
2022-11-15 13:53:43 +10:00
ck_assert_int_eq(t->values[j].prop, props[j].prop);
ck_assert_int_eq(t->values[j].enabled, props[j].enabled);
}
}
}
END_TEST
START_TEST(evdev_abs_parser)
{
struct test {
uint32_t which;
const char *prop;
int min, max, res, fuzz, flat;
} tests[] = {
{ .which = (ABS_MASK_MIN|ABS_MASK_MAX),
.prop = "1:2",
.min = 1, .max = 2 },
{ .which = (ABS_MASK_MIN|ABS_MASK_MAX),
.prop = "1:2:",
.min = 1, .max = 2 },
{ .which = (ABS_MASK_MIN|ABS_MASK_MAX|ABS_MASK_RES),
.prop = "10:20:30",
.min = 10, .max = 20, .res = 30 },
{ .which = (ABS_MASK_RES),
.prop = "::100",
.res = 100 },
{ .which = (ABS_MASK_MIN),
.prop = "10:",
.min = 10 },
{ .which = (ABS_MASK_MAX|ABS_MASK_RES),
.prop = ":10:1001",
.max = 10, .res = 1001 },
{ .which = (ABS_MASK_MIN|ABS_MASK_MAX|ABS_MASK_RES|ABS_MASK_FUZZ),
.prop = "1:2:3:4",
.min = 1, .max = 2, .res = 3, .fuzz = 4},
{ .which = (ABS_MASK_MIN|ABS_MASK_MAX|ABS_MASK_RES|ABS_MASK_FUZZ|ABS_MASK_FLAT),
.prop = "1:2:3:4:5",
.min = 1, .max = 2, .res = 3, .fuzz = 4, .flat = 5},
{ .which = (ABS_MASK_MIN|ABS_MASK_RES|ABS_MASK_FUZZ|ABS_MASK_FLAT),
.prop = "1::3:4:50",
.min = 1, .res = 3, .fuzz = 4, .flat = 50},
{ .which = ABS_MASK_FUZZ|ABS_MASK_FLAT,
.prop = ":::5:60",
.fuzz = 5, .flat = 60},
{ .which = ABS_MASK_FUZZ,
.prop = ":::5:",
.fuzz = 5 },
{ .which = ABS_MASK_RES, .prop = "::12::",
.res = 12 },
/* Malformed property but parsing this one makes us more
* future proof */
{ .which = (ABS_MASK_RES|ABS_MASK_FUZZ|ABS_MASK_FLAT),
.prop = "::12:1:2:3:4:5:6",
.res = 12, .fuzz = 1, .flat = 2 },
{ .which = 0, .prop = ":::::" },
{ .which = 0, .prop = ":" },
{ .which = 0, .prop = "" },
{ .which = 0, .prop = ":asb::::" },
{ .which = 0, .prop = "foo" },
};
ARRAY_FOR_EACH(tests, t) {
struct input_absinfo abs;
uint32_t mask;
mask = parse_evdev_abs_prop(t->prop, &abs);
ck_assert_int_eq(mask, t->which);
if (t->which & ABS_MASK_MIN)
ck_assert_int_eq(abs.minimum, t->min);
if (t->which & ABS_MASK_MAX)
ck_assert_int_eq(abs.maximum, t->max);
if (t->which & ABS_MASK_RES)
ck_assert_int_eq(abs.resolution, t->res);
if (t->which & ABS_MASK_FUZZ)
ck_assert_int_eq(abs.fuzz, t->fuzz);
if (t->which & ABS_MASK_FLAT)
ck_assert_int_eq(abs.flat, t->flat);
}
}
END_TEST
START_TEST(time_conversion)
{
ck_assert_int_eq(us(10), 10);
ck_assert_int_eq(ns2us(10000), 10);
ck_assert_int_eq(ms2us(10), 10000);
ck_assert_int_eq(s2us(1), 1000000);
ck_assert_int_eq(h2us(2), s2us(2 * 60 * 60));
ck_assert_int_eq(us2ms(10000), 10);
}
END_TEST
START_TEST(human_time)
{
struct ht_tests {
uint64_t interval;
unsigned int value;
const char *unit;
} tests[] = {
{ 0, 0, "us" },
{ 123, 123, "us" },
{ ms2us(5), 5, "ms" },
{ ms2us(100), 100, "ms" },
{ s2us(5), 5, "s" },
{ s2us(100), 100, "s" },
{ s2us(120), 2, "min" },
{ 5 * s2us(60), 5, "min" },
{ 120 * s2us(60), 2, "h" },
{ 5 * 60 * s2us(60), 5, "h" },
{ 48 * 60 * s2us(60), 2, "d" },
{ 1000 * 24 * 60 * s2us(60), 1000, "d" },
{ 0, 0, NULL },
};
for (int i = 0; tests[i].unit != NULL; i++) {
struct human_time ht;
ht = to_human_time(tests[i].interval);
ck_assert_int_eq(ht.value, tests[i].value);
ck_assert_str_eq(ht.unit, tests[i].unit);
}
}
END_TEST
struct atoi_test {
char *str;
bool success;
int val;
};
START_TEST(safe_atoi_test)
{
struct atoi_test tests[] = {
{ "10", true, 10 },
{ "20", true, 20 },
{ "-1", true, -1 },
{ "2147483647", true, 2147483647 },
{ "-2147483648", true, -2147483648 },
{ "4294967295", false, 0 },
{ "0x0", false, 0 },
{ "-10x10", false, 0 },
{ "1x-99", false, 0 },
{ "", false, 0 },
{ "abd", false, 0 },
{ "xabd", false, 0 },
{ "0xaf", false, 0 },
{ "0x0x", false, 0 },
{ "x10", false, 0 },
{ NULL, false, 0 }
};
int v;
bool success;
for (int i = 0; tests[i].str != NULL; i++) {
v = 0xad;
success = safe_atoi(tests[i].str, &v);
ck_assert(success == tests[i].success);
if (success)
ck_assert_int_eq(v, tests[i].val);
else
ck_assert_int_eq(v, 0xad);
}
}
END_TEST
START_TEST(safe_atoi_base_16_test)
{
struct atoi_test tests[] = {
{ "10", true, 0x10 },
{ "20", true, 0x20 },
{ "-1", true, -1 },
{ "0x10", true, 0x10 },
{ "0xff", true, 0xff },
{ "abc", true, 0xabc },
{ "-10", true, -0x10 },
{ "0x0", true, 0 },
{ "0", true, 0 },
{ "0x-99", false, 0 },
{ "0xak", false, 0 },
{ "0x", false, 0 },
{ "x10", false, 0 },
{ NULL, false, 0 }
};
int v;
bool success;
for (int i = 0; tests[i].str != NULL; i++) {
v = 0xad;
success = safe_atoi_base(tests[i].str, &v, 16);
ck_assert(success == tests[i].success);
if (success)
ck_assert_int_eq(v, tests[i].val);
else
ck_assert_int_eq(v, 0xad);
}
}
END_TEST
START_TEST(safe_atoi_base_8_test)
{
struct atoi_test tests[] = {
{ "7", true, 07 },
{ "10", true, 010 },
{ "20", true, 020 },
{ "-1", true, -1 },
{ "010", true, 010 },
{ "0ff", false, 0 },
{ "abc", false, 0},
{ "0xabc", false, 0},
{ "-10", true, -010 },
{ "0", true, 0 },
{ "00", true, 0 },
{ "0x0", false, 0 },
{ "0x-99", false, 0 },
{ "0xak", false, 0 },
{ "0x", false, 0 },
{ "x10", false, 0 },
{ NULL, false, 0 }
};
int v;
bool success;
for (int i = 0; tests[i].str != NULL; i++) {
v = 0xad;
success = safe_atoi_base(tests[i].str, &v, 8);
ck_assert(success == tests[i].success);
if (success)
ck_assert_int_eq(v, tests[i].val);
else
ck_assert_int_eq(v, 0xad);
}
}
END_TEST
struct atou_test {
char *str;
bool success;
unsigned int val;
};
START_TEST(safe_atou_test)
{
struct atou_test tests[] = {
{ "10", true, 10 },
{ "20", true, 20 },
{ "-1", false, 0 },
{ "2147483647", true, 2147483647 },
{ "-2147483648", false, 0},
{ "0x0", false, 0 },
{ "-10x10", false, 0 },
{ "1x-99", false, 0 },
{ "", false, 0 },
{ "abd", false, 0 },
{ "xabd", false, 0 },
{ "0xaf", false, 0 },
{ "0x0x", false, 0 },
{ "x10", false, 0 },
{ NULL, false, 0 }
};
unsigned int v;
bool success;
for (int i = 0; tests[i].str != NULL; i++) {
v = 0xad;
success = safe_atou(tests[i].str, &v);
ck_assert(success == tests[i].success);
if (success)
ck_assert_int_eq(v, tests[i].val);
else
ck_assert_int_eq(v, 0xad);
}
}
END_TEST
START_TEST(safe_atou_base_16_test)
{
struct atou_test tests[] = {
{ "10", true, 0x10 },
{ "20", true, 0x20 },
{ "-1", false, 0 },
{ "0x10", true, 0x10 },
{ "0xff", true, 0xff },
{ "abc", true, 0xabc },
{ "-10", false, 0 },
{ "0x0", true, 0 },
{ "0", true, 0 },
{ "0x-99", false, 0 },
{ "0xak", false, 0 },
{ "0x", false, 0 },
{ "x10", false, 0 },
{ NULL, false, 0 }
};
unsigned int v;
bool success;
for (int i = 0; tests[i].str != NULL; i++) {
v = 0xad;
success = safe_atou_base(tests[i].str, &v, 16);
ck_assert(success == tests[i].success);
if (success)
ck_assert_int_eq(v, tests[i].val);
else
ck_assert_int_eq(v, 0xad);
}
}
END_TEST
START_TEST(safe_atou_base_8_test)
{
struct atou_test tests[] = {
{ "7", true, 07 },
{ "10", true, 010 },
{ "20", true, 020 },
{ "-1", false, 0 },
{ "010", true, 010 },
{ "0ff", false, 0 },
{ "abc", false, 0},
{ "0xabc", false, 0},
{ "-10", false, 0 },
{ "0", true, 0 },
{ "00", true, 0 },
{ "0x0", false, 0 },
{ "0x-99", false, 0 },
{ "0xak", false, 0 },
{ "0x", false, 0 },
{ "x10", false, 0 },
{ NULL, false, 0 }
};
unsigned int v;
bool success;
for (int i = 0; tests[i].str != NULL; i++) {
v = 0xad;
success = safe_atou_base(tests[i].str, &v, 8);
ck_assert(success == tests[i].success);
if (success)
ck_assert_int_eq(v, tests[i].val);
else
ck_assert_int_eq(v, 0xad);
}
}
END_TEST
START_TEST(safe_atod_test)
{
struct atod_test {
char *str;
bool success;
double val;
} tests[] = {
{ "10", true, 10 },
{ "20", true, 20 },
{ "-1", true, -1 },
{ "2147483647", true, 2147483647 },
{ "-2147483648", true, -2147483648 },
{ "4294967295", true, 4294967295 },
{ "0x0", false, 0 },
{ "0x10", false, 0 },
{ "0xaf", false, 0 },
{ "x80", false, 0 },
{ "0.0", true, 0.0 },
{ "0.1", true, 0.1 },
{ "1.2", true, 1.2 },
{ "-324.9", true, -324.9 },
{ "9324.9", true, 9324.9 },
{ "NAN", false, 0 },
{ "INFINITY", false, 0 },
{ "-10x10", false, 0 },
{ "1x-99", false, 0 },
{ "", false, 0 },
{ "abd", false, 0 },
{ "xabd", false, 0 },
{ "0x0x", false, 0 },
{ NULL, false, 0 }
};
double v;
bool success;
for (int i = 0; tests[i].str != NULL; i++) {
v = 0xad;
success = safe_atod(tests[i].str, &v);
ck_assert(success == tests[i].success);
if (success)
ck_assert_int_eq(v, tests[i].val);
else
ck_assert_int_eq(v, 0xad);
}
}
END_TEST
START_TEST(strsplit_test)
{
struct strsplit_test {
const char *string;
const char *delim;
const char *results[10];
const size_t nresults;
} tests[] = {
{ "one two three", " ", { "one", "two", "three", NULL }, 3 },
{ "one two\tthree", " \t", { "one", "two", "three", NULL }, 3 },
{ "one", " ", { "one", NULL }, 1 },
{ "one two ", " ", { "one", "two", NULL }, 2 },
{ "one two", " ", { "one", "two", NULL }, 2 },
{ " one two", " ", { "one", "two", NULL }, 2 },
{ "one", "\t \r", { "one", NULL }, 1 },
{ "one two three", " t", { "one", "wo", "hree", NULL }, 3 },
{ " one two three", "te", { " on", " ", "wo ", "hr", NULL }, 4 },
{ "one", "ne", { "o", NULL }, 1 },
{ "onene", "ne", { "o", NULL }, 1 },
{ "+1-2++3--4++-+5-+-", "+-", { "1", "2", "3", "4", "5", NULL }, 5 },
/* special cases */
{ "", " ", { NULL }, 0 },
{ " ", " ", { NULL }, 0 },
{ " ", " ", { NULL }, 0 },
{ "oneoneone", "one", { NULL} , 0 },
{ NULL, NULL, { NULL }, 0}
};
struct strsplit_test *t = tests;
while (t->string) {
size_t nelem;
char **strv = strv_from_string(t->string, t->delim, &nelem);
for (size_t idx = 0; idx < t->nresults; idx++)
ck_assert_str_eq(t->results[idx], strv[idx]);
ck_assert_uint_eq(nelem, t->nresults);
/* When there are no elements validate return value is Null,
otherwise validate result array is Null terminated. */
if(t->nresults == 0)
ck_assert_ptr_eq(strv, NULL);
else
ck_assert_ptr_eq(strv[t->nresults], NULL);
strv_free(strv);
t++;
}
}
END_TEST
struct strv_test_data {
const char *terminate_at;
unsigned char bitmask[1];
};
static int strv_test_set_bitmask(const char *str, size_t index, void *data)
{
struct strv_test_data *td = data;
if (streq(str, td->terminate_at))
return index + 1;
set_bit(td->bitmask, index);
return 0;
}
START_TEST(strv_for_each_test)
{
struct test_data {
const char *terminator;
int index;
unsigned int bitmask;
} test_data[] = {
{ "one", 1, 0x0 },
{ "two", 2, 0x1 },
{ "three", 3, 0x3 },
{ "four", 4, 0x7 },
{ "five", 5, 0xf },
{ "does-not-exist", 0, 0x1f },
{ NULL, 0, 0x1f },
{ NULL, 0 },
};
const char *array[] = { "one", "two", "three", "four", "five", NULL };
struct test_data *t = test_data;
while (t->terminator || t->bitmask) {
const int max = 3;
struct strv_test_data td = {
.terminate_at = t->terminator,
.bitmask = { 0 },
};
int rc = strv_for_each(array, strv_test_set_bitmask, &td);
ck_assert_int_eq(rc, t->index);
ck_assert_int_eq(td.bitmask[0], t->bitmask);
struct strv_test_data tdmax = {
.terminate_at = t->terminator,
.bitmask = { 0 },
};
rc = strv_for_each_n(array, max, strv_test_set_bitmask, &tdmax);
if (max < t->index)
ck_assert_int_eq(rc, 0);
else
ck_assert_int_eq(rc, t->index);
ck_assert_int_eq(tdmax.bitmask[0], t->bitmask & ((1 << max) - 1));
t++;
}
}
Introduce custom acceleration profile The custom acceleration profile allow the user to define custom acceleration functions for each movement type per device, giving full control over accelerations behavior at different speeds. This commit introduces 2 movement types which corresponds to the 2 profiles currently in use by libinput. regular filter is Motion type. constant filter is Fallback type. This allows possible expansion of new movement types for the different devices. The custom pointer acceleration profile gives the user full control over the acceleration behavior at different speeds. The user needs to provide a custom acceleration function f(x) where the x-axis is the device speed and the y-axis is the pointer speed. The user should take into account the native device dpi and screen dpi in order to achieve the desired behavior/feel of the acceleration. The custom acceleration function is defined using n points which are spaced uniformly along the x-axis, starting from 0 and continuing in constant steps. There by the points defining the custom function are: (0 * step, f[0]), (1 * step, f[1]), ..., ((n-1) * step, f[n-1]) where f is a list of n unitless values defining the acceleration factor for each velocity. When a velocity value does not lie exactly on those points, a linear interpolation of the two closest points will be calculated. When a velocity value is greater than the max point defined, a linear extrapolation of the two biggest points will be calculated. Signed-off-by: Yinon Burgansky <51504-Yinon@users.noreply.gitlab.freedesktop.org> Signed-off-by: Peter Hutterer <peter.hutterer@who-t.net>
2022-12-13 00:23:59 +02:00
START_TEST(double_array_from_string_test)
{
struct double_array_from_string_test {
const char *string;
const char *delim;
const double array[10];
const size_t len;
const bool result;
} tests[] = {
{ "1 2 3", " ", { 1, 2, 3 }, 3 },
{ "1", " ", { 1 }, 1 },
{ "1,2.5,", ",", { 1, 2.5 }, 2 },
{ "1.0 2", " ", { 1, 2.0 }, 2 },
{ " 1 2", " ", { 1, 2 }, 2 },
{ " ; 1;2 3.5 ;;4.1", "; ", { 1, 2, 3.5, 4.1 }, 4 },
/* special cases */
{ "1 two", " ", { 0 }, 0 },
{ "one two", " ", { 0 }, 0 },
{ "one 2", " ", { 0 }, 0 },
{ "", " ", { 0 }, 0 },
{ " ", " ", { 0 }, 0 },
{ " ", " ", { 0 }, 0 },
{ "", " ", { 0 }, 0 },
{ "oneoneone", "one", { 0 }, 0 },
{ NULL, NULL, { 0 }, 0 }
};
struct double_array_from_string_test *t = tests;
while (t->string) {
size_t len;
double *array = double_array_from_string(t->string,
t->delim,
&len);
ck_assert_int_eq(len, t->len);
for (size_t idx = 0; idx < len; idx++) {
ck_assert_ptr_nonnull(array);
Introduce custom acceleration profile The custom acceleration profile allow the user to define custom acceleration functions for each movement type per device, giving full control over accelerations behavior at different speeds. This commit introduces 2 movement types which corresponds to the 2 profiles currently in use by libinput. regular filter is Motion type. constant filter is Fallback type. This allows possible expansion of new movement types for the different devices. The custom pointer acceleration profile gives the user full control over the acceleration behavior at different speeds. The user needs to provide a custom acceleration function f(x) where the x-axis is the device speed and the y-axis is the pointer speed. The user should take into account the native device dpi and screen dpi in order to achieve the desired behavior/feel of the acceleration. The custom acceleration function is defined using n points which are spaced uniformly along the x-axis, starting from 0 and continuing in constant steps. There by the points defining the custom function are: (0 * step, f[0]), (1 * step, f[1]), ..., ((n-1) * step, f[n-1]) where f is a list of n unitless values defining the acceleration factor for each velocity. When a velocity value does not lie exactly on those points, a linear interpolation of the two closest points will be calculated. When a velocity value is greater than the max point defined, a linear extrapolation of the two biggest points will be calculated. Signed-off-by: Yinon Burgansky <51504-Yinon@users.noreply.gitlab.freedesktop.org> Signed-off-by: Peter Hutterer <peter.hutterer@who-t.net>
2022-12-13 00:23:59 +02:00
ck_assert_double_eq(array[idx], t->array[idx]);
}
Introduce custom acceleration profile The custom acceleration profile allow the user to define custom acceleration functions for each movement type per device, giving full control over accelerations behavior at different speeds. This commit introduces 2 movement types which corresponds to the 2 profiles currently in use by libinput. regular filter is Motion type. constant filter is Fallback type. This allows possible expansion of new movement types for the different devices. The custom pointer acceleration profile gives the user full control over the acceleration behavior at different speeds. The user needs to provide a custom acceleration function f(x) where the x-axis is the device speed and the y-axis is the pointer speed. The user should take into account the native device dpi and screen dpi in order to achieve the desired behavior/feel of the acceleration. The custom acceleration function is defined using n points which are spaced uniformly along the x-axis, starting from 0 and continuing in constant steps. There by the points defining the custom function are: (0 * step, f[0]), (1 * step, f[1]), ..., ((n-1) * step, f[n-1]) where f is a list of n unitless values defining the acceleration factor for each velocity. When a velocity value does not lie exactly on those points, a linear interpolation of the two closest points will be calculated. When a velocity value is greater than the max point defined, a linear extrapolation of the two biggest points will be calculated. Signed-off-by: Yinon Burgansky <51504-Yinon@users.noreply.gitlab.freedesktop.org> Signed-off-by: Peter Hutterer <peter.hutterer@who-t.net>
2022-12-13 00:23:59 +02:00
free(array);
t++;
}
}
END_TEST
START_TEST(strargv_test)
{
struct argv_test {
int argc;
char *argv[10];
int expected;
} tests[] = {
{ 0, {NULL}, 0 },
{ 1, {"hello", "World"}, 1 },
{ 2, {"hello", "World"}, 2 },
{ 2, {"", " "}, 2 },
{ 2, {"", NULL}, 0 },
{ 2, {NULL, NULL}, 0 },
{ 1, {NULL, NULL}, 0 },
{ 3, {"hello", NULL, "World"}, 0 },
};
ARRAY_FOR_EACH(tests, t) {
char **strv = strv_from_argv(t->argc, t->argv);
if (t->expected == 0) {
ck_assert(strv == NULL);
} else {
int count = 0;
char **s = strv;
while (*s) {
ck_assert_str_eq(*s, t->argv[count]);
count++;
s++;
}
ck_assert_int_eq(t->expected, count);
strv_free(strv);
}
}
}
END_TEST
START_TEST(kvsplit_double_test)
{
struct kvsplit_dbl_test {
const char *string;
const char *psep;
const char *kvsep;
ssize_t nresults;
struct {
double a;
double b;
} results[32];
} tests[] = {
{ "1:2;3:4;5:6", ";", ":", 3, { {1, 2}, {3, 4}, {5, 6}}},
{ "1.0x2.3 -3.2x4.5 8.090909x-6.00", " ", "x", 3, { {1.0, 2.3}, {-3.2, 4.5}, {8.090909, -6}}},
{ "1:2", "x", ":", 1, {{1, 2}}},
{ "1:2", ":", "x", -1, {}},
{ "1:2", NULL, "x", -1, {}},
{ "1:2", "", "x", -1, {}},
{ "1:2", "x", NULL, -1, {}},
{ "1:2", "x", "", -1, {}},
{ "a:b", "x", ":", -1, {}},
{ "", " ", "x", -1, {}},
{ "1.2.3.4.5", ".", "", -1, {}},
{ NULL }
};
struct kvsplit_dbl_test *t = tests;
while (t->string) {
struct key_value_double *result = NULL;
ssize_t npairs;
npairs = kv_double_from_string(t->string,
t->psep,
t->kvsep,
&result);
ck_assert_int_eq(npairs, t->nresults);
for (ssize_t i = 0; i < npairs; i++) {
ck_assert_double_eq(t->results[i].a, result[i].key);
ck_assert_double_eq(t->results[i].b, result[i].value);
}
free(result);
t++;
}
}
END_TEST
START_TEST(strjoin_test)
{
struct strjoin_test {
char *strv[10];
const char *joiner;
const char *result;
} tests[] = {
{ { "one", "two", "three", NULL }, " ", "one two three" },
{ { "one", NULL }, "x", "one" },
{ { "one", "two", NULL }, "x", "onextwo" },
{ { "one", "two", NULL }, ",", "one,two" },
{ { "one", "two", NULL }, ", ", "one, two" },
{ { "one", "two", NULL }, "one", "oneonetwo" },
{ { "one", "two", NULL }, NULL, NULL },
{ { "", "", "", NULL }, " ", " " },
{ { "a", "b", "c", NULL }, "", "abc" },
{ { "", "b", "c", NULL }, "x", "xbxc" },
{ { "", "", "", NULL }, "", "" },
{ { NULL }, NULL, NULL }
};
struct strjoin_test *t = tests;
struct strjoin_test nulltest = { {NULL}, "x", NULL };
while (t->strv[0]) {
char *str;
str = strv_join(t->strv, t->joiner);
if (t->result == NULL)
ck_assert(str == NULL);
else
ck_assert_str_eq(str, t->result);
free(str);
t++;
}
ck_assert(strv_join(nulltest.strv, "x") == NULL);
}
END_TEST
START_TEST(strstrip_test)
{
struct strstrip_test {
const char *string;
const char *expected;
const char *what;
} tests[] = {
{ "foo", "foo", "1234" },
{ "\"bar\"", "bar", "\"" },
{ "'bar'", "bar", "'" },
{ "\"bar\"", "\"bar\"", "'" },
{ "'bar'", "'bar'", "\"" },
{ "\"bar\"", "bar", "\"" },
{ "\"\"", "", "\"" },
{ "\"foo\"bar\"", "foo\"bar", "\"" },
{ "\"'foo\"bar\"", "foo\"bar", "\"'" },
{ "abcfooabcbarbca", "fooabcbar", "abc" },
{ "xxxxfoo", "foo", "x" },
{ "fooyyyy", "foo", "y" },
{ "xxxxfooyyyy", "foo", "xy" },
{ "x xfooy y", " xfooy ", "xy" },
{ " foo\n", "foo", " \n" },
{ "", "", "abc" },
{ "", "", "" },
{ NULL , NULL, NULL }
};
struct strstrip_test *t = tests;
while (t->string) {
char *str;
str = strstrip(t->string, t->what);
ck_assert_str_eq(str, t->expected);
free(str);
t++;
}
}
END_TEST
START_TEST(strendswith_test)
{
struct strendswith_test {
const char *string;
const char *suffix;
bool expected;
} tests[] = {
{ "foobar", "bar", true },
{ "foobar", "foo", false },
{ "foobar", "foobar", true },
{ "foo", "foobar", false },
{ "foobar", "", false },
{ "", "", false },
{ "", "foo", false },
{ NULL, NULL, false },
};
for (struct strendswith_test *t = tests; t->string; t++) {
ck_assert_int_eq(strendswith(t->string, t->suffix),
t->expected);
}
}
END_TEST
START_TEST(strstartswith_test)
{
struct strstartswith_test {
const char *string;
const char *suffix;
bool expected;
} tests[] = {
{ "foobar", "foo", true },
{ "foobar", "bar", false },
{ "foobar", "foobar", true },
{ "foo", "foobar", false },
{ "foo", "", false },
{ "", "", false },
{ "foo", "", false },
{ NULL, NULL, false },
};
for (struct strstartswith_test *t = tests; t->string; t++) {
ck_assert_int_eq(strstartswith(t->string, t->suffix),
t->expected);
}
}
END_TEST
evdev: strip the device name of format directives This fixes a format string vulnerabilty. evdev_log_message() composes a format string consisting of a fixed prefix (including the rendered device name) and the passed-in format buffer. This format string is then passed with the arguments to the actual log handler, which usually and eventually ends up being printf. If the device name contains a printf-style format directive, these ended up in the format string and thus get interpreted correctly, e.g. for a device "Foo%sBar" the log message vs printf invocation ends up being: evdev_log_message(device, "some message %s", "some argument"); printf("event9 - Foo%sBar: some message %s", "some argument"); This can enable an attacker to execute malicious code with the privileges of the process using libinput. To exploit this, an attacker needs to be able to create a kernel device with a malicious name, e.g. through /dev/uinput or a Bluetooth device. To fix this, convert any potential format directives in the device name by duplicating percentages. Pre-rendering the device to avoid the issue altogether would be nicer but the current log level hooks do not easily allow for this. The device name is the only user-controlled part of the format string. A second potential issue is the sysname of the device which is also sanitized. This issue was found by Albin Eldstål-Ahrens and Benjamin Svensson from Assured AB, and independently by Lukas Lamster. Fixes #752 Signed-off-by: Peter Hutterer <peter.hutterer@who-t.net>
2022-03-30 09:25:22 +10:00
START_TEST(strsanitize_test)
{
struct strsanitize_test {
const char *string;
const char *expected;
} tests[] = {
{ "foobar", "foobar" },
{ "", "" },
{ "%", "%%" },
{ "%%%%", "%%%%%%%%" },
{ "x %s", "x %%s" },
{ "x %", "x %%" },
{ "%sx", "%%sx" },
{ "%s%s", "%%s%%s" },
{ NULL, NULL },
};
for (struct strsanitize_test *t = tests; t->string; t++) {
char *sanitized = str_sanitize(t->string);
ck_assert_str_eq(sanitized, t->expected);
free(sanitized);
}
}
END_TEST
START_TEST(list_test_insert)
{
struct list_test {
int val;
struct list node;
} tests[] = {
{ .val = 1 },
{ .val = 2 },
{ .val = 3 },
{ .val = 4 },
};
struct list_test *t;
struct list head;
int val;
list_init(&head);
ARRAY_FOR_EACH(tests, t) {
list_insert(&head, &t->node);
}
val = 4;
list_for_each(t, &head, node) {
ck_assert_int_eq(t->val, val);
val--;
}
ck_assert_int_eq(val, 0);
}
END_TEST
START_TEST(list_test_append)
{
struct list_test {
int val;
struct list node;
} tests[] = {
{ .val = 1 },
{ .val = 2 },
{ .val = 3 },
{ .val = 4 },
};
struct list_test *t;
struct list head;
int val;
list_init(&head);
ARRAY_FOR_EACH(tests, t) {
list_append(&head, &t->node);
}
val = 1;
list_for_each(t, &head, node) {
ck_assert_int_eq(t->val, val);
val++;
}
ck_assert_int_eq(val, 5);
}
END_TEST
START_TEST(list_test_foreach)
{
struct list_test {
int val;
struct list node;
} tests[] = {
{ .val = 1 },
{ .val = 2 },
{ .val = 3 },
{ .val = 4 },
};
struct list_test *t;
struct list head;
list_init(&head);
ARRAY_FOR_EACH(tests, t) {
list_append(&head, &t->node);
}
/* Make sure both loop macros are a single line statement */
if (false)
list_for_each(t, &head, node) {
ck_abort_msg("We should not get here");
}
if (false)
list_for_each_safe(t, &head, node) {
ck_abort_msg("We should not get here");
}
}
END_TEST
START_TEST(strverscmp_test)
{
ck_assert_int_eq(libinput_strverscmp("", ""), 0);
ck_assert_int_gt(libinput_strverscmp("0.0.1", ""), 0);
ck_assert_int_lt(libinput_strverscmp("", "0.0.1"), 0);
ck_assert_int_eq(libinput_strverscmp("0.0.1", "0.0.1"), 0);
ck_assert_int_eq(libinput_strverscmp("0.0.1", "0.0.2"), -1);
ck_assert_int_eq(libinput_strverscmp("0.0.2", "0.0.1"), 1);
ck_assert_int_eq(libinput_strverscmp("0.0.1", "0.1.0"), -1);
ck_assert_int_eq(libinput_strverscmp("0.1.0", "0.0.1"), 1);
}
END_TEST
START_TEST(streq_test)
{
ck_assert(streq("", "") == true);
ck_assert(streq(NULL, NULL) == true);
ck_assert(streq("0.0.1", "") == false);
ck_assert(streq("foo", NULL) == false);
ck_assert(streq(NULL, "foo") == false);
ck_assert(streq("0.0.1", "0.0.1") == true);
}
END_TEST
START_TEST(strneq_test)
{
ck_assert(strneq("", "", 1) == true);
ck_assert(strneq(NULL, NULL, 1) == true);
ck_assert(strneq("0.0.1", "", 6) == false);
ck_assert(strneq("foo", NULL, 5) == false);
ck_assert(strneq(NULL, "foo", 5) == false);
ck_assert(strneq("0.0.1", "0.0.1", 6) == true);
}
END_TEST
START_TEST(basename_test)
{
struct test {
const char *path;
const char *expected;
} tests[] = {
{ "a", "a" },
{ "foo.c", "foo.c" },
{ "foo", "foo" },
{ "/path/to/foo.h", "foo.h" },
{ "../bar.foo", "bar.foo" },
{ "./bar.foo.baz", "bar.foo.baz" },
{ "./", NULL },
{ "/", NULL },
{ "/bar/", NULL },
{ "/bar", "bar" },
{ "", NULL },
};
ARRAY_FOR_EACH(tests, t) {
const char *result = safe_basename(t->path);
if (t->expected == NULL)
ck_assert(result == NULL);
else
ck_assert_str_eq(result, t->expected);
}
}
END_TEST
START_TEST(trunkname_test)
{
struct test {
const char *path;
const char *expected;
} tests[] = {
{ "foo.c", "foo" },
{ "/path/to/foo.h", "foo" },
{ "/path/to/foo", "foo" },
{ "../bar.foo", "bar" },
{ "./bar.foo.baz", "bar.foo" },
{ "./", "" },
{ "/", "" },
{ "/bar/", "" },
{ "/bar", "bar" },
{ "", "" },
};
ARRAY_FOR_EACH(tests, t) {
char *result = trunkname(t->path);
ck_assert_str_eq(result, t->expected);
free(result);
}
}
END_TEST
START_TEST(absinfo_normalize_value_test)
{
struct input_absinfo abs = {
.minimum = 0,
.maximum = 100,
};
ck_assert_double_eq(absinfo_normalize_value(&abs, -100), 0.0);
ck_assert_double_eq(absinfo_normalize_value(&abs, -1), 0.0);
ck_assert_double_eq(absinfo_normalize_value(&abs, 0), 0.0);
ck_assert_double_gt(absinfo_normalize_value(&abs, 1), 0.0);
ck_assert_double_lt(absinfo_normalize_value(&abs, 99), 1.0);
ck_assert_double_eq(absinfo_normalize_value(&abs, 100), 1.0);
ck_assert_double_eq(absinfo_normalize_value(&abs, 101), 1.0);
ck_assert_double_eq(absinfo_normalize_value(&abs, 200), 1.0);
abs.minimum = -50;
abs.maximum = 50;
ck_assert_double_eq(absinfo_normalize_value(&abs, -51), 0.0);
ck_assert_double_eq(absinfo_normalize_value(&abs, -50), 0.0);
ck_assert_double_eq(absinfo_normalize_value(&abs, 0), 0.5);
ck_assert_double_eq(absinfo_normalize_value(&abs, 50), 1.0);
ck_assert_double_eq(absinfo_normalize_value(&abs, 51), 1.0);
abs.minimum = -50;
abs.maximum = 0;
ck_assert_double_eq(absinfo_normalize_value(&abs, -51), 0.0);
ck_assert_double_eq(absinfo_normalize_value(&abs, -50), 0.0);
ck_assert_double_gt(absinfo_normalize_value(&abs, -49), 0.0);
ck_assert_double_lt(absinfo_normalize_value(&abs, -1), 1.0);
ck_assert_double_eq(absinfo_normalize_value(&abs, 0), 1.0);
}
END_TEST
static Suite *
litest_utils_suite(void)
{
TCase *tc;
Suite *s;
s = suite_create("litest:utils");
tc = tcase_create("utils");
tcase_add_test(tc, array_for_each);
tcase_add_test(tc, bitfield_helpers);
tcase_add_test(tc, matrix_helpers);
tcase_add_test(tc, ratelimit_helpers);
tcase_add_test(tc, dpi_parser);
tcase_add_test(tc, wheel_click_parser);
tcase_add_test(tc, wheel_click_count_parser);
tcase_add_test(tc, dimension_prop_parser);
tcase_add_test(tc, reliability_prop_parser);
tcase_add_test(tc, calibration_prop_parser);
tcase_add_test(tc, range_prop_parser);
tcase_add_test(tc, boolean_prop_parser);
tcase_add_test(tc, evcode_prop_parser);
tcase_add_test(tc, input_prop_parser);
tcase_add_test(tc, evdev_abs_parser);
tcase_add_test(tc, safe_atoi_test);
tcase_add_test(tc, safe_atoi_base_16_test);
tcase_add_test(tc, safe_atoi_base_8_test);
tcase_add_test(tc, safe_atou_test);
tcase_add_test(tc, safe_atou_base_16_test);
tcase_add_test(tc, safe_atou_base_8_test);
tcase_add_test(tc, safe_atod_test);
tcase_add_test(tc, strsplit_test);
tcase_add_test(tc, strv_for_each_test);
Introduce custom acceleration profile The custom acceleration profile allow the user to define custom acceleration functions for each movement type per device, giving full control over accelerations behavior at different speeds. This commit introduces 2 movement types which corresponds to the 2 profiles currently in use by libinput. regular filter is Motion type. constant filter is Fallback type. This allows possible expansion of new movement types for the different devices. The custom pointer acceleration profile gives the user full control over the acceleration behavior at different speeds. The user needs to provide a custom acceleration function f(x) where the x-axis is the device speed and the y-axis is the pointer speed. The user should take into account the native device dpi and screen dpi in order to achieve the desired behavior/feel of the acceleration. The custom acceleration function is defined using n points which are spaced uniformly along the x-axis, starting from 0 and continuing in constant steps. There by the points defining the custom function are: (0 * step, f[0]), (1 * step, f[1]), ..., ((n-1) * step, f[n-1]) where f is a list of n unitless values defining the acceleration factor for each velocity. When a velocity value does not lie exactly on those points, a linear interpolation of the two closest points will be calculated. When a velocity value is greater than the max point defined, a linear extrapolation of the two biggest points will be calculated. Signed-off-by: Yinon Burgansky <51504-Yinon@users.noreply.gitlab.freedesktop.org> Signed-off-by: Peter Hutterer <peter.hutterer@who-t.net>
2022-12-13 00:23:59 +02:00
tcase_add_test(tc, double_array_from_string_test);
tcase_add_test(tc, strargv_test);
tcase_add_test(tc, kvsplit_double_test);
tcase_add_test(tc, strjoin_test);
tcase_add_test(tc, strstrip_test);
tcase_add_test(tc, strendswith_test);
tcase_add_test(tc, strstartswith_test);
evdev: strip the device name of format directives This fixes a format string vulnerabilty. evdev_log_message() composes a format string consisting of a fixed prefix (including the rendered device name) and the passed-in format buffer. This format string is then passed with the arguments to the actual log handler, which usually and eventually ends up being printf. If the device name contains a printf-style format directive, these ended up in the format string and thus get interpreted correctly, e.g. for a device "Foo%sBar" the log message vs printf invocation ends up being: evdev_log_message(device, "some message %s", "some argument"); printf("event9 - Foo%sBar: some message %s", "some argument"); This can enable an attacker to execute malicious code with the privileges of the process using libinput. To exploit this, an attacker needs to be able to create a kernel device with a malicious name, e.g. through /dev/uinput or a Bluetooth device. To fix this, convert any potential format directives in the device name by duplicating percentages. Pre-rendering the device to avoid the issue altogether would be nicer but the current log level hooks do not easily allow for this. The device name is the only user-controlled part of the format string. A second potential issue is the sysname of the device which is also sanitized. This issue was found by Albin Eldstål-Ahrens and Benjamin Svensson from Assured AB, and independently by Lukas Lamster. Fixes #752 Signed-off-by: Peter Hutterer <peter.hutterer@who-t.net>
2022-03-30 09:25:22 +10:00
tcase_add_test(tc, strsanitize_test);
tcase_add_test(tc, time_conversion);
tcase_add_test(tc, human_time);
tcase_add_test(tc, list_test_insert);
tcase_add_test(tc, list_test_append);
tcase_add_test(tc, list_test_foreach);
tcase_add_test(tc, strverscmp_test);
tcase_add_test(tc, streq_test);
tcase_add_test(tc, strneq_test);
tcase_add_test(tc, trunkname_test);
tcase_add_test(tc, basename_test);
tcase_add_test(tc, absinfo_normalize_value_test);
suite_add_tcase(s, tc);
return s;
}
int main(int argc, char **argv)
{
int nfailed;
Suite *s;
SRunner *sr;
s = litest_utils_suite();
sr = srunner_create(s);
srunner_run_all(sr, CK_ENV);
nfailed = srunner_ntests_failed(sr);
srunner_free(sr);
return (nfailed == 0) ? EXIT_SUCCESS : EXIT_FAILURE;
}