vulkan-wsi-layer/wsi/swapchain_base.cpp
ginujacob 9abd1af3ce Handle VkPresentTimingsInfoEXT
Implements the entrypoint vkSetSwapchainPresentTimingQueueSizeEXT and
handles VkPresentTimingsInfoEXT. The presentation timing queue is
also implemented the present id from parsing VkPresentTimingsInfoEXT is
stored in the queue.

Signed-off-by: ginujacob <ginu.jacob@arm.com>
Change-Id: I81b6113b54db5e59f7018ef9a22e80af6dcdd568
2024-10-11 18:56:31 +01:00

910 lines
30 KiB
C++

/*
* Copyright (c) 2017-2024 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
/**
* @file swapchain_base.cpp
*
* @brief Contains the implementation for the swapchain.
*
* This file contains much of the swapchain implementation,
* that is not specific to how images are created or presented.
*/
#include <array>
#include <cassert>
#include <cerrno>
#include <cstdio>
#include <cstdlib>
#include <system_error>
#include <unistd.h>
#include <vulkan/vulkan.h>
#include "util/log.hpp"
#include "util/helpers.hpp"
#include "swapchain_base.hpp"
#include "wsi_factory.hpp"
namespace wsi
{
void swapchain_base::page_flip_thread()
{
auto &sc_images = m_swapchain_images;
VkResult vk_res = VK_SUCCESS;
uint64_t timeout = UINT64_MAX;
constexpr uint64_t SEMAPHORE_TIMEOUT = 250000000; /* 250 ms. */
/* No mutex is needed for the accesses to m_page_flip_thread_run variable as after the variable is
* initialized it is only ever changed to false. The while loop will make the thread read the
* value repeatedly, and the combination of semaphores and thread joins will force any changes to
* the variable to be visible to this thread.
*/
while (m_page_flip_thread_run)
{
pending_present_request submit_info{};
if (m_present_mode == VK_PRESENT_MODE_SHARED_CONTINUOUS_REFRESH_KHR)
{
/* In continuous mode the application will only make one presentation request,
* therefore the page flip semaphore will only be signalled once. */
if (!m_first_present)
{
vk_res = VK_SUCCESS;
}
else if ((vk_res = m_page_flip_semaphore.wait(SEMAPHORE_TIMEOUT)) == VK_TIMEOUT)
{
/* Image is not ready yet. */
continue;
}
assert(vk_res == VK_SUCCESS);
/* For continuous mode there will be only one image in the swapchain.
* This image will always be used, and there is no pending state in this case. */
submit_info.image_index = 0;
}
else
{
/* Waiting for the page_flip_semaphore which will be signalled once there is an
* image to display.*/
if ((vk_res = m_page_flip_semaphore.wait(SEMAPHORE_TIMEOUT)) == VK_TIMEOUT)
{
/* Image is not ready yet. */
continue;
}
/* We want to present the oldest queued for present image from our present queue,
* which we can find at the sc->pending_buffer_pool.head index. */
std::unique_lock<std::recursive_mutex> image_status_lock(m_image_status_mutex);
auto pending_submission = m_pending_buffer_pool.pop_front();
assert(pending_submission.has_value());
submit_info = *pending_submission;
}
/* We may need to wait for the payload of the present sync of the oldest pending image to be finished. */
while ((vk_res = image_wait_present(sc_images[submit_info.image_index], timeout)) == VK_TIMEOUT)
{
WSI_LOG_WARNING("Timeout waiting for image's present fences, retrying..");
}
if (vk_res != VK_SUCCESS)
{
set_error_state(vk_res);
m_free_image_semaphore.post();
continue;
}
call_present(submit_info);
}
}
void swapchain_base::call_present(const pending_present_request &pending_present)
{
/* First present of the swapchain. If it has an ancestor, wait until all the
* pending buffers from the ancestor have been presented. */
if (m_first_present)
{
if (m_ancestor != VK_NULL_HANDLE)
{
auto *ancestor = reinterpret_cast<swapchain_base *>(m_ancestor);
ancestor->wait_for_pending_buffers();
}
sem_post(&m_start_present_semaphore);
present_image(pending_present);
m_first_present = false;
}
/* The swapchain has already started presenting. */
else
{
present_image(pending_present);
}
}
bool swapchain_base::has_descendant_started_presenting()
{
if (m_descendant == VK_NULL_HANDLE)
{
return false;
}
auto *desc = reinterpret_cast<swapchain_base *>(m_descendant);
return desc->m_started_presenting;
}
VkResult swapchain_base::init_page_flip_thread()
{
/* Setup semaphore for signaling pageflip thread */
TRY_LOG_CALL(m_page_flip_semaphore.init(0));
m_thread_sem_defined = true;
/* Launch page flipping thread */
m_page_flip_thread_run = true;
try
{
m_page_flip_thread = std::thread(&swapchain_base::page_flip_thread, this);
}
catch (const std::system_error &)
{
return VK_ERROR_INITIALIZATION_FAILED;
}
catch (const std::bad_alloc &)
{
return VK_ERROR_INITIALIZATION_FAILED;
}
return VK_SUCCESS;
}
void swapchain_base::unpresent_image(uint32_t presented_index)
{
std::unique_lock<std::recursive_mutex> image_status_lock(m_image_status_mutex);
if (m_present_mode == VK_PRESENT_MODE_SHARED_DEMAND_REFRESH_KHR ||
m_present_mode == VK_PRESENT_MODE_SHARED_CONTINUOUS_REFRESH_KHR)
{
m_swapchain_images[presented_index].status = swapchain_image::ACQUIRED;
}
else
{
m_swapchain_images[presented_index].status = swapchain_image::FREE;
}
image_status_lock.unlock();
if (m_present_mode != VK_PRESENT_MODE_SHARED_DEMAND_REFRESH_KHR &&
m_present_mode != VK_PRESENT_MODE_SHARED_CONTINUOUS_REFRESH_KHR)
{
m_free_image_semaphore.post();
}
}
swapchain_base::swapchain_base(layer::device_private_data &dev_data, const VkAllocationCallbacks *callbacks)
: m_device_data(dev_data)
, m_page_flip_thread_run(false)
, m_start_present_semaphore()
, m_thread_sem_defined(false)
, m_first_present(true)
, m_pending_buffer_pool()
, m_allocator(dev_data.get_allocator(), VK_SYSTEM_ALLOCATION_SCOPE_OBJECT, callbacks)
, m_swapchain_images(m_allocator)
, m_surface(VK_NULL_HANDLE)
, m_present_mode(VK_PRESENT_MODE_IMMEDIATE_KHR)
, m_present_modes(m_allocator)
, m_descendant(VK_NULL_HANDLE)
, m_ancestor(VK_NULL_HANDLE)
, m_device(VK_NULL_HANDLE)
, m_queue(VK_NULL_HANDLE)
#if WSI_IMAGE_COMPRESSION_CONTROL_SWAPCHAIN
, m_image_compression_control_params({ VK_IMAGE_COMPRESSION_DEFAULT_EXT, 0 })
#endif
, m_image_create_info()
, m_image_acquire_lock()
, m_error_state(VK_NOT_READY)
, m_started_presenting(false)
, m_frame_boundary_handler(m_device_data)
#if VULKAN_WSI_LAYER_EXPERIMENTAL
, m_presentation_timing(m_allocator)
#endif
{
}
static VkResult handle_scaling_create_info(VkDevice device, const VkSwapchainCreateInfoKHR *swapchain_create_info,
const VkSurfaceKHR &surface)
{
auto present_scaling_create_info = util::find_extension<VkSwapchainPresentScalingCreateInfoEXT>(
VK_STRUCTURE_TYPE_SWAPCHAIN_PRESENT_SCALING_CREATE_INFO_EXT, swapchain_create_info);
if (present_scaling_create_info != nullptr)
{
auto &device_data = layer::device_private_data::get(device);
auto &instance = device_data.instance_data;
VkSurfacePresentScalingCapabilitiesEXT scaling_capabilities = {};
wsi::surface_properties *props = wsi::get_surface_properties(instance, surface);
props->get_surface_present_scaling_and_gravity(&scaling_capabilities);
if (((present_scaling_create_info->scalingBehavior != 0) &&
((scaling_capabilities.supportedPresentScaling & present_scaling_create_info->scalingBehavior) == 0)) ||
((present_scaling_create_info->presentGravityX != 0) &&
((scaling_capabilities.supportedPresentGravityX & present_scaling_create_info->presentGravityX) == 0)) ||
((present_scaling_create_info->presentGravityY != 0) &&
((scaling_capabilities.supportedPresentGravityY & present_scaling_create_info->presentGravityY) == 0)))
{
return VK_ERROR_INITIALIZATION_FAILED;
}
}
return VK_SUCCESS;
}
VkResult swapchain_base::handle_swapchain_present_modes_create_info(
VkDevice device, const VkSwapchainCreateInfoKHR *swapchain_create_info)
{
const auto *swapchain_present_modes_create_info = util::find_extension<VkSwapchainPresentModesCreateInfoEXT>(
VK_STRUCTURE_TYPE_SWAPCHAIN_PRESENT_MODES_CREATE_INFO_EXT, swapchain_create_info->pNext);
if (swapchain_present_modes_create_info != nullptr)
{
if (!m_present_modes.try_resize(swapchain_present_modes_create_info->presentModeCount))
{
return VK_ERROR_OUT_OF_HOST_MEMORY;
}
layer::device_private_data &device_data = layer::device_private_data::get(device);
auto &instance = device_data.instance_data;
wsi::surface_properties *props = wsi::get_surface_properties(instance, m_surface);
for (uint32_t i = 0; i < swapchain_present_modes_create_info->presentModeCount; i++)
{
assert(
props->is_compatible_present_modes(m_present_mode, swapchain_present_modes_create_info->pPresentModes[i]));
m_present_modes[i] = swapchain_present_modes_create_info->pPresentModes[i];
}
}
return VK_SUCCESS;
}
VkResult swapchain_base::init(VkDevice device, const VkSwapchainCreateInfoKHR *swapchain_create_info)
{
assert(device != VK_NULL_HANDLE);
assert(swapchain_create_info != nullptr);
assert(swapchain_create_info->surface != VK_NULL_HANDLE);
m_device = device;
m_surface = swapchain_create_info->surface;
m_present_mode = swapchain_create_info->presentMode;
TRY(handle_swapchain_present_modes_create_info(device, swapchain_create_info));
#if WSI_IMAGE_COMPRESSION_CONTROL_SWAPCHAIN
const auto *image_compression_control = util::find_extension<VkImageCompressionControlEXT>(
VK_STRUCTURE_TYPE_IMAGE_COMPRESSION_CONTROL_EXT, swapchain_create_info->pNext);
if (m_device_data.is_swapchain_compression_control_enabled() && image_compression_control != nullptr)
{
m_image_compression_control_params.compression_control_plane_count =
image_compression_control->compressionControlPlaneCount;
m_image_compression_control_params.flags = image_compression_control->flags;
for (uint32_t i = 0; i < image_compression_control->compressionControlPlaneCount; i++)
{
m_image_compression_control_params.fixed_rate_flags[i] = image_compression_control->pFixedRateFlags[i];
}
}
#endif
/* Init image to invalid values. */
if (!m_swapchain_images.try_resize(swapchain_create_info->minImageCount))
{
return VK_ERROR_OUT_OF_HOST_MEMORY;
}
TRY_LOG_CALL(handle_scaling_create_info(device, swapchain_create_info, m_surface));
/* We have allocated images, we can call the platform init function if something needs to be done. */
bool use_presentation_thread = true;
TRY_LOG_CALL(init_platform(device, swapchain_create_info, use_presentation_thread));
if (use_presentation_thread)
{
TRY_LOG_CALL(init_page_flip_thread());
}
VkImageCreateInfo image_create_info = {};
image_create_info.sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO;
image_create_info.pNext = nullptr;
image_create_info.imageType = VK_IMAGE_TYPE_2D;
image_create_info.format = swapchain_create_info->imageFormat;
image_create_info.extent = { swapchain_create_info->imageExtent.width, swapchain_create_info->imageExtent.height,
1 };
image_create_info.mipLevels = 1;
image_create_info.arrayLayers = swapchain_create_info->imageArrayLayers;
image_create_info.samples = VK_SAMPLE_COUNT_1_BIT;
image_create_info.tiling = VK_IMAGE_TILING_OPTIMAL;
image_create_info.usage = swapchain_create_info->imageUsage;
image_create_info.flags = 0;
image_create_info.sharingMode = swapchain_create_info->imageSharingMode;
image_create_info.queueFamilyIndexCount = swapchain_create_info->queueFamilyIndexCount;
image_create_info.pQueueFamilyIndices = swapchain_create_info->pQueueFamilyIndices;
image_create_info.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
VkResult result = m_free_image_semaphore.init(m_swapchain_images.size());
if (result != VK_SUCCESS)
{
assert(result == VK_ERROR_OUT_OF_HOST_MEMORY);
return result;
}
const bool image_deferred_allocation =
swapchain_create_info->flags & VK_SWAPCHAIN_CREATE_DEFERRED_MEMORY_ALLOCATION_BIT_EXT;
for (auto &img : m_swapchain_images)
{
TRY(create_swapchain_image(image_create_info, img));
if (image_deferred_allocation)
{
img.status = swapchain_image::UNALLOCATED;
}
else
{
TRY_LOG_CALL(allocate_and_bind_swapchain_image(image_create_info, img));
}
VkSemaphoreCreateInfo semaphore_info = {};
semaphore_info.sType = VK_STRUCTURE_TYPE_SEMAPHORE_CREATE_INFO;
TRY_LOG_CALL(m_device_data.disp.CreateSemaphore(m_device, &semaphore_info, get_allocation_callbacks(),
&img.present_semaphore));
TRY_LOG_CALL(m_device_data.disp.CreateSemaphore(m_device, &semaphore_info, get_allocation_callbacks(),
&img.present_fence_wait));
}
m_device_data.disp.GetDeviceQueue(m_device, 0, 0, &m_queue);
TRY_LOG_CALL(m_device_data.SetDeviceLoaderData(m_device, m_queue));
int res = sem_init(&m_start_present_semaphore, 0, 0);
/* Only programming error can cause this to fail. */
assert(res == 0);
if (res != 0)
{
return VK_ERROR_OUT_OF_HOST_MEMORY;
}
/* Release the swapchain images of the old swapchain in order
* to free up memory for new swapchain. This is necessary especially
* on platform with limited display memory size.
*
* NB: This must be done last in initialization, when the rest of
* the swapchain is valid.
*/
if (swapchain_create_info->oldSwapchain != VK_NULL_HANDLE)
{
/* Set ancestor. */
m_ancestor = swapchain_create_info->oldSwapchain;
auto *ancestor = reinterpret_cast<swapchain_base *>(m_ancestor);
ancestor->deprecate(reinterpret_cast<VkSwapchainKHR>(this));
}
set_error_state(VK_SUCCESS);
return VK_SUCCESS;
}
void swapchain_base::teardown()
{
/* This method will block until all resources associated with this swapchain
* are released. Images in the ACQUIRED or FREE state can be freed
* immediately. For images in the PENDING state, we will block until the
* presentation engine is finished with them. */
if (has_descendant_started_presenting())
{
/* Here we wait for the start_present_semaphore, once this semaphore is up,
* the descendant has finished waiting, we don't want to delete vkImages and vkFences
* and semaphores before the waiting is done. */
auto *desc = reinterpret_cast<swapchain_base *>(m_descendant);
sem_wait(&desc->m_start_present_semaphore);
}
else if (!error_has_occured())
{
/* If descendant hasn't started presenting, there are pending buffers in the swapchain. */
wait_for_pending_buffers();
}
if (m_queue != VK_NULL_HANDLE)
{
/* Make sure the vkFences are done signaling. */
m_device_data.disp.QueueWaitIdle(m_queue);
}
/* We are safe to destroy everything. */
if (m_thread_sem_defined)
{
/* Tell flip thread to end. */
m_page_flip_thread_run = false;
if (m_page_flip_thread.joinable())
{
m_page_flip_thread.join();
}
else
{
WSI_LOG_ERROR("m_page_flip_thread is not joinable");
}
}
int res = sem_destroy(&m_start_present_semaphore);
if (res != 0)
{
WSI_LOG_ERROR("sem_destroy failed for start_present_semaphore with %d", errno);
}
if (m_descendant != VK_NULL_HANDLE)
{
auto *sc = reinterpret_cast<swapchain_base *>(m_descendant);
sc->clear_ancestor();
}
if (m_ancestor != VK_NULL_HANDLE)
{
auto *sc = reinterpret_cast<swapchain_base *>(m_ancestor);
sc->clear_descendant();
}
/* Release the images array. */
for (auto &img : m_swapchain_images)
{
/* Call implementation specific release */
destroy_image(img);
m_device_data.disp.DestroySemaphore(m_device, img.present_semaphore, get_allocation_callbacks());
m_device_data.disp.DestroySemaphore(m_device, img.present_fence_wait, get_allocation_callbacks());
}
}
VkResult swapchain_base::acquire_next_image(uint64_t timeout, VkSemaphore semaphore, VkFence fence,
uint32_t *image_index)
{
std::unique_lock<std::mutex> acquire_lock(m_image_acquire_lock);
TRY(wait_for_free_buffer(timeout));
if (error_has_occured())
{
return get_error_state();
}
std::unique_lock<std::recursive_mutex> image_status_lock(m_image_status_mutex);
size_t i;
for (i = 0; i < m_swapchain_images.size(); ++i)
{
if (m_swapchain_images[i].status == swapchain_image::UNALLOCATED)
{
auto res = allocate_and_bind_swapchain_image(m_image_create_info, m_swapchain_images[i]);
if (res != VK_SUCCESS)
{
WSI_LOG_ERROR("Failed to allocate swapchain image.");
return res != VK_ERROR_INITIALIZATION_FAILED ? res : VK_ERROR_OUT_OF_HOST_MEMORY;
}
}
if (m_swapchain_images[i].status == swapchain_image::FREE)
{
m_swapchain_images[i].status = swapchain_image::ACQUIRED;
*image_index = i;
break;
}
}
assert(i < m_swapchain_images.size());
image_status_lock.unlock();
/* Try to signal fences/semaphores with a sync FD for optimal performance. */
if (m_device_data.disp.get_fn<PFN_vkImportFenceFdKHR>("vkImportFenceFdKHR").has_value() &&
m_device_data.disp.get_fn<PFN_vkImportSemaphoreFdKHR>("vkImportSemaphoreFdKHR").has_value())
{
if (fence != VK_NULL_HANDLE)
{
int already_signalled_sentinel_fd = -1;
auto info = VkImportFenceFdInfoKHR{};
{
info.sType = VK_STRUCTURE_TYPE_IMPORT_FENCE_FD_INFO_KHR;
info.fence = fence;
info.handleType = VK_EXTERNAL_FENCE_HANDLE_TYPE_SYNC_FD_BIT;
info.fd = already_signalled_sentinel_fd;
info.flags = VK_FENCE_IMPORT_TEMPORARY_BIT;
}
auto result = m_device_data.disp.ImportFenceFdKHR(m_device, &info);
switch (result)
{
case VK_SUCCESS:
fence = VK_NULL_HANDLE;
break;
case VK_ERROR_INVALID_EXTERNAL_HANDLE:
/* Leave to fallback. */
break;
default:
return result;
}
}
if (semaphore != VK_NULL_HANDLE)
{
int already_signalled_sentinel_fd = -1;
auto info = VkImportSemaphoreFdInfoKHR{};
{
info.sType = VK_STRUCTURE_TYPE_IMPORT_SEMAPHORE_FD_INFO_KHR;
info.semaphore = semaphore;
info.handleType = VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_SYNC_FD_BIT;
info.flags = VK_SEMAPHORE_IMPORT_TEMPORARY_BIT;
info.fd = already_signalled_sentinel_fd;
}
auto result = m_device_data.disp.ImportSemaphoreFdKHR(m_device, &info);
switch (result)
{
case VK_SUCCESS:
semaphore = VK_NULL_HANDLE;
break;
case VK_ERROR_INVALID_EXTERNAL_HANDLE:
/* Leave to fallback. */
break;
default:
return result;
}
}
}
/* Fallback for when importing fence/semaphore sync FDs is unsupported by the ICD. */
queue_submit_semaphores semaphores = {
nullptr,
0,
(semaphore != VK_NULL_HANDLE) ? &semaphore : nullptr,
(semaphore != VK_NULL_HANDLE) ? 1u : 0,
};
TRY(sync_queue_submit(m_device_data, m_queue, fence, semaphores));
return VK_SUCCESS;
}
VkResult swapchain_base::get_swapchain_images(uint32_t *swapchain_image_count, VkImage *swapchain_images)
{
if (swapchain_images == nullptr)
{
/* Return the number of swapchain images. */
*swapchain_image_count = m_swapchain_images.size();
return VK_SUCCESS;
}
else
{
assert(m_swapchain_images.size() > 0);
assert(*swapchain_image_count > 0);
/* Populate array, write actual number of images returned. */
uint32_t current_image = 0;
do
{
swapchain_images[current_image] = m_swapchain_images[current_image].image;
current_image++;
if (current_image == m_swapchain_images.size())
{
*swapchain_image_count = current_image;
return VK_SUCCESS;
}
} while (current_image < *swapchain_image_count);
/* If swapchain_image_count is smaller than the number of presentable images
* in the swapchain, VK_INCOMPLETE must be returned instead of VK_SUCCESS. */
*swapchain_image_count = current_image;
return VK_INCOMPLETE;
}
}
VkResult swapchain_base::create_aliased_image_handle(VkImage *image)
{
return m_device_data.disp.CreateImage(m_device, &m_image_create_info, get_allocation_callbacks(), image);
}
VkResult swapchain_base::get_swapchain_status()
{
return get_error_state();
}
VkResult swapchain_base::notify_presentation_engine(const pending_present_request &pending_present)
{
const std::lock_guard<std::recursive_mutex> lock(m_image_status_mutex);
/* If the descendant has started presenting, we should release the image
* however we do not want to block inside the main thread so we mark it
* as free and let the page flip thread take care of it. */
const bool descendant_started_presenting = has_descendant_started_presenting();
if (descendant_started_presenting)
{
m_swapchain_images[pending_present.image_index].status = swapchain_image::FREE;
m_free_image_semaphore.post();
return VK_ERROR_OUT_OF_DATE_KHR;
}
m_swapchain_images[pending_present.image_index].status = swapchain_image::PENDING;
m_started_presenting = true;
if (m_page_flip_thread_run)
{
bool buffer_pool_res = m_pending_buffer_pool.push_back(pending_present);
(void)buffer_pool_res;
assert(buffer_pool_res);
m_page_flip_semaphore.post();
}
else
{
call_present(pending_present);
}
return VK_SUCCESS;
}
VkResult swapchain_base::queue_present(VkQueue queue, const VkPresentInfoKHR *present_info,
const swapchain_presentation_parameters &submit_info)
{
#if VULKAN_WSI_LAYER_EXPERIMENTAL
if (submit_info.present_timing_info)
{
wsi::swapchain_presentation_entry presentation_entry = {};
presentation_entry.present_id = submit_info.pending_present.present_id;
if ((m_presentation_timing.size()) >= m_presentation_timing.capacity())
{
return VK_ERROR_PRESENT_TIMING_QUEUE_FULL_EXT;
}
if (!m_presentation_timing.try_push_back(presentation_entry))
{
return VK_ERROR_OUT_OF_HOST_MEMORY;
}
}
#endif
if (submit_info.switch_presentation_mode)
{
TRY(handle_switching_presentation_mode(submit_info.present_mode));
}
const VkSemaphore *wait_semaphores = &m_swapchain_images[submit_info.pending_present.image_index].present_semaphore;
uint32_t sem_count = 1;
if (!submit_info.use_image_present_semaphore)
{
wait_semaphores = present_info->pWaitSemaphores;
sem_count = present_info->waitSemaphoreCount;
}
if (!m_page_flip_thread_run)
{
/* If the page flip thread is not running, we need to wait for any present payload here, before setting a new present payload. */
constexpr uint64_t WAIT_PRESENT_TIMEOUT = 1000000000; /* 1 second */
TRY_LOG_CALL(
image_wait_present(m_swapchain_images[submit_info.pending_present.image_index], WAIT_PRESENT_TIMEOUT));
}
void *submission_pnext = nullptr;
std::optional<VkFrameBoundaryEXT> frame_boundary;
/* Do not handle the event if it was handled before reaching this point */
if (submit_info.handle_present_frame_boundary_event)
{
frame_boundary = m_frame_boundary_handler.handle_frame_boundary_event(
present_info, &m_swapchain_images[submit_info.pending_present.image_index].image);
if (frame_boundary.has_value())
{
submission_pnext = &frame_boundary.value();
}
}
queue_submit_semaphores semaphores = {
wait_semaphores,
sem_count,
(submit_info.present_fence != VK_NULL_HANDLE) ?
&m_swapchain_images[submit_info.pending_present.image_index].present_fence_wait :
nullptr,
(submit_info.present_fence != VK_NULL_HANDLE) ? 1u : 0,
};
TRY_LOG_CALL(image_set_present_payload(m_swapchain_images[submit_info.pending_present.image_index], queue,
semaphores, submission_pnext));
if (submit_info.present_fence != VK_NULL_HANDLE)
{
const queue_submit_semaphores wait_semaphores = {
&m_swapchain_images[submit_info.pending_present.image_index].present_fence_wait, 1, nullptr, 0
};
/*
* Here we chain wait_semaphores with present_fence through present_fence_wait.
*/
TRY(sync_queue_submit(m_device_data, queue, submit_info.present_fence, wait_semaphores));
}
TRY(notify_presentation_engine(submit_info.pending_present));
return VK_SUCCESS;
}
void swapchain_base::deprecate(VkSwapchainKHR descendant)
{
for (auto &img : m_swapchain_images)
{
if (img.status == swapchain_image::FREE)
{
destroy_image(img);
}
}
/* Set its descendant. */
m_descendant = descendant;
}
void swapchain_base::wait_for_pending_buffers()
{
std::unique_lock<std::mutex> acquire_lock(m_image_acquire_lock);
int wait;
int acquired_images = 0;
std::unique_lock<std::recursive_mutex> image_status_lock(m_image_status_mutex);
for (auto &img : m_swapchain_images)
{
if (img.status == swapchain_image::ACQUIRED)
{
acquired_images++;
}
}
/* Waiting for free images waits for both free and pending. One pending image may be presented and acquired by a
* compositor. The WSI backend may not necessarily know which pending image is presented to change its state. It may
* be impossible to wait for that one presented image. */
wait = static_cast<int>(m_swapchain_images.size()) - acquired_images - 1;
image_status_lock.unlock();
while (wait > 0)
{
/* Take down one free image semaphore. */
wait_for_free_buffer(UINT64_MAX);
--wait;
}
}
void swapchain_base::clear_ancestor()
{
m_ancestor = VK_NULL_HANDLE;
}
void swapchain_base::clear_descendant()
{
m_descendant = VK_NULL_HANDLE;
}
VkResult swapchain_base::wait_for_free_buffer(uint64_t timeout)
{
VkResult retval;
/* first see if a buffer is already marked as free */
retval = m_free_image_semaphore.wait(0);
if (retval == VK_NOT_READY)
{
/* if not, we still have work to do even if timeout==0 -
* the swapchain implementation may be able to get a buffer without
* waiting */
retval = get_free_buffer(&timeout);
if (retval == VK_SUCCESS)
{
/* the sub-implementation has done it's thing, so re-check the
* semaphore */
retval = m_free_image_semaphore.wait(timeout);
}
}
return retval;
}
void swapchain_base::release_images(uint32_t image_count, const uint32_t *indices)
{
for (uint32_t i = 0; i < image_count; i++)
{
uint32_t index = indices[i];
assert(index < m_swapchain_images.size());
/* Applications can only pass acquired images that the device doesn't own */
assert(m_swapchain_images[index].status == swapchain_image::ACQUIRED);
unpresent_image(index);
}
}
VkResult swapchain_base::is_bind_allowed(uint32_t image_index) const
{
return m_swapchain_images[image_index].status != swapchain_image::UNALLOCATED ? VK_SUCCESS :
VK_ERROR_OUT_OF_HOST_MEMORY;
}
VkResult swapchain_base::handle_switching_presentation_mode(VkPresentModeKHR swapchain_present_mode)
{
assert(m_present_modes.size() > 0);
auto it = std::find_if(m_present_modes.begin(), m_present_modes.end(),
[swapchain_present_mode](VkPresentModeKHR p) { return p == swapchain_present_mode; });
assert(it != m_present_modes.end());
m_present_mode = swapchain_present_mode;
return VK_SUCCESS;
}
void swapchain_base::set_present_id(uint64_t value)
{
if (value != 0)
{
assert(value > m_present_id);
m_present_id = value;
}
}
#if VULKAN_WSI_LAYER_EXPERIMENTAL
VkResult swapchain_base::presentation_timing_queue_set_size(size_t queue_size)
{
if (presentation_timing_get_num_outstanding_results() > queue_size)
{
return VK_NOT_READY;
}
util::vector<swapchain_presentation_entry> presentation_timing(
util::allocator(m_allocator, VK_SYSTEM_ALLOCATION_SCOPE_DEVICE));
if (!presentation_timing.try_reserve(queue_size))
{
return VK_ERROR_OUT_OF_HOST_MEMORY;
}
for (auto iter : m_presentation_timing)
{
if (iter.is_outstanding)
{
if (!presentation_timing.try_push_back(iter))
{
return VK_ERROR_OUT_OF_HOST_MEMORY;
}
}
}
m_presentation_timing.swap(presentation_timing);
return VK_SUCCESS;
}
size_t swapchain_base::presentation_timing_get_num_outstanding_results()
{
size_t num_outstanding = 0;
for (const auto &iter : m_presentation_timing)
{
if (iter.is_outstanding)
{
num_outstanding++;
}
}
return num_outstanding;
}
#endif
} /* namespace wsi */