weston/tests/color_util.c
Pekka Paalanen 556272bae9 color-lcms: change stock sRGB to true power-2.2
The sRGB expected display behavior uses the pure power-law with exponent
2.2, not the two-piece sRGB transfer function.
cmsCreate_sRGBProfileTHR() used the two-piece TF, now we use the proper
display TF.

This is particularly meaningful when implicit sRGB content is converted
to HDR formats, in order to maintain the stimuli reproduction near zero.

cmlcms_send_image_desc_info() is already sending this, it doesn't need
fixing.

Changing the curve also changes the error tolerances. The change is
theoretically a no-op, but the curve and its inverse and temporary
rounding add error. The new curve is more prone to error, so it is not
surprising we need to raise the tolerance. The color transformation does
end up as power-2.2 analytical form and I do not think it is ever
lowered to a LUT in alpha-blending test, so there is no obvious fix
improving the accuracy. The worst case point in alpha-blending still
occurs at the very same point as before.

The test reference images are updated for the same reason, they would
fail otherwise.

Both alpha-blending and color-icc-output contain the same sRGB-optical
sub-test, hence the same error tolerance.

It is surprising to have to increase the ICC roundtrip error tolerance
in color-icc-output test, given that the curves are passed as parametric
to LittleCMS, and adobeRGB case works with the old tolerance even. I did
not investigate further.

Signed-off-by: Pekka Paalanen <pekka.paalanen@collabora.com>
2025-06-03 15:47:20 +03:00

524 lines
14 KiB
C

/*
* Copyright 2020 Collabora, Ltd.
* Copyright 2021 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice (including the
* next paragraph) shall be included in all copies or substantial
* portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "config.h"
#include <math.h>
#include <assert.h>
#include <stdlib.h>
#include <string.h>
#include <stddef.h>
#include <libweston/linalg-3.h>
#include "color_util.h"
#include "weston-test-runner.h"
#include "weston-test-assert.h"
#include "shared/helpers.h"
static_assert(sizeof(struct color_float) == 4 * sizeof(float),
"unexpected padding in struct color_float");
static_assert(offsetof(struct color_float, r) == offsetof(struct color_float, rgb[COLOR_CHAN_R]),
"unexpected offset for struct color_float::r");
static_assert(offsetof(struct color_float, g) == offsetof(struct color_float, rgb[COLOR_CHAN_G]),
"unexpected offset for struct color_float::g");
static_assert(offsetof(struct color_float, b) == offsetof(struct color_float, rgb[COLOR_CHAN_B]),
"unexpected offset for struct color_float::b");
struct tone_curve_info {
enum transfer_fn fn;
enum transfer_fn inv_fn;
const char *name;
float (*apply)(float);
/* LCMS2 API curve parameters */
struct {
int type;
double param[5];
} lcms2;
};
/**
* NaN comes out as is
*This function is not intended for hiding NaN.
*/
static float
ensure_unit_range(float v)
{
const float tol = 1e-5f;
const float lim_lo = -tol;
const float lim_hi = 1.0f + tol;
test_assert_f32_ge(v, lim_lo);
if (v < 0.0f)
return 0.0f;
test_assert_f32_le(v, lim_hi);
if (v > 1.0f)
return 1.0f;
return v;
}
static float
sRGB_two_piece(float e)
{
e = ensure_unit_range(e);
if (e <= 0.04045)
return e / 12.92;
else
return pow((e + 0.055) / 1.055, 2.4);
}
static float
sRGB_two_piece_inv(float o)
{
o = ensure_unit_range(o);
if (o <= 0.04045 / 12.92)
return o * 12.92;
else
return pow(o, 1.0 / 2.4) * 1.055 - 0.055;
}
static float
AdobeRGB_EOTF(float e)
{
e = ensure_unit_range(e);
return pow(e, 563./256.);
}
static float
AdobeRGB_EOTF_inv(float o)
{
o = ensure_unit_range(o);
return pow(o, 256./563.);
}
static float
Power2_2_EOTF(float e)
{
e = ensure_unit_range(e);
return pow(e, 2.2);
}
static float
Power2_2_EOTF_inv(float o)
{
o = ensure_unit_range(o);
return pow(o, 1./2.2);
}
static float
Power2_4_EOTF(float e)
{
e = ensure_unit_range(e);
return pow(e, 2.4);
}
static float
Power2_4_EOTF_inv(float o)
{
o = ensure_unit_range(o);
return pow(o, 1./2.4);
}
static float
identity(float v)
{
return v;
}
static const struct tone_curve_info tone_curves[] = {
[TRANSFER_FN_IDENTITY] = {
.fn = TRANSFER_FN_IDENTITY,
.name = "identity",
.inv_fn = TRANSFER_FN_IDENTITY,
.apply = identity,
},
[TRANSFER_FN_SRGB] = {
.fn = TRANSFER_FN_SRGB,
.name = "sRGB two-piece",
.inv_fn = TRANSFER_FN_SRGB_INVERSE,
.apply = sRGB_two_piece,
.lcms2 = { 4, { 2.4, 1. / 1.055, 0.055 / 1.055, 1. / 12.92, 0.04045 }},
},
[TRANSFER_FN_SRGB_INVERSE] = {
.fn = TRANSFER_FN_SRGB_INVERSE,
.name = "inverse sRGB two-piece",
.inv_fn = TRANSFER_FN_SRGB,
.apply = sRGB_two_piece_inv,
.lcms2 = { -4, { 2.4, 1. / 1.055, 0.055 / 1.055, 1. / 12.92, 0.04045 }},
},
[TRANSFER_FN_ADOBE_RGB_EOTF] = {
.fn = TRANSFER_FN_ADOBE_RGB_EOTF,
.name = "AdobeRGB EOTF",
.inv_fn = TRANSFER_FN_ADOBE_RGB_EOTF_INVERSE,
.apply = AdobeRGB_EOTF,
.lcms2 = { 1, { 563./256., 0.0, 0.0, 0.0 , 0.0 }},
},
[TRANSFER_FN_ADOBE_RGB_EOTF_INVERSE] = {
.fn = TRANSFER_FN_ADOBE_RGB_EOTF_INVERSE,
.name = "inverse AdobeRGB EOTF",
.inv_fn = TRANSFER_FN_ADOBE_RGB_EOTF,
.apply = AdobeRGB_EOTF_inv,
.lcms2 = { -1, { 563./256., 0.0, 0.0, 0.0 , 0.0 }},
},
[TRANSFER_FN_POWER2_2_EOTF] = {
.fn = TRANSFER_FN_POWER2_2_EOTF,
.name = "power 2.2",
.inv_fn = TRANSFER_FN_POWER2_2_EOTF_INVERSE,
.apply = Power2_2_EOTF,
.lcms2 = { 1, { 2.2, 0.0, 0.0, 0.0 , 0.0 }},
},
[TRANSFER_FN_POWER2_2_EOTF_INVERSE] = {
.fn = TRANSFER_FN_POWER2_2_EOTF_INVERSE,
.name = "inverse power 2.2",
.inv_fn = TRANSFER_FN_POWER2_2_EOTF,
.apply = Power2_2_EOTF_inv,
.lcms2 = { -1, { 2.2, 0.0, 0.0, 0.0 , 0.0 }},
},
[TRANSFER_FN_POWER2_4_EOTF] = {
.fn = TRANSFER_FN_POWER2_4_EOTF,
.name = "power 2.4",
.inv_fn = TRANSFER_FN_POWER2_4_EOTF_INVERSE,
.apply = Power2_4_EOTF,
.lcms2 = { 1, { 2.4, 0.0, 0.0, 0.0 , 0.0 }},
},
[TRANSFER_FN_POWER2_4_EOTF_INVERSE] = {
.fn = TRANSFER_FN_POWER2_4_EOTF_INVERSE,
.name = "inverse power 2.4",
.inv_fn = TRANSFER_FN_POWER2_4_EOTF,
.apply = Power2_4_EOTF_inv,
.lcms2 = { -1, { 2.4, 0.0, 0.0, 0.0 , 0.0 }},
},
};
static const struct tone_curve_info *
find_tone_curve_info(enum transfer_fn fn)
{
const struct tone_curve_info *tc;
test_assert_int_ge(fn, 0);
test_assert_int_lt(fn, ARRAY_LENGTH(tone_curves));
tc = &tone_curves[fn];
test_assert_int_eq(fn, tc->fn);
return tc;
}
void
find_tone_curve_type(enum transfer_fn fn, int *type, double params[5])
{
const struct tone_curve_info *t;
t = find_tone_curve_info(fn);
test_assert_ptr_not_null(t);
*type = t->lcms2.type;
memcpy(params, t->lcms2.param, sizeof (t->lcms2.param));
}
enum transfer_fn
transfer_fn_invert(enum transfer_fn fn)
{
return find_tone_curve_info(fn)->inv_fn;
}
const char *
transfer_fn_name(enum transfer_fn fn)
{
return find_tone_curve_info(fn)->name;
}
float
apply_tone_curve(enum transfer_fn fn, float r)
{
return find_tone_curve_info(fn)->apply(r);
}
struct color_float
a8r8g8b8_to_float(uint32_t v)
{
struct color_float cf;
cf.a = ((v >> 24) & 0xff) / 255.f;
cf.r = ((v >> 16) & 0xff) / 255.f;
cf.g = ((v >> 8) & 0xff) / 255.f;
cf.b = ((v >> 0) & 0xff) / 255.f;
return cf;
}
struct color_float
color_float_apply_curve(enum transfer_fn fn, struct color_float c)
{
unsigned i;
for (i = 0; i < COLOR_CHAN_NUM; i++)
c.rgb[i] = apply_tone_curve(fn, c.rgb[i]);
return c;
}
void
sRGB_linearize(struct color_float *cf)
{
*cf = color_float_apply_curve(TRANSFER_FN_POWER2_2_EOTF, *cf);
}
void
sRGB_delinearize(struct color_float *cf)
{
*cf = color_float_apply_curve(TRANSFER_FN_POWER2_2_EOTF_INVERSE, *cf);
}
struct color_float
color_float_unpremult(struct color_float in)
{
static const struct color_float transparent = {
.r = 0.0f, .g = 0.0f, .b = 0.0f, .a = 0.0f,
};
struct color_float out;
int i;
if (in.a == 0.0f)
return transparent;
for (i = 0; i < COLOR_CHAN_NUM; i++)
out.rgb[i] = in.rgb[i] / in.a;
out.a = in.a;
return out;
}
/*
* Returns the result of the matrix-vector multiplication mat * c.
*/
struct color_float
color_float_apply_matrix(struct weston_mat3f mat, struct color_float c)
{
struct weston_vec3f v = weston_m3f_mul_v3f(mat, WESTON_VEC3F(c.r, c.g, c.b));
return (struct color_float){
.rgb = { v.r, v.g, v.b },
.a = c.a,
};
}
bool
should_include_vcgt(const double vcgt_exponents[COLOR_CHAN_NUM])
{
unsigned int i;
for (i = 0; i < COLOR_CHAN_NUM; i++)
if (vcgt_exponents[i] == 0.0)
return false;
return true;
}
void
process_pixel_using_pipeline(enum transfer_fn pre_curve,
struct weston_mat3f mat,
enum transfer_fn post_curve,
const double vcgt_exponents[COLOR_CHAN_NUM],
const struct color_float *in,
struct color_float *out)
{
struct color_float cf;
unsigned i;
cf = color_float_apply_curve(pre_curve, *in);
cf = color_float_apply_matrix(mat, cf);
cf = color_float_apply_curve(post_curve, cf);
if (should_include_vcgt(vcgt_exponents))
for (i = 0; i < COLOR_CHAN_NUM; i++)
cf.rgb[i] = pow(cf.rgb[i], vcgt_exponents[i]);
*out = cf;
}
/** Update scalar statistics
*
* \param stat The statistics structure to update.
* \param val A sample of the variable whose statistics you are collecting.
* \param pos The "position" that generated the current value.
*
* Accumulates min, max, sum and count statistics with the given value.
* Stores the position related to the current max and min each.
*
* To use this, declare a variable of type struct scalar_stat and
* zero-initialize it. Repeatedly call scalar_stat_update() to accumulate
* statistics. Then either directly read out what you are interested in from
* the structure, or use the related accessor or printing functions.
*
* If you also want to collect a debug log of all calls to this function,
* initialize the .dump member to a writable file handle. This is easiest
* with fopen_dump_file(). Remember to fclose() the handle after you have
* no more samples to add.
*/
void
scalar_stat_update(struct scalar_stat *stat,
double val,
const struct color_float *pos)
{
if (stat->count == 0 || stat->min > val) {
stat->min = val;
stat->min_pos = *pos;
}
if (stat->count == 0 || stat->max < val) {
stat->max = val;
stat->max_pos = *pos;
}
stat->sum += val;
stat->count++;
if (stat->dump) {
fprintf(stat->dump, "%.8g %.5g %.5g %.5g %.5g\n",
val, pos->r, pos->g, pos->b, pos->a);
}
}
/** Return the average of the previously seen values. */
float
scalar_stat_avg(const struct scalar_stat *stat)
{
return stat->sum / stat->count;
}
/** Print scalar statistics with pos.r only */
void
scalar_stat_print_float(const struct scalar_stat *stat)
{
testlog(" min %11.5g at %.5f\n", stat->min, stat->min_pos.r);
testlog(" max %11.5g at %.5f\n", stat->max, stat->max_pos.r);
testlog(" avg %11.5g\n", scalar_stat_avg(stat));
}
static void
print_stat_at_pos(const char *lim, double val, struct color_float pos, double scale)
{
testlog(" %s %8.5f at rgb(%7.2f, %7.2f, %7.2f)\n",
lim, val * scale, pos.r * scale, pos.g * scale, pos.b * scale);
}
static void
print_rgb_at_pos(const struct scalar_stat *stat, double scale)
{
print_stat_at_pos("min", stat->min, stat->min_pos, scale);
print_stat_at_pos("max", stat->max, stat->max_pos, scale);
testlog(" avg %8.5f\n", scalar_stat_avg(stat) * scale);
}
/** Print min/max/avg for each R/G/B/two-norm statistics
*
* \param stat The statistics to print.
* \param title A custom title to include in the heading which shall be printed
* like "%s error statistics:".
* \param scaling_bits Determines a scaling factor for the printed numbers as
* 2^scaling_bits - 1.
*
* Usually RGB values are stored in unsigned integer representation. 8-bit
* integer range is [0, 255] for example. Passing scaling_bits=8 will multiply
* all values (differences, two-norm errors, and position values) by
* 2^8 - 1 = 255. This makes interpreting the recorded errors more intuitive
* through the integer encoding precision perspective.
*/
void
rgb_diff_stat_print(const struct rgb_diff_stat *stat,
const char *title, unsigned scaling_bits)
{
const char *const chan_name[COLOR_CHAN_NUM] = { "r", "g", "b" };
float scale = exp2f(scaling_bits) - 1.0f;
unsigned i;
test_assert_uint_gt(scaling_bits, 0);
testlog("%s error statistics, %u samples, value range 0.0 - %.1f:\n",
title, stat->two_norm.count, scale);
for (i = 0; i < COLOR_CHAN_NUM; i++) {
testlog(" ch %s (signed):\n", chan_name[i]);
print_rgb_at_pos(&stat->rgb[i], scale);
}
testlog(" rgb two-norm:\n");
print_rgb_at_pos(&stat->two_norm, scale);
}
/** Update RGB difference statistics
*
* \param stat The statistics structure to update.
* \param ref The reference color to compare to.
* \param val The color produced by the algorithm under test; a sample.
* \param pos The position to be recorded with extremes.
*
* Computes the RGB difference by subtracting the reference color from the
* sample. This signed difference is tracked separately for each color channel
* in a scalar_stat to find the min, max, and average signed difference. The
* two-norm (Euclidean length) of the RGB difference vector is tracked in
* another scalar_stat.
*
* The position is stored separately for each of the eight min/max
* R/G/B/two-norm values recorded. A good way to use position is to record
* the algorithm input color.
*
* To use this, declare a variable of type struct rgb_diff_stat and
* zero-initalize it. Repeatedly call rgb_diff_stat_update() to accumulate
* statistics. Then either directly read out what you are interested in from
* the structure or use rgb_diff_stat_print().
*
* If you also want to collect a debug log of all calls to this function,
* initialize the .dump member to a writable file handle. This is easiest
* with fopen_dump_file(). Remember to fclose() the handle after you have
* no more samples to add.
*/
void
rgb_diff_stat_update(struct rgb_diff_stat *stat,
const struct color_float *ref,
const struct color_float *val,
const struct color_float *pos)
{
unsigned i;
double ssd = 0.0;
double diff[COLOR_CHAN_NUM];
double two_norm;
for (i = 0; i < COLOR_CHAN_NUM; i++) {
diff[i] = val->rgb[i] - ref->rgb[i];
scalar_stat_update(&stat->rgb[i], diff[i], pos);
ssd += diff[i] * diff[i];
}
two_norm = sqrt(ssd);
scalar_stat_update(&stat->two_norm, two_norm, pos);
if (stat->dump) {
fprintf(stat->dump, "%.8g %.8g %.8g %.8g %.5g %.5g %.5g %.5g\n",
two_norm,
diff[COLOR_CHAN_R], diff[COLOR_CHAN_G], diff[COLOR_CHAN_B],
pos->r, pos->g, pos->b, pos->a);
}
}