vulkan-wsi-layer/layer/private_data.cpp
Normunds Rieksts d63261cce5 Remove usages of generic allocator in the layer
Remove all the leftover instances in layer that still use the
generic allocator rather than the VkAllocationCallbacks

Add additional memory utility that allows to release memory
allocated by custom allocators using RAII

Change-Id: I43594ddd3c506048ca0f02e31b64597a7abc481b
Signed-off-by: Normunds Rieksts <normunds.rieksts@arm.com>
2021-07-22 19:05:26 +01:00

346 lines
12 KiB
C++

/*
* Copyright (c) 2018-2021 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "private_data.hpp"
#include "wsi/wsi_factory.hpp"
#include "util/unordered_map.hpp"
#include "util/log.hpp"
namespace layer
{
static std::mutex g_data_lock;
/* The dictionaries below use plain pointers to store the instance/device private data objects.
* This means that these objects are leaked if the application terminates without calling vkDestroyInstance
* or vkDestroyDevice. This is fine as it is the application's responsibility to call these.
*/
static util::unordered_map<void *, instance_private_data *> g_instance_data{ util::allocator::get_generic() };
static util::unordered_map<void *, device_private_data *> g_device_data{ util::allocator::get_generic() };
template <typename object_type, typename get_proc_type>
static PFN_vkVoidFunction get_proc_helper(object_type obj, get_proc_type get_proc,
const char* proc_name, bool required, bool &ok)
{
PFN_vkVoidFunction ret = get_proc(obj, proc_name);
if (nullptr == ret && required)
{
ok = false;
}
return ret;
}
VkResult instance_dispatch_table::populate(VkInstance instance, PFN_vkGetInstanceProcAddr get_proc)
{
bool ok = true;
#define REQUIRED(x) x = reinterpret_cast<PFN_vk##x>(get_proc_helper(instance, get_proc, "vk" #x, true, ok));
#define OPTIONAL(x) x = reinterpret_cast<PFN_vk##x>(get_proc_helper(instance, get_proc, "vk" #x, false, ok));
INSTANCE_ENTRYPOINTS_LIST(REQUIRED, OPTIONAL);
#undef REQUIRED
#undef OPTIONAL
return ok ? VK_SUCCESS : VK_ERROR_INITIALIZATION_FAILED;
}
VkResult device_dispatch_table::populate(VkDevice device, PFN_vkGetDeviceProcAddr get_proc)
{
bool ok = true;
#define REQUIRED(x) x = reinterpret_cast<PFN_vk##x>(get_proc_helper(device, get_proc, "vk" #x, true, ok));
#define OPTIONAL(x) x = reinterpret_cast<PFN_vk##x>(get_proc_helper(device, get_proc, "vk" #x, false, ok));
DEVICE_ENTRYPOINTS_LIST(REQUIRED, OPTIONAL);
#undef REQUIRED
#undef OPTIONAL
return ok ? VK_SUCCESS : VK_ERROR_INITIALIZATION_FAILED;
}
instance_private_data::instance_private_data(const instance_dispatch_table &table,
PFN_vkSetInstanceLoaderData set_loader_data,
util::wsi_platform_set enabled_layer_platforms,
const util::allocator &alloc)
: disp(table)
, SetInstanceLoaderData(set_loader_data)
, enabled_layer_platforms(enabled_layer_platforms)
, allocator(alloc)
{
}
/**
* @brief Obtain the loader's dispatch table for the given dispatchable object.
* @note Dispatchable objects are structures that have a VkLayerDispatchTable as their first member.
*/
template <typename dispatchable_type>
static inline void *get_key(dispatchable_type dispatchable_object)
{
return *reinterpret_cast<void **>(dispatchable_object);
}
VkResult instance_private_data::associate(VkInstance instance, instance_dispatch_table &table,
PFN_vkSetInstanceLoaderData set_loader_data,
util::wsi_platform_set enabled_layer_platforms, const util::allocator &allocator)
{
auto instance_data =
allocator.make_unique<instance_private_data>(table, set_loader_data, enabled_layer_platforms, allocator);
if (instance_data == nullptr)
{
WSI_LOG_ERROR("Instance private data for instance(%p) could not be allocated. Out of memory.",
reinterpret_cast<void *>(instance));
return VK_ERROR_OUT_OF_HOST_MEMORY;
}
const auto key = get_key(instance);
scoped_mutex lock(g_data_lock);
auto it = g_instance_data.find(key);
if (it != g_instance_data.end())
{
WSI_LOG_WARNING("Hash collision when adding new instance (%p)", reinterpret_cast<void *>(instance));
destroy(it->second);
g_instance_data.erase(it);
}
auto result = g_instance_data.try_insert(std::make_pair(key, instance_data.get()));
if (result.has_value())
{
instance_data.release();
return VK_SUCCESS;
}
else
{
WSI_LOG_WARNING("Failed to insert instance_private_data for instance (%p) as host is out of memory",
reinterpret_cast<void *>(instance));
return VK_ERROR_OUT_OF_HOST_MEMORY;
}
}
void instance_private_data::disassociate(VkInstance instance)
{
assert(instance != VK_NULL_HANDLE);
instance_private_data *instance_data = nullptr;
{
scoped_mutex lock(g_data_lock);
auto it = g_instance_data.find(get_key(instance));
if (it == g_instance_data.end())
{
WSI_LOG_WARNING("Failed to find private data for instance (%p)", reinterpret_cast<void *>(instance));
return;
}
instance_data = it->second;
g_instance_data.erase(it);
}
destroy(instance_data);
}
template <typename dispatchable_type>
static instance_private_data &get_instance_private_data(dispatchable_type dispatchable_object)
{
scoped_mutex lock(g_data_lock);
return *g_instance_data.at(get_key(dispatchable_object));
}
instance_private_data &instance_private_data::get(VkInstance instance)
{
return get_instance_private_data(instance);
}
instance_private_data &instance_private_data::get(VkPhysicalDevice phys_dev)
{
return get_instance_private_data(phys_dev);
}
static VkIcdWsiPlatform get_platform_of_surface(VkSurfaceKHR surface)
{
VkIcdSurfaceBase *surface_base = reinterpret_cast<VkIcdSurfaceBase *>(surface);
return surface_base->platform;
}
bool instance_private_data::does_layer_support_surface(VkSurfaceKHR surface)
{
return enabled_layer_platforms.contains(get_platform_of_surface(surface));
}
void instance_private_data::destroy(instance_private_data *instance_data)
{
assert(instance_data);
auto alloc = instance_data->get_allocator();
alloc.destroy<instance_private_data>(1, instance_data);
}
bool instance_private_data::do_icds_support_surface(VkPhysicalDevice, VkSurfaceKHR)
{
/* For now assume ICDs do not support VK_KHR_surface. This means that the layer will handle all the surfaces it can
* handle (even if the ICDs can handle the surface) and only call down for surfaces it cannot handle. In the future
* we may allow system integrators to configure which ICDs have precedence handling which platforms.
*/
return false;
}
bool instance_private_data::should_layer_handle_surface(VkPhysicalDevice phys_dev, VkSurfaceKHR surface)
{
/* If the layer cannot handle the surface, then necessarily the ICDs or layers below us must be able to do it:
* the fact that the surface exists means that the Vulkan loader created it. In turn, this means that someone
* among the ICDs and layers advertised support for it. If it's not us, then it must be one of the layers/ICDs
* below us. It is therefore safe to always return false (and therefore call-down) when layer_can_handle_surface
* is false.
*/
bool icd_can_handle_surface = do_icds_support_surface(phys_dev, surface);
bool layer_can_handle_surface = does_layer_support_surface(surface);
bool ret = layer_can_handle_surface && !icd_can_handle_surface;
return ret;
}
device_private_data::device_private_data(instance_private_data &inst_data, VkPhysicalDevice phys_dev, VkDevice dev,
const device_dispatch_table &table, PFN_vkSetDeviceLoaderData set_loader_data,
const util::allocator &alloc)
: disp{ table }
, instance_data{ inst_data }
, SetDeviceLoaderData{ set_loader_data }
, physical_device{ phys_dev }
, device{ dev }
, allocator{ alloc }
, swapchains{ allocator }
{
}
VkResult device_private_data::associate(VkDevice dev, instance_private_data &inst_data, VkPhysicalDevice phys_dev,
const device_dispatch_table &table, PFN_vkSetDeviceLoaderData set_loader_data,
const util::allocator &allocator)
{
auto device_data =
allocator.make_unique<device_private_data>(inst_data, phys_dev, dev, table, set_loader_data, allocator);
if (device_data == nullptr)
{
WSI_LOG_ERROR("Device private data for device(%p) could not be allocated. Out of memory.",
reinterpret_cast<void *>(dev));
return VK_ERROR_OUT_OF_HOST_MEMORY;
}
const auto key = get_key(dev);
scoped_mutex lock(g_data_lock);
auto it = g_device_data.find(key);
if (it != g_device_data.end())
{
WSI_LOG_WARNING("Hash collision when adding new device (%p)", reinterpret_cast<void *>(dev));
destroy(it->second);
g_device_data.erase(it);
}
auto result = g_device_data.try_insert(std::make_pair(key, device_data.get()));
if (result.has_value())
{
device_data.release();
return VK_SUCCESS;
}
else
{
WSI_LOG_WARNING("Failed to insert device_private_data for device (%p) as host is out of memory",
reinterpret_cast<void *>(dev));
return VK_ERROR_OUT_OF_HOST_MEMORY;
}
}
void device_private_data::disassociate(VkDevice dev)
{
assert(dev != VK_NULL_HANDLE);
device_private_data *device_data = nullptr;
{
scoped_mutex lock(g_data_lock);
auto it = g_device_data.find(get_key(dev));
if (it == g_device_data.end())
{
WSI_LOG_WARNING("Failed to find private data for device (%p)", reinterpret_cast<void *>(dev));
return;
}
device_data = it->second;
g_device_data.erase(it);
}
destroy(device_data);
}
template <typename dispatchable_type>
static device_private_data &get_device_private_data(dispatchable_type dispatchable_object)
{
scoped_mutex lock(g_data_lock);
return *g_device_data.at(get_key(dispatchable_object));
}
device_private_data &device_private_data::get(VkDevice device)
{
return get_device_private_data(device);
}
device_private_data &device_private_data::get(VkQueue queue)
{
return get_device_private_data(queue);
}
VkResult device_private_data::add_layer_swapchain(VkSwapchainKHR swapchain)
{
scoped_mutex lock(swapchains_lock);
auto result = swapchains.try_insert(swapchain);
return result.has_value() ? VK_SUCCESS : VK_ERROR_OUT_OF_HOST_MEMORY;
}
bool device_private_data::layer_owns_all_swapchains(const VkSwapchainKHR *swapchain, uint32_t swapchain_count) const
{
scoped_mutex lock(swapchains_lock);
for (uint32_t i = 0; i < swapchain_count; i++)
{
if (swapchains.find(swapchain[i]) == swapchains.end())
{
return false;
}
}
return true;
}
bool device_private_data::should_layer_create_swapchain(VkSurfaceKHR vk_surface)
{
return instance_data.should_layer_handle_surface(physical_device, vk_surface);
}
bool device_private_data::can_icds_create_swapchain(VkSurfaceKHR vk_surface)
{
return disp.CreateSwapchainKHR != nullptr;
}
void device_private_data::destroy(device_private_data *device_data)
{
assert(device_data);
auto alloc = device_data->get_allocator();
alloc.destroy<device_private_data>(1, device_data);
}
} /* namespace layer */