vulkan-wsi-layer/layer/private_data.cpp
Dennis Wildmark 2837bab5c4 Refactor dispatch table to fix extension entry point visibility
Add functionality to the dispatch tables enabling the layer to hide
entrypoints from user. Add filtering to
vkGetDeviceProcAddr/vkGetInstanceProcAddr to only return pointers to
entrypoints which belongs to user enabled extensions.

Signed-off-by: Dennis Wildmark <dennis.wildmark@arm.com>
Change-Id: Ieec305cc9479363de0b8e1618c671c08f7af3997
2024-02-14 14:33:40 +00:00

550 lines
19 KiB
C++

/*
* Copyright (c) 2018-2022, 2024 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include <vulkan/vulkan.h>
#include "private_data.hpp"
#include "wsi/wsi_factory.hpp"
#include "wsi/surface.hpp"
#include "util/unordered_map.hpp"
#include "util/log.hpp"
#include "util/helpers.hpp"
namespace layer
{
static std::mutex g_data_lock;
/* The dictionaries below use plain pointers to store the instance/device private data objects.
* This means that these objects are leaked if the application terminates without calling vkDestroyInstance
* or vkDestroyDevice. This is fine as it is the application's responsibility to call these.
*/
static util::unordered_map<void *, instance_private_data *> g_instance_data{ util::allocator::get_generic() };
static util::unordered_map<void *, device_private_data *> g_device_data{ util::allocator::get_generic() };
VkResult instance_dispatch_table::populate(VkInstance instance, PFN_vkGetInstanceProcAddr get_proc)
{
static constexpr entrypoint entrypoints_init[] = {
#define DISPATCH_TABLE_ENTRY(name, ext_name, api_version, required) \
{ "vk" #name, ext_name, nullptr, api_version, false, required },
INSTANCE_ENTRYPOINTS_LIST(DISPATCH_TABLE_ENTRY)
#undef DISPATCH_TABLE_ENTRY
};
static constexpr auto num_entrypoints = std::distance(std::begin(entrypoints_init), std::end(entrypoints_init));
for (size_t i = 0; i < num_entrypoints; i++)
{
const entrypoint *entrypoint = &entrypoints_init[i];
PFN_vkVoidFunction ret = get_proc(instance, entrypoint->name);
if (!ret && entrypoint->required)
{
return VK_ERROR_INITIALIZATION_FAILED;
}
struct entrypoint e = *entrypoint;
e.fn = ret;
e.user_visible = false;
if (!entrypoints->try_insert(std::make_pair(e.name, e)).has_value())
{
WSI_LOG_ERROR("Failed to allocate memory for instance dispatch table entry.");
return VK_ERROR_OUT_OF_HOST_MEMORY;
}
}
return VK_SUCCESS;
}
void dispatch_table::set_user_enabled_extensions(const char *const *extension_names, size_t extension_count)
{
for (size_t i = 0; i < extension_count; i++)
{
for (auto &entrypoint : *entrypoints)
{
if (!strcmp(entrypoint.second.ext_name, extension_names[i]))
{
entrypoint.second.user_visible = true;
}
}
}
}
PFN_vkVoidFunction instance_dispatch_table::get_user_enabled_entrypoint(VkInstance instance, uint32_t api_version,
const char *fn_name) const
{
auto item = entrypoints->find(fn_name);
if (item != entrypoints->end())
{
/* An entrypoint is allowed to use if it has been enabled by the user or is included in the core specficiation of the API version.
* Entrypoints included in API version 1.0 are allowed by default. */
if (item->second.user_visible || item->second.api_version <= api_version ||
item->second.api_version == VK_API_VERSION_1_0)
{
return item->second.fn;
}
else
{
return nullptr;
}
}
return GetInstanceProcAddr(instance, fn_name).value_or(nullptr);
}
VkResult device_dispatch_table::populate(VkDevice dev, PFN_vkGetDeviceProcAddr get_proc_fn)
{
static constexpr entrypoint entrypoints_init[] = {
#define DISPATCH_TABLE_ENTRY(name, ext_name, api_version, required) \
{ "vk" #name, ext_name, nullptr, api_version, false, required },
DEVICE_ENTRYPOINTS_LIST(DISPATCH_TABLE_ENTRY)
#undef DISPATCH_TABLE_ENTRY
};
static constexpr auto num_entrypoints = std::distance(std::begin(entrypoints_init), std::end(entrypoints_init));
for (size_t i = 0; i < num_entrypoints; i++)
{
const entrypoint entrypoint = entrypoints_init[i];
PFN_vkVoidFunction ret = get_proc_fn(dev, entrypoint.name);
if (!ret && entrypoint.required)
{
return VK_ERROR_INITIALIZATION_FAILED;
}
struct entrypoint e = entrypoint;
e.fn = ret;
e.user_visible = false;
if (!entrypoints->try_insert(std::make_pair(e.name, e)).has_value())
{
WSI_LOG_ERROR("Failed to allocate memory for device dispatch table entry.");
return VK_ERROR_OUT_OF_HOST_MEMORY;
}
}
return VK_SUCCESS;
}
PFN_vkVoidFunction device_dispatch_table::get_user_enabled_entrypoint(VkDevice device, uint32_t api_version,
const char *fn_name) const
{
auto item = entrypoints->find(fn_name);
if (item != entrypoints->end())
{
/* An entrypoint is allowed to use if it has been enabled by the user or is included in the core specficiation of the API version.
* Entrypoints included in API version 1.0 are allowed by default. */
if (item->second.user_visible || item->second.api_version <= api_version ||
item->second.api_version == VK_API_VERSION_1_0)
{
return item->second.fn;
}
else
{
return nullptr;
}
}
return GetDeviceProcAddr(device, fn_name).value_or(nullptr);
}
instance_private_data::instance_private_data(instance_dispatch_table &table,
PFN_vkSetInstanceLoaderData set_loader_data,
util::wsi_platform_set enabled_layer_platforms, const uint32_t api_version,
const util::allocator &alloc)
: disp{ std::move(table) }
, api_version{ api_version }
, SetInstanceLoaderData{ set_loader_data }
, enabled_layer_platforms{ enabled_layer_platforms }
, allocator{ alloc }
, surfaces{ alloc }
, enabled_extensions{ allocator }
{
}
/**
* @brief Obtain the loader's dispatch table for the given dispatchable object.
* @note Dispatchable objects are structures that have a VkLayerDispatchTable as their first member.
We treat the dispatchable object as a void** and then dereference to use the VkLayerDispatchTable
as the key.
*/
template <typename dispatchable_type>
static inline void *get_key(dispatchable_type dispatchable_object)
{
return *reinterpret_cast<void **>(dispatchable_object);
}
VkResult instance_private_data::associate(VkInstance instance, instance_dispatch_table &table,
PFN_vkSetInstanceLoaderData set_loader_data,
util::wsi_platform_set enabled_layer_platforms, const uint32_t api_version,
const util::allocator &allocator)
{
auto instance_data = allocator.make_unique<instance_private_data>(table, set_loader_data, enabled_layer_platforms,
api_version, allocator);
if (instance_data == nullptr)
{
WSI_LOG_ERROR("Instance private data for instance(%p) could not be allocated. Out of memory.",
reinterpret_cast<void *>(instance));
return VK_ERROR_OUT_OF_HOST_MEMORY;
}
const auto key = get_key(instance);
scoped_mutex lock(g_data_lock);
auto it = g_instance_data.find(key);
if (it != g_instance_data.end())
{
WSI_LOG_WARNING("Hash collision when adding new instance (%p)", reinterpret_cast<void *>(instance));
destroy(it->second);
g_instance_data.erase(it);
}
auto result = g_instance_data.try_insert(std::make_pair(key, instance_data.get()));
if (result.has_value())
{
instance_data.release(); // NOLINT(bugprone-unused-return-value)
return VK_SUCCESS;
}
else
{
WSI_LOG_WARNING("Failed to insert instance_private_data for instance (%p) as host is out of memory",
reinterpret_cast<void *>(instance));
return VK_ERROR_OUT_OF_HOST_MEMORY;
}
}
void instance_private_data::disassociate(VkInstance instance)
{
assert(instance != VK_NULL_HANDLE);
instance_private_data *instance_data = nullptr;
{
scoped_mutex lock(g_data_lock);
auto it = g_instance_data.find(get_key(instance));
if (it == g_instance_data.end())
{
WSI_LOG_WARNING("Failed to find private data for instance (%p)", reinterpret_cast<void *>(instance));
return;
}
instance_data = it->second;
g_instance_data.erase(it);
}
destroy(instance_data);
}
template <typename dispatchable_type>
static instance_private_data &get_instance_private_data(dispatchable_type dispatchable_object)
{
scoped_mutex lock(g_data_lock);
return *g_instance_data.at(get_key(dispatchable_object));
}
instance_private_data &instance_private_data::get(VkInstance instance)
{
return get_instance_private_data(instance);
}
instance_private_data &instance_private_data::get(VkPhysicalDevice phys_dev)
{
return get_instance_private_data(phys_dev);
}
VkResult instance_private_data::add_surface(VkSurfaceKHR vk_surface, util::unique_ptr<wsi::surface> &wsi_surface)
{
scoped_mutex lock(surfaces_lock);
auto it = surfaces.find(vk_surface);
if (it != surfaces.end())
{
WSI_LOG_WARNING("Hash collision when adding new surface (%p). Old surface is replaced.",
reinterpret_cast<void *>(vk_surface));
surfaces.erase(it);
}
auto result = surfaces.try_insert(std::make_pair(vk_surface, nullptr));
if (result.has_value())
{
assert(result->second);
result->first->second = wsi_surface.release();
return VK_SUCCESS;
}
return VK_ERROR_OUT_OF_HOST_MEMORY;
}
wsi::surface *instance_private_data::get_surface(VkSurfaceKHR vk_surface)
{
scoped_mutex lock(surfaces_lock);
auto it = surfaces.find(vk_surface);
if (it != surfaces.end())
{
return it->second;
}
return nullptr;
}
void instance_private_data::remove_surface(VkSurfaceKHR vk_surface, const util::allocator &alloc)
{
scoped_mutex lock(surfaces_lock);
auto it = surfaces.find(vk_surface);
if (it != surfaces.end())
{
alloc.destroy<wsi::surface>(1, it->second);
surfaces.erase(it);
}
/* Failing to find a surface is not an error. It could have been created by a WSI extension, which is not handled
* by this layer.
*/
}
bool instance_private_data::does_layer_support_surface(VkSurfaceKHR surface)
{
scoped_mutex lock(surfaces_lock);
auto it = surfaces.find(surface);
return it != surfaces.end();
}
void instance_private_data::destroy(instance_private_data *instance_data)
{
assert(instance_data);
auto alloc = instance_data->get_allocator();
alloc.destroy<instance_private_data>(1, instance_data);
}
bool instance_private_data::do_icds_support_surface(VkPhysicalDevice, VkSurfaceKHR)
{
/* For now assume ICDs do not support VK_KHR_surface. This means that the layer will handle all the surfaces it can
* handle (even if the ICDs can handle the surface) and only call down for surfaces it cannot handle. In the future
* we may allow system integrators to configure which ICDs have precedence handling which platforms.
*/
return false;
}
bool instance_private_data::should_layer_handle_surface(VkPhysicalDevice phys_dev, VkSurfaceKHR surface)
{
/* If the layer cannot handle the surface, then necessarily the ICDs or layers below us must be able to do it:
* the fact that the surface exists means that the Vulkan loader created it. In turn, this means that someone
* among the ICDs and layers advertised support for it. If it's not us, then it must be one of the layers/ICDs
* below us. It is therefore safe to always return false (and therefore call-down) when layer_can_handle_surface
* is false.
*/
bool icd_can_handle_surface = do_icds_support_surface(phys_dev, surface);
bool layer_can_handle_surface = does_layer_support_surface(surface);
bool ret = layer_can_handle_surface && !icd_can_handle_surface;
return ret;
}
#if WSI_IMAGE_COMPRESSION_CONTROL_SWAPCHAIN
bool instance_private_data::has_image_compression_support(VkPhysicalDevice phys_dev)
{
VkPhysicalDeviceImageCompressionControlFeaturesEXT compression = {
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_IMAGE_COMPRESSION_CONTROL_FEATURES_EXT, nullptr, VK_FALSE
};
VkPhysicalDeviceFeatures2KHR features = { VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FEATURES_2_KHR, &compression };
disp.GetPhysicalDeviceFeatures2KHR(phys_dev, &features);
return compression.imageCompressionControl != VK_FALSE;
}
#endif
VkResult instance_private_data::set_instance_enabled_extensions(const char *const *extension_names,
size_t extension_count)
{
return enabled_extensions.add(extension_names, extension_count);
}
bool instance_private_data::is_instance_extension_enabled(const char *extension_name) const
{
return enabled_extensions.contains(extension_name);
}
device_private_data::device_private_data(instance_private_data &inst_data, VkPhysicalDevice phys_dev, VkDevice dev,
device_dispatch_table &table, PFN_vkSetDeviceLoaderData set_loader_data,
const util::allocator &alloc)
: disp{ std::move(table) }
, instance_data{ inst_data }
, SetDeviceLoaderData{ set_loader_data }
, physical_device{ phys_dev }
, device{ dev }
, allocator{ alloc }
, swapchains{ allocator } /* clang-format off */
, enabled_extensions{ allocator }
#if WSI_IMAGE_COMPRESSION_CONTROL_SWAPCHAIN
, compression_control_enabled{ false }
#endif /* WSI_IMAGE_COMPRESSION_CONTROL_SWAPCHAIN */
/* clang-format on */
{
}
VkResult device_private_data::associate(VkDevice dev, instance_private_data &inst_data, VkPhysicalDevice phys_dev,
device_dispatch_table &table, PFN_vkSetDeviceLoaderData set_loader_data,
const util::allocator &allocator)
{
auto device_data =
allocator.make_unique<device_private_data>(inst_data, phys_dev, dev, table, set_loader_data, allocator);
if (device_data == nullptr)
{
WSI_LOG_ERROR("Device private data for device(%p) could not be allocated. Out of memory.",
reinterpret_cast<void *>(dev));
return VK_ERROR_OUT_OF_HOST_MEMORY;
}
const auto key = get_key(dev);
scoped_mutex lock(g_data_lock);
auto it = g_device_data.find(key);
if (it != g_device_data.end())
{
WSI_LOG_WARNING("Hash collision when adding new device (%p)", reinterpret_cast<void *>(dev));
destroy(it->second);
g_device_data.erase(it);
}
auto result = g_device_data.try_insert(std::make_pair(key, device_data.get()));
if (result.has_value())
{
device_data.release(); // NOLINT(bugprone-unused-return-value)
return VK_SUCCESS;
}
else
{
WSI_LOG_WARNING("Failed to insert device_private_data for device (%p) as host is out of memory",
reinterpret_cast<void *>(dev));
return VK_ERROR_OUT_OF_HOST_MEMORY;
}
}
void device_private_data::disassociate(VkDevice dev)
{
assert(dev != VK_NULL_HANDLE);
device_private_data *device_data = nullptr;
{
scoped_mutex lock(g_data_lock);
auto it = g_device_data.find(get_key(dev));
if (it == g_device_data.end())
{
WSI_LOG_WARNING("Failed to find private data for device (%p)", reinterpret_cast<void *>(dev));
return;
}
device_data = it->second;
g_device_data.erase(it);
}
destroy(device_data);
}
template <typename dispatchable_type>
static device_private_data &get_device_private_data(dispatchable_type dispatchable_object)
{
scoped_mutex lock(g_data_lock);
return *g_device_data.at(get_key(dispatchable_object));
}
device_private_data &device_private_data::get(VkDevice device)
{
return get_device_private_data(device);
}
device_private_data &device_private_data::get(VkQueue queue)
{
return get_device_private_data(queue);
}
VkResult device_private_data::add_layer_swapchain(VkSwapchainKHR swapchain)
{
scoped_mutex lock(swapchains_lock);
auto result = swapchains.try_insert(swapchain);
return result.has_value() ? VK_SUCCESS : VK_ERROR_OUT_OF_HOST_MEMORY;
}
void device_private_data::remove_layer_swapchain(VkSwapchainKHR swapchain)
{
scoped_mutex lock(swapchains_lock);
auto it = swapchains.find(swapchain);
if (it != swapchains.end())
{
swapchains.erase(swapchain);
}
}
bool device_private_data::layer_owns_all_swapchains(const VkSwapchainKHR *swapchain, uint32_t swapchain_count) const
{
scoped_mutex lock(swapchains_lock);
for (uint32_t i = 0; i < swapchain_count; i++)
{
if (swapchains.find(swapchain[i]) == swapchains.end())
{
return false;
}
}
return true;
}
bool device_private_data::should_layer_create_swapchain(VkSurfaceKHR vk_surface)
{
return instance_data.should_layer_handle_surface(physical_device, vk_surface);
}
bool device_private_data::can_icds_create_swapchain(VkSurfaceKHR vk_surface)
{
return disp.get_fn<PFN_vkCreateSwapchainKHR>("vkCreateSwapchainKHR").has_value();
}
VkResult device_private_data::set_device_enabled_extensions(const char *const *extension_names, size_t extension_count)
{
return enabled_extensions.add(extension_names, extension_count);
}
bool device_private_data::is_device_extension_enabled(const char *extension_name) const
{
return enabled_extensions.contains(extension_name);
}
void device_private_data::destroy(device_private_data *device_data)
{
assert(device_data);
auto alloc = device_data->get_allocator();
alloc.destroy<device_private_data>(1, device_data);
}
#if WSI_IMAGE_COMPRESSION_CONTROL_SWAPCHAIN
void device_private_data::set_swapchain_compression_control_enabled(bool enable)
{
compression_control_enabled = enable;
}
bool device_private_data::is_swapchain_compression_control_enabled() const
{
return compression_control_enabled;
}
#endif /* WSI_IMAGE_COMPRESSION_CONTROL_SWAPCHAIN */
} /* namespace layer */