/* * Copyright (c) 2018-2025 Arm Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include #include "private_data.hpp" #include "wsi/wsi_factory.hpp" #include "wsi/surface.hpp" #include "wsi/unsupported_surfaces.hpp" #include "util/unordered_map.hpp" #include "util/log.hpp" #include "util/helpers.hpp" #include "util/macros.hpp" namespace layer { static std::mutex g_data_lock; /* The dictionaries below use plain pointers to store the instance/device private data objects. * This means that these objects are leaked if the application terminates without calling vkDestroyInstance * or vkDestroyDevice. This is fine as it is the application's responsibility to call these. */ static util::unordered_map g_instance_data{ util::allocator::get_generic() }; static util::unordered_map g_device_data{ util::allocator::get_generic() }; VkResult instance_dispatch_table::populate(VkInstance instance, PFN_vkGetInstanceProcAddr get_proc, uint32_t instance_api_version) { static constexpr entrypoint entrypoints_init[] = { #define DISPATCH_TABLE_ENTRY(name, ext_name, api_version, required, alias) \ { "vk" #name, ext_name, nullptr, api_version, false, required, "vk" #alias }, INSTANCE_ENTRYPOINTS_LIST(DISPATCH_TABLE_ENTRY) #undef DISPATCH_TABLE_ENTRY }; static constexpr auto num_entrypoints = std::distance(std::begin(entrypoints_init), std::end(entrypoints_init)); for (size_t i = 0; i < num_entrypoints; i++) { const entrypoint *entrypoint = &entrypoints_init[i]; PFN_vkVoidFunction ret = get_proc(instance, entrypoint->name); if (!ret && entrypoint->required) { return VK_ERROR_INITIALIZATION_FAILED; } struct entrypoint e = *entrypoint; e.fn = ret; e.user_visible = false; if (entrypoint->alias != nullptr && strcmp(entrypoint->alias, "vk") != 0 && instance_api_version >= entrypoint->api_version) { e.fn = get_proc(instance, entrypoint->alias); } if (!m_entrypoints->try_insert(std::make_pair(e.name, e)).has_value()) { WSI_LOG_ERROR("Failed to allocate memory for instance dispatch table entry."); return VK_ERROR_OUT_OF_HOST_MEMORY; } } return VK_SUCCESS; } void dispatch_table::set_user_enabled_extensions(const char *const *extension_names, size_t extension_count) { for (size_t i = 0; i < extension_count; i++) { for (auto &entrypoint : *m_entrypoints) { if (!strcmp(entrypoint.second.ext_name, extension_names[i])) { entrypoint.second.user_visible = true; } } } } PFN_vkVoidFunction instance_dispatch_table::get_user_enabled_entrypoint(VkInstance instance, uint32_t api_version, const char *fn_name) const { auto item = m_entrypoints->find(fn_name); if (item != m_entrypoints->end()) { /* An entrypoint is allowed to use if it has been enabled by the user or is included in the core specficiation of the API version. * Entrypoints included in API version 1.0 are allowed by default. */ if (item->second.user_visible || item->second.api_version <= api_version || item->second.api_version == VK_API_VERSION_1_0) { return item->second.fn; } else { return nullptr; } } return GetInstanceProcAddr(instance, fn_name).value_or(nullptr); } VkResult device_dispatch_table::populate(VkDevice dev, PFN_vkGetDeviceProcAddr get_proc_fn, uint32_t instance_api_version) { static constexpr entrypoint entrypoints_init[] = { #define DISPATCH_TABLE_ENTRY(name, ext_name, api_version, required, alias) \ { "vk" #name, ext_name, nullptr, api_version, false, required, "vk" #alias }, DEVICE_ENTRYPOINTS_LIST(DISPATCH_TABLE_ENTRY) #undef DISPATCH_TABLE_ENTRY }; static constexpr auto num_entrypoints = std::distance(std::begin(entrypoints_init), std::end(entrypoints_init)); for (size_t i = 0; i < num_entrypoints; i++) { const entrypoint *entrypoint = &entrypoints_init[i]; PFN_vkVoidFunction ret = get_proc_fn(dev, entrypoint->name); if (!ret && entrypoint->required) { return VK_ERROR_INITIALIZATION_FAILED; } struct entrypoint e = *entrypoint; e.fn = ret; e.user_visible = false; if (entrypoint->alias != nullptr && strcmp(entrypoint->alias, "vk") != 0 && instance_api_version >= entrypoint->api_version) { e.fn = get_proc_fn(dev, entrypoint->alias); } if (!m_entrypoints->try_insert(std::make_pair(e.name, e)).has_value()) { WSI_LOG_ERROR("Failed to allocate memory for device dispatch table entry."); return VK_ERROR_OUT_OF_HOST_MEMORY; } } return VK_SUCCESS; } PFN_vkVoidFunction device_dispatch_table::get_user_enabled_entrypoint(VkDevice device, uint32_t api_version, const char *fn_name) const { auto itr = m_entrypoints->find(fn_name); if (itr != m_entrypoints->end()) { /* An entrypoint is allowed to be used: * - if it has been enabled by the user, * - or if is included in the core specficiation of the API version. * Entrypoints included in API version 1.0 are allowed by default. */ const entrypoint &ep = itr->second; if (ep.user_visible) { return ep.fn; } if (ep.api_version == VK_API_VERSION_1_0) { return ep.fn; } bool is_core = (ep.ext_name != nullptr && ep.ext_name[0] == '\0'); if (is_core && ep.api_version <= api_version) { return ep.fn; } return nullptr; } return GetDeviceProcAddr(device, fn_name).value_or(nullptr); } instance_private_data::instance_private_data(instance_dispatch_table table, PFN_vkSetInstanceLoaderData set_loader_data, util::wsi_platform_set enabled_layer_platforms, const uint32_t api_version, const util::allocator &alloc) : disp{ std::move(table) } , api_version{ api_version } , SetInstanceLoaderData{ set_loader_data } , enabled_layer_platforms{ enabled_layer_platforms } , allocator{ alloc } , surfaces{ alloc } , enabled_extensions{ allocator } { } /** * @brief Obtain the loader's dispatch table for the given dispatchable object. * @note Dispatchable objects are structures that have a VkLayerDispatchTable as their first member. We treat the dispatchable object as a void** and then dereference to use the VkLayerDispatchTable as the key. */ template static inline void *get_key(dispatchable_type dispatchable_object) { return *reinterpret_cast(dispatchable_object); } VkResult instance_private_data::associate(VkInstance instance, instance_dispatch_table table, PFN_vkSetInstanceLoaderData set_loader_data, util::wsi_platform_set enabled_layer_platforms, const uint32_t api_version, const util::allocator &allocator) { auto instance_data = allocator.make_unique(std::move(table), set_loader_data, enabled_layer_platforms, api_version, allocator); if (instance_data == nullptr) { WSI_LOG_ERROR("Instance private data for instance(%p) could not be allocated. Out of memory.", reinterpret_cast(instance)); return VK_ERROR_OUT_OF_HOST_MEMORY; } const auto key = get_key(instance); scoped_mutex lock(g_data_lock); auto it = g_instance_data.find(key); if (it != g_instance_data.end()) { WSI_LOG_WARNING("Hash collision when adding new instance (%p)", reinterpret_cast(instance)); destroy(it->second); g_instance_data.erase(it); } auto result = g_instance_data.try_insert(std::make_pair(key, instance_data.get())); if (result.has_value()) { instance_data.release(); // NOLINT(bugprone-unused-return-value) return VK_SUCCESS; } else { WSI_LOG_WARNING("Failed to insert instance_private_data for instance (%p) as host is out of memory", reinterpret_cast(instance)); return VK_ERROR_OUT_OF_HOST_MEMORY; } } void instance_private_data::disassociate(VkInstance instance) { assert(instance != VK_NULL_HANDLE); instance_private_data *instance_data = nullptr; { scoped_mutex lock(g_data_lock); auto it = g_instance_data.find(get_key(instance)); if (it == g_instance_data.end()) { WSI_LOG_WARNING("Failed to find private data for instance (%p)", reinterpret_cast(instance)); return; } instance_data = it->second; g_instance_data.erase(it); } destroy(instance_data); } template static instance_private_data &get_instance_private_data(dispatchable_type dispatchable_object) { scoped_mutex lock(g_data_lock); return *g_instance_data.at(get_key(dispatchable_object)); } instance_private_data &instance_private_data::get(VkInstance instance) { return get_instance_private_data(instance); } instance_private_data &instance_private_data::get(VkPhysicalDevice phys_dev) { return get_instance_private_data(phys_dev); } VkResult instance_private_data::add_surface(VkSurfaceKHR vk_surface, util::unique_ptr &wsi_surface) { scoped_mutex lock(surfaces_lock); auto it = surfaces.find(vk_surface); if (it != surfaces.end()) { WSI_LOG_WARNING("Hash collision when adding new surface (%p). Old surface is replaced.", reinterpret_cast(vk_surface)); surfaces.erase(it); } auto result = surfaces.try_insert(std::make_pair(vk_surface, nullptr)); if (result.has_value()) { assert(result->second); result->first->second = wsi_surface.release(); return VK_SUCCESS; } return VK_ERROR_OUT_OF_HOST_MEMORY; } wsi::surface *instance_private_data::get_surface(VkSurfaceKHR vk_surface) { scoped_mutex lock(surfaces_lock); auto it = surfaces.find(vk_surface); if (it != surfaces.end()) { return it->second; } return nullptr; } void instance_private_data::remove_surface(VkSurfaceKHR vk_surface, const util::allocator &alloc) { scoped_mutex lock(surfaces_lock); auto it = surfaces.find(vk_surface); if (it != surfaces.end()) { alloc.destroy(1, it->second); surfaces.erase(it); } /* Failing to find a surface is not an error. It could have been created by a WSI extension, which is not handled * by this layer. */ } bool instance_private_data::does_layer_support_surface(VkSurfaceKHR surface) { scoped_mutex lock(surfaces_lock); auto it = surfaces.find(surface); return it != surfaces.end(); } void instance_private_data::destroy(instance_private_data *instance_data) { assert(instance_data); auto alloc = instance_data->get_allocator(); alloc.destroy(1, instance_data); } bool instance_private_data::do_icds_support_surface(VkPhysicalDevice, VkSurfaceKHR) { /* For now assume ICDs do not support VK_KHR_surface. This means that the layer will handle all the surfaces it can * handle (even if the ICDs can handle the surface) and only call down for surfaces it cannot handle. In the future * we may allow system integrators to configure which ICDs have precedence handling which platforms. */ return false; } bool instance_private_data::should_layer_handle_surface(VkPhysicalDevice phys_dev, VkSurfaceKHR surface) { /* If the layer cannot handle the surface, then necessarily the ICDs or layers below us must be able to do it: * the fact that the surface exists means that the Vulkan loader created it. In turn, this means that someone * among the ICDs and layers advertised support for it. If it's not us, then it must be one of the layers/ICDs * below us. It is therefore safe to always return false (and therefore call-down) when layer_can_handle_surface * is false. */ bool icd_can_handle_surface = do_icds_support_surface(phys_dev, surface); bool layer_can_handle_surface = does_layer_support_surface(surface); bool ret = layer_can_handle_surface && !icd_can_handle_surface; return ret; } bool instance_private_data::has_image_compression_support(VkPhysicalDevice phys_dev) { VkPhysicalDeviceImageCompressionControlFeaturesEXT compression = { VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_IMAGE_COMPRESSION_CONTROL_FEATURES_EXT, nullptr, VK_FALSE }; VkPhysicalDeviceFeatures2KHR features = { VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FEATURES_2_KHR, &compression, {} }; disp.GetPhysicalDeviceFeatures2KHR(phys_dev, &features); return compression.imageCompressionControl != VK_FALSE; } bool instance_private_data::has_frame_boundary_support(VkPhysicalDevice phys_dev) { VkPhysicalDeviceFrameBoundaryFeaturesEXT frame_boundary = { VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_IMAGE_COMPRESSION_CONTROL_FEATURES_EXT, nullptr, VK_FALSE }; VkPhysicalDeviceFeatures2KHR features = { VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FEATURES_2_KHR, &frame_boundary, {} }; disp.GetPhysicalDeviceFeatures2KHR(phys_dev, &features); return frame_boundary.frameBoundary != VK_FALSE; } VkResult instance_private_data::set_instance_enabled_extensions(const char *const *extension_names, size_t extension_count) { VkResult result = enabled_extensions.add(extension_names, extension_count); /* Check for unsupported surface extension */ has_enabled_unsupported_extension = false; for (const auto &unsupported_surface_ext : wsi::unsupported_surfaces_ext_array) { if (enabled_extensions.contains(unsupported_surface_ext)) { has_enabled_unsupported_extension = true; WSI_LOG_ERROR( "Warning: Swapchain maintenance feature is unsupported for the current surface and ICD configuration.\n"); break; } } return result; } bool instance_private_data::is_instance_extension_enabled(const char *extension_name) const { return enabled_extensions.contains(extension_name); } device_private_data::device_private_data(instance_private_data &inst_data, VkPhysicalDevice phys_dev, VkDevice dev, device_dispatch_table table, PFN_vkSetDeviceLoaderData set_loader_data, const util::allocator &alloc) : disp{ std::move(table) } , instance_data{ inst_data } , SetDeviceLoaderData{ set_loader_data } , physical_device{ phys_dev } , device{ dev } , allocator{ alloc } , swapchains{ allocator } /* clang-format off */ , enabled_extensions{ allocator } , compression_control_enabled{ false } , present_id_enabled { false } , swapchain_maintenance1_enabled{ false } #if VULKAN_WSI_LAYER_EXPERIMENTAL , present_timing_enabled { true } #endif , present_mode_fifo_latest_ready_enabled { false } /* clang-format on */ { } VkResult device_private_data::associate(VkDevice dev, instance_private_data &inst_data, VkPhysicalDevice phys_dev, device_dispatch_table table, PFN_vkSetDeviceLoaderData set_loader_data, const util::allocator &allocator) { auto device_data = allocator.make_unique(inst_data, phys_dev, dev, std::move(table), set_loader_data, allocator); if (device_data == nullptr) { WSI_LOG_ERROR("Device private data for device(%p) could not be allocated. Out of memory.", reinterpret_cast(dev)); return VK_ERROR_OUT_OF_HOST_MEMORY; } const auto key = get_key(dev); scoped_mutex lock(g_data_lock); auto it = g_device_data.find(key); if (it != g_device_data.end()) { WSI_LOG_WARNING("Hash collision when adding new device (%p)", reinterpret_cast(dev)); destroy(it->second); g_device_data.erase(it); } auto result = g_device_data.try_insert(std::make_pair(key, device_data.get())); if (result.has_value()) { device_data.release(); // NOLINT(bugprone-unused-return-value) return VK_SUCCESS; } else { WSI_LOG_WARNING("Failed to insert device_private_data for device (%p) as host is out of memory", reinterpret_cast(dev)); return VK_ERROR_OUT_OF_HOST_MEMORY; } } void device_private_data::disassociate(VkDevice dev) { assert(dev != VK_NULL_HANDLE); device_private_data *device_data = nullptr; { scoped_mutex lock(g_data_lock); auto it = g_device_data.find(get_key(dev)); if (it == g_device_data.end()) { WSI_LOG_WARNING("Failed to find private data for device (%p)", reinterpret_cast(dev)); return; } device_data = it->second; g_device_data.erase(it); } destroy(device_data); } template static device_private_data &get_device_private_data(dispatchable_type dispatchable_object) { scoped_mutex lock(g_data_lock); return *g_device_data.at(get_key(dispatchable_object)); } device_private_data &device_private_data::get(VkDevice device) { return get_device_private_data(device); } device_private_data &device_private_data::get(VkQueue queue) { return get_device_private_data(queue); } VkResult device_private_data::add_layer_swapchain(VkSwapchainKHR swapchain) { scoped_mutex lock(swapchains_lock); auto result = swapchains.try_insert(swapchain); return result.has_value() ? VK_SUCCESS : VK_ERROR_OUT_OF_HOST_MEMORY; } void device_private_data::remove_layer_swapchain(VkSwapchainKHR swapchain) { scoped_mutex lock(swapchains_lock); auto it = swapchains.find(swapchain); if (it != swapchains.end()) { swapchains.erase(swapchain); } } bool device_private_data::layer_owns_all_swapchains(const VkSwapchainKHR *swapchain, uint32_t swapchain_count) const { scoped_mutex lock(swapchains_lock); for (uint32_t i = 0; i < swapchain_count; i++) { if (swapchains.find(swapchain[i]) == swapchains.end()) { return false; } } return true; } bool device_private_data::should_layer_create_swapchain(VkSurfaceKHR vk_surface) { return instance_data.should_layer_handle_surface(physical_device, vk_surface); } bool device_private_data::can_icds_create_swapchain(VkSurfaceKHR vk_surface) { UNUSED(vk_surface); return disp.get_fn("vkCreateSwapchainKHR").has_value(); } VkResult device_private_data::set_device_enabled_extensions(const char *const *extension_names, size_t extension_count) { return enabled_extensions.add(extension_names, extension_count); } bool device_private_data::is_device_extension_enabled(const char *extension_name) const { return enabled_extensions.contains(extension_name); } void device_private_data::destroy(device_private_data *device_data) { assert(device_data); auto alloc = device_data->get_allocator(); alloc.destroy(1, device_data); } void device_private_data::set_swapchain_compression_control_enabled(bool enable) { compression_control_enabled = enable; } bool device_private_data::is_swapchain_compression_control_enabled() const { return compression_control_enabled; } void device_private_data::set_layer_frame_boundary_handling_enabled(bool enable) { handle_frame_boundary_events = enable; } bool device_private_data::should_layer_handle_frame_boundary_events() const { return handle_frame_boundary_events; } void device_private_data::set_present_id_feature_enabled(bool enable) { present_id_enabled = enable; } bool device_private_data::is_present_id_enabled() { return present_id_enabled; } void device_private_data::set_swapchain_maintenance1_enabled(bool enable) { swapchain_maintenance1_enabled = enable; } bool device_private_data::is_swapchain_maintenance1_enabled() const { return swapchain_maintenance1_enabled; } void device_private_data::set_present_wait_enabled(bool enable) { present_wait_enabled = enable; } bool device_private_data::is_present_wait_enabled() { return present_wait_enabled; } void device_private_data::set_present_mode_fifo_latest_ready_enabled(bool enable) { present_mode_fifo_latest_ready_enabled = enable; } } /* namespace layer */