vulkan-wsi-layer/layer/private_data.cpp
Nir Ekhauz 64c1c46609 Initial support for VK_KHR_present_wait2
Add support for present wait2 ext. for physical, surface and sc.

Signed-off-by: Nir.Ekhauz <nir.ekhauz@arm.com>
Change-Id: I0f7cdadb2d3ea0ecbc32b8b2efe9fc3bb4ba0369
2025-08-26 13:42:14 +01:00

658 lines
22 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*
* Copyright (c) 2018-2025 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include <vulkan/vulkan.h>
#include "private_data.hpp"
#include "wsi/wsi_factory.hpp"
#include "wsi/surface.hpp"
#include "wsi/unsupported_surfaces.hpp"
#include "util/unordered_map.hpp"
#include "util/log.hpp"
#include "util/helpers.hpp"
#include "util/macros.hpp"
namespace layer
{
static std::mutex g_data_lock;
/* The dictionaries below use plain pointers to store the instance/device private data objects.
* This means that these objects are leaked if the application terminates without calling vkDestroyInstance
* or vkDestroyDevice. This is fine as it is the application's responsibility to call these.
*/
static util::unordered_map<void *, instance_private_data *> g_instance_data{ util::allocator::get_generic() };
static util::unordered_map<void *, device_private_data *> g_device_data{ util::allocator::get_generic() };
VkResult instance_dispatch_table::populate(VkInstance instance, PFN_vkGetInstanceProcAddr get_proc,
uint32_t instance_api_version)
{
static constexpr entrypoint entrypoints_init[] = {
#define DISPATCH_TABLE_ENTRY(name, ext_name, api_version, required, alias) \
{ "vk" #name, ext_name, nullptr, api_version, false, required, "vk" #alias },
INSTANCE_ENTRYPOINTS_LIST(DISPATCH_TABLE_ENTRY)
#undef DISPATCH_TABLE_ENTRY
};
static constexpr auto num_entrypoints = std::distance(std::begin(entrypoints_init), std::end(entrypoints_init));
for (size_t i = 0; i < num_entrypoints; i++)
{
const entrypoint *entrypoint = &entrypoints_init[i];
PFN_vkVoidFunction ret = get_proc(instance, entrypoint->name);
if (!ret && entrypoint->required)
{
return VK_ERROR_INITIALIZATION_FAILED;
}
struct entrypoint e = *entrypoint;
e.fn = ret;
e.user_visible = false;
if (entrypoint->alias != nullptr && strcmp(entrypoint->alias, "vk") != 0 &&
instance_api_version >= entrypoint->api_version)
{
e.fn = get_proc(instance, entrypoint->alias);
}
if (!m_entrypoints->try_insert(std::make_pair(e.name, e)).has_value())
{
WSI_LOG_ERROR("Failed to allocate memory for instance dispatch table entry.");
return VK_ERROR_OUT_OF_HOST_MEMORY;
}
}
return VK_SUCCESS;
}
void dispatch_table::set_user_enabled_extensions(const char *const *extension_names, size_t extension_count)
{
for (size_t i = 0; i < extension_count; i++)
{
for (auto &entrypoint : *m_entrypoints)
{
if (!strcmp(entrypoint.second.ext_name, extension_names[i]))
{
entrypoint.second.user_visible = true;
}
}
}
}
/**
* @brief Decide whether we should expose this Vulkan entrypoint to the application.
*
* An entrypoint is exposable if any of the following are true:
* - The application explicitly enabled its extension/command.
* - Its part of core Vulkan 1.0.
* - It has no associated extension name (`ep.ext_name` is empty), e.g.
* `vkGetPhysicalDeviceCalibrateableTimeDomainsKHR`
*
* @param[in] ep The entrypoint metadata to evaluate.
* @return `true` if the layer should expose this entrypoint, `false` otherwise.
*/
static inline bool should_expose_entrypoint(const entrypoint &ep)
{
return ep.user_visible || (ep.api_version == VK_API_VERSION_1_0) || (ep.ext_name && ep.ext_name[0] == '\0');
}
PFN_vkVoidFunction instance_dispatch_table::get_user_enabled_entrypoint(VkInstance instance, const char *fn_name) const
{
auto itr = m_entrypoints->find(fn_name);
if (itr != m_entrypoints->end())
{
return should_expose_entrypoint(itr->second) ? itr->second.fn : nullptr;
}
return GetInstanceProcAddr(instance, fn_name).value_or(nullptr);
}
VkResult device_dispatch_table::populate(VkDevice dev, PFN_vkGetDeviceProcAddr get_proc_fn,
uint32_t instance_api_version)
{
static constexpr entrypoint entrypoints_init[] = {
#define DISPATCH_TABLE_ENTRY(name, ext_name, api_version, required, alias) \
{ "vk" #name, ext_name, nullptr, api_version, false, required, "vk" #alias },
DEVICE_ENTRYPOINTS_LIST(DISPATCH_TABLE_ENTRY)
#undef DISPATCH_TABLE_ENTRY
};
static constexpr auto num_entrypoints = std::distance(std::begin(entrypoints_init), std::end(entrypoints_init));
for (size_t i = 0; i < num_entrypoints; i++)
{
const entrypoint *entrypoint = &entrypoints_init[i];
PFN_vkVoidFunction ret = get_proc_fn(dev, entrypoint->name);
if (!ret && entrypoint->required)
{
return VK_ERROR_INITIALIZATION_FAILED;
}
struct entrypoint e = *entrypoint;
e.fn = ret;
e.user_visible = false;
if (entrypoint->alias != nullptr && strcmp(entrypoint->alias, "vk") != 0 &&
instance_api_version >= entrypoint->api_version)
{
e.fn = get_proc_fn(dev, entrypoint->alias);
}
if (!m_entrypoints->try_insert(std::make_pair(e.name, e)).has_value())
{
WSI_LOG_ERROR("Failed to allocate memory for device dispatch table entry.");
return VK_ERROR_OUT_OF_HOST_MEMORY;
}
}
return VK_SUCCESS;
}
PFN_vkVoidFunction device_dispatch_table::get_user_enabled_entrypoint(VkDevice device, const char *fn_name) const
{
auto itr = m_entrypoints->find(fn_name);
if (itr != m_entrypoints->end())
{
return should_expose_entrypoint(itr->second) ? itr->second.fn : nullptr;
}
return GetDeviceProcAddr(device, fn_name).value_or(nullptr);
}
instance_private_data::instance_private_data(instance_dispatch_table table, PFN_vkSetInstanceLoaderData set_loader_data,
util::wsi_platform_set enabled_layer_platforms, const uint32_t api_version,
const util::allocator &alloc)
: disp{ std::move(table) }
, api_version{ api_version }
, SetInstanceLoaderData{ set_loader_data }
, enabled_layer_platforms{ enabled_layer_platforms }
, allocator{ alloc }
, surfaces{ alloc }
, enabled_extensions{ allocator }
{
}
/**
* @brief Obtain the loader's dispatch table for the given dispatchable object.
* @note Dispatchable objects are structures that have a VkLayerDispatchTable as their first member.
We treat the dispatchable object as a void** and then dereference to use the VkLayerDispatchTable
as the key.
*/
template <typename dispatchable_type>
static inline void *get_key(dispatchable_type dispatchable_object)
{
return *reinterpret_cast<void **>(dispatchable_object);
}
VkResult instance_private_data::associate(VkInstance instance, instance_dispatch_table table,
PFN_vkSetInstanceLoaderData set_loader_data,
util::wsi_platform_set enabled_layer_platforms, const uint32_t api_version,
const util::allocator &allocator)
{
auto instance_data = allocator.make_unique<instance_private_data>(std::move(table), set_loader_data,
enabled_layer_platforms, api_version, allocator);
if (instance_data == nullptr)
{
WSI_LOG_ERROR("Instance private data for instance(%p) could not be allocated. Out of memory.",
reinterpret_cast<void *>(instance));
return VK_ERROR_OUT_OF_HOST_MEMORY;
}
const auto key = get_key(instance);
scoped_mutex lock(g_data_lock);
auto it = g_instance_data.find(key);
if (it != g_instance_data.end())
{
WSI_LOG_WARNING("Hash collision when adding new instance (%p)", reinterpret_cast<void *>(instance));
destroy(it->second);
g_instance_data.erase(it);
}
auto result = g_instance_data.try_insert(std::make_pair(key, instance_data.get()));
if (result.has_value())
{
instance_data.release(); // NOLINT(bugprone-unused-return-value)
return VK_SUCCESS;
}
else
{
WSI_LOG_WARNING("Failed to insert instance_private_data for instance (%p) as host is out of memory",
reinterpret_cast<void *>(instance));
return VK_ERROR_OUT_OF_HOST_MEMORY;
}
}
void instance_private_data::disassociate(VkInstance instance)
{
assert(instance != VK_NULL_HANDLE);
instance_private_data *instance_data = nullptr;
{
scoped_mutex lock(g_data_lock);
auto it = g_instance_data.find(get_key(instance));
if (it == g_instance_data.end())
{
WSI_LOG_WARNING("Failed to find private data for instance (%p)", reinterpret_cast<void *>(instance));
return;
}
instance_data = it->second;
g_instance_data.erase(it);
}
destroy(instance_data);
}
template <typename dispatchable_type>
static instance_private_data &get_instance_private_data(dispatchable_type dispatchable_object)
{
scoped_mutex lock(g_data_lock);
return *g_instance_data.at(get_key(dispatchable_object));
}
instance_private_data &instance_private_data::get(VkInstance instance)
{
return get_instance_private_data(instance);
}
instance_private_data &instance_private_data::get(VkPhysicalDevice phys_dev)
{
return get_instance_private_data(phys_dev);
}
VkResult instance_private_data::add_surface(VkSurfaceKHR vk_surface, util::unique_ptr<wsi::surface> &wsi_surface)
{
scoped_mutex lock(surfaces_lock);
auto it = surfaces.find(vk_surface);
if (it != surfaces.end())
{
WSI_LOG_WARNING("Hash collision when adding new surface (%p). Old surface is replaced.",
reinterpret_cast<void *>(vk_surface));
surfaces.erase(it);
}
auto result = surfaces.try_insert(std::make_pair(vk_surface, nullptr));
if (result.has_value())
{
assert(result->second);
result->first->second = wsi_surface.release();
return VK_SUCCESS;
}
return VK_ERROR_OUT_OF_HOST_MEMORY;
}
wsi::surface *instance_private_data::get_surface(VkSurfaceKHR vk_surface)
{
scoped_mutex lock(surfaces_lock);
auto it = surfaces.find(vk_surface);
if (it != surfaces.end())
{
return it->second;
}
return nullptr;
}
void instance_private_data::remove_surface(VkSurfaceKHR vk_surface, const util::allocator &alloc)
{
scoped_mutex lock(surfaces_lock);
auto it = surfaces.find(vk_surface);
if (it != surfaces.end())
{
alloc.destroy<wsi::surface>(1, it->second);
surfaces.erase(it);
}
/* Failing to find a surface is not an error. It could have been created by a WSI extension, which is not handled
* by this layer.
*/
}
bool instance_private_data::does_layer_support_surface(VkSurfaceKHR surface)
{
scoped_mutex lock(surfaces_lock);
auto it = surfaces.find(surface);
return it != surfaces.end();
}
void instance_private_data::destroy(instance_private_data *instance_data)
{
assert(instance_data);
auto alloc = instance_data->get_allocator();
alloc.destroy<instance_private_data>(1, instance_data);
}
bool instance_private_data::do_icds_support_surface(VkPhysicalDevice, VkSurfaceKHR)
{
/* For now assume ICDs do not support VK_KHR_surface. This means that the layer will handle all the surfaces it can
* handle (even if the ICDs can handle the surface) and only call down for surfaces it cannot handle. In the future
* we may allow system integrators to configure which ICDs have precedence handling which platforms.
*/
return false;
}
bool instance_private_data::should_layer_handle_surface(VkPhysicalDevice phys_dev, VkSurfaceKHR surface)
{
/* If the layer cannot handle the surface, then necessarily the ICDs or layers below us must be able to do it:
* the fact that the surface exists means that the Vulkan loader created it. In turn, this means that someone
* among the ICDs and layers advertised support for it. If it's not us, then it must be one of the layers/ICDs
* below us. It is therefore safe to always return false (and therefore call-down) when layer_can_handle_surface
* is false.
*/
bool icd_can_handle_surface = do_icds_support_surface(phys_dev, surface);
bool layer_can_handle_surface = does_layer_support_surface(surface);
bool ret = layer_can_handle_surface && !icd_can_handle_surface;
return ret;
}
bool instance_private_data::has_image_compression_support(VkPhysicalDevice phys_dev)
{
VkPhysicalDeviceImageCompressionControlFeaturesEXT compression = {
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_IMAGE_COMPRESSION_CONTROL_FEATURES_EXT, nullptr, VK_FALSE
};
VkPhysicalDeviceFeatures2KHR features = { VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FEATURES_2_KHR, &compression, {} };
disp.GetPhysicalDeviceFeatures2KHR(phys_dev, &features);
return compression.imageCompressionControl != VK_FALSE;
}
bool instance_private_data::has_frame_boundary_support(VkPhysicalDevice phys_dev)
{
VkPhysicalDeviceFrameBoundaryFeaturesEXT frame_boundary = {
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_IMAGE_COMPRESSION_CONTROL_FEATURES_EXT, nullptr, VK_FALSE
};
VkPhysicalDeviceFeatures2KHR features = { VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FEATURES_2_KHR, &frame_boundary, {} };
disp.GetPhysicalDeviceFeatures2KHR(phys_dev, &features);
return frame_boundary.frameBoundary != VK_FALSE;
}
VkResult instance_private_data::set_instance_enabled_extensions(const char *const *extension_names,
size_t extension_count)
{
VkResult result = enabled_extensions.add(extension_names, extension_count);
/* Check for unsupported surface extension */
has_enabled_unsupported_extension = false;
for (const auto &unsupported_surface_ext : wsi::unsupported_surfaces_ext_array)
{
if (enabled_extensions.contains(unsupported_surface_ext))
{
has_enabled_unsupported_extension = true;
WSI_LOG_ERROR(
"Warning: Swapchain maintenance feature is unsupported for the current surface and ICD configuration.\n");
break;
}
}
return result;
}
bool instance_private_data::is_instance_extension_enabled(const char *extension_name) const
{
return enabled_extensions.contains(extension_name);
}
device_private_data::device_private_data(instance_private_data &inst_data, VkPhysicalDevice phys_dev, VkDevice dev,
device_dispatch_table table, PFN_vkSetDeviceLoaderData set_loader_data,
const util::allocator &alloc)
: disp{ std::move(table) }
, instance_data{ inst_data }
, SetDeviceLoaderData{ set_loader_data }
, physical_device{ phys_dev }
, device{ dev }
, allocator{ alloc }
, swapchains{ allocator } /* clang-format off */
, enabled_extensions{ allocator }
, compression_control_enabled{ false }
, present_id_enabled { false }
, swapchain_maintenance1_enabled{ false }
#if VULKAN_WSI_LAYER_EXPERIMENTAL
, present_timing_enabled { true }
, present_wait2_enabled { false }
#endif
, present_id2_enabled { false }
, present_mode_fifo_latest_ready_enabled { false }
/* clang-format on */
{
}
VkResult device_private_data::associate(VkDevice dev, instance_private_data &inst_data, VkPhysicalDevice phys_dev,
device_dispatch_table table, PFN_vkSetDeviceLoaderData set_loader_data,
const util::allocator &allocator)
{
auto device_data = allocator.make_unique<device_private_data>(inst_data, phys_dev, dev, std::move(table),
set_loader_data, allocator);
if (device_data == nullptr)
{
WSI_LOG_ERROR("Device private data for device(%p) could not be allocated. Out of memory.",
reinterpret_cast<void *>(dev));
return VK_ERROR_OUT_OF_HOST_MEMORY;
}
const auto key = get_key(dev);
scoped_mutex lock(g_data_lock);
auto it = g_device_data.find(key);
if (it != g_device_data.end())
{
WSI_LOG_WARNING("Hash collision when adding new device (%p)", reinterpret_cast<void *>(dev));
destroy(it->second);
g_device_data.erase(it);
}
auto result = g_device_data.try_insert(std::make_pair(key, device_data.get()));
if (result.has_value())
{
device_data.release(); // NOLINT(bugprone-unused-return-value)
return VK_SUCCESS;
}
else
{
WSI_LOG_WARNING("Failed to insert device_private_data for device (%p) as host is out of memory",
reinterpret_cast<void *>(dev));
return VK_ERROR_OUT_OF_HOST_MEMORY;
}
}
void device_private_data::disassociate(VkDevice dev)
{
assert(dev != VK_NULL_HANDLE);
device_private_data *device_data = nullptr;
{
scoped_mutex lock(g_data_lock);
auto it = g_device_data.find(get_key(dev));
if (it == g_device_data.end())
{
WSI_LOG_WARNING("Failed to find private data for device (%p)", reinterpret_cast<void *>(dev));
return;
}
device_data = it->second;
g_device_data.erase(it);
}
destroy(device_data);
}
template <typename dispatchable_type>
static device_private_data &get_device_private_data(dispatchable_type dispatchable_object)
{
scoped_mutex lock(g_data_lock);
return *g_device_data.at(get_key(dispatchable_object));
}
device_private_data &device_private_data::get(VkDevice device)
{
return get_device_private_data(device);
}
device_private_data &device_private_data::get(VkQueue queue)
{
return get_device_private_data(queue);
}
VkResult device_private_data::add_layer_swapchain(VkSwapchainKHR swapchain)
{
scoped_mutex lock(swapchains_lock);
auto result = swapchains.try_insert(swapchain);
return result.has_value() ? VK_SUCCESS : VK_ERROR_OUT_OF_HOST_MEMORY;
}
void device_private_data::remove_layer_swapchain(VkSwapchainKHR swapchain)
{
scoped_mutex lock(swapchains_lock);
auto it = swapchains.find(swapchain);
if (it != swapchains.end())
{
swapchains.erase(swapchain);
}
}
bool device_private_data::layer_owns_all_swapchains(const VkSwapchainKHR *swapchain, uint32_t swapchain_count) const
{
scoped_mutex lock(swapchains_lock);
for (uint32_t i = 0; i < swapchain_count; i++)
{
if (swapchains.find(swapchain[i]) == swapchains.end())
{
return false;
}
}
return true;
}
bool device_private_data::should_layer_create_swapchain(VkSurfaceKHR vk_surface)
{
return instance_data.should_layer_handle_surface(physical_device, vk_surface);
}
bool device_private_data::can_icds_create_swapchain(VkSurfaceKHR vk_surface)
{
UNUSED(vk_surface);
return disp.get_fn<PFN_vkCreateSwapchainKHR>("vkCreateSwapchainKHR").has_value();
}
VkResult device_private_data::set_device_enabled_extensions(const char *const *extension_names, size_t extension_count)
{
return enabled_extensions.add(extension_names, extension_count);
}
bool device_private_data::is_device_extension_enabled(const char *extension_name) const
{
return enabled_extensions.contains(extension_name);
}
void device_private_data::destroy(device_private_data *device_data)
{
assert(device_data);
auto alloc = device_data->get_allocator();
alloc.destroy<device_private_data>(1, device_data);
}
void device_private_data::set_swapchain_compression_control_enabled(bool enable)
{
compression_control_enabled = enable;
}
bool device_private_data::is_swapchain_compression_control_enabled() const
{
return compression_control_enabled;
}
void device_private_data::set_layer_frame_boundary_handling_enabled(bool enable)
{
handle_frame_boundary_events = enable;
}
bool device_private_data::should_layer_handle_frame_boundary_events() const
{
return handle_frame_boundary_events;
}
void device_private_data::set_present_id_feature_enabled(bool enable)
{
present_id_enabled = enable;
}
bool device_private_data::is_present_id_enabled()
{
return present_id_enabled;
}
void device_private_data::set_present_id2_feature_enabled(bool enable)
{
present_id2_enabled = enable;
}
bool device_private_data::is_present_id2_enabled()
{
return present_id2_enabled;
}
void device_private_data::set_swapchain_maintenance1_enabled(bool enable)
{
swapchain_maintenance1_enabled = enable;
}
bool device_private_data::is_swapchain_maintenance1_enabled() const
{
return swapchain_maintenance1_enabled;
}
void device_private_data::set_present_wait_enabled(bool enable)
{
present_wait_enabled = enable;
}
bool device_private_data::is_present_wait_enabled()
{
return present_wait_enabled;
}
#if VULKAN_WSI_LAYER_EXPERIMENTAL
void device_private_data::set_present_wait2_enabled(bool enable)
{
present_wait2_enabled = enable;
}
bool device_private_data::is_present_wait2_enabled()
{
return present_wait2_enabled;
}
#endif
void device_private_data::set_present_mode_fifo_latest_ready_enabled(bool enable)
{
present_mode_fifo_latest_ready_enabled = enable;
}
} /* namespace layer */