In this way clients will randomly find that the AP list is older than
30 seconds and they will issue a new scan.
(cherry picked from commit 5ba301f4eb)
This improves performance of fuzzer.
C.f. oss-fuzz#11019.
(cherry picked from commit 3c72b6ed4252e7ff5f7704bfe44557ec197b47fa)
(cherry picked from commit 50403cccee)
We must disconnect ActivateInfo before invoking callbacks.
Otherwise, it can happen that the callee cancels the cancellable,
which in turn enters activate_info_complete() again, and leads
to a crash.
https://bugzilla.redhat.com/show_bug.cgi?id=1642625
(cherry picked from commit ec37e18c64)
Try to make check-docs.sh script more readable.
Also, previously the script would check that one side was a subset
of the other side. Tighten this check up, now both sides of the
comparison must agree and yield the same lines.
(cherry picked from commit 7a59cd2744)
autotools build has/had a bug, where ibft test files would only be disted
if the ibft plugin was enabled.
Regardless of that, `build_clean.sh --release` is our suggested way to
create a release tarball. It should always enable the ibft plugin.
It didn't do so, due to a bug.
(cherry picked from commit b660a41c7c)
Otherwise readline decides to initialize terminal handling at the first
readline call, and if that happens at the point it sees our
non-echoing rl_redisplay.
At that point, unless already intialized, readline wrongly convinces itself we
do our own handling of terminal peculiarities (such as cursor movement, or
erases). We do not -- we merely wrap the stock rl_redisplay(), temporarily
hiding the actual characters.
The rl_initialize() in nmc_readline_echo()s fixes broken line editing in
password prompts that weren't preceded a previous non-password prompt.
The other one is there for consistency only. (I guess we should be
initializing readline before use anyway; although it seems to initialize
itself anyway if we fail to do so...)
https://github.com/NetworkManager/NetworkManager/pull/241
(cherry picked from commit 05d6c993dd)
The main purpose of "checkpatch-feature-branch.sh" is to test all
patches of a feature branch. When we run the script against master
(or nm-1-*), then there is no feature branch.
Previously, the script would just error out.
That is not very useful, in particular as we call this from gitlab-ci,
which also runs on master.
Instead, in that case, test the HEAD.
(cherry picked from commit 4543785438)
This takes current HEAD branch, and finds all the commits what
are not on master or one of the nm-1-* branches, and runs
checkpatch.pl on each.
The use is to run checkpatch.pl on all patches of a feature
branch.
(cherry picked from commit 369446eae6)
This wouldn't even dereference the dangling pointer, but
merely comparing it for pointer equality. Still, it's actually
undefined behavior. Avoid it.
(cherry picked from commit cfc0565604)
When a software device is removed by nmcli in parallel with a
disconnection, e.g.:
nmcli connection add type team ifname t1 con-name t1
sleep 1
nmcli connection down t1 & nmcli device delete t1
nmcli sometimes crashes in the following way:
...
Connection 't1' (e4701688-d1a9-4942-85f0-a2081e120023) successfully added.
Connection 't1' successfully deactivated (D-Bus active path: /org/freedesktop/NetworkManager/ActiveConnection/36)
Device 't1' successfully removed.
AddressSanitizer:DEADLYSIGNAL
=================================================================
==15217==ERROR: AddressSanitizer: SEGV on unknown address 0x00000000000b (pc 0x7fa6d92d1c9d bp 0x0000004ba260 sp 0x7ffffe6a6f40 T0)
==15217==The signal is caused by a READ memory access.
==15217==Hint: address points to the zero page.
0 0x7fa6d92d1c9c in g_string_truncate (/lib64/libglib-2.0.so.0+0x6ec9c)
1 0x7fa6d92d2d7b in g_string_printf (/lib64/libglib-2.0.so.0+0x6fd7b)
2 0x45a6d7 in delete_device_cb clients/cli/devices.c:2465
3 0x7fa6d9849289 in g_simple_async_result_complete /usr/src/debug/glib2-2.56.1-1.fc28.x86_64/gio/gsimpleasyncresult.c:802
4 0x7fa6dbaa9836 in device_delete_cb libnm/nm-device.c:2458
5 0x7fa6d985bcf3 in g_task_return_now /usr/src/debug/glib2-2.56.1-1.fc28.x86_64/gio/gtask.c:1148
6 0x7fa6d985c7a5 in g_task_return /usr/src/debug/glib2-2.56.1-1.fc28.x86_64/gio/gtask.c:1206
7 0x7fa6d989ca6c in reply_cb /usr/src/debug/glib2-2.56.1-1.fc28.x86_64/gio/gdbusproxy.c:2586
8 0x7fa6d985bcf3 in g_task_return_now /usr/src/debug/glib2-2.56.1-1.fc28.x86_64/gio/gtask.c:1148
9 0x7fa6d985c7a5 in g_task_return /usr/src/debug/glib2-2.56.1-1.fc28.x86_64/gio/gtask.c:1206
10 0x7fa6d98913c0 in g_dbus_connection_call_done /usr/src/debug/glib2-2.56.1-1.fc28.x86_64/gio/gdbusconnection.c:5722
11 0x7fa6d985bcf3 in g_task_return_now /usr/src/debug/glib2-2.56.1-1.fc28.x86_64/gio/gtask.c:1148
12 0x7fa6d985bd2c in complete_in_idle_cb /usr/src/debug/glib2-2.56.1-1.fc28.x86_64/gio/gtask.c:1162
13 0x7fa6d92ac0ea in g_idle_dispatch gmain.c:5535
14 0x7fa6d92af7cc in g_main_dispatch gmain.c:3177
15 0x7fa6d92afb97 in g_main_context_iterate gmain.c:3903
16 0x7fa6d92afec1 in g_main_loop_run (/lib64/libglib-2.0.so.0+0x4cec1)
17 0x472892 in main clients/cli/nmcli.c:1067
18 0x7fa6d8cc31ba in __libc_start_main (/lib64/libc.so.6+0x231ba)
19 0x4162b9 in _start (/usr/bin/nmcli+0x4162b9)
The reason is that after calling nm_device_delete_async() we also
listen for the manager device-removed signal. When the signal is
received, device_removed_cb() destroy the @info structure and calls
g_main_loop_quit (loop). However, if the delete_device_cb() callback
has already been dispatched it is executed anyway and it tries to
access a stale @info.
It makes little sense to listen for the device-removed signal since
the return value of nm_device_delete_async() already tells us whether
the device was removed successfully or not.
The only advantage would be that when the device goes away for other
reasons we can still return success, but that is racy and should not
be relied upon.
https://bugzilla.redhat.com/show_bug.cgi?id=1639208
(cherry picked from commit 6130a4561e)