weston/tests/linalg-test.c
Pekka Paalanen e57eb5b15d tests: return status from each test definition
Add a status return value to every test definition. There are no
behavioral changes, previously the RESULT_OK was simply assumed.

The benefit of this is that in the future individual tests can also
return RESULT_SKIP, so that we can keep statistics of skipped tests.

ivi-layout-internal-test.c has the only case where a test function may
return early. That one is set to return RESULT_HARD_ERROR to match the
compositor exit code already there.

Also documentation is updated.

Signed-off-by: Pekka Paalanen <pekka.paalanen@collabora.com>
2025-04-30 15:07:35 +03:00

472 lines
13 KiB
C

/*
* Copyright 2022, 2025 Collabora, Ltd.
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice (including the
* next paragraph) shall be included in all copies or substantial
* portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "config.h"
#include <math.h>
#include <libweston/linalg.h>
#include "weston-test-client-helper.h"
#include "weston-test-assert.h"
static void
print_mat3(struct weston_mat3f M)
{
unsigned r, c;
for (r = 0; r < 3; ++r) {
for (c = 0; c < 3; ++c)
testlog(" %14.6e", M.col[c].el[r]);
testlog("\n");
}
}
/*
* Test various ways of accessing the vector elements,
* make sure they are consistent.
*/
TEST(vec3_layout)
{
struct weston_vec3f v;
unsigned i;
static_assert(sizeof(v) == 3 * sizeof(float), "vec3 storage");
v = WESTON_VEC3F(1, 2, 3);
test_assert_f64_eq(v.x, 1);
test_assert_f64_eq(v.y, 2);
test_assert_f64_eq(v.z, 3);
for (i = 0; i < 3; i++)
test_assert_f64_eq(v.el[i], i + 1);
return RESULT_OK;
}
/*
* Test various ways of accessing the matrix elements,
* make sure they are consistent.
*/
TEST(mat3_layout)
{
struct weston_mat3f M;
unsigned row, col, i;
static_assert(sizeof(M.col) == sizeof(M.colmaj), "mat3 storage");
M = WESTON_MAT3F(
1, 2, 3,
4, 5, 6,
7, 8, 9
);
for (row = 0; row < 3; row++)
for (col = 0; col < 3; col++)
test_assert_f64_eq(M.col[col].el[row], 1 + col + 3 * row);
M = weston_m3f_transpose(M);
for (i = 0; i < 9; i++)
test_assert_f64_eq(M.colmaj[i], i + 1);
return RESULT_OK;
}
TEST(mat3_inf_norm)
{
struct weston_mat3f M = WESTON_MAT3F(
1, 2, 3,
13, 14, 15, /* <- sum */
5, 6, 7
);
test_assert_f64_eq(weston_m3f_inf_norm(M), 42.0);
return RESULT_OK;
}
struct test_matrix3 {
/* the matrix to test */
struct weston_mat3f M;
/*
* Residual error limit; inf norm(M * inv(M) - I) < err_limit
* The residual error as calculated here represents the relative
* error added by transforming a vector with inv(M).
*/
double err_limit;
};
static const struct test_matrix3 matrices3[] = {
/* A very trivial case. */
{
.M = WESTON_MAT3F(
1, 0, 0,
0, 2, 0,
0, 0, 3),
.err_limit = 0.0,
},
/* See the description in matrices4[] */
{
.M = WESTON_MAT3F(
1, 0, 1980,
0, 1, 1080,
0, 0, 1),
.err_limit = 0.0,
},
/*
* If you want to verify the matrices in Octave, type this:
* M = [ <paste the series of numbers> ]
* mat = reshape(M, 3, 3)
* det(mat)
* cond(mat)
*/
/* cond = 1e3, abs det = 1 */
{
.M = WESTON_MAT3F(
-3.85619916, -7.33213522, -17.39592142,
3.68083576, 6.9908134, 16.69315075,
2.24593119, 6.73273163, 15.43687958
),
.err_limit = 1e-4,
},
/* cond = 1e3, abs det = 15 */
{
.M = WESTON_MAT3F(
-24.17876224, 31.41542335, 29.67758047,
27.80376451, -37.71058091, -35.15458289,
4.70529412, -10.23486155, -8.8383264
),
.err_limit = 1e-4,
},
/* cond = 700, abs det = 1e-6, invertible regardless of det */
{
.M = WESTON_MAT3F(
-0.1494663, 0.15094259, -0.0227504,
-0.03434422, 0.03261981, 0.00269234,
-0.10630476, 0.10418501, -0.00725791
),
.err_limit = 1e-4,
},
/* cond = 1e6, abs det = 1, this is a little more challenging */
{
.M = WESTON_MAT3F(
-4.76473003, -247.24422465, 181.83067879,
-8.99040059, -502.78411442, 370.79353696,
11.30800122, 578.40401799, -425.14300652
),
.err_limit = 0.02,
},
/* cond = 15, abs det = 1e-9, should be well invertible */
{
.M = WESTON_MAT3F(
-0.00114829, -0.00051657, 0.00126965,
-0.00181574, 0.00044979, 0.00049775,
-0.00234378, 0.00010053, 0.00190233
),
.err_limit = 1e-6,
},
};
TEST_P(mat3_inversion_precision, matrices3)
{
const struct test_matrix3 *tm = data;
struct weston_mat3f rr;
double err;
/* Compute rr = M * inv(M) */
test_assert_true(weston_m3f_invert(&rr, tm->M));
rr = weston_m3f_mul_m3f(tm->M, rr);
/* Residual: subtract identity matrix (expected result) */
rr = weston_m3f_sub_m3f(rr, WESTON_MAT3F_IDENTITY);
/*
* Infinity norm of the residual is our measure.
* See https://gitlab.freedesktop.org/pq/fourbyfour/-/blob/master/README.d/precision_testing.md
*/
err = weston_m3f_inf_norm(rr);
testlog("Residual error %g (%.1f bits precision), limit %g.\n",
err, -log2(err), tm->err_limit);
if (err > tm->err_limit) {
testlog("Error is too high for matrix\n");
print_mat3(tm->M);
test_assert_true(false);
}
return RESULT_OK;
}
static void
print_mat4(struct weston_mat4f M)
{
unsigned r, c;
for (r = 0; r < 4; ++r) {
for (c = 0; c < 4; ++c)
testlog(" %14.6e", M.col[c].el[r]);
testlog("\n");
}
}
/*
* Test various ways of accessing the vector elements,
* make sure they are consistent.
*/
TEST(vec4_layout)
{
struct weston_vec4f v;
unsigned i;
static_assert(sizeof(v) == 4 * sizeof(float), "vec4 storage");
v = WESTON_VEC4F(1, 2, 3, 4);
test_assert_f32_eq(v.x, 1);
test_assert_f32_eq(v.y, 2);
test_assert_f32_eq(v.z, 3);
test_assert_f32_eq(v.w, 4);
for (i = 0; i < 4; i++)
test_assert_f32_eq(v.el[i], i + 1);
return RESULT_OK;
}
/*
* Test various ways of accessing the matrix elements,
* make sure they are consistent.
*/
TEST(mat4_layout)
{
struct weston_mat4f M;
unsigned row, col, i;
static_assert(sizeof(M.col) == sizeof(M.colmaj), "mat4 storage");
M = WESTON_MAT4F(
1, 2, 3, 4,
5, 6, 7, 8,
9, 10, 11, 12,
13, 14, 15, 16
);
for (row = 0; row < 4; row++)
for (col = 0; col < 4; col++)
test_assert_f32_eq(M.col[col].el[row], 1 + col + 4 * row);
M = weston_m4f_transpose(M);
for (i = 0; i < 16; i++)
test_assert_f32_eq(M.colmaj[i], i + 1);
return RESULT_OK;
}
TEST(mat4_inf_norm)
{
struct weston_mat4f M = WESTON_MAT4F(
1, 2, 3, 4,
13, 14, 15, 16, /* <- sum */
5, 6, 7, 8,
9, 10, 11, 12);
test_assert_f32_eq(weston_m4f_inf_norm(M), 58.0);
return RESULT_OK;
}
struct test_matrix4 {
/* the matrix to test */
struct weston_mat4f M;
/*
* Residual error limit; inf norm(M * inv(M) - I) < err_limit
* The residual error as calculated here represents the relative
* error added by transforming a vector with inv(M).
*/
double err_limit;
};
static const struct test_matrix4 matrices4[] = {
/* A very trivial case. */
{
.M = WESTON_MAT4F(
1, 0, 0, 0,
0, 2, 0, 0,
0, 0, 3, 0,
0, 0, 0, 4),
.err_limit = 0.0,
},
/*
* A very likely case in a compositor, being a matrix applying
* just a translation. Surprisingly, fourbyfour-analyze says:
*
* -------------------------------------------------------------------
* $ ./fourbyfour-analyse 1 0 0 1980 0 1 0 1080
* Your input matrix A is
* 1 0 0 1980
* 0 1 0 1080
* 0 0 1 0
* 0 0 0 1
*
* The singular values of A are: 2255.39, 1, 1, 0.000443382
* The condition number according to 2-norm of A is 5.087e+06.
*
* This means that if you were to solve the linear system Ax=b for vector x,
* in the worst case you would lose 6.7 digits (22.3 bits) of precision.
* The condition number is how much errors in vector b would be amplified
* when solving x even with infinite computational precision.
*
* Compare this to the precision of vectors b and x:
*
* - Single precision floating point has 7.2 digits (24 bits) of precision,
* leaving your result with no correct digits.
* Single precision, matrix A has rank 3 which means that the solution space
* for x has 1 dimension and therefore has many solutions.
*
* - Double precision floating point has 16.0 digits (53 bits) of precision,
* leaving your result with 9.2 correct digits (30 correct bits).
* Double precision, matrix A has full rank which means the solution x is
* unique.
*
* NOTE! The above gives you only an upper limit on errors.
* If the upper limit is low, you can be confident of your computations. But,
* if the upper limit is high, it does not necessarily imply that your
* computations will be doomed.
* -------------------------------------------------------------------
*
* This is one example where the condition number is highly pessimistic,
* while the actual inversion results in no error at all.
*
* https://gitlab.freedesktop.org/pq/fourbyfour
*/
{
.M = WESTON_MAT4F(
1, 0, 0, 1980,
0, 1, 0, 1080,
0, 0, 1, 0,
0, 0, 0, 1),
.err_limit = 0.0,
},
/*
* The following matrices have been generated with
* fourbyfour-generate using parameters out of a hat as listed below.
*
* If you want to verify the matrices in Octave, type this:
* M = [ <paste the series of numbers> ]
* mat = reshape(M, 4, 4)
* det(mat)
* cond(mat)
*/
/* cond = 1e3 */
{
.M = WESTON_MAT4F(
-4.12798022231678357619e-02, -7.93301899046665176529e-02, 2.49367040174418935772e-01, -2.22400462135059429070e-01,
2.02416121867255743849e-01, -2.25754422240346010187e-02, -2.91283152417864787953e-01, 1.49354988316431153139e-01,
6.18473094065821293874e-01, 5.81511312950217934548e-02, -1.18363610818063924590e+00, 8.00087538947595322547e-01,
1.25723127083294305972e-01, 7.72723720984487272290e-02, -3.76023220287807879991e-01, 2.82473279931768073148e-01),
.err_limit = 1e-5,
},
/* cond = 1e3, abs det = 15 */
{
.M = WESTON_MAT4F(
6.84154939885726509630e+00, -6.87241565273813304060e+00, -2.56772939909334070308e+01, -2.52185055099662420730e+01,
2.04511561406330022450e+00, -3.67551043874248994925e+00, -1.96421641406619129633e+00, -2.40644091603848320204e+00,
5.83631095663641819016e+00, -9.31051765621826277197e+00, -1.80402129629135217215e+01, -1.78475057662460052654e+01,
-9.88588496379959025262e+00, 1.49790516545410774540e+01, 2.64975800675967363418e+01, 2.65795891678410747261e+01),
.err_limit = 1e-4,
},
/* cond = 700, abs det = 1e-6, invertible regardless of det */
{
.M = WESTON_MAT4F(
1.32125189257677579449e-03, -1.67411409720826992453e-01, 1.07940907587735196449e-01, -1.22163309792902186057e-01,
-5.42113793774764013422e-02, 5.30455105336593901733e-01, -2.59607412684229155175e-01, 4.36480803188117993940e-01,
2.88175168292948129939e-03, -1.85262537685181277736e-01, 1.46265858042118279680e-01, -9.41398969709369287662e-02,
-2.88900393087768159184e-03, 1.57987202530630227448e-01, -1.20781192010860280450e-01, 8.95194304475115387731e-02),
.err_limit = 1e-4,
},
/* cond = 1e6, this is a little more challenging */
{
.M = WESTON_MAT4F(
-4.41851445093878913983e-01, -5.16386185043831491548e-01, 2.86186055948129847160e-01, -5.79440137716940473211e-01,
2.49798696238173301154e-01, 2.84965614532234345901e-01, -1.65729639683955931595e-01, 3.12568045963485974248e-01,
3.15253213984537428161e-01, 3.71270066781250074328e-01, -2.02675623845341434937e-01, 4.19969870491003371971e-01,
5.60818677658178832424e-01, 6.45373659426444201692e-01, -3.68902466471524526082e-01, 7.13785795079988516498e-01),
.err_limit = 0.02,
},
/* cond = 15, abs det = 1e-9, should be well invertible */
{
.M = WESTON_MAT4F(
-5.37536200142514660589e-05, 7.92552373388843642288e-03, -3.90554524958281433500e-03, 2.68892064500873568395e-03,
-9.72329428437283989350e-03, 8.32075145342783470404e-03, 6.52648485926096092596e-03, 1.06707947887298994737e-03,
1.04453728969657322345e-02, -1.03627268579679666927e-02, -3.56835980207569763989e-03, -3.95935925157862422114e-03,
5.37160838929722633805e-03, 6.13466744624343262009e-05, -1.23695935407398946090e-04, 8.21231194921675112380e-04),
.err_limit = 1e-6,
},
};
TEST_P(mat4_inversion_precision, matrices4)
{
const struct test_matrix4 *tm = data;
struct weston_mat4f rr;
float err;
/* Compute rr = M * inv(M) */
test_assert_true(weston_m4f_invert(&rr, tm->M));
rr = weston_m4f_mul_m4f(tm->M, rr);
/* Residual: subtract identity matrix (expected result) */
rr = weston_m4f_sub_m4f(rr, WESTON_MAT4F_IDENTITY);
/*
* Infinity norm of the residual is our measure.
* See https://gitlab.freedesktop.org/pq/fourbyfour/-/blob/master/README.d/precision_testing.md
*/
err = weston_m4f_inf_norm(rr);
testlog("Residual error %g (%.1f bits precision), limit %g.\n",
err, -log2f(err), tm->err_limit);
if (err > tm->err_limit) {
testlog("Error is too high for matrix\n");
print_mat4(tm->M);
test_assert_true(false);
}
return RESULT_OK;
}