mirror of
https://gitlab.freedesktop.org/cairo/cairo.git
synced 2025-12-20 18:40:08 +01:00
The perceptualdiff program was written by Hector Yee with contributions from Scott Corley and Mick Weiss. It is hosted at http://pdiff.sourceforge.net The source code added here was obtained by: svn co https://svn.sourceforge.net/svnroot/pdiff/trunk pdiff which gave revision 22 of the source code. The perceptualdiff program is available under the terms of the GNU GPL, so I've added a note to COPYING about this program, (and the fact that it is auxiliary only, and does not affect the license of the implementation of cairo itself).
316 lines
No EOL
8.8 KiB
C++
316 lines
No EOL
8.8 KiB
C++
/*
|
|
Metric
|
|
Copyright (C) 2006 Yangli Hector Yee
|
|
|
|
This program is free software; you can redistribute it and/or modify it under the terms of the
|
|
GNU General Public License as published by the Free Software Foundation; either version 2 of the License,
|
|
or (at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
|
|
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
|
|
See the GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License along with this program;
|
|
if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
|
*/
|
|
|
|
#include "Metric.h"
|
|
#include "CompareArgs.h"
|
|
#include "RGBAImage.h"
|
|
#include "LPyramid.h"
|
|
#include <math.h>
|
|
|
|
#ifndef M_PI
|
|
#define M_PI 3.14159265f
|
|
#endif
|
|
|
|
/*
|
|
* Given the adaptation luminance, this function returns the
|
|
* threshold of visibility in cd per m^2
|
|
* TVI means Threshold vs Intensity function
|
|
* This version comes from Ward Larson Siggraph 1997
|
|
*/
|
|
|
|
float tvi(float adaptation_luminance)
|
|
{
|
|
// returns the threshold luminance given the adaptation luminance
|
|
// units are candelas per meter squared
|
|
|
|
float log_a, r, result;
|
|
log_a = log10f(adaptation_luminance);
|
|
|
|
if (log_a < -3.94f) {
|
|
r = -2.86f;
|
|
} else if (log_a < -1.44f) {
|
|
r = powf(0.405f * log_a + 1.6f , 2.18f) - 2.86f;
|
|
} else if (log_a < -0.0184f) {
|
|
r = log_a - 0.395f;
|
|
} else if (log_a < 1.9f) {
|
|
r = powf(0.249f * log_a + 0.65f, 2.7f) - 0.72f;
|
|
} else {
|
|
r = log_a - 1.255f;
|
|
}
|
|
|
|
result = powf(10.0f , r);
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
// computes the contrast sensitivity function (Barten SPIE 1989)
|
|
// given the cycles per degree (cpd) and luminance (lum)
|
|
float csf(float cpd, float lum)
|
|
{
|
|
float a, b, result;
|
|
|
|
a = 440.0f * powf((1.0f + 0.7f / lum), -0.2f);
|
|
b = 0.3f * powf((1.0f + 100.0f / lum), 0.15f);
|
|
|
|
result = a * cpd * expf(-b * cpd) * sqrtf(1.0f + 0.06f * expf(b * cpd));
|
|
|
|
return result;
|
|
}
|
|
|
|
/*
|
|
* Visual Masking Function
|
|
* from Daly 1993
|
|
*/
|
|
float mask(float contrast)
|
|
{
|
|
float a, b, result;
|
|
a = powf(392.498f * contrast, 0.7f);
|
|
b = powf(0.0153f * a, 4.0f);
|
|
result = powf(1.0f + b, 0.25f);
|
|
|
|
return result;
|
|
}
|
|
|
|
// convert Adobe RGB (1998) with reference white D65 to XYZ
|
|
void AdobeRGBToXYZ(float r, float g, float b, float &x, float &y, float &z)
|
|
{
|
|
// matrix is from http://www.brucelindbloom.com/
|
|
x = r * 0.576700f + g * 0.185556f + b * 0.188212f;
|
|
y = r * 0.297361f + g * 0.627355f + b * 0.0752847f;
|
|
z = r * 0.0270328f + g * 0.0706879f + b * 0.991248f;
|
|
}
|
|
|
|
void XYZToLAB(float x, float y, float z, float &L, float &A, float &B)
|
|
{
|
|
static float xw = -1;
|
|
static float yw;
|
|
static float zw;
|
|
// reference white
|
|
if (xw < 0) {
|
|
AdobeRGBToXYZ(1, 1, 1, xw, yw, zw);
|
|
}
|
|
const float epsilon = 216.0f / 24389.0f;
|
|
const float kappa = 24389.0f / 27.0f;
|
|
float f[3];
|
|
float r[3];
|
|
r[0] = x / xw;
|
|
r[1] = y / yw;
|
|
r[2] = z / zw;
|
|
for (int i = 0; i < 3; i++) {
|
|
if (r[i] > epsilon) {
|
|
f[i] = powf(r[i], 1.0f / 3.0f);
|
|
} else {
|
|
f[i] = (kappa * r[i] + 16.0f) / 116.0f;
|
|
}
|
|
}
|
|
L = 116.0f * f[1] - 16.0f;
|
|
A = 500.0f * (f[0] - f[1]);
|
|
B = 200.0f * (f[1] - f[2]);
|
|
}
|
|
|
|
bool Yee_Compare(CompareArgs &args)
|
|
{
|
|
if ((args.ImgA->Get_Width() != args.ImgB->Get_Width()) ||
|
|
(args.ImgA->Get_Height() != args.ImgB->Get_Height())) {
|
|
args.ErrorStr = "Image dimensions do not match\n";
|
|
return false;
|
|
}
|
|
|
|
unsigned int i, dim;
|
|
dim = args.ImgA->Get_Width() * args.ImgA->Get_Height();
|
|
bool identical = true;
|
|
for (i = 0; i < dim; i++) {
|
|
if (args.ImgA->Get(i) != args.ImgB->Get(i)) {
|
|
identical = false;
|
|
break;
|
|
}
|
|
}
|
|
if (identical) {
|
|
args.ErrorStr = "Images are binary identical\n";
|
|
return true;
|
|
}
|
|
|
|
// assuming colorspaces are in Adobe RGB (1998) convert to XYZ
|
|
float *aX = new float[dim];
|
|
float *aY = new float[dim];
|
|
float *aZ = new float[dim];
|
|
float *bX = new float[dim];
|
|
float *bY = new float[dim];
|
|
float *bZ = new float[dim];
|
|
float *aLum = new float[dim];
|
|
float *bLum = new float[dim];
|
|
|
|
float *aA = new float[dim];
|
|
float *bA = new float[dim];
|
|
float *aB = new float[dim];
|
|
float *bB = new float[dim];
|
|
|
|
if (args.Verbose) printf("Converting RGB to XYZ\n");
|
|
|
|
unsigned int x, y, w, h;
|
|
w = args.ImgA->Get_Width();
|
|
h = args.ImgA->Get_Height();
|
|
for (y = 0; y < h; y++) {
|
|
for (x = 0; x < w; x++) {
|
|
float r, g, b, l;
|
|
i = x + y * w;
|
|
r = powf(args.ImgA->Get_Red(i) / 255.0f, args.Gamma);
|
|
g = powf(args.ImgA->Get_Green(i) / 255.0f, args.Gamma);
|
|
b = powf(args.ImgA->Get_Blue(i) / 255.0f, args.Gamma);
|
|
AdobeRGBToXYZ(r,g,b,aX[i],aY[i],aZ[i]);
|
|
XYZToLAB(aX[i], aY[i], aZ[i], l, aA[i], aB[i]);
|
|
r = powf(args.ImgB->Get_Red(i) / 255.0f, args.Gamma);
|
|
g = powf(args.ImgB->Get_Green(i) / 255.0f, args.Gamma);
|
|
b = powf(args.ImgB->Get_Blue(i) / 255.0f, args.Gamma);
|
|
AdobeRGBToXYZ(r,g,b,bX[i],bY[i],bZ[i]);
|
|
XYZToLAB(bX[i], bY[i], bZ[i], l, bA[i], bB[i]);
|
|
aLum[i] = aY[i] * args.Luminance;
|
|
bLum[i] = bY[i] * args.Luminance;
|
|
}
|
|
}
|
|
|
|
if (args.Verbose) printf("Constructing Laplacian Pyramids\n");
|
|
|
|
LPyramid *la = new LPyramid(aLum, w, h);
|
|
LPyramid *lb = new LPyramid(bLum, w, h);
|
|
|
|
float num_one_degree_pixels = (float) (2 * tan( args.FieldOfView * 0.5 * M_PI / 180) * 180 / M_PI);
|
|
float pixels_per_degree = w / num_one_degree_pixels;
|
|
|
|
if (args.Verbose) printf("Performing test\n");
|
|
|
|
float num_pixels = 1;
|
|
unsigned int adaptation_level = 0;
|
|
for (i = 0; i < MAX_PYR_LEVELS; i++) {
|
|
adaptation_level = i;
|
|
if (num_pixels > num_one_degree_pixels) break;
|
|
num_pixels *= 2;
|
|
}
|
|
|
|
float cpd[MAX_PYR_LEVELS];
|
|
cpd[0] = 0.5f * pixels_per_degree;
|
|
for (i = 1; i < MAX_PYR_LEVELS; i++) cpd[i] = 0.5f * cpd[i - 1];
|
|
float csf_max = csf(3.248f, 100.0f);
|
|
|
|
float F_freq[MAX_PYR_LEVELS - 2];
|
|
for (i = 0; i < MAX_PYR_LEVELS - 2; i++) F_freq[i] = csf_max / csf( cpd[i], 100.0f);
|
|
|
|
unsigned int pixels_failed = 0;
|
|
for (y = 0; y < h; y++) {
|
|
for (x = 0; x < w; x++) {
|
|
int index = x + y * w;
|
|
float contrast[MAX_PYR_LEVELS - 2];
|
|
float sum_contrast = 0;
|
|
for (i = 0; i < MAX_PYR_LEVELS - 2; i++) {
|
|
float n1 = fabsf(la->Get_Value(x,y,i) - la->Get_Value(x,y,i + 1));
|
|
float n2 = fabsf(lb->Get_Value(x,y,i) - lb->Get_Value(x,y,i + 1));
|
|
float numerator = (n1 > n2) ? n1 : n2;
|
|
float d1 = fabsf(la->Get_Value(x,y,i+2));
|
|
float d2 = fabsf(lb->Get_Value(x,y,i+2));
|
|
float denominator = (d1 > d2) ? d1 : d2;
|
|
if (denominator < 1e-5f) denominator = 1e-5f;
|
|
contrast[i] = numerator / denominator;
|
|
sum_contrast += contrast[i];
|
|
}
|
|
if (sum_contrast < 1e-5) sum_contrast = 1e-5f;
|
|
float F_mask[MAX_PYR_LEVELS - 2];
|
|
float adapt = la->Get_Value(x,y,adaptation_level) + lb->Get_Value(x,y,adaptation_level);
|
|
adapt *= 0.5f;
|
|
if (adapt < 1e-5) adapt = 1e-5f;
|
|
for (i = 0; i < MAX_PYR_LEVELS - 2; i++) {
|
|
F_mask[i] = mask(contrast[i] * csf(cpd[i], adapt));
|
|
}
|
|
float factor = 0;
|
|
for (i = 0; i < MAX_PYR_LEVELS - 2; i++) {
|
|
factor += contrast[i] * F_freq[i] * F_mask[i] / sum_contrast;
|
|
}
|
|
if (factor < 1) factor = 1;
|
|
if (factor > 10) factor = 10;
|
|
float delta = fabsf(la->Get_Value(x,y,0) - lb->Get_Value(x,y,0));
|
|
bool pass = true;
|
|
// pure luminance test
|
|
if (delta > factor * tvi(adapt)) {
|
|
pass = false;
|
|
} else {
|
|
// CIE delta E test with modifications
|
|
float color_scale = 1.0f;
|
|
// ramp down the color test in scotopic regions
|
|
if (adapt < 10.0f) {
|
|
color_scale = 1.0f - (10.0f - color_scale) / 10.0f;
|
|
color_scale = color_scale * color_scale;
|
|
}
|
|
float da = aA[index] - bA[index];
|
|
float db = aB[index] - bB[index];
|
|
da = da * da;
|
|
db = db * db;
|
|
float delta_e = (da + db) * color_scale;
|
|
if (delta_e > factor) {
|
|
pass = false;
|
|
}
|
|
}
|
|
if (!pass) {
|
|
pixels_failed++;
|
|
if (args.ImgDiff) {
|
|
args.ImgDiff->Set(255, 0, 0, 255, index);
|
|
}
|
|
} else {
|
|
if (args.ImgDiff) {
|
|
args.ImgDiff->Set(0, 0, 0, 255, index);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (aX) delete[] aX;
|
|
if (aY) delete[] aY;
|
|
if (aZ) delete[] aZ;
|
|
if (bX) delete[] bX;
|
|
if (bY) delete[] bY;
|
|
if (bZ) delete[] bZ;
|
|
if (aLum) delete[] aLum;
|
|
if (bLum) delete[] bLum;
|
|
if (la) delete la;
|
|
if (lb) delete lb;
|
|
if (aA) delete aA;
|
|
if (bA) delete bA;
|
|
if (aB) delete aB;
|
|
if (bB) delete bB;
|
|
|
|
if (pixels_failed < args.ThresholdPixels) {
|
|
args.ErrorStr = "Images are perceptually indistinguishable\n";
|
|
return true;
|
|
}
|
|
|
|
char different[100];
|
|
sprintf(different, "%d pixels are different\n", pixels_failed);
|
|
|
|
args.ErrorStr = "Images are visibly different\n";
|
|
args.ErrorStr += different;
|
|
|
|
if (args.ImgDiff) {
|
|
if (args.ImgDiff->WritePPM()) {
|
|
args.ErrorStr += "Wrote difference image to ";
|
|
args.ErrorStr+= args.ImgDiff->Get_Name();
|
|
args.ErrorStr += "\n";
|
|
} else {
|
|
args.ErrorStr += "Could not write difference image to ";
|
|
args.ErrorStr+= args.ImgDiff->Get_Name();
|
|
args.ErrorStr += "\n";
|
|
}
|
|
}
|
|
return false;
|
|
} |