weston/tests/client-buffer-test.c

1476 lines
38 KiB
C
Raw Normal View History

/*
* Copyright © 2020 Collabora, Ltd.
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice (including the
* next paragraph) shall be included in all copies or substantial
* portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "config.h"
#include <stdio.h>
#include <string.h>
#include <sys/mman.h>
#include <math.h>
#include <unistd.h>
#include "weston-test-client-helper.h"
#include "weston-test-fixture-compositor.h"
#include "image-iter.h"
#include "shared/os-compatibility.h"
#include "shared/weston-drm-fourcc.h"
#include "shared/xalloc.h"
/* XXX For formats with more than 8 bit pre component, we should ideally load a
* 16-bit (or 32-bit) per component image and store into a 16-bit (or 32-bit)
* per component renderbuffer so that we can ensure the additional precision is
* correctly handled. */
static enum test_result_code
fixture_setup(struct weston_test_harness *harness)
{
struct compositor_setup setup;
compositor_setup_defaults(&setup);
setup.renderer = WESTON_RENDERER_GL;
setup.width = 324;
setup.height = 264;
setup.shell = SHELL_TEST_DESKTOP;
gl-renderer: implement intermediate framebuffer (shadow) Proper color management will need blending done with linear light pixel values, that is, EOTF applied before blending, and then inverse-EOTF applied for scanout after blending. The simplest way to set that up is to use an intemediate framebuffer a.k.a shadow buffer containing the composited image in linear light values, then blit from that to the actual framebuffer. This patch implements the shadow buffer, but the linear light blending is left for another patch. This allows GL-renderer to turn WESTON_CAP_COLOR_OPS on. Half-float is chosen as the buffer format because linear light values require more bits to encode with sufficient precision than the usual non-linear pixel values. v2: Use /* */ instead of // (Pekka) Rename fbo and tex to shadow_{fbo,tex} (Pekka) Check for OpenGLES capabilities before creating shadow_{tex,fbo} (Pekka) Signed-off-by: Harish Krupo <harishkrupo@gmail.com> v3: Rebased. Simplified GL version checks (Sebastian) Apply changes from "libweston: add color ops cap and bool renderer shadow buffer" Renamed supports_half_float_texture to has_gl_half_float to follow the existing naming pattern. Introduce gl_renderer_create_shadow_16f(). Undo moving of glViewport() call. Replace half_float_texture_enabled with shadow_exists(). Introduce struct gl_output_state_shadow. Assert no resizing with shadow. Fix triangle fan debug. Rename repaint_from_texture() to blit_shadow_to_output(). Rewrite commit message because linear light blending is not implemented in this patch. Fix blit_shadow_to_output() for scaled/transformed outputs and remove redundant code. Fix has_gl_half_float determination. v4: Disable blending in blit_shadow. (Daniel) Port to gl_renderer_get_program(). Make a generic fbo-texture struct with parameterized format. (Daniel) Change has_gl_half_float into gl_half_float_type. Signed-off-by: Pekka Paalanen <pekka.paalanen@collabora.com>
2019-04-18 21:45:48 +05:30
setup.logging_scopes = "log,gl-shader-generator";
setup.refresh = HIGHEST_OUTPUT_REFRESH;
return weston_test_harness_execute_as_client(harness, &setup);
}
DECLARE_FIXTURE_SETUP(fixture_setup);
struct client_buffer {
void *data;
size_t bytes;
struct wl_buffer *proxy;
int width;
int height;
};
struct client_buffer_case {
uint32_t drm_format;
const char *drm_format_name;
int ref_seq_no;
struct client_buffer *(*create_buffer)(struct client *client,
uint32_t drm_format,
pixman_image_t *rgb_image);
};
static struct client_buffer *
shm_buffer_create(struct client *client,
size_t bytes,
int width,
int height,
int stride_bytes,
uint32_t drm_format)
{
struct wl_shm_pool *pool;
struct client_buffer *buf;
uint32_t shm_format;
int fd;
if (drm_format == DRM_FORMAT_ARGB8888)
shm_format = WL_SHM_FORMAT_ARGB8888;
else if (drm_format == DRM_FORMAT_XRGB8888)
shm_format = WL_SHM_FORMAT_XRGB8888;
else
shm_format = drm_format;
if (!support_shm_format(client, shm_format))
return NULL;
buf = xzalloc(sizeof *buf);
buf->bytes = bytes;
buf->width = width;
buf->height = height;
fd = os_create_anonymous_file(buf->bytes);
test_assert_int_ge(fd, 0);
buf->data = mmap(NULL, buf->bytes,
PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);
if (buf->data == MAP_FAILED) {
close(fd);
test_assert_not_reached("mmap() failed");
}
pool = wl_shm_create_pool(client->wl_shm, fd, buf->bytes);
buf->proxy = wl_shm_pool_create_buffer(pool, 0, buf->width, buf->height,
stride_bytes, shm_format);
wl_shm_pool_destroy(pool);
close(fd);
return buf;
}
static void
client_buffer_destroy(struct client_buffer *buf)
{
wl_buffer_destroy(buf->proxy);
test_assert_int_eq(munmap(buf->data, buf->bytes), 0);
free(buf);
}
/*
* 16 bpp RGB
*
* RGBX4444: [15:0] R:G:B:x 4:4:4:4 little endian
* RGBA4444: [15:0] R:G:B:A 4:4:4:4 little endian
*
* BGRX4444: [15:0] B:G:R:x 4:4:4:4 little endian
* BGRA4444: [15:0] B:G:R:A 4:4:4:4 little endian
*
* XRGB4444: [15:0] x:R:G:B 4:4:4:4 little endian
* ARGB4444: [15:0] A:R:G:B 4:4:4:4 little endian
*
* XBGR4444: [15:0] x:B:G:R 4:4:4:4 little endian
* ABGR4444: [15:0] A:B:G:R 4:4:4:4 little endian
*/
static struct client_buffer *
rgba4444_create_buffer(struct client *client,
uint32_t drm_format,
pixman_image_t *rgb_image)
{
static const int swizzles[][4] = {
{ 3, 2, 1, 0 }, /* RGBX4444, RGBA4444 */
{ 1, 2, 3, 0 }, /* BGRX4444, BGRA4444 */
{ 2, 1, 0, 3 }, /* XRGB4444, ARGB4444 */
{ 0, 1, 2, 3 }, /* XBGR4444, ABGR4444 */
};
struct image_header src = image_header_from(rgb_image);
struct client_buffer *buf;
bool is_opaque;
int idx, x, y;
uint16_t a;
switch (drm_format) {
case DRM_FORMAT_RGBX4444:
is_opaque = true;
idx = 0;
break;
case DRM_FORMAT_RGBA4444:
is_opaque = false;
idx = 0;
break;
case DRM_FORMAT_BGRX4444:
is_opaque = true;
idx = 1;
break;
case DRM_FORMAT_BGRA4444:
is_opaque = false;
idx = 1;
break;
case DRM_FORMAT_XRGB4444:
is_opaque = true;
idx = 2;
break;
case DRM_FORMAT_ARGB4444:
is_opaque = false;
idx = 2;
break;
case DRM_FORMAT_XBGR4444:
is_opaque = true;
idx = 3;
break;
case DRM_FORMAT_ABGR4444:
is_opaque = false;
idx = 3;
break;
default:
test_assert_not_reached("Invalid format!");
};
buf = shm_buffer_create(client, src.width * src.height * 2, src.width,
src.height, src.width * 2, drm_format);
/* Store alpha as 0x0 to ensure the compositor correctly replaces it
* with 0xf. */
a = is_opaque ? 0x0 : 0xf;
for (y = 0; y < src.height; y++) {
uint16_t *dst_row = (uint16_t*) buf->data + src.width * y;
uint32_t *src_row = image_header_get_row_u32(&src, y);
for (x = 0; x < src.width; x++) {
uint16_t r = (src_row[x] >> 20) & 0xf;
uint16_t g = (src_row[x] >> 12) & 0xf;
uint16_t b = (src_row[x] >> 4) & 0xf;
dst_row[x] =
r << (swizzles[idx][0] * 4) |
g << (swizzles[idx][1] * 4) |
b << (swizzles[idx][2] * 4) |
a << (swizzles[idx][3] * 4);
}
}
return buf;
}
/*
* 16 bpp RGB
*
* RGBX5551: [15:0] R:G:B:x 5:5:5:1 little endian
* RGBA5551: [15:0] R:G:B:A 5:5:5:1 little endian
*
* BGRX5551: [15:0] B:G:R:x 5:5:5:1 little endian
* BGRA5551: [15:0] B:G:R:A 5:5:5:1 little endian
*/
static struct client_buffer *
rgba5551_create_buffer(struct client *client,
uint32_t drm_format,
pixman_image_t *rgb_image)
{
struct image_header src = image_header_from(rgb_image);
struct client_buffer *buf;
int x, y;
uint16_t a;
test_assert_true(drm_format == DRM_FORMAT_RGBX5551 ||
drm_format == DRM_FORMAT_RGBA5551 ||
drm_format == DRM_FORMAT_BGRX5551 ||
drm_format == DRM_FORMAT_BGRA5551);
buf = shm_buffer_create(client, src.width * src.height * 2, src.width,
src.height, src.width * 2, drm_format);
/* Store alpha as 0x0 to ensure the compositor correctly replaces it
* with 0x1. */
a = drm_format == DRM_FORMAT_RGBX5551 ||
drm_format == DRM_FORMAT_RGBX5551 ? 0x0 : 0x1;
for (y = 0; y < src.height; y++) {
uint16_t *dst_row = (uint16_t*) buf->data + src.width * y;
uint32_t *src_row = image_header_get_row_u32(&src, y);
for (x = 0; x < src.width; x++) {
uint16_t r = (src_row[x] >> 19) & 0x1f;
uint16_t g = (src_row[x] >> 11) & 0x1f;
uint16_t b = (src_row[x] >> 3) & 0x1f;
if (drm_format == DRM_FORMAT_RGBX5551 ||
drm_format == DRM_FORMAT_RGBA5551)
dst_row[x] = r << 11 | g << 6 | b << 1 | a;
else
dst_row[x] = b << 11 | g << 6 | r << 1 | a;
}
}
return buf;
}
/*
* 16 bpp RGB
*
* RGB565: [15:0] R:G:B 5:6:5 little endian
* BGR565: [15:0] B:G:R 5:6:5 little endian
*/
static struct client_buffer *
rgb565_create_buffer(struct client *client,
uint32_t drm_format,
pixman_image_t *rgb_image)
{
struct image_header src = image_header_from(rgb_image);
struct client_buffer *buf;
int x, y;
test_assert_true(drm_format == DRM_FORMAT_RGB565 ||
drm_format == DRM_FORMAT_BGR565);
buf = shm_buffer_create(client, src.width * src.height * 2, src.width,
src.height, src.width * 2, drm_format);
for (y = 0; y < src.height; y++) {
uint16_t *dst_row = (uint16_t*) buf->data + src.width * y;
uint32_t *src_row = image_header_get_row_u32(&src, y);
for (x = 0; x < src.width; x++) {
uint16_t r = (src_row[x] >> 19) & 0x1f;
uint16_t g = (src_row[x] >> 10) & 0x3f;
uint16_t b = (src_row[x] >> 3) & 0x1f;
if (drm_format == DRM_FORMAT_RGB565)
dst_row[x] = r << 11 | g << 5 | b;
else
dst_row[x] = b << 11 | g << 5 | r;
}
}
return buf;
}
/*
* 24 bpp RGB
*
* RGB888: [23:0] R:G:B 8:8:8 little endian
* BGR888: [23:0] B:G:R 8:8:8 little endian
*/
static struct client_buffer *
rgb888_create_buffer(struct client *client,
uint32_t drm_format,
pixman_image_t *rgb_image)
{
struct image_header src = image_header_from(rgb_image);
struct client_buffer *buf;
int x, y;
test_assert_true(drm_format == DRM_FORMAT_RGB888 ||
drm_format == DRM_FORMAT_BGR888);
buf = shm_buffer_create(client, src.width * src.height * 3, src.width,
src.height, src.width * 3, drm_format);
for (y = 0; y < src.height; y++) {
uint8_t *dst_row = (uint8_t*) buf->data + src.width * 3 * y;
uint32_t *src_row = image_header_get_row_u32(&src, y);
for (x = 0; x < src.width; x++) {
uint8_t r = src_row[x] >> 16;
uint8_t g = src_row[x] >> 8;
uint8_t b = src_row[x];
if (drm_format == DRM_FORMAT_RGB888) {
dst_row[x * 3 + 2] = r;
dst_row[x * 3 + 1] = g;
dst_row[x * 3 + 0] = b;
} else {
dst_row[x * 3 + 2] = b;
dst_row[x * 3 + 1] = g;
dst_row[x * 3 + 0] = r;
}
}
}
return buf;
}
/*
* 32 bpp RGB
*
* RGBX8888: [31:0] R:G:B:x 8:8:8:8 little endian
* RGBA8888: [31:0] R:G:B:A 8:8:8:8 little endian
*
* BGRX8888: [31:0] B:G:R:x 8:8:8:8 little endian
* BGRA8888: [31:0] B:G:R:A 8:8:8:8 little endian
*
* XRGB8888: [31:0] x:R:G:B 8:8:8:8 little endian
* ARGB8888: [31:0] A:R:G:B 8:8:8:8 little endian
*
* XBGR8888: [31:0] x:B:G:R 8:8:8:8 little endian
* ABGR8888: [31:0] A:B:G:R 8:8:8:8 little endian
*/
static struct client_buffer *
rgba8888_create_buffer(struct client *client,
uint32_t drm_format,
pixman_image_t *rgb_image)
{
static const int swizzles[][4] = {
{ 3, 2, 1, 0 }, /* RGBX8888, RGBA8888 */
{ 1, 2, 3, 0 }, /* BGRX8888, BGRA8888 */
{ 2, 1, 0, 3 }, /* XRGB8888, ARGB8888 */
{ 0, 1, 2, 3 }, /* XBGR8888, ABGR8888 */
};
struct image_header src = image_header_from(rgb_image);
struct client_buffer *buf;
bool is_opaque;
int idx, x, y;
uint32_t a;
switch (drm_format) {
case DRM_FORMAT_RGBX8888:
is_opaque = true;
idx = 0;
break;
case DRM_FORMAT_RGBA8888:
is_opaque = false;
idx = 0;
break;
case DRM_FORMAT_BGRX8888:
is_opaque = true;
idx = 1;
break;
case DRM_FORMAT_BGRA8888:
is_opaque = false;
idx = 1;
break;
case DRM_FORMAT_XRGB8888:
is_opaque = true;
idx = 2;
break;
case DRM_FORMAT_ARGB8888:
is_opaque = false;
idx = 2;
break;
case DRM_FORMAT_XBGR8888:
is_opaque = true;
idx = 3;
break;
case DRM_FORMAT_ABGR8888:
is_opaque = false;
idx = 3;
break;
default:
test_assert_not_reached("Invalid format!");
};
buf = shm_buffer_create(client, src.width * src.height * 4, src.width,
src.height, src.width * 4, drm_format);
/* Store alpha as 0x00 to ensure the compositor correctly replaces it
* with 0xff. */
a = is_opaque ? 0x00 : 0xff;
for (y = 0; y < src.height; y++) {
uint32_t *dst_row = (uint32_t*) buf->data + src.width * y;
uint32_t *src_row = image_header_get_row_u32(&src, y);
for (x = 0; x < src.width; x++) {
uint32_t r = (src_row[x] >> 16) & 0xff;
uint32_t g = (src_row[x] >> 8) & 0xff;
uint32_t b = (src_row[x] >> 0) & 0xff;
dst_row[x] =
r << (swizzles[idx][0] * 8) |
g << (swizzles[idx][1] * 8) |
b << (swizzles[idx][2] * 8) |
a << (swizzles[idx][3] * 8);
}
}
return buf;
}
/*
* 32 bpp RGB
*
* XRGB2101010: [31:0] x:R:G:B 2:10:10:10 little endian
* ARGB2101010: [31:0] A:R:G:B 2:10:10:10 little endian
*
* XBGR2101010: [31:0] x:B:G:R 2:10:10:10 little endian
* ABGR2101010: [31:0] A:B:G:R 2:10:10:10 little endian
*/
static struct client_buffer *
rgba2101010_create_buffer(struct client *client,
uint32_t drm_format,
pixman_image_t *rgb_image)
{
struct image_header src = image_header_from(rgb_image);
struct client_buffer *buf;
int x, y;
uint32_t a;
test_assert_true(drm_format == DRM_FORMAT_XRGB2101010 ||
drm_format == DRM_FORMAT_ARGB2101010 ||
drm_format == DRM_FORMAT_XBGR2101010 ||
drm_format == DRM_FORMAT_ABGR2101010);
buf = shm_buffer_create(client, src.width * src.height * 4, src.width,
src.height, src.width * 4, drm_format);
/* Store alpha as 0x0 to ensure the compositor correctly replaces it
* with 0x3. */
a = drm_format == DRM_FORMAT_XRGB2101010 ||
drm_format == DRM_FORMAT_XRGB2101010 ? 0x0 : 0x3;
for (y = 0; y < src.height; y++) {
uint32_t *dst_row = (uint32_t*) buf->data + src.width * y;
uint32_t *src_row = image_header_get_row_u32(&src, y);
for (x = 0; x < src.width; x++) {
uint32_t r = ((src_row[x] >> 16) & 0xff) << 2;
uint32_t g = ((src_row[x] >> 8) & 0xff) << 2;
uint32_t b = ((src_row[x] >> 0) & 0xff) << 2;
if (drm_format == DRM_FORMAT_XRGB2101010 ||
drm_format == DRM_FORMAT_ARGB2101010)
dst_row[x] = a << 30 | r << 20 | g << 10 | b;
else
dst_row[x] = a << 30 | b << 20 | g << 10 | r;
}
}
return buf;
}
/*
* 64 bpp RGB
*
* XRGB16161616: [63:0] x:R:G:B 16:16:16:16 little endian
* ARGB16161616: [63:0] A:R:G:B 16:16:16:16 little endian
*
* XBGR16161616: [63:0] x:B:G:R 16:16:16:16 little endian
* ABGR16161616: [63:0] A:B:G:R 16:16:16:16 little endian
*/
static struct client_buffer *
rgba16161616_create_buffer(struct client *client,
uint32_t drm_format,
pixman_image_t *rgb_image)
{
static const int swizzles[][4] = {
{ 2, 1, 0, 3 }, /* XRGB16161616, ARGB16161616 */
{ 0, 1, 2, 3 }, /* XBGR16161616, ABGR16161616 */
};
struct image_header src = image_header_from(rgb_image);
struct client_buffer *buf;
bool is_opaque;
int idx, x, y;
uint64_t a;
switch (drm_format) {
case DRM_FORMAT_XRGB16161616:
is_opaque = true;
idx = 0;
break;
case DRM_FORMAT_ARGB16161616:
is_opaque = false;
idx = 0;
break;
case DRM_FORMAT_XBGR16161616:
is_opaque = true;
idx = 1;
break;
case DRM_FORMAT_ABGR16161616:
is_opaque = false;
idx = 1;
break;
default:
test_assert_not_reached("Invalid format!");
};
buf = shm_buffer_create(client, src.width * src.height * 8, src.width,
src.height, src.width * 8, drm_format);
/* Store alpha as 0x0000 to ensure the compositor correctly replaces it
* with 0xffff. */
a = is_opaque ? 0x0000 : 0xffff;
for (y = 0; y < src.height; y++) {
uint64_t *dst_row = (uint64_t*) buf->data + src.width * y;
uint32_t *src_row = image_header_get_row_u32(&src, y);
for (x = 0; x < src.width; x++) {
uint64_t r = ((src_row[x] >> 16) & 0xff) << 8;
uint64_t g = ((src_row[x] >> 8) & 0xff) << 8;
uint64_t b = ((src_row[x] >> 0) & 0xff) << 8;
dst_row[x] =
r << (swizzles[idx][0] * 16) |
g << (swizzles[idx][1] * 16) |
b << (swizzles[idx][2] * 16) |
a << (swizzles[idx][3] * 16);
}
}
return buf;
}
/* Convert an IEEE 754-2008 binary32 value to binary16 bits. Doesn't bother
* supporting Inf, Nan or subnormal numbers. Simply return signed 0 if there's
* an underflow due to the loss of precision. */
static uint16_t
binary16_from_binary32(float binary32)
{
uint32_t bits;
uint16_t sign, significand, exponent;
memcpy(&bits, &binary32, 4);
sign = bits >> 31;
exponent = (bits >> 23) & 0xff;
significand = (bits >> 13) & 0x3ff;
if (exponent >= 103)
return sign << 15 | (exponent - 112) << 10 | significand;
else
return sign << 15;
}
/*
* Floating point 64bpp RGB
* IEEE 754-2008 binary16 half-precision float
* [15:0] sign:exponent:mantissa 1:5:10
*
* XRGB16161616F: [63:0] x:R:G:B 16:16:16:16 little endian
* ARGB16161616F: [63:0] A:R:G:B 16:16:16:16 little endian
*
* XBGR16161616F: [63:0] x:B:G:R 16:16:16:16 little endian
* ABGR16161616F: [63:0] A:B:G:R 16:16:16:16 little endian
*/
static struct client_buffer *
rgba16161616f_create_buffer(struct client *client,
uint32_t drm_format,
pixman_image_t *rgb_image)
{
static const int swizzles[][4] = {
{ 2, 1, 0, 3 }, /* XRGB16161616F, ARGB16161616F */
{ 0, 1, 2, 3 }, /* XBGR16161616F, ABGR16161616F */
};
struct image_header src = image_header_from(rgb_image);
struct client_buffer *buf;
bool is_opaque;
int idx, x, y;
uint64_t a;
switch (drm_format) {
case DRM_FORMAT_XRGB16161616F:
is_opaque = true;
idx = 0;
break;
case DRM_FORMAT_ARGB16161616F:
is_opaque = false;
idx = 0;
break;
case DRM_FORMAT_XBGR16161616F:
is_opaque = true;
idx = 1;
break;
case DRM_FORMAT_ABGR16161616F:
is_opaque = false;
idx = 1;
break;
default:
test_assert_not_reached("Invalid format!");
};
buf = shm_buffer_create(client, src.width * src.height * 8, src.width,
src.height, src.width * 8, drm_format);
/* Store alpha as 0.0 to ensure the compositor correctly replaces it
* with 1.0. */
a = is_opaque ?
binary16_from_binary32(0.0f) :
binary16_from_binary32(1.0f);
for (y = 0; y < src.height; y++) {
uint64_t *dst_row = (uint64_t*) buf->data + src.width * y;
uint32_t *src_row = image_header_get_row_u32(&src, y);
for (x = 0; x < src.width; x++) {
uint64_t r = ((src_row[x] >> 16) & 0xff) << 8;
uint64_t g = ((src_row[x] >> 8) & 0xff) << 8;
uint64_t b = ((src_row[x] >> 0) & 0xff) << 8;
r = binary16_from_binary32(r / 65535.0f);
g = binary16_from_binary32(g / 65535.0f);
b = binary16_from_binary32(b / 65535.0f);
dst_row[x] =
r << (swizzles[idx][0] * 16) |
g << (swizzles[idx][1] * 16) |
b << (swizzles[idx][2] * 16) |
a << (swizzles[idx][3] * 16);
}
}
return buf;
}
/*
* Based on Rec. ITU-R BT.709-6
*
* This is intended to be obvious and accurate, not fast.
*/
static void
x8r8g8b8_to_ycbcr8_bt709(uint32_t xrgb,
uint8_t *y_out, uint8_t *cb_out, uint8_t *cr_out)
{
double y, cb, cr;
double r = (xrgb >> 16) & 0xff;
double g = (xrgb >> 8) & 0xff;
double b = (xrgb >> 0) & 0xff;
/* normalize to [0.0, 1.0] */
r /= 255.0;
g /= 255.0;
b /= 255.0;
/* Y normalized to [0.0, 1.0], Cb and Cr [-0.5, 0.5] */
y = 0.2126 * r + 0.7152 * g + 0.0722 * b;
cr = (r - y) / 1.5748;
cb = (b - y) / 1.8556;
/* limited range quantization to 8 bit */
*y_out = round(219.0 * y + 16.0);
if (cr_out)
*cr_out = round(224.0 * cr + 128.0);
if (cb_out)
*cb_out = round(224.0 * cb + 128.0);
}
/*
* Same as above but for conversion to 16-bit Y'CbCr formats. 'depth' can be set
* to any value in the range [9, 16]. If 'depth' is less than 16, components are
* aligned to the most significant bit with the least significant bits set to 0.
*/
static void
x8r8g8b8_to_ycbcr16_bt709(uint32_t xrgb, int depth,
uint16_t *y_out, uint16_t *cb_out, uint16_t *cr_out)
{
uint16_t d;
double y, cb, cr;
double r = (xrgb >> 16) & 0xff;
double g = (xrgb >> 8) & 0xff;
double b = (xrgb >> 0) & 0xff;
/* Rec. ITU-R BT.709-6 defines D as 1 or 4 for 8-bit or 10-bit
* quantization respectively. We extrapolate here to [9, 16]-bit depths
* by setting D to 2^(depth - 8). */
test_assert_int_ge(depth, 9);
test_assert_int_le(depth, 16);
d = 1 << (depth - 8);
/* normalize to [0.0, 1.0] */
r /= 255.0;
g /= 255.0;
b /= 255.0;
/* Y normalized to [0.0, 1.0], Cb and Cr [-0.5, 0.5] */
y = 0.2126 * r + 0.7152 * g + 0.0722 * b;
cr = (r - y) / 1.5748;
cb = (b - y) / 1.8556;
/* limited range quantization to [9, 16]-bit aligned to the MSB */
*y_out = (uint16_t) round((219.0 * y + 16.0) * d) << (16 - depth);
if (cr_out)
*cr_out = (uint16_t)
round((224.0 * cr + 128.0) * d) << (16 - depth);
if (cb_out)
*cb_out = (uint16_t)
round((224.0 * cb + 128.0) * d) << (16 - depth);
}
/*
* 3 plane YCbCr
* plane 0: Y plane, [7:0] Y
* plane 1: Cb plane, [7:0] Cb
* plane 2: Cr plane, [7:0] Cr
*
* YUV420: 2x2 subsampled Cb (1) and Cr (2) planes
*
* YVU420: 2x2 subsampled Cr (1) and Cb (2) planes
*
* YUV444: no subsampling Cb (1) and Cr (2) planes
* YVU444: no subsampling Cr (1) and Cb (2) planes
*/
static struct client_buffer *
y_u_v_create_buffer(struct client *client,
uint32_t drm_format,
pixman_image_t *rgb_image)
{
struct image_header rgb = image_header_from(rgb_image);
struct client_buffer *buf;
size_t bytes;
int x, y;
uint32_t *rgb_row;
uint8_t *y_base;
uint8_t *u_base;
uint8_t *v_base;
uint8_t *y_row;
uint8_t *u_row;
uint8_t *v_row;
uint32_t argb;
int sub = (drm_format == DRM_FORMAT_YUV420 ||
drm_format == DRM_FORMAT_YVU420) ? 2 : 1;
test_assert_true(drm_format == DRM_FORMAT_YUV420 ||
drm_format == DRM_FORMAT_YVU420 ||
drm_format == DRM_FORMAT_YUV444 ||
drm_format == DRM_FORMAT_YVU444);
/* Full size Y plus quarter U and V */
bytes = rgb.width * rgb.height +
(rgb.width / sub) * (rgb.height / sub) * 2;
buf = shm_buffer_create(client, bytes, rgb.width, rgb.height,
rgb.width, drm_format);
y_base = buf->data;
if (drm_format == DRM_FORMAT_YUV420 ||
drm_format == DRM_FORMAT_YUV444) {
u_base = y_base + rgb.width * rgb.height;
v_base = u_base + (rgb.width / sub) * (rgb.height / sub);
} else if (drm_format == DRM_FORMAT_YVU420 ||
drm_format == DRM_FORMAT_YVU444) {
v_base = y_base + rgb.width * rgb.height;
u_base = v_base + (rgb.width / sub) * (rgb.height / sub);
} else {
test_assert_not_reached("Invalid format!");
}
for (y = 0; y < rgb.height; y++) {
rgb_row = image_header_get_row_u32(&rgb, y / 2 * 2);
y_row = y_base + y * rgb.width;
u_row = u_base + (y / sub) * (rgb.width / sub);
v_row = v_base + (y / sub) * (rgb.width / sub);
for (x = 0; x < rgb.width; x++) {
/*
* Sub-sample the source image instead, so that U and V
* sub-sampling does not require proper
* filtering/averaging/siting.
*/
argb = *(rgb_row + x / 2 * 2);
/*
* A stupid way of "sub-sampling" chroma. This does not
* do the necessary filtering/averaging/siting or
* alternate Cb/Cr rows.
*/
if ((y & (sub - 1)) == 0 && (x & (sub - 1)) == 0) {
x8r8g8b8_to_ycbcr8_bt709(argb, y_row + x,
u_row + x / sub,
v_row + x / sub);
} else {
x8r8g8b8_to_ycbcr8_bt709(argb, y_row + x,
NULL, NULL);
}
}
}
return buf;
}
/*
* 2 plane YCbCr
*
* NV12: plane 0 = Y plane, [7:0] Y
* plane 1 = Cr:Cb plane, [15:0] Cr:Cb little endian
* 2x2 subsampled Cr:Cb plane
*
* NV21: plane 0 = Y plane, [7:0] Y
* plane 1 = Cb:Cr plane, [15:0] Cb:Cr little endian
* 2x2 subsampled Cb:Cr plane
*/
static struct client_buffer *
nv12_create_buffer(struct client *client,
uint32_t drm_format,
pixman_image_t *rgb_image)
{
static const int swizzles[][2] = {
{ 0, 1 }, /* NV12 */
{ 1, 0 } /* NV21 */
};
struct image_header rgb = image_header_from(rgb_image);
struct client_buffer *buf;
size_t bytes;
int idx, x, y;
uint32_t *rgb_row;
uint8_t *y_base;
uint16_t *uv_base;
uint8_t *y_row;
uint16_t *uv_row;
uint32_t argb;
uint8_t cr;
uint8_t cb;
switch (drm_format) {
case DRM_FORMAT_NV12:
idx = 0;
break;
case DRM_FORMAT_NV21:
idx = 1;
break;
default:
test_assert_not_reached("Invalid format!");
};
/* Full size Y, quarter UV */
bytes = rgb.width * rgb.height +
(rgb.width / 2) * (rgb.height / 2) * sizeof(uint16_t);
buf = shm_buffer_create(client, bytes, rgb.width, rgb.height,
rgb.width, drm_format);
y_base = buf->data;
uv_base = (uint16_t *)(y_base + rgb.width * rgb.height);
for (y = 0; y < rgb.height; y++) {
rgb_row = image_header_get_row_u32(&rgb, y / 2 * 2);
y_row = y_base + y * rgb.width;
uv_row = uv_base + (y / 2) * (rgb.width / 2);
for (x = 0; x < rgb.width; x++) {
/*
* Sub-sample the source image instead, so that U and V
* sub-sampling does not require proper
* filtering/averaging/siting.
*/
argb = *(rgb_row + x / 2 * 2);
/*
* A stupid way of "sub-sampling" chroma. This does not
* do the necessary filtering/averaging/siting.
*/
if ((y & 1) == 0 && (x & 1) == 0) {
x8r8g8b8_to_ycbcr8_bt709(argb, y_row + x,
&cb, &cr);
*(uv_row + x / 2) =
((uint16_t) cr << (swizzles[idx][1] * 8)) |
((uint16_t) cb << (swizzles[idx][0] * 8));
} else {
x8r8g8b8_to_ycbcr8_bt709(argb, y_row + x,
NULL, NULL);
}
}
}
return buf;
}
/*
* 2 plane YCbCr
*
* NV16: plane 0 = Y plane, [7:0] Y
* plane 1 = Cr:Cb plane, [15:0] Cr:Cb little endian
* 2x1 subsampled Cr:Cb plane
*
* NV61: plane 0 = Y plane, [7:0] Y
* plane 1 = Cb:Cr plane, [15:0] Cb:Cr little endian
* 2x1 subsampled Cb:Cr plane
*/
static struct client_buffer *
nv16_create_buffer(struct client *client,
uint32_t drm_format,
pixman_image_t *rgb_image)
{
static const int swizzles[][2] = {
{ 0, 1 }, /* NV16 */
{ 1, 0 } /* NV61 */
};
struct image_header rgb = image_header_from(rgb_image);
struct client_buffer *buf;
size_t bytes;
int idx, x, y;
uint32_t *rgb_row;
uint8_t *y_base;
uint16_t *uv_base;
uint8_t *y_row;
uint16_t *uv_row;
uint32_t argb;
uint8_t cr;
uint8_t cb;
switch (drm_format) {
case DRM_FORMAT_NV16:
idx = 0;
break;
case DRM_FORMAT_NV61:
idx = 1;
break;
default:
test_assert_not_reached("Invalid format!");
};
/* Full size Y, horizontally subsampled UV */
bytes = rgb.width * rgb.height +
(rgb.width / 2) * rgb.height * sizeof(uint16_t);
buf = shm_buffer_create(client, bytes, rgb.width, rgb.height,
rgb.width, drm_format);
y_base = buf->data;
uv_base = (uint16_t *)(y_base + rgb.width * rgb.height);
for (y = 0; y < rgb.height; y++) {
rgb_row = image_header_get_row_u32(&rgb, y / 2 * 2);
y_row = y_base + y * rgb.width;
uv_row = uv_base + y * (rgb.width / 2);
for (x = 0; x < rgb.width; x++) {
/*
* 2x2 sub-sample the source image to get the same
* result as the other YUV variants, so we can use the
* same reference image for checking.
*/
argb = *(rgb_row + x / 2 * 2);
/*
* A stupid way of "sub-sampling" chroma. This does not
* do the necessary filtering/averaging/siting.
*/
if ((x & 1) == 0) {
x8r8g8b8_to_ycbcr8_bt709(argb, y_row + x,
&cb, &cr);
*(uv_row + x / 2) =
((uint16_t) cr << (swizzles[idx][1] * 8)) |
((uint16_t) cb << (swizzles[idx][0] * 8));
} else {
x8r8g8b8_to_ycbcr8_bt709(argb, y_row + x,
NULL, NULL);
}
}
}
return buf;
}
/*
* 2 plane YCbCr
*
* NV24: plane 0 = Y plane, [7:0] Y
* plane 1 = Cr:Cb plane, [15:0] Cr:Cb little endian
* non-subsampled Cr:Cb plane
*
* NV42: plane 0 = Y plane, [7:0] Y
* plane 1 = Cb:Cr plane, [15:0] Cb:Cr little endian
* non-subsampled Cb:Cr plane
*/
static struct client_buffer *
nv24_create_buffer(struct client *client,
uint32_t drm_format,
pixman_image_t *rgb_image)
{
static const int swizzles[][2] = {
{ 0, 1 }, /* NV24 */
{ 1, 0 } /* NV42 */
};
struct image_header rgb = image_header_from(rgb_image);
struct client_buffer *buf;
size_t bytes;
int idx, x, y;
uint32_t *rgb_row;
uint8_t *y_base;
uint16_t *uv_base;
uint8_t *y_row;
uint16_t *uv_row;
uint32_t argb;
uint8_t cr;
uint8_t cb;
switch (drm_format) {
case DRM_FORMAT_NV24:
idx = 0;
break;
case DRM_FORMAT_NV42:
idx = 1;
break;
default:
test_assert_not_reached("Invalid format!");
};
/* Full size Y, non-subsampled UV */
bytes = rgb.width * rgb.height +
rgb.width * rgb.height * sizeof(uint16_t);
buf = shm_buffer_create(client, bytes, rgb.width, rgb.height,
rgb.width, drm_format);
y_base = buf->data;
uv_base = (uint16_t *)(y_base + rgb.width * rgb.height);
for (y = 0; y < rgb.height; y++) {
rgb_row = image_header_get_row_u32(&rgb, y / 2 * 2);
y_row = y_base + y * rgb.width;
uv_row = uv_base + y * rgb.width;
for (x = 0; x < rgb.width; x++) {
/*
* 2x2 sub-sample the source image to get the same
* result as the other YUV variants, so we can use the
* same reference image for checking.
*/
argb = *(rgb_row + x / 2 * 2);
x8r8g8b8_to_ycbcr8_bt709(argb, y_row + x,
&cb, &cr);
*(uv_row + x) =
((uint16_t) cr << (swizzles[idx][1] * 8)) |
((uint16_t) cb << (swizzles[idx][0] * 8));
}
}
return buf;
}
/*
* Packed YCbCr
*
* YUYV: [31:0] Cr0:Y1:Cb0:Y0 8:8:8:8 little endian
* 2x1 subsampled Cr:Cb plane
*
* YVYU: [31:0] Cb0:Y1:Cr0:Y0 8:8:8:8 little endian
* 2x1 subsampled Cb:Cr plane
*
* UYVY: [31:0] Y1:Cr0:Y0:Cb0 8:8:8:8 little endian
* 2x1 subsampled Cr:Cb plane
*
* VYUY: [31:0] Y1:Cb0:Y0:Cr0 8:8:8:8 little endian
* 2x1 subsampled Cb:Cr plane
*/
static struct client_buffer *
yuyv_create_buffer(struct client *client,
uint32_t drm_format,
pixman_image_t *rgb_image)
{
static const int swizzles[][4] = {
{ 0, 1, 2, 3 }, /* YUYV */
{ 0, 3, 2, 1 }, /* YVYU */
{ 1, 0, 3, 2 }, /* UYVY */
{ 1, 2, 3, 0 } /* VYUY */
};
struct image_header rgb = image_header_from(rgb_image);
struct client_buffer *buf;
size_t bytes;
int idx, x, y;
uint32_t *rgb_row;
uint32_t *yuv_base;
uint32_t *yuv_row;
uint8_t cr;
uint8_t cb;
uint8_t y0;
switch (drm_format) {
case DRM_FORMAT_YUYV:
idx = 0;
break;
case DRM_FORMAT_YVYU:
idx = 1;
break;
case DRM_FORMAT_UYVY:
idx = 2;
break;
case DRM_FORMAT_VYUY:
idx = 3;
break;
default:
test_assert_not_reached("Invalid format!");
};
/* Full size Y, horizontally subsampled UV, 2 pixels in 32 bits */
bytes = rgb.width / 2 * rgb.height * sizeof(uint32_t);
buf = shm_buffer_create(client, bytes, rgb.width, rgb.height,
rgb.width / 2 * sizeof(uint32_t), drm_format);
yuv_base = buf->data;
for (y = 0; y < rgb.height; y++) {
rgb_row = image_header_get_row_u32(&rgb, y / 2 * 2);
yuv_row = yuv_base + y * (rgb.width / 2);
for (x = 0; x < rgb.width; x += 2) {
/*
* Sub-sample the source image instead, so that U and V
* sub-sampling does not require proper
* filtering/averaging/siting.
*/
x8r8g8b8_to_ycbcr8_bt709(*(rgb_row + x), &y0, &cb, &cr);
*(yuv_row + x / 2) =
((uint32_t)cr << (swizzles[idx][3] * 8)) |
((uint32_t)y0 << (swizzles[idx][2] * 8)) |
((uint32_t)cb << (swizzles[idx][1] * 8)) |
((uint32_t)y0 << (swizzles[idx][0] * 8));
}
}
return buf;
}
/*
* Packed YCbCr
*
* XYUV8888: [31:0] X:Y:Cb:Cr 8:8:8:8 little endian
* full resolution chroma
*/
static struct client_buffer *
xyuv8888_create_buffer(struct client *client,
uint32_t drm_format,
pixman_image_t *rgb_image)
{
struct image_header rgb = image_header_from(rgb_image);
struct client_buffer *buf;
size_t bytes;
int x, y;
uint32_t *rgb_row;
uint32_t *yuv_base;
uint32_t *yuv_row;
uint8_t cr;
uint8_t cb;
uint8_t y0;
test_assert_enum(drm_format, DRM_FORMAT_XYUV8888);
/* Full size, 32 bits per pixel */
bytes = rgb.width * rgb.height * sizeof(uint32_t);
buf = shm_buffer_create(client, bytes, rgb.width, rgb.height,
rgb.width * sizeof(uint32_t), drm_format);
yuv_base = buf->data;
for (y = 0; y < rgb.height; y++) {
rgb_row = image_header_get_row_u32(&rgb, y / 2 * 2);
yuv_row = yuv_base + y * rgb.width;
for (x = 0; x < rgb.width; x++) {
/*
* 2x2 sub-sample the source image to get the same
* result as the other YUV variants, so we can use the
* same reference image for checking.
*/
x8r8g8b8_to_ycbcr8_bt709(*(rgb_row + x / 2 * 2), &y0, &cb, &cr);
/*
* The unused byte is intentionally set to "garbage"
* to catch any accidental use of it in the compositor.
*/
*(yuv_row + x) =
((uint32_t)x << 24) |
((uint32_t)y0 << 16) |
((uint32_t)cb << 8) |
((uint32_t)cr << 0);
}
}
return buf;
}
/*
* 2 plane YCbCr MSB aligned
*
* P016: index 0 = Y plane, [15:0] Y little endian
* index 1 = Cr:Cb plane, [31:0] Cr:Cb [16:16] little endian
* 2x2 subsampled Cr:Cb plane 16 bits per channel
*
* P012: index 0 = Y plane, [15:0] Y:x [12:4] little endian
* index 1 = Cr:Cb plane, [31:0] Cr:x:Cb:x [12:4:12:4] little endian
* 2x2 subsampled Cr:Cb plane 12 bits per channel
*
* P010: index 0 = Y plane, [15:0] Y:x [10:6] little endian
* index 1 = Cr:Cb plane, [31:0] Cr:x:Cb:x [10:6:10:6] little endian
* 2x2 subsampled Cr:Cb plane 10 bits per channel
*/
static struct client_buffer *
p016_create_buffer(struct client *client,
uint32_t drm_format,
pixman_image_t *rgb_image)
{
struct image_header rgb = image_header_from(rgb_image);
struct client_buffer *buf;
size_t bytes;
int depth, x, y;
uint32_t *rgb_row;
uint16_t *y_base;
uint32_t *uv_base;
uint16_t *y_row;
uint32_t *uv_row;
uint32_t argb;
uint16_t cr;
uint16_t cb;
switch (drm_format) {
case DRM_FORMAT_P016:
depth = 16;
break;
case DRM_FORMAT_P012:
depth = 12;
break;
case DRM_FORMAT_P010:
depth = 10;
break;
default:
test_assert_not_reached("Invalid format!");
};
/* Full size Y, quarter UV */
bytes = rgb.width * rgb.height * sizeof(uint16_t) +
(rgb.width / 2) * (rgb.height / 2) * sizeof(uint32_t);
buf = shm_buffer_create(client, bytes, rgb.width, rgb.height,
rgb.width * sizeof(uint16_t), drm_format);
y_base = buf->data;
uv_base = (uint32_t *)(y_base + rgb.width * rgb.height);
for (y = 0; y < rgb.height; y++) {
rgb_row = image_header_get_row_u32(&rgb, y / 2 * 2);
y_row = y_base + y * rgb.width;
uv_row = uv_base + (y / 2) * (rgb.width / 2);
for (x = 0; x < rgb.width; x++) {
/*
* Sub-sample the source image instead, so that U and V
* sub-sampling does not require proper
* filtering/averaging/siting.
*/
argb = *(rgb_row + x / 2 * 2);
/*
* A stupid way of "sub-sampling" chroma. This does not
* do the necessary filtering/averaging/siting.
*/
if ((x & 1) == 0 && (y & 1) == 0) {
x8r8g8b8_to_ycbcr16_bt709(argb, depth,
y_row + x, &cb, &cr);
*(uv_row + x / 2) =
((uint32_t) cr << 16) |
((uint32_t) cb << 0);
} else {
x8r8g8b8_to_ycbcr16_bt709(argb, depth,
y_row + x, NULL, NULL);
}
}
}
return buf;
}
static void
show_window_with_client_buffer(struct client *client, struct client_buffer *buf)
{
struct surface *surface = client->surface;
int done;
weston_test_move_surface(client->test->weston_test, surface->wl_surface,
4, 4);
wl_surface_attach(surface->wl_surface, buf->proxy, 0, 0);
wl_surface_damage(surface->wl_surface, 0, 0, buf->width,
buf->height);
frame_callback_set(surface->wl_surface, &done);
wl_surface_commit(surface->wl_surface);
frame_callback_wait(client, &done);
}
static const struct client_buffer_case client_buffer_cases[] = {
#define FMT(x) DRM_FORMAT_ ##x, #x
/* RGB */
{ FMT(RGBX4444), 0, rgba4444_create_buffer },
{ FMT(RGBA4444), 0, rgba4444_create_buffer },
{ FMT(BGRX4444), 0, rgba4444_create_buffer },
{ FMT(BGRA4444), 0, rgba4444_create_buffer },
{ FMT(XRGB4444), 0, rgba4444_create_buffer },
{ FMT(ARGB4444), 0, rgba4444_create_buffer },
{ FMT(XBGR4444), 0, rgba4444_create_buffer },
{ FMT(ABGR4444), 0, rgba4444_create_buffer },
{ FMT(RGBX5551), 1, rgba5551_create_buffer },
{ FMT(RGBA5551), 1, rgba5551_create_buffer },
{ FMT(BGRX5551), 1, rgba5551_create_buffer },
{ FMT(BGRA5551), 1, rgba5551_create_buffer },
{ FMT(RGB565), 2, rgb565_create_buffer },
{ FMT(BGR565), 2, rgb565_create_buffer },
{ FMT(RGB888), 3, rgb888_create_buffer },
{ FMT(BGR888), 3, rgb888_create_buffer },
{ FMT(RGBX8888), 3, rgba8888_create_buffer },
{ FMT(RGBA8888), 3, rgba8888_create_buffer },
{ FMT(BGRX8888), 3, rgba8888_create_buffer },
{ FMT(BGRA8888), 3, rgba8888_create_buffer },
{ FMT(XRGB8888), 3, rgba8888_create_buffer },
{ FMT(ARGB8888), 3, rgba8888_create_buffer },
{ FMT(XBGR8888), 3, rgba8888_create_buffer },
{ FMT(ABGR8888), 3, rgba8888_create_buffer },
{ FMT(XRGB2101010), 3, rgba2101010_create_buffer },
{ FMT(ARGB2101010), 3, rgba2101010_create_buffer },
{ FMT(XBGR2101010), 3, rgba2101010_create_buffer },
{ FMT(ABGR2101010), 3, rgba2101010_create_buffer },
{ FMT(XRGB16161616), 3, rgba16161616_create_buffer },
{ FMT(ARGB16161616), 3, rgba16161616_create_buffer },
{ FMT(XBGR16161616), 3, rgba16161616_create_buffer },
{ FMT(ABGR16161616), 3, rgba16161616_create_buffer },
{ FMT(XRGB16161616F), 3, rgba16161616f_create_buffer },
{ FMT(ARGB16161616F), 3, rgba16161616f_create_buffer },
{ FMT(XBGR16161616F), 3, rgba16161616f_create_buffer },
{ FMT(ABGR16161616F), 3, rgba16161616f_create_buffer },
/* YUV */
{ FMT(YUV420), 4, y_u_v_create_buffer },
{ FMT(YVU420), 4, y_u_v_create_buffer },
{ FMT(YUV444), 4, y_u_v_create_buffer },
{ FMT(YVU444), 4, y_u_v_create_buffer },
{ FMT(NV12), 4, nv12_create_buffer },
{ FMT(NV21), 4, nv12_create_buffer },
{ FMT(NV16), 4, nv16_create_buffer },
{ FMT(NV61), 4, nv16_create_buffer },
{ FMT(NV24), 4, nv24_create_buffer },
{ FMT(NV42), 4, nv24_create_buffer },
{ FMT(YUYV), 4, yuyv_create_buffer },
{ FMT(YVYU), 4, yuyv_create_buffer },
{ FMT(UYVY), 4, yuyv_create_buffer },
{ FMT(VYUY), 4, yuyv_create_buffer },
{ FMT(XYUV8888), 4, xyuv8888_create_buffer },
{ FMT(P016), 5, p016_create_buffer },
{ FMT(P012), 5, p016_create_buffer },
{ FMT(P010), 5, p016_create_buffer },
#undef FMT
};
/*
* Test that various pixel formats result in correct coloring on screen.
*/
TEST_P(client_buffer, client_buffer_cases)
{
const struct client_buffer_case *my_case = data;
char *fname;
pixman_image_t *img;
struct client *client;
struct client_buffer *buf;
bool match;
testlog("%s: format %s\n", get_test_name(), my_case->drm_format_name);
/*
* Note for YUV formats:
*
* This test image is 256 x 256 pixels.
*
* Therefore this test does NOT exercise:
* - odd image dimensions
* - non-square image
* - row padding
* - unaligned row stride
* - different alignments or padding in sub-sampled planes
*
* The reason to not test these is that GL-renderer seems to be more
* or less broken.
*
* The source image is effectively further downscaled to 128 x 128
* before sampled and converted to 256 x 256 YUV, so that
* sub-sampling for U and V does not require proper algorithms.
* Therefore, this test also does not test:
* - chroma siting (chroma sample positioning)
*/
fname = image_filename("chocolate-cake");
img = load_image_from_png(fname);
free(fname);
test_assert_ptr_not_null(img);
client = create_client();
client->surface = create_test_surface(client);
buf = my_case->create_buffer(client, my_case->drm_format, img);
if (!buf) {
testlog("%s: Skipped: format %s not supported by compositor\n",
get_test_name(), my_case->drm_format_name);
goto format_not_supported;
}
show_window_with_client_buffer(client, buf);
match = verify_screen_content(client, "client-buffer",
my_case->ref_seq_no, NULL, 0, NULL);
test_assert_true(match);
client_buffer_destroy(buf);
format_not_supported:
pixman_image_unref(img);
client_destroy(client);
}