Add support for multiplane swapchain images in Wayland

Updates wsialloc and wsi::wayland::swapchain to support multiplane
image allocations.

Uses the custom allocator for allocations in Wayland image creation.

Change-Id: I1950b14b75711a76521bbf1967c3c835d006f8a8
Signed-off-by: Iason Paraskevopoulos <iason.paraskevopoulos@arm.com>
This commit is contained in:
Iason Paraskevopoulos 2021-03-12 14:19:59 +00:00
parent 8236f8aaaa
commit 926cd66fcd
7 changed files with 354 additions and 132 deletions

View file

@ -55,7 +55,8 @@ namespace layer
OPTIONAL(GetPhysicalDeviceSurfaceFormatsKHR) \ OPTIONAL(GetPhysicalDeviceSurfaceFormatsKHR) \
OPTIONAL(GetPhysicalDeviceSurfacePresentModesKHR) \ OPTIONAL(GetPhysicalDeviceSurfacePresentModesKHR) \
OPTIONAL(GetPhysicalDeviceSurfaceSupportKHR) \ OPTIONAL(GetPhysicalDeviceSurfaceSupportKHR) \
OPTIONAL(GetPhysicalDeviceImageFormatProperties2KHR) OPTIONAL(GetPhysicalDeviceImageFormatProperties2KHR) \
OPTIONAL(GetPhysicalDeviceFormatProperties2KHR)
struct instance_dispatch_table struct instance_dispatch_table
{ {
@ -102,7 +103,8 @@ struct instance_dispatch_table
OPTIONAL(GetSwapchainImagesKHR) \ OPTIONAL(GetSwapchainImagesKHR) \
OPTIONAL(AcquireNextImageKHR) \ OPTIONAL(AcquireNextImageKHR) \
OPTIONAL(QueuePresentKHR) \ OPTIONAL(QueuePresentKHR) \
OPTIONAL(GetMemoryFdPropertiesKHR) OPTIONAL(GetMemoryFdPropertiesKHR) \
OPTIONAL(BindImageMemory2KHR)
struct device_dispatch_table struct device_dispatch_table
{ {

View file

@ -42,7 +42,8 @@
/** Default alignment */ /** Default alignment */
#define WSIALLOCP_MIN_ALIGN_SZ (64u) #define WSIALLOCP_MIN_ALIGN_SZ (64u)
struct ion_allocator { struct ion_allocator
{
/* File descriptor of /dev/ion. */ /* File descriptor of /dev/ion. */
int fd; int fd;
/* Allocator heap id. */ /* Allocator heap id. */
@ -221,43 +222,44 @@ int wsialloc_alloc(
assert(new_fd != NULL); assert(new_fd != NULL);
assert(offset != NULL); assert(offset != NULL);
int ret = 0;
struct ion_allocator *ion = allocator->ptr; struct ion_allocator *ion = allocator->ptr;
if(modifier != NULL && *modifier != 0) if (modifier != NULL && *modifier != 0)
{ {
return -ENOTSUP; return -ENOTSUP;
} }
size_t size = 0;
/* Validate format and determine per-plane bits per pixel. */ /* Validate format and determine per-plane bits per pixel. */
uint32_t nr_planes, bits_per_pixel[WSIALLOCP_MAX_PLANES]; uint32_t nr_planes, bits_per_pixel[WSIALLOCP_MAX_PLANES];
ret = wsiallocp_get_fmt_info(fourcc, &nr_planes, bits_per_pixel); int ret = wsiallocp_get_fmt_info(fourcc, &nr_planes, bits_per_pixel);
if (ret != 0) if (ret != 0)
{ {
return ret; return ret;
} }
/* Only single plane formats supported. */ size_t size = 0;
if (nr_planes != 1) for (uint32_t plane = 0; plane < nr_planes; plane++)
{ {
return -ENOTSUP; offset[plane] = size;
/* Assumes multiple of 8--rework otherwise. */
const uint32_t plane_bytes_per_pixel = bits_per_pixel[plane] / 8;
assert(plane_bytes_per_pixel * 8 == bits_per_pixel[plane]);
stride[plane] = round_size_up_to_align(width * plane_bytes_per_pixel);
size += stride[plane] * height;
} }
/* Assumes multiple of 8--rework otherwise. */ new_fd[0] = allocate(ion->fd, size, ion->alloc_heap_id);
uint32_t plane0_bytes_per_pixel = bits_per_pixel[0] / 8; if (new_fd[0] < 0)
assert(plane0_bytes_per_pixel * 8 == bits_per_pixel[0]);
*stride = round_size_up_to_align(width * plane0_bytes_per_pixel);
size = *stride * height;
*new_fd = allocate(ion->fd, size, ion->alloc_heap_id);
if (*new_fd < 0)
{ {
return -errno; return -errno;
} }
*offset = 0; for (uint32_t plane = 1; plane < nr_planes; plane++)
{
new_fd[plane] = new_fd[0];
}
return 0; return 0;
} }

View file

@ -1,5 +1,5 @@
/* /*
* Copyright (c) 2017-2020 Arm Limited. * Copyright (c) 2017-2021 Arm Limited.
* *
* SPDX-License-Identifier: MIT * SPDX-License-Identifier: MIT
* *
@ -57,7 +57,7 @@ swapchain::~swapchain()
teardown(); teardown();
} }
VkResult swapchain::create_image(const VkImageCreateInfo &image_create, wsi::swapchain_image &image) VkResult swapchain::create_image(VkImageCreateInfo image_create, wsi::swapchain_image &image)
{ {
VkResult res = VK_SUCCESS; VkResult res = VK_SUCCESS;
res = m_device_data.disp.CreateImage(m_device, &image_create, nullptr, &image.image); res = m_device_data.disp.CreateImage(m_device, &image_create, nullptr, &image.image);

View file

@ -1,5 +1,5 @@
/* /*
* Copyright (c) 2017-2019 Arm Limited. * Copyright (c) 2017-2019, 2021 Arm Limited.
* *
* SPDX-License-Identifier: MIT * SPDX-License-Identifier: MIT
* *
@ -72,7 +72,7 @@ protected:
* will return VK_ERROR_OUT_OF_DEVICE_MEMORY or VK_ERROR_INITIALIZATION_FAILED * will return VK_ERROR_OUT_OF_DEVICE_MEMORY or VK_ERROR_INITIALIZATION_FAILED
* depending on the error that occured. * depending on the error that occured.
*/ */
VkResult create_image(const VkImageCreateInfo &image_create_info, wsi::swapchain_image &image); VkResult create_image(VkImageCreateInfo image_create_info, wsi::swapchain_image &image);
/** /**
* @brief Method to perform a present - just calls unpresent_image on headless * @brief Method to perform a present - just calls unpresent_image on headless
@ -87,7 +87,7 @@ protected:
* *
* @param image Handle to the image about to be released. * @param image Handle to the image about to be released.
*/ */
void destroy_image(wsi::swapchain_image &image); void destroy_image(wsi::swapchain_image &image);
}; };
} /* namespace headless */ } /* namespace headless */

View file

@ -1,5 +1,5 @@
/* /*
* Copyright (c) 2017-2020 Arm Limited. * Copyright (c) 2017-2021 Arm Limited.
* *
* SPDX-License-Identifier: MIT * SPDX-License-Identifier: MIT
* *
@ -306,7 +306,7 @@ protected:
* will return VK_ERROR_OUT_OF_DEVICE_MEMORY or VK_ERROR_INITIALIZATION_FAILED * will return VK_ERROR_OUT_OF_DEVICE_MEMORY or VK_ERROR_INITIALIZATION_FAILED
* depending on the error that occured. * depending on the error that occured.
*/ */
virtual VkResult create_image(const VkImageCreateInfo &image_create_info, swapchain_image &image) = 0; virtual VkResult create_image(VkImageCreateInfo image_create_info, swapchain_image &image) = 0;
/** /**
* @brief Method to present and image * @brief Method to present and image
@ -364,7 +364,7 @@ private:
/** /**
* @brief Per swapchain thread function that handles page flipping. * @brief Per swapchain thread function that handles page flipping.
* *
* This thread should be running for the lifetime of the swapchain. * This thread should be running for the lifetime of the swapchain.
* The thread simply calls the implementation's present_image() method. * The thread simply calls the implementation's present_image() method.
* There are 3 main cases we cover here: * There are 3 main cases we cover here:

View file

@ -27,6 +27,7 @@
#include "swapchain.hpp" #include "swapchain.hpp"
#include "wl_helpers.hpp" #include "wl_helpers.hpp"
#include <stdint.h>
#include <cstring> #include <cstring>
#include <cassert> #include <cassert>
#include <unistd.h> #include <unistd.h>
@ -34,9 +35,12 @@
#include <cerrno> #include <cerrno>
#include <cstdio> #include <cstdio>
#include <climits> #include <climits>
#include <functional>
#include "util/drm/drm_utils.hpp" #include "util/drm/drm_utils.hpp"
#define MAX_PLANES 4
namespace wsi namespace wsi
{ {
namespace wayland namespace wayland
@ -60,14 +64,23 @@ make_proxy_with_queue(T *object, wl_event_queue *queue)
return std::unique_ptr<T, std::function<void(T *)>>(proxy, delete_proxy); return std::unique_ptr<T, std::function<void(T *)>>(proxy, delete_proxy);
} }
const VkImageAspectFlagBits plane_flag_bits[MAX_PLANES] = {
VK_IMAGE_ASPECT_MEMORY_PLANE_0_BIT_EXT,
VK_IMAGE_ASPECT_MEMORY_PLANE_1_BIT_EXT,
VK_IMAGE_ASPECT_MEMORY_PLANE_2_BIT_EXT,
VK_IMAGE_ASPECT_MEMORY_PLANE_3_BIT_EXT,
};
struct swapchain::wayland_image_data struct swapchain::wayland_image_data
{ {
int buffer_fd; int buffer_fd[MAX_PLANES];
int stride; int stride[MAX_PLANES];
uint32_t offset; uint32_t offset[MAX_PLANES];
wl_buffer *buffer; wl_buffer *buffer;
VkDeviceMemory memory; VkDeviceMemory memory[MAX_PLANES];
uint32_t num_planes;
}; };
swapchain::swapchain(layer::device_private_data &dev_data, const VkAllocationCallbacks *pAllocator) swapchain::swapchain(layer::device_private_data &dev_data, const VkAllocationCallbacks *pAllocator)
@ -136,7 +149,7 @@ VkResult swapchain::init_platform(VkDevice device, const VkSwapchainCreateInfoKH
return VK_ERROR_INITIALIZATION_FAILED; return VK_ERROR_INITIALIZATION_FAILED;
} }
auto registry = registry_owner{wl_display_get_registry(display_proxy.get())}; auto registry = registry_owner{ wl_display_get_registry(display_proxy.get()) };
if (registry == nullptr) if (registry == nullptr)
{ {
WSI_PRINT_ERROR("Failed to get wl display registry.\n"); WSI_PRINT_ERROR("Failed to get wl display registry.\n");
@ -173,17 +186,18 @@ VkResult swapchain::init_platform(VkDevice device, const VkSwapchainCreateInfoKH
return VK_SUCCESS; return VK_SUCCESS;
} }
static void create_succeeded(void *data, struct zwp_linux_buffer_params_v1 *params, struct wl_buffer *buffer) extern "C" void create_succeeded(void *data, struct zwp_linux_buffer_params_v1 *params,
struct wl_buffer *buffer)
{ {
struct wl_buffer **wayland_buffer = (struct wl_buffer **)data; auto wayland_buffer = reinterpret_cast<wl_buffer **>(data);
*wayland_buffer = buffer; *wayland_buffer = buffer;
} }
static const struct zwp_linux_buffer_params_v1_listener params_listener = { create_succeeded, NULL }; static const struct zwp_linux_buffer_params_v1_listener params_listener = { create_succeeded, NULL };
static void buffer_release(void *data, struct wl_buffer *wayl_buffer) extern "C" void buffer_release(void *data, struct wl_buffer *wayl_buffer)
{ {
swapchain *sc = (swapchain *)data; auto sc = reinterpret_cast<swapchain *>(data);
sc->release_buffer(wayl_buffer); sc->release_buffer(wayl_buffer);
} }
@ -192,8 +206,7 @@ void swapchain::release_buffer(struct wl_buffer *wayl_buffer)
uint32_t i; uint32_t i;
for (i = 0; i < m_swapchain_images.size(); i++) for (i = 0; i < m_swapchain_images.size(); i++)
{ {
wayland_image_data *data; auto data = reinterpret_cast<wayland_image_data *>(m_swapchain_images[i].data);
data = (wayland_image_data *)m_swapchain_images[i].data;
if (data->buffer == wayl_buffer) if (data->buffer == wayl_buffer)
{ {
unpresent_image(i); unpresent_image(i);
@ -207,14 +220,145 @@ void swapchain::release_buffer(struct wl_buffer *wayl_buffer)
static struct wl_buffer_listener buffer_listener = { buffer_release }; static struct wl_buffer_listener buffer_listener = { buffer_release };
VkResult swapchain::allocate_image(const VkImageCreateInfo &image_create_info, wayland_image_data *image_data, VkResult swapchain::allocate_plane_memory(int fd, VkDeviceMemory *memory)
{
uint32_t mem_index = -1;
VkResult result = get_fd_mem_type_index(fd, mem_index);
if (result != VK_SUCCESS)
{
return result;
}
const off_t dma_buf_size = lseek(fd, 0, SEEK_END);
if (dma_buf_size < 0)
{
WSI_PRINT_ERROR("Failed to get DMA Buf size.\n");
return VK_ERROR_OUT_OF_HOST_MEMORY;
}
VkImportMemoryFdInfoKHR import_mem_info = {};
import_mem_info.sType = VK_STRUCTURE_TYPE_IMPORT_MEMORY_FD_INFO_KHR;
import_mem_info.handleType = VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT;
import_mem_info.fd = fd;
VkMemoryAllocateInfo alloc_info = {};
alloc_info.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;
alloc_info.pNext = &import_mem_info;
alloc_info.allocationSize = static_cast<uint64_t>(dma_buf_size);
alloc_info.memoryTypeIndex = mem_index;
result = m_device_data.disp.AllocateMemory(
m_device, &alloc_info, get_allocation_callbacks(), memory);
if (result != VK_SUCCESS)
{
WSI_PRINT_ERROR("Failed to import memory.\n");
return result;
}
return VK_SUCCESS;
}
VkResult swapchain::get_fd_mem_type_index(int fd, uint32_t &mem_idx)
{
VkMemoryFdPropertiesKHR mem_props = {};
mem_props.sType = VK_STRUCTURE_TYPE_MEMORY_FD_PROPERTIES_KHR;
VkResult result = m_device_data.disp.GetMemoryFdPropertiesKHR(
m_device, VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT, fd, &mem_props);
if (result != VK_SUCCESS)
{
WSI_PRINT_ERROR("Error querying Fd properties.\n");
return result;
}
for (mem_idx = 0; mem_idx < VK_MAX_MEMORY_TYPES; mem_idx++)
{
if (mem_props.memoryTypeBits & (1 << mem_idx))
{
break;
}
}
assert(mem_idx < VK_MAX_MEMORY_TYPES);
return VK_SUCCESS;
}
VkResult swapchain::get_drm_format_properties(
VkFormat format, util::vector<VkDrmFormatModifierPropertiesEXT> &format_props_list)
{
VkDrmFormatModifierPropertiesListEXT format_modifier_props = {};
format_modifier_props.sType = VK_STRUCTURE_TYPE_DRM_FORMAT_MODIFIER_PROPERTIES_LIST_EXT;
VkFormatProperties2KHR format_props = {};
format_props.sType = VK_STRUCTURE_TYPE_FORMAT_PROPERTIES_2_KHR;
format_props.pNext = &format_modifier_props;
m_device_data.instance_data.disp.GetPhysicalDeviceFormatProperties2KHR(
m_device_data.physical_device, format, &format_props);
if (!format_props_list.try_resize(format_modifier_props.drmFormatModifierCount))
{
return VK_ERROR_OUT_OF_HOST_MEMORY;
}
format_modifier_props.pDrmFormatModifierProperties = format_props_list.data();
m_device_data.instance_data.disp.GetPhysicalDeviceFormatProperties2KHR(
m_device_data.physical_device, format, &format_props);
return VK_SUCCESS;
}
static bool is_disjoint_supported(
const util::vector<VkDrmFormatModifierPropertiesEXT> &format_props, uint64_t modifier)
{
for (const auto &prop : format_props)
{
if (prop.drmFormatModifier == modifier &&
prop.drmFormatModifierTilingFeatures & VK_FORMAT_FEATURE_DISJOINT_BIT)
{
return true;
}
}
return false;
}
static uint32_t get_same_fd_index(int fd, int const *fds)
{
uint32_t index = 0;
while (fd != fds[index])
{
index++;
}
return index;
}
VkResult swapchain::allocate_image(VkImageCreateInfo &image_create_info, wayland_image_data *image_data,
VkImage *image) VkImage *image)
{ {
VkResult result = VK_SUCCESS; VkResult result = VK_SUCCESS;
const uint64_t modifier = DRM_FORMAT_MOD_LINEAR;
image_data->buffer = nullptr; image_data->buffer = nullptr;
image_data->buffer_fd = -1; image_data->num_planes = 0;
image_data->memory = VK_NULL_HANDLE; for (uint32_t plane = 0; plane < MAX_PLANES; plane++)
{
image_data->buffer_fd[plane] = -1;
image_data->memory[plane] = VK_NULL_HANDLE;
}
/* Query support for disjoint images. */
util::vector<VkDrmFormatModifierPropertiesEXT> drm_format_props(m_allocator);
result = get_drm_format_properties(image_create_info.format, drm_format_props);
if (result != VK_SUCCESS)
{
WSI_PRINT_ERROR("Failed to get format properties.\n");
return result;
}
auto is_disjoint = is_disjoint_supported(drm_format_props, modifier);
VkExternalImageFormatPropertiesKHR external_props = {}; VkExternalImageFormatPropertiesKHR external_props = {};
external_props.sType = VK_STRUCTURE_TYPE_EXTERNAL_IMAGE_FORMAT_PROPERTIES_KHR; external_props.sType = VK_STRUCTURE_TYPE_EXTERNAL_IMAGE_FORMAT_PROPERTIES_KHR;
@ -230,7 +374,7 @@ VkResult swapchain::allocate_image(const VkImageCreateInfo &image_create_info, w
VkPhysicalDeviceImageDrmFormatModifierInfoEXT drm_mod_info = {}; VkPhysicalDeviceImageDrmFormatModifierInfoEXT drm_mod_info = {};
drm_mod_info.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_IMAGE_DRM_FORMAT_MODIFIER_INFO_EXT; drm_mod_info.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_IMAGE_DRM_FORMAT_MODIFIER_INFO_EXT;
drm_mod_info.pNext = &external_info; drm_mod_info.pNext = &external_info;
drm_mod_info.drmFormatModifier = DRM_FORMAT_MOD_LINEAR; drm_mod_info.drmFormatModifier = modifier;
drm_mod_info.sharingMode = image_create_info.sharingMode; drm_mod_info.sharingMode = image_create_info.sharingMode;
drm_mod_info.queueFamilyIndexCount = image_create_info.queueFamilyIndexCount; drm_mod_info.queueFamilyIndexCount = image_create_info.queueFamilyIndexCount;
drm_mod_info.pQueueFamilyIndices = image_create_info.pQueueFamilyIndices; drm_mod_info.pQueueFamilyIndices = image_create_info.pQueueFamilyIndices;
@ -284,27 +428,51 @@ VkResult swapchain::allocate_image(const VkImageCreateInfo &image_create_info, w
else else
{ {
/* TODO: Handle Dedicated allocation bit. */ /* TODO: Handle Dedicated allocation bit. */
uint32_t fourcc = util::drm::vk_to_drm_format(image_create_info.format); const auto fourcc = util::drm::vk_to_drm_format(image_create_info.format);
int res = const auto res =
wsialloc_alloc(&m_wsi_allocator, fourcc, image_create_info.extent.width, image_create_info.extent.height, wsialloc_alloc(&m_wsi_allocator, fourcc, image_create_info.extent.width, image_create_info.extent.height,
&image_data->stride, &image_data->buffer_fd, &image_data->offset, nullptr); image_data->stride, image_data->buffer_fd, image_data->offset, nullptr);
if (res != 0) if (res != 0)
{ {
WSI_PRINT_ERROR("Failed allocation of DMA Buffer.\n"); WSI_PRINT_ERROR("Failed allocation of DMA Buffer.\n");
return VK_ERROR_OUT_OF_HOST_MEMORY; return VK_ERROR_OUT_OF_HOST_MEMORY;
} }
for (uint32_t plane = 0; plane < MAX_PLANES; plane++)
{ {
assert(image_data->stride >= 0); if (image_data->buffer_fd[plane] == -1)
VkSubresourceLayout image_layout = {}; {
image_layout.offset = image_data->offset; break;
image_layout.rowPitch = static_cast<uint32_t>(image_data->stride); }
image_data->num_planes++;
}
{
util::vector<VkSubresourceLayout> image_layout(m_allocator);
if (!image_layout.try_resize(image_data->num_planes))
{
return VK_ERROR_OUT_OF_HOST_MEMORY;
}
for (uint32_t plane = 0; plane < image_data->num_planes; plane++)
{
assert(image_data->stride[plane] >= 0);
image_layout[plane].offset = image_data->offset[plane];
image_layout[plane].rowPitch = static_cast<uint32_t>(image_data->stride[plane]);
}
if (is_disjoint)
{
image_create_info.flags |= VK_IMAGE_CREATE_DISJOINT_BIT;
}
VkImageDrmFormatModifierExplicitCreateInfoEXT drm_mod_info = {}; VkImageDrmFormatModifierExplicitCreateInfoEXT drm_mod_info = {};
drm_mod_info.sType = VK_STRUCTURE_TYPE_IMAGE_DRM_FORMAT_MODIFIER_EXPLICIT_CREATE_INFO_EXT; drm_mod_info.sType = VK_STRUCTURE_TYPE_IMAGE_DRM_FORMAT_MODIFIER_EXPLICIT_CREATE_INFO_EXT;
drm_mod_info.pNext = image_create_info.pNext; drm_mod_info.pNext = image_create_info.pNext;
drm_mod_info.drmFormatModifier = DRM_FORMAT_MOD_LINEAR; drm_mod_info.drmFormatModifier = DRM_FORMAT_MOD_LINEAR;
drm_mod_info.drmFormatModifierPlaneCount = 1; drm_mod_info.drmFormatModifierPlaneCount = image_data->num_planes;
drm_mod_info.pPlaneLayouts = &image_layout; drm_mod_info.pPlaneLayouts = image_layout.data();
VkExternalMemoryImageCreateInfoKHR external_info = {}; VkExternalMemoryImageCreateInfoKHR external_info = {};
external_info.sType = VK_STRUCTURE_TYPE_EXTERNAL_MEMORY_IMAGE_CREATE_INFO_KHR; external_info.sType = VK_STRUCTURE_TYPE_EXTERNAL_MEMORY_IMAGE_CREATE_INFO_KHR;
@ -322,88 +490,87 @@ VkResult swapchain::allocate_image(const VkImageCreateInfo &image_create_info, w
return result; return result;
} }
{ {
VkMemoryFdPropertiesKHR mem_props = {}; if (is_disjoint)
mem_props.sType = VK_STRUCTURE_TYPE_MEMORY_FD_PROPERTIES_KHR;
result = m_device_data.disp.GetMemoryFdPropertiesKHR(m_device, VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT,
image_data->buffer_fd, &mem_props);
if (result != VK_SUCCESS)
{ {
WSI_PRINT_ERROR("Error querying Fd properties.\n"); util::vector<VkBindImageMemoryInfo> bind_img_mem_infos(m_allocator);
return result; if (!bind_img_mem_infos.try_resize(image_data->num_planes))
}
uint32_t mem_idx;
for (mem_idx = 0; mem_idx < VK_MAX_MEMORY_TYPES; mem_idx++)
{
if (mem_props.memoryTypeBits & (1 << mem_idx))
{ {
break; return VK_ERROR_OUT_OF_HOST_MEMORY;
} }
util::vector<VkBindImagePlaneMemoryInfo> bind_plane_mem_infos(m_allocator);
if (!bind_plane_mem_infos.try_resize(image_data->num_planes))
{
return VK_ERROR_OUT_OF_HOST_MEMORY;
}
for (uint32_t plane = 0; plane < image_data->num_planes; plane++)
{
const auto fd_index = get_same_fd_index(image_data->buffer_fd[plane], image_data->buffer_fd);
if (fd_index == plane)
{
result = allocate_plane_memory(image_data->buffer_fd[plane], &image_data->memory[fd_index]);
if (result != VK_SUCCESS)
{
return result;
}
}
bind_plane_mem_infos[plane].planeAspect = plane_flag_bits[plane];
bind_plane_mem_infos[plane].sType = VK_STRUCTURE_TYPE_BIND_IMAGE_PLANE_MEMORY_INFO;
bind_plane_mem_infos[plane].pNext = NULL;
bind_img_mem_infos[plane].sType = VK_STRUCTURE_TYPE_BIND_IMAGE_MEMORY_INFO;
bind_img_mem_infos[plane].pNext = &bind_plane_mem_infos[plane];
bind_img_mem_infos[plane].image = *image;
bind_img_mem_infos[plane].memory = image_data->memory[fd_index];
}
result = m_device_data.disp.BindImageMemory2KHR(m_device, bind_img_mem_infos.size(),
bind_img_mem_infos.data());
} }
off_t dma_buf_size = lseek(image_data->buffer_fd, 0, SEEK_END); else
if (dma_buf_size < 0)
{ {
WSI_PRINT_ERROR("Failed to get DMA Buf size.\n"); /* Make sure one fd has been allocated. */
return VK_ERROR_OUT_OF_HOST_MEMORY; for (uint32_t plane = 1; plane < image_data->num_planes; plane++)
{
if (image_data->buffer_fd[plane] != image_data->buffer_fd[0])
{
WSI_PRINT_ERROR("Different fds per plane for a non disjoint image.\n");
return VK_ERROR_INITIALIZATION_FAILED;
}
}
result = allocate_plane_memory(image_data->buffer_fd[0], &image_data->memory[0]);
if (result != VK_SUCCESS)
{
return result;
}
result = m_device_data.disp.BindImageMemory(m_device, *image, image_data->memory[0], 0);
} }
VkImportMemoryFdInfoKHR import_mem_info = {};
import_mem_info.sType = VK_STRUCTURE_TYPE_IMPORT_MEMORY_FD_INFO_KHR;
import_mem_info.handleType = VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT;
import_mem_info.fd = image_data->buffer_fd;
VkMemoryAllocateInfo alloc_info = {};
alloc_info.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;
alloc_info.pNext = &import_mem_info;
alloc_info.allocationSize = static_cast<uint64_t>(dma_buf_size);
alloc_info.memoryTypeIndex = mem_idx;
result = m_device_data.disp.AllocateMemory(m_device, &alloc_info, get_allocation_callbacks(), &image_data->memory);
} }
if (result != VK_SUCCESS)
{
WSI_PRINT_ERROR("Failed to import memory.\n");
return result;
}
result = m_device_data.disp.BindImageMemory(m_device, *image, image_data->memory, 0);
} }
return result; return result;
} }
VkResult swapchain::create_image(const VkImageCreateInfo &image_create_info, swapchain_image &image) VkResult swapchain::create_image(VkImageCreateInfo image_create_info, swapchain_image &image)
{ {
uint32_t fourcc = util::drm::vk_to_drm_format(image_create_info.format);
int res;
VkResult result = VK_SUCCESS;
wayland_image_data *image_data = nullptr;
VkFenceCreateInfo fenceInfo = { VK_STRUCTURE_TYPE_FENCE_CREATE_INFO, nullptr, 0 };
/* Create image_data */ /* Create image_data */
if (get_allocation_callbacks() != nullptr) auto image_data = m_allocator.create<wayland_image_data>(1);
{
image_data = static_cast<wayland_image_data *>(
get_allocation_callbacks()->pfnAllocation(get_allocation_callbacks()->pUserData, sizeof(wayland_image_data),
alignof(wayland_image_data), VK_SYSTEM_ALLOCATION_SCOPE_OBJECT));
}
else
{
image_data = static_cast<wayland_image_data *>(malloc(sizeof(wayland_image_data)));
}
if (image_data == nullptr) if (image_data == nullptr)
{ {
return VK_ERROR_OUT_OF_HOST_MEMORY; return VK_ERROR_OUT_OF_HOST_MEMORY;
} }
image.data = reinterpret_cast<void *>(image_data); image.data = image_data;
image.status = swapchain_image::FREE; image.status = swapchain_image::FREE;
result = allocate_image(image_create_info, image_data, &image.image); VkResult result = allocate_image(image_create_info, image_data, &image.image);
if (result != VK_SUCCESS) if (result != VK_SUCCESS)
{ {
WSI_PRINT_ERROR("Failed to allocate image.\n"); WSI_PRINT_ERROR("Failed to allocate image.\n");
destroy_image(image);
return result; return result;
} }
@ -417,15 +584,22 @@ VkResult swapchain::create_image(const VkImageCreateInfo &image_create_info, swa
} }
zwp_linux_buffer_params_v1 *params = zwp_linux_dmabuf_v1_create_params(dmabuf_interface_proxy.get()); zwp_linux_buffer_params_v1 *params = zwp_linux_dmabuf_v1_create_params(dmabuf_interface_proxy.get());
zwp_linux_buffer_params_v1_add(params, image_data->buffer_fd, 0, image_data->offset, image_data->stride, 0, 0);
res = zwp_linux_buffer_params_v1_add_listener(params, &params_listener, &image_data->buffer); for (uint32_t plane = 0; plane < image_data->num_planes; plane++)
{
zwp_linux_buffer_params_v1_add(params, image_data->buffer_fd[plane], plane,
image_data->offset[plane], image_data->stride[plane], 0, 0);
}
auto res = zwp_linux_buffer_params_v1_add_listener(params, &params_listener, &image_data->buffer);
if (res < 0) if (res < 0)
{ {
destroy_image(image); destroy_image(image);
return VK_ERROR_INITIALIZATION_FAILED; return VK_ERROR_INITIALIZATION_FAILED;
} }
zwp_linux_buffer_params_v1_create(params, image_create_info.extent.width, image_create_info.extent.height, fourcc, const auto fourcc = util::drm::vk_to_drm_format(image_create_info.format);
0); zwp_linux_buffer_params_v1_create(params, image_create_info.extent.width,
image_create_info.extent.height, fourcc, 0);
/* TODO: don't roundtrip - we should be able to send the create request now, /* TODO: don't roundtrip - we should be able to send the create request now,
* and only wait for it on first present. only do this once, not for all buffers created */ * and only wait for it on first present. only do this once, not for all buffers created */
@ -448,6 +622,7 @@ VkResult swapchain::create_image(const VkImageCreateInfo &image_create_info, swa
} }
/* Initialize presentation fence. */ /* Initialize presentation fence. */
VkFenceCreateInfo fenceInfo = { VK_STRUCTURE_TYPE_FENCE_CREATE_INFO, nullptr, 0 };
result = m_device_data.disp.CreateFence(m_device, &fenceInfo, get_allocation_callbacks(), &image.present_fence); result = m_device_data.disp.CreateFence(m_device, &fenceInfo, get_allocation_callbacks(), &image.present_fence);
if (result != VK_SUCCESS) if (result != VK_SUCCESS)
{ {
@ -571,23 +746,24 @@ void swapchain::destroy_image(swapchain_image &image)
{ {
wl_buffer_destroy(image_data->buffer); wl_buffer_destroy(image_data->buffer);
} }
if (image_data->memory != VK_NULL_HANDLE)
for (uint32_t plane = 0; plane < image_data->num_planes; plane++)
{ {
m_device_data.disp.FreeMemory(m_device, image_data->memory, get_allocation_callbacks()); if (image_data->memory[plane] != VK_NULL_HANDLE)
} {
else if (image_data->buffer_fd >= 0) m_device_data.disp.FreeMemory(m_device, image_data->memory[plane], get_allocation_callbacks());
{ }
close(image_data->buffer_fd); else if (image_data->buffer_fd[plane] >= 0)
{
const auto same_fd_index = get_same_fd_index(image_data->buffer_fd[plane], image_data->buffer_fd);
if (same_fd_index == plane)
{
close(image_data->buffer_fd[plane]);
}
}
} }
if (get_allocation_callbacks() != nullptr) m_allocator.destroy(1, image_data);
{
get_allocation_callbacks()->pfnFree(get_allocation_callbacks()->pUserData, image_data);
}
else
{
free(image_data);
}
image.data = nullptr; image.data = nullptr;
} }

View file

@ -67,7 +67,7 @@ protected:
* will return VK_ERROR_OUT_OF_DEVICE_MEMORY or VK_ERROR_INITIALIZATION_FAILED * will return VK_ERROR_OUT_OF_DEVICE_MEMORY or VK_ERROR_INITIALIZATION_FAILED
* depending on the error that occurred. * depending on the error that occurred.
*/ */
VkResult create_image(const VkImageCreateInfo &image_create_info, swapchain_image &image) override; VkResult create_image(VkImageCreateInfo image_create_info, swapchain_image &image) override;
/** /**
* @brief Method to present an image * @brief Method to present an image
@ -103,7 +103,8 @@ protected:
private: private:
struct wayland_image_data; struct wayland_image_data;
VkResult allocate_image(const VkImageCreateInfo &image_create_info, wayland_image_data *image_data, VkImage *image);
VkResult allocate_image(VkImageCreateInfo &image_create_info, wayland_image_data *image_data, VkImage *image);
struct wl_display *m_display; struct wl_display *m_display;
struct wl_surface *m_surface; struct wl_surface *m_surface;
@ -126,6 +127,47 @@ private:
* callback to indicate the server is ready for the next buffer. * callback to indicate the server is ready for the next buffer.
*/ */
bool m_present_pending; bool m_present_pending;
/*
* @brief Allocate memory for an image plane.
*
* Allocates a VkDeviceMemory object from a given fd for an image plane. First
* it makes a call to get_fd_mem_type_index() to acquire the memory type for
* the given fd and then it allocates device memory by calling vkAllocateMemory().
*
* @param fd The plane's fd.
* @param[out] memory The allocated VkDeviceMemory object.
*
* @return VK_SUCCESS on success. If one of the functions that are being called
* fails its return value is returned. VK_ERROR_OUT_OF_HOST_MEMORY is returned
* when the host gets out of memory.
*/
VkResult allocate_plane_memory(int fd, VkDeviceMemory *memory);
/*
* @brief Get the memory type which the specified file descriptor can be
* imported as.
*
* @param fd The given fd.
* @param[out] mem_idx The index of the supported memory type.
*
* @return VK_SUCCESS on success. On failure the error value of
* vkGetMemoryFdPropertiesKHR is returned.
*/
VkResult get_fd_mem_type_index(int fd, uint32_t &mem_idx);
/*
* @brief Get the properties a format has when combined with a DRM modifier.
*
* @param format The target format.
* @param[out] format_props_list A vector which will store the supported properties
* for every modifier.
*
* @return VK_SUCCESS on success. VK_ERROR_OUT_OF_HOST_MEMORY is returned when
* the host gets out of memory.
*/
VkResult get_drm_format_properties(
VkFormat format, util::vector<VkDrmFormatModifierPropertiesEXT> &format_props_list);
}; };
} // namespace wayland } // namespace wayland
} // namespace wsi } // namespace wsi