mirror of
https://gitlab.freedesktop.org/mesa/mesa.git
synced 2025-12-22 07:00:12 +01:00
This fields are required to be set because those are used by XY_FAST_COLOR_BLT instruction. Right now it is not set causing applications to abort because DestinationMOCS is required to be non-zero. This fixes at least piglit@ext_external_objects-vk-image-display on MTL. Signed-off-by: José Roberto de Souza <jose.souza@intel.com> Reviewed-by: Lionel Landwerlin <lionel.g.landwerlin@intel.com> Part-of: <https://gitlab.freedesktop.org/mesa/mesa/-/merge_requests/26502>
4371 lines
167 KiB
C
4371 lines
167 KiB
C
/*
|
||
* Copyright 2015 Intel Corporation
|
||
*
|
||
* Permission is hereby granted, free of charge, to any person obtaining a
|
||
* copy of this software and associated documentation files (the "Software"),
|
||
* to deal in the Software without restriction, including without limitation
|
||
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
||
* and/or sell copies of the Software, and to permit persons to whom the
|
||
* Software is furnished to do so, subject to the following conditions:
|
||
*
|
||
* The above copyright notice and this permission notice (including the next
|
||
* paragraph) shall be included in all copies or substantial portions of the
|
||
* Software.
|
||
*
|
||
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
||
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
||
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
|
||
* IN THE SOFTWARE.
|
||
*/
|
||
|
||
#include <assert.h>
|
||
#include <stdarg.h>
|
||
#include <stdio.h>
|
||
#include <inttypes.h>
|
||
|
||
#include "dev/intel_debug.h"
|
||
#include "genxml/genX_bits.h"
|
||
#include "util/log.h"
|
||
|
||
#include "isl.h"
|
||
#include "isl_gfx4.h"
|
||
#include "isl_gfx6.h"
|
||
#include "isl_gfx7.h"
|
||
#include "isl_gfx8.h"
|
||
#include "isl_gfx9.h"
|
||
#include "isl_gfx12.h"
|
||
#include "isl_priv.h"
|
||
|
||
isl_genX_declare_get_func(surf_fill_state_s)
|
||
isl_genX_declare_get_func(buffer_fill_state_s)
|
||
isl_genX_declare_get_func(emit_depth_stencil_hiz_s)
|
||
isl_genX_declare_get_func(null_fill_state_s)
|
||
isl_genX_declare_get_func(emit_cpb_control_s)
|
||
|
||
void
|
||
isl_memcpy_linear_to_tiled(uint32_t xt1, uint32_t xt2,
|
||
uint32_t yt1, uint32_t yt2,
|
||
char *dst, const char *src,
|
||
uint32_t dst_pitch, int32_t src_pitch,
|
||
bool has_swizzling,
|
||
enum isl_tiling tiling,
|
||
isl_memcpy_type copy_type)
|
||
{
|
||
#ifdef USE_SSE41
|
||
if (copy_type == ISL_MEMCPY_STREAMING_LOAD) {
|
||
_isl_memcpy_linear_to_tiled_sse41(
|
||
xt1, xt2, yt1, yt2, dst, src, dst_pitch, src_pitch, has_swizzling,
|
||
tiling, copy_type);
|
||
return;
|
||
}
|
||
#endif
|
||
|
||
_isl_memcpy_linear_to_tiled(
|
||
xt1, xt2, yt1, yt2, dst, src, dst_pitch, src_pitch, has_swizzling,
|
||
tiling, copy_type);
|
||
}
|
||
|
||
void
|
||
isl_memcpy_tiled_to_linear(uint32_t xt1, uint32_t xt2,
|
||
uint32_t yt1, uint32_t yt2,
|
||
char *dst, const char *src,
|
||
int32_t dst_pitch, uint32_t src_pitch,
|
||
bool has_swizzling,
|
||
enum isl_tiling tiling,
|
||
isl_memcpy_type copy_type)
|
||
{
|
||
#ifdef USE_SSE41
|
||
if (copy_type == ISL_MEMCPY_STREAMING_LOAD) {
|
||
_isl_memcpy_tiled_to_linear_sse41(
|
||
xt1, xt2, yt1, yt2, dst, src, dst_pitch, src_pitch, has_swizzling,
|
||
tiling, copy_type);
|
||
return;
|
||
}
|
||
#endif
|
||
|
||
_isl_memcpy_tiled_to_linear(
|
||
xt1, xt2, yt1, yt2, dst, src, dst_pitch, src_pitch, has_swizzling,
|
||
tiling, copy_type);
|
||
}
|
||
|
||
void PRINTFLIKE(3, 4) UNUSED
|
||
__isl_finishme(const char *file, int line, const char *fmt, ...)
|
||
{
|
||
va_list ap;
|
||
char buf[512];
|
||
|
||
va_start(ap, fmt);
|
||
vsnprintf(buf, sizeof(buf), fmt, ap);
|
||
va_end(ap);
|
||
|
||
fprintf(stderr, "%s:%d: FINISHME: %s\n", file, line, buf);
|
||
}
|
||
|
||
static void
|
||
isl_device_setup_mocs(struct isl_device *dev)
|
||
{
|
||
dev->mocs.protected_mask = 0;
|
||
|
||
if (dev->info->ver >= 12) {
|
||
if (intel_device_info_is_mtl(dev->info)) {
|
||
/* Cached L3+L4; BSpec: 45101 */
|
||
dev->mocs.internal = 1 << 1;
|
||
/* Displayables cached to L3+L4:WT */
|
||
dev->mocs.external = 14 << 1;
|
||
/* Uncached - GO:Mem */
|
||
dev->mocs.uncached = 5 << 1;
|
||
/* TODO: XY_BLOCK_COPY_BLT don't mention what should be the L4 cache
|
||
* mode so for now it is setting L4 as uncached following what is
|
||
* asked for L3
|
||
*/
|
||
dev->mocs.blitter_dst = 9 << 1;
|
||
dev->mocs.blitter_src = 9 << 1;
|
||
} else if (intel_device_info_is_dg2(dev->info)) {
|
||
/* L3CC=WB; BSpec: 45101 */
|
||
dev->mocs.internal = 3 << 1;
|
||
dev->mocs.external = 3 << 1;
|
||
/* UC - Coherent; GO:Memory */
|
||
dev->mocs.uncached = 1 << 1;
|
||
|
||
/* XY_BLOCK_COPY_BLT MOCS fields have programming notes which say:
|
||
*
|
||
* "Destination MOCS value, which is used to program MOCS index
|
||
* for writing to memory, should select a MOCS register having
|
||
* "L3 Cacheability Control" programmed as uncacheable(UC) and
|
||
* "Global GO" parameter set as GOMemory (pushes GO point to
|
||
* memory). The MOCS Register may have L3 Lookup programmed as
|
||
* UCL3LKDIS for better efficiency."
|
||
*
|
||
* The GO:Memory setting requires us to use MOCS 1 or 2. MOCS 2
|
||
* has LKUP set to 0 and is marked "Non-Coherent", which we assume
|
||
* is probably the "better efficiency" they mention...
|
||
*
|
||
* "Source MOCS value, which is used to program MOCS index for
|
||
* reading from memory, should select a MOCS register having
|
||
* "L3 Cacheability Control" programmed as uncacheable(UC).
|
||
* The MOCS Register may have L3 Lookup programmed as UCL3LKDIS
|
||
* for better efficiency."
|
||
*
|
||
* Any MOCS except 3 should work. We use MOCS 2...
|
||
*/
|
||
dev->mocs.blitter_dst = 2 << 1;
|
||
dev->mocs.blitter_src = 2 << 1;
|
||
} else if (dev->info->platform == INTEL_PLATFORM_DG1) {
|
||
/* L3CC=WB */
|
||
dev->mocs.internal = 5 << 1;
|
||
/* Displayables on DG1 are free to cache in L3 since L3 is transient
|
||
* and flushed at bottom of each submission.
|
||
*/
|
||
dev->mocs.external = 5 << 1;
|
||
/* UC */
|
||
dev->mocs.uncached = 1 << 1;
|
||
} else {
|
||
/* TC=1/LLC Only, LeCC=1/UC, LRUM=0, L3CC=3/WB */
|
||
dev->mocs.external = 61 << 1;
|
||
/* TC=LLC/eLLC, LeCC=WB, LRUM=3, L3CC=WB */
|
||
dev->mocs.internal = 2 << 1;
|
||
/* Uncached */
|
||
dev->mocs.uncached = 3 << 1;
|
||
|
||
/* L1 - HDC:L1 + L3 + LLC */
|
||
dev->mocs.l1_hdc_l3_llc = 48 << 1;
|
||
}
|
||
/* Protected is just an additional flag. */
|
||
dev->mocs.protected_mask = 1 << 0;
|
||
} else if (dev->info->ver >= 9) {
|
||
/* TC=LLC/eLLC, LeCC=PTE, LRUM=3, L3CC=WB */
|
||
dev->mocs.external = 1 << 1;
|
||
/* TC=LLC/eLLC, LeCC=WB, LRUM=3, L3CC=WB */
|
||
dev->mocs.internal = 2 << 1;
|
||
/* Uncached */
|
||
dev->mocs.uncached = (dev->info->ver >= 11 ? 3 : 0) << 1;
|
||
} else if (dev->info->ver >= 8) {
|
||
/* MEMORY_OBJECT_CONTROL_STATE:
|
||
* .MemoryTypeLLCeLLCCacheabilityControl = UCwithFenceifcoherentcycle,
|
||
* .TargetCache = L3DefertoPATforLLCeLLCselection,
|
||
* .AgeforQUADLRU = 0
|
||
*/
|
||
dev->mocs.external = 0x18;
|
||
/* MEMORY_OBJECT_CONTROL_STATE:
|
||
* .MemoryTypeLLCeLLCCacheabilityControl = WB,
|
||
* .TargetCache = L3DefertoPATforLLCeLLCselection,
|
||
* .AgeforQUADLRU = 0
|
||
*/
|
||
dev->mocs.internal = 0x78;
|
||
if (dev->info->platform == INTEL_PLATFORM_CHV) {
|
||
/* MEMORY_OBJECT_CONTROL_STATE:
|
||
* .MemoryType = UC,
|
||
* .TargetCache = NoCaching,
|
||
*/
|
||
dev->mocs.uncached = 0;
|
||
} else {
|
||
/* MEMORY_OBJECT_CONTROL_STATE:
|
||
* .MemoryTypeLLCeLLCCacheabilityControl = UCUncacheable,
|
||
* .TargetCache = eLLCOnlywheneDRAMispresentelsegetsallocatedinLLC,
|
||
* .AgeforQUADLRU = 0
|
||
*/
|
||
dev->mocs.uncached = 0x20;
|
||
}
|
||
} else if (dev->info->ver >= 7) {
|
||
if (dev->info->platform == INTEL_PLATFORM_HSW) {
|
||
/* MEMORY_OBJECT_CONTROL_STATE:
|
||
* .LLCeLLCCacheabilityControlLLCCC = 0,
|
||
* .L3CacheabilityControlL3CC = 1,
|
||
*/
|
||
dev->mocs.internal = 1;
|
||
dev->mocs.external = 1;
|
||
/* MEMORY_OBJECT_CONTROL_STATE:
|
||
* .LLCeLLCCacheabilityControlLLCCC = 1,
|
||
* .L3CacheabilityControlL3CC = 0,
|
||
*/
|
||
dev->mocs.uncached = 2;
|
||
} else {
|
||
/* MEMORY_OBJECT_CONTROL_STATE:
|
||
* .GraphicsDataTypeGFDT = 0,
|
||
* .LLCCacheabilityControlLLCCC = 0,
|
||
* .L3CacheabilityControlL3CC = 1,
|
||
*/
|
||
dev->mocs.internal = 1;
|
||
dev->mocs.external = 1;
|
||
/* MEMORY_OBJECT_CONTROL_STATE:
|
||
* .GraphicsDataTypeGFDT = 0,
|
||
* .LLCCacheabilityControlLLCCC = 0,
|
||
* .L3CacheabilityControlL3CC = 0,
|
||
*/
|
||
dev->mocs.uncached = 0;
|
||
}
|
||
} else {
|
||
dev->mocs.internal = 0;
|
||
dev->mocs.external = 0;
|
||
dev->mocs.uncached = 0;
|
||
}
|
||
}
|
||
|
||
/**
|
||
* Return an appropriate MOCS entry for the given usage flags.
|
||
*/
|
||
uint32_t
|
||
isl_mocs(const struct isl_device *dev, isl_surf_usage_flags_t usage,
|
||
bool external)
|
||
{
|
||
uint32_t mask = (usage & ISL_SURF_USAGE_PROTECTED_BIT) ?
|
||
dev->mocs.protected_mask : 0;
|
||
|
||
if (external)
|
||
return dev->mocs.external | mask;
|
||
|
||
if (intel_device_info_is_mtl(dev->info) &&
|
||
(usage & ISL_SURF_USAGE_STREAM_OUT_BIT))
|
||
return dev->mocs.uncached | mask;
|
||
|
||
if (dev->info->verx10 == 120 && dev->info->platform != INTEL_PLATFORM_DG1) {
|
||
if (usage & ISL_SURF_USAGE_STAGING_BIT)
|
||
return dev->mocs.internal | mask;
|
||
|
||
if (usage & ISL_SURF_USAGE_CPB_BIT)
|
||
return dev->mocs.internal;
|
||
|
||
/* Using L1:HDC for storage buffers breaks Vulkan memory model
|
||
* tests that use shader atomics. This isn't likely to work out,
|
||
* and we can't know a priori whether they'll be used. So just
|
||
* continue with ordinary internal MOCS for now.
|
||
*/
|
||
if (usage & ISL_SURF_USAGE_STORAGE_BIT)
|
||
return dev->mocs.internal | mask;
|
||
|
||
if (usage & (ISL_SURF_USAGE_CONSTANT_BUFFER_BIT |
|
||
ISL_SURF_USAGE_RENDER_TARGET_BIT |
|
||
ISL_SURF_USAGE_TEXTURE_BIT))
|
||
return dev->mocs.l1_hdc_l3_llc | mask;
|
||
}
|
||
|
||
return dev->mocs.internal | mask;
|
||
}
|
||
|
||
void
|
||
isl_device_init(struct isl_device *dev,
|
||
const struct intel_device_info *info)
|
||
{
|
||
/* Gfx8+ don't have bit6 swizzling, ensure callsite is not confused. */
|
||
assert(!(info->has_bit6_swizzle && info->ver >= 8));
|
||
|
||
dev->info = info;
|
||
dev->use_separate_stencil = ISL_GFX_VER(dev) >= 6;
|
||
dev->has_bit6_swizzling = info->has_bit6_swizzle;
|
||
dev->buffer_length_in_aux_addr = false;
|
||
|
||
/* The ISL_DEV macros may be defined in the CFLAGS, thus hardcoding some
|
||
* device properties at buildtime. Verify that the macros with the device
|
||
* properties chosen during runtime.
|
||
*/
|
||
ISL_GFX_VER_SANITIZE(dev);
|
||
ISL_DEV_USE_SEPARATE_STENCIL_SANITIZE(dev);
|
||
|
||
/* Did we break hiz or stencil? */
|
||
if (ISL_DEV_USE_SEPARATE_STENCIL(dev))
|
||
assert(info->has_hiz_and_separate_stencil);
|
||
if (info->must_use_separate_stencil)
|
||
assert(ISL_DEV_USE_SEPARATE_STENCIL(dev));
|
||
|
||
dev->ss.size = RENDER_SURFACE_STATE_length(info) * 4;
|
||
dev->ss.align = isl_align(dev->ss.size, 32);
|
||
|
||
dev->ss.clear_color_state_size = CLEAR_COLOR_length(info) * 4;
|
||
dev->ss.clear_color_state_offset =
|
||
RENDER_SURFACE_STATE_ClearValueAddress_start(info) / 32 * 4;
|
||
|
||
dev->ss.clear_value_size =
|
||
isl_align(RENDER_SURFACE_STATE_RedClearColor_bits(info) +
|
||
RENDER_SURFACE_STATE_GreenClearColor_bits(info) +
|
||
RENDER_SURFACE_STATE_BlueClearColor_bits(info) +
|
||
RENDER_SURFACE_STATE_AlphaClearColor_bits(info), 32) / 8;
|
||
|
||
dev->ss.clear_value_offset =
|
||
RENDER_SURFACE_STATE_RedClearColor_start(info) / 32 * 4;
|
||
|
||
assert(RENDER_SURFACE_STATE_SurfaceBaseAddress_start(info) % 8 == 0);
|
||
dev->ss.addr_offset =
|
||
RENDER_SURFACE_STATE_SurfaceBaseAddress_start(info) / 8;
|
||
|
||
/* The "Auxiliary Surface Base Address" field starts a bit higher up
|
||
* because the bottom 12 bits are used for other things. Round down to
|
||
* the nearest dword before.
|
||
*/
|
||
dev->ss.aux_addr_offset =
|
||
(RENDER_SURFACE_STATE_AuxiliarySurfaceBaseAddress_start(info) & ~31) / 8;
|
||
|
||
dev->ds.size = _3DSTATE_DEPTH_BUFFER_length(info) * 4;
|
||
assert(_3DSTATE_DEPTH_BUFFER_SurfaceBaseAddress_start(info) % 8 == 0);
|
||
dev->ds.depth_offset =
|
||
_3DSTATE_DEPTH_BUFFER_SurfaceBaseAddress_start(info) / 8;
|
||
|
||
if (dev->use_separate_stencil) {
|
||
dev->ds.size += _3DSTATE_STENCIL_BUFFER_length(info) * 4 +
|
||
_3DSTATE_HIER_DEPTH_BUFFER_length(info) * 4 +
|
||
_3DSTATE_CLEAR_PARAMS_length(info) * 4;
|
||
|
||
assert(_3DSTATE_STENCIL_BUFFER_SurfaceBaseAddress_start(info) % 8 == 0);
|
||
dev->ds.stencil_offset =
|
||
_3DSTATE_DEPTH_BUFFER_length(info) * 4 +
|
||
_3DSTATE_STENCIL_BUFFER_SurfaceBaseAddress_start(info) / 8;
|
||
|
||
assert(_3DSTATE_HIER_DEPTH_BUFFER_SurfaceBaseAddress_start(info) % 8 == 0);
|
||
dev->ds.hiz_offset =
|
||
_3DSTATE_DEPTH_BUFFER_length(info) * 4 +
|
||
_3DSTATE_STENCIL_BUFFER_length(info) * 4 +
|
||
_3DSTATE_HIER_DEPTH_BUFFER_SurfaceBaseAddress_start(info) / 8;
|
||
} else {
|
||
dev->ds.stencil_offset = 0;
|
||
dev->ds.hiz_offset = 0;
|
||
}
|
||
|
||
/* From the IVB PRM, SURFACE_STATE::Height,
|
||
*
|
||
* For typed buffer and structured buffer surfaces, the number
|
||
* of entries in the buffer ranges from 1 to 2^27. For raw buffer
|
||
* surfaces, the number of entries in the buffer is the number of bytes
|
||
* which can range from 1 to 2^30.
|
||
*
|
||
* From the SKL PRM, SURFACE_STATE::Width/Height/Depth for RAW buffers,
|
||
*
|
||
* Width : bits [6:0]
|
||
* Height : bits [20:7]
|
||
* Depth : bits [31:21]
|
||
*
|
||
* So we can address 4Gb
|
||
*
|
||
* This limit is only concerned with raw buffers.
|
||
*/
|
||
if (ISL_GFX_VER(dev) >= 9) {
|
||
dev->max_buffer_size = 1ull << 32;
|
||
} else if (ISL_GFX_VER(dev) >= 7) {
|
||
dev->max_buffer_size = 1ull << 30;
|
||
} else {
|
||
dev->max_buffer_size = 1ull << 27;
|
||
}
|
||
|
||
dev->cpb.size = _3DSTATE_CPSIZE_CONTROL_BUFFER_length(info) * 4;
|
||
dev->cpb.offset =
|
||
_3DSTATE_CPSIZE_CONTROL_BUFFER_SurfaceBaseAddress_start(info) / 8;
|
||
|
||
isl_device_setup_mocs(dev);
|
||
|
||
dev->surf_fill_state_s = isl_surf_fill_state_s_get_func(dev);
|
||
dev->buffer_fill_state_s = isl_buffer_fill_state_s_get_func(dev);
|
||
dev->emit_depth_stencil_hiz_s = isl_emit_depth_stencil_hiz_s_get_func(dev);
|
||
dev->null_fill_state_s = isl_null_fill_state_s_get_func(dev);
|
||
dev->emit_cpb_control_s = isl_emit_cpb_control_s_get_func(dev);
|
||
}
|
||
|
||
/**
|
||
* @brief Query the set of multisamples supported by the device.
|
||
*
|
||
* This function always returns non-zero, as ISL_SAMPLE_COUNT_1_BIT is always
|
||
* supported.
|
||
*/
|
||
isl_sample_count_mask_t ATTRIBUTE_CONST
|
||
isl_device_get_sample_counts(struct isl_device *dev)
|
||
{
|
||
if (ISL_GFX_VER(dev) >= 9) {
|
||
return ISL_SAMPLE_COUNT_1_BIT |
|
||
ISL_SAMPLE_COUNT_2_BIT |
|
||
ISL_SAMPLE_COUNT_4_BIT |
|
||
ISL_SAMPLE_COUNT_8_BIT |
|
||
ISL_SAMPLE_COUNT_16_BIT;
|
||
} else if (ISL_GFX_VER(dev) >= 8) {
|
||
return ISL_SAMPLE_COUNT_1_BIT |
|
||
ISL_SAMPLE_COUNT_2_BIT |
|
||
ISL_SAMPLE_COUNT_4_BIT |
|
||
ISL_SAMPLE_COUNT_8_BIT;
|
||
} else if (ISL_GFX_VER(dev) >= 7) {
|
||
return ISL_SAMPLE_COUNT_1_BIT |
|
||
ISL_SAMPLE_COUNT_4_BIT |
|
||
ISL_SAMPLE_COUNT_8_BIT;
|
||
} else if (ISL_GFX_VER(dev) >= 6) {
|
||
return ISL_SAMPLE_COUNT_1_BIT |
|
||
ISL_SAMPLE_COUNT_4_BIT;
|
||
} else {
|
||
return ISL_SAMPLE_COUNT_1_BIT;
|
||
}
|
||
}
|
||
|
||
static uint32_t
|
||
isl_get_miptail_base_row(enum isl_tiling tiling)
|
||
{
|
||
/* Miptails base levels can depend on the number of samples, but since we
|
||
* don't support levels > 1 with multisampling, the base miptail level is
|
||
* really simple :
|
||
*/
|
||
if (tiling == ISL_TILING_SKL_Yf ||
|
||
tiling == ISL_TILING_ICL_Yf)
|
||
return 4;
|
||
else
|
||
return 0;
|
||
}
|
||
|
||
static const uint8_t skl_std_y_2d_miptail_offset_el[][5][2] = {
|
||
/* 128 bpb 64 bpb 32 bpb 16 bpb 8 bpb */
|
||
{ {32, 0}, {64, 0}, {64, 0}, {128, 0}, {128, 0} },
|
||
{ { 0, 32}, { 0, 32}, { 0, 64}, { 0, 64}, { 0,128} },
|
||
{ {16, 0}, {32, 0}, {32, 0}, { 64, 0}, { 64, 0} },
|
||
{ { 0, 16}, { 0, 16}, { 0, 32}, { 0, 32}, { 0, 64} },
|
||
{ { 8, 0}, {16, 0}, {16, 0}, { 32, 0}, { 32, 0} },
|
||
{ { 4, 8}, { 8, 8}, { 8, 16}, { 16, 16}, { 16, 32} },
|
||
{ { 0, 12}, { 0, 12}, { 0, 24}, { 0, 24}, { 0, 48} },
|
||
{ { 0, 8}, { 0, 8}, { 0, 16}, { 0, 16}, { 0, 32} },
|
||
{ { 4, 4}, { 8, 4}, { 8, 8}, { 16, 8}, { 16, 16} },
|
||
{ { 4, 0}, { 8, 0}, { 8, 0}, { 16, 0}, { 16, 0} },
|
||
{ { 0, 4}, { 0, 4}, { 0, 8}, { 0, 8}, { 0, 16} },
|
||
{ { 3, 0}, { 6, 0}, { 4, 4}, { 8, 4}, { 0, 12} },
|
||
{ { 2, 0}, { 4, 0}, { 4, 0}, { 8, 0}, { 0, 8} },
|
||
{ { 1, 0}, { 2, 0}, { 0, 4}, { 0, 4}, { 0, 4} },
|
||
{ { 0, 0}, { 0, 0}, { 0, 0}, { 0, 0}, { 0, 0} },
|
||
};
|
||
|
||
static const uint8_t icl_std_y_2d_miptail_offset_el[][5][2] = {
|
||
/* 128 bpb 64 bpb 32 bpb 16 bpb 8 bpb */
|
||
{ {32, 0}, {64, 0}, {64, 0}, {128, 0}, {128, 0} },
|
||
{ { 0, 32}, { 0, 32}, { 0, 64}, { 0, 64}, { 0, 128} },
|
||
{ {16, 0}, {32, 0}, {32, 0}, { 64, 0}, { 64, 0} },
|
||
{ { 0, 16}, { 0, 16}, { 0, 32}, { 0, 32}, { 0, 64} },
|
||
{ { 8, 0}, {16, 0}, {16, 0}, { 32, 0}, { 32, 0} },
|
||
{ { 4, 8}, { 8, 8}, { 8, 16}, { 16, 16}, { 16, 32} },
|
||
{ { 0, 12}, { 0, 12}, { 0, 24}, { 0, 24}, { 0, 48} },
|
||
{ { 0, 8}, { 0, 8}, { 0, 16}, { 0, 16}, { 0, 32} },
|
||
{ { 4, 4}, { 8, 4}, { 8, 8}, { 16, 8}, { 16, 16} },
|
||
{ { 4, 0}, { 8, 0}, { 8, 0}, { 16, 0}, { 16, 0} },
|
||
{ { 0, 4}, { 0, 4}, { 0, 8}, { 0, 8}, { 0, 16} },
|
||
{ { 0, 0}, { 0, 0}, { 0, 0}, { 0, 0}, { 0, 0} },
|
||
{ { 1, 0}, { 2, 0}, { 0, 4}, { 0, 4}, { 0, 4} },
|
||
{ { 2, 0}, { 4, 0}, { 4, 0}, { 8, 0}, { 0, 8} },
|
||
{ { 3, 0}, { 6, 0}, { 4, 4}, { 8, 4}, { 0, 12} },
|
||
};
|
||
|
||
static const uint8_t skl_std_y_3d_miptail_offset_el[][5][3] = {
|
||
/* 128 bpb 64 bpb 32 bpb 16 bpb 8 bpb */
|
||
{ {8, 0, 0}, {16, 0, 0}, {16, 0, 0}, {16, 0, 0}, {32, 0, 0} },
|
||
{ {0, 8, 0}, { 0, 8, 0}, { 0, 16, 0}, { 0, 16, 0}, { 0, 16, 0} },
|
||
{ {0, 0, 8}, { 0, 0, 8}, { 0, 0, 8}, { 0, 0, 16}, { 0, 0, 16} },
|
||
{ {4, 0, 0}, { 8, 0, 0}, { 8, 0, 0}, { 8, 0, 0}, {16, 0, 0} },
|
||
{ {0, 4, 0}, { 0, 4, 0}, { 0, 8, 0}, { 0, 8, 0}, { 0, 8, 0} },
|
||
{ {0, 0, 4}, { 0, 0, 4}, { 0, 0, 4}, { 0, 0, 8}, { 0, 0, 8} },
|
||
{ {3, 0, 0}, { 6, 0, 0}, { 4, 4, 0}, { 0, 4, 4}, { 0, 4, 4} },
|
||
{ {2, 0, 0}, { 4, 0, 0}, { 0, 4, 0}, { 0, 4, 0}, { 0, 4, 0} },
|
||
{ {1, 0, 3}, { 2, 0, 3}, { 4, 0, 3}, { 0, 0, 7}, { 0, 0, 7} },
|
||
{ {1, 0, 2}, { 2, 0, 2}, { 4, 0, 2}, { 0, 0, 6}, { 0, 0, 6} },
|
||
{ {1, 0, 1}, { 2, 0, 1}, { 4, 0, 1}, { 0, 0, 5}, { 0, 0, 5} },
|
||
{ {1, 0, 0}, { 2, 0, 0}, { 4, 0, 0}, { 0, 0, 4}, { 0, 0, 4} },
|
||
{ {0, 0, 3}, { 0, 0, 3}, { 0, 0, 3}, { 0, 0, 3}, { 0, 0, 3} },
|
||
{ {0, 0, 2}, { 0, 0, 2}, { 0, 0, 2}, { 0, 0, 2}, { 0, 0, 2} },
|
||
{ {0, 0, 1}, { 0, 0, 1}, { 0, 0, 1}, { 0, 0, 1}, { 0, 0, 1} },
|
||
{ {0, 0, 0}, { 0, 0, 0}, { 0, 0, 0}, { 0, 0, 0}, { 0, 0, 0} },
|
||
};
|
||
|
||
static const uint8_t icl_std_y_3d_miptail_offset_el[][5][3] = {
|
||
/* 128 bpb 64 bpb 32 bpb 16 bpb 8 bpb */
|
||
{ {8, 0, 0}, {16, 0, 0}, {16, 0, 0}, {16, 0, 0}, {32, 0, 0} },
|
||
{ {0, 8, 0}, { 0, 8, 0}, { 0, 16, 0}, { 0, 16, 0}, { 0, 16, 0} },
|
||
{ {0, 0, 8}, { 0, 0, 8}, { 0, 0, 8}, { 0, 0, 16}, { 0, 0, 16} },
|
||
{ {4, 0, 0}, { 8, 0, 0}, { 8, 0, 0}, { 8, 0, 0}, {16, 0, 0} },
|
||
{ {0, 4, 0}, { 0, 4, 0}, { 0, 8, 0}, { 0, 8, 0}, { 0, 8, 0} },
|
||
{ {2, 0, 4}, { 4, 0, 4}, { 4, 0, 4}, { 4, 0, 8}, { 8, 0, 8} },
|
||
{ {0, 2, 4}, { 0, 2, 4}, { 0, 4, 4}, { 0, 4, 8}, { 0, 4, 8} },
|
||
{ {0, 0, 4}, { 0, 0, 4}, { 0, 0, 4}, { 0, 0, 8}, { 0, 0, 8} },
|
||
{ {2, 2, 0}, { 4, 2, 0}, { 4, 4, 0}, { 4, 4, 0}, { 8, 4, 0} },
|
||
{ {2, 0, 0}, { 4, 0, 0}, { 4, 0, 0}, { 4, 0, 0}, { 8, 0, 0} },
|
||
{ {0, 2, 0}, { 0, 2, 0}, { 0, 4, 0}, { 0, 4, 0}, { 0, 4, 0} },
|
||
{ {1, 0, 2}, { 2, 0, 2}, { 2, 0, 2}, { 2, 0, 4}, { 4, 0, 4} },
|
||
{ {0, 0, 2}, { 0, 0, 2}, { 0, 0, 2}, { 0, 0, 4}, { 0, 0, 4} },
|
||
{ {1, 0, 0}, { 2, 0, 0}, { 2, 0, 0}, { 2, 0, 0}, { 4, 0, 0} },
|
||
{ {0, 0, 0}, { 0, 0, 0}, { 0, 0, 0}, { 0, 0, 0}, { 0, 0, 0} },
|
||
};
|
||
|
||
static const uint8_t acm_tile64_3d_miptail_offset_el[][5][3] = {
|
||
/* 128 bpb 64 bpb 32 bpb 16 bpb 8 bpb */
|
||
{ {8, 0, 0}, {16, 0, 0}, {16, 0, 0}, {16, 0, 0}, {32, 0, 0}, },
|
||
{ {0, 8, 0}, { 0, 8, 0}, { 0, 16, 0}, { 0, 16, 0}, { 0, 16, 0}, },
|
||
{ {0, 0, 8}, { 0, 0, 8}, { 0, 0, 8}, { 0, 0, 16}, { 0, 0, 16}, },
|
||
{ {4, 0, 0}, { 8, 0, 0}, { 8, 0, 0}, { 8, 0, 0}, {16, 0, 0}, },
|
||
{ {0, 4, 0}, { 0, 4, 0}, { 0, 8, 0}, { 0, 8, 0}, { 0, 8, 0}, },
|
||
{ {2, 0, 4}, { 4, 0, 4}, { 4, 0, 4}, { 0, 4, 8}, { 0, 4, 8}, },
|
||
{ {1, 0, 4}, { 2, 0, 4}, { 0, 4, 4}, { 0, 0, 12}, { 0, 0, 12}, },
|
||
{ {0, 0, 4}, { 0, 0, 4}, { 0, 0, 4}, { 0, 0, 8}, { 0, 0, 8}, },
|
||
{ {3, 0, 0}, { 6, 0, 0}, { 4, 4, 0}, { 0, 4, 4}, { 0, 4, 4}, },
|
||
{ {2, 0, 0}, { 4, 0, 0}, { 4, 0, 0}, { 0, 4, 0}, { 0, 4, 0}, },
|
||
{ {1, 0, 0}, { 2, 0, 0}, { 0, 4, 0}, { 0, 0, 4}, { 0, 0, 4}, },
|
||
{ {0, 0, 0}, { 0, 0, 0}, { 0, 0, 0}, { 0, 0, 0}, { 0, 0, 0}, },
|
||
{ {0, 0, 1}, { 0, 0, 1}, { 0, 0, 1}, { 0, 0, 1}, { 0, 0, 1}, },
|
||
{ {0, 0, 2}, { 0, 0, 2}, { 0, 0, 2}, { 0, 0, 2}, { 0, 0, 2}, },
|
||
{ {0, 0, 3}, { 0, 0, 3}, { 0, 0, 3}, { 0, 0, 3}, { 0, 0, 3}, },
|
||
};
|
||
|
||
static uint32_t
|
||
tiling_max_mip_tail(enum isl_tiling tiling,
|
||
enum isl_surf_dim dim,
|
||
uint32_t samples)
|
||
{
|
||
/* In theory, miptails work for multisampled images, but we don't support
|
||
* mipmapped multisampling.
|
||
*/
|
||
if (samples > 1)
|
||
return 0;
|
||
|
||
int num_2d_table_rows;
|
||
int num_3d_table_rows;
|
||
|
||
switch (tiling) {
|
||
case ISL_TILING_LINEAR:
|
||
case ISL_TILING_X:
|
||
case ISL_TILING_Y0:
|
||
case ISL_TILING_4:
|
||
case ISL_TILING_W:
|
||
case ISL_TILING_HIZ:
|
||
case ISL_TILING_CCS:
|
||
case ISL_TILING_GFX12_CCS:
|
||
/* There is no miptail for those tilings */
|
||
return 0;
|
||
|
||
case ISL_TILING_SKL_Yf:
|
||
case ISL_TILING_SKL_Ys:
|
||
/* SKL PRMs, Volume 5: Memory Views :
|
||
*
|
||
* Given by the last row of the table in the following sections:
|
||
*
|
||
* - Tiling and Mip Tail for 1D Surfaces
|
||
* - Tiling and Mip Tail for 2D Surfaces
|
||
* - Tiling and Mip Tail for 3D Surfaces
|
||
*/
|
||
num_2d_table_rows = ARRAY_SIZE(skl_std_y_2d_miptail_offset_el);
|
||
num_3d_table_rows = ARRAY_SIZE(skl_std_y_3d_miptail_offset_el);
|
||
break;
|
||
|
||
case ISL_TILING_ICL_Yf:
|
||
case ISL_TILING_ICL_Ys:
|
||
/* ICL PRMs, Volume 5: Memory Views :
|
||
*
|
||
* - Tiling and Mip Tail for 1D Surfaces :
|
||
* "There is no MIP Tail allowed for 1D surfaces because they are
|
||
* not allowed to be tiled. They must be declared as linear."
|
||
* - Tiling and Mip Tail for 2D Surfaces
|
||
* - Tiling and Mip Tail for 3D Surfaces
|
||
*/
|
||
num_2d_table_rows = ARRAY_SIZE(icl_std_y_2d_miptail_offset_el);
|
||
num_3d_table_rows = ARRAY_SIZE(icl_std_y_3d_miptail_offset_el);
|
||
break;
|
||
|
||
case ISL_TILING_64:
|
||
/* ATS-M PRMS, Volume 5: Memory Data Formats :
|
||
*
|
||
* - Tiling and Mip Tail for 1D Surfaces :
|
||
* "There is no MIP Tail allowed for 1D surfaces because they are
|
||
* not allowed to be tiled. They must be declared as linear."
|
||
* - Tiling and Mip Tail for 2D Surfaces
|
||
* - Tiling and Mip Tail for 3D Surfaces
|
||
*/
|
||
num_2d_table_rows = ARRAY_SIZE(icl_std_y_2d_miptail_offset_el);
|
||
num_3d_table_rows = ARRAY_SIZE(acm_tile64_3d_miptail_offset_el);
|
||
break;
|
||
|
||
default:
|
||
unreachable("Invalid tiling");
|
||
}
|
||
|
||
assert(dim != ISL_SURF_DIM_1D);
|
||
const int num_rows = dim == ISL_SURF_DIM_2D ? num_2d_table_rows :
|
||
num_3d_table_rows;
|
||
return num_rows - isl_get_miptail_base_row(tiling);
|
||
}
|
||
|
||
/**
|
||
* Returns an isl_tile_info representation of the given isl_tiling when
|
||
* combined when used in the given configuration.
|
||
*
|
||
* :param tiling: |in| The tiling format to introspect
|
||
* :param dim: |in| The dimensionality of the surface being tiled
|
||
* :param msaa_layout: |in| The layout of samples in the surface being tiled
|
||
* :param format_bpb: |in| The number of bits per surface element (block) for
|
||
* the surface being tiled
|
||
* :param samples: |in| The samples in the surface being tiled
|
||
* :param tile_info: |out| Return parameter for the tiling information
|
||
*/
|
||
void
|
||
isl_tiling_get_info(enum isl_tiling tiling,
|
||
enum isl_surf_dim dim,
|
||
enum isl_msaa_layout msaa_layout,
|
||
uint32_t format_bpb,
|
||
uint32_t samples,
|
||
struct isl_tile_info *tile_info)
|
||
{
|
||
const uint32_t bs = format_bpb / 8;
|
||
struct isl_extent4d logical_el;
|
||
struct isl_extent2d phys_B;
|
||
|
||
if (tiling != ISL_TILING_LINEAR && !isl_is_pow2(format_bpb)) {
|
||
/* It is possible to have non-power-of-two formats in a tiled buffer.
|
||
* The easiest way to handle this is to treat the tile as if it is three
|
||
* times as wide. This way no pixel will ever cross a tile boundary.
|
||
* This really only works on a subset of tiling formats.
|
||
*/
|
||
assert(tiling == ISL_TILING_X || tiling == ISL_TILING_Y0 ||
|
||
tiling == ISL_TILING_4);
|
||
assert(bs % 3 == 0 && isl_is_pow2(format_bpb / 3));
|
||
isl_tiling_get_info(tiling, dim, msaa_layout, format_bpb / 3, samples,
|
||
tile_info);
|
||
return;
|
||
}
|
||
|
||
switch (tiling) {
|
||
case ISL_TILING_LINEAR:
|
||
assert(bs > 0);
|
||
logical_el = isl_extent4d(1, 1, 1, 1);
|
||
phys_B = isl_extent2d(bs, 1);
|
||
break;
|
||
|
||
case ISL_TILING_X:
|
||
assert(bs > 0);
|
||
logical_el = isl_extent4d(512 / bs, 8, 1, 1);
|
||
phys_B = isl_extent2d(512, 8);
|
||
break;
|
||
|
||
case ISL_TILING_Y0:
|
||
case ISL_TILING_4:
|
||
assert(bs > 0);
|
||
logical_el = isl_extent4d(128 / bs, 32, 1, 1);
|
||
phys_B = isl_extent2d(128, 32);
|
||
break;
|
||
|
||
case ISL_TILING_W:
|
||
assert(bs == 1);
|
||
logical_el = isl_extent4d(64, 64, 1, 1);
|
||
/* From the Broadwell PRM Vol 2d, RENDER_SURFACE_STATE::SurfacePitch:
|
||
*
|
||
* "If the surface is a stencil buffer (and thus has Tile Mode set
|
||
* to TILEMODE_WMAJOR), the pitch must be set to 2x the value
|
||
* computed based on width, as the stencil buffer is stored with two
|
||
* rows interleaved."
|
||
*
|
||
* This, together with the fact that stencil buffers are referred to as
|
||
* being Y-tiled in the PRMs for older hardware implies that the
|
||
* physical size of a W-tile is actually the same as for a Y-tile.
|
||
*/
|
||
phys_B = isl_extent2d(128, 32);
|
||
break;
|
||
|
||
case ISL_TILING_SKL_Yf:
|
||
case ISL_TILING_SKL_Ys:
|
||
case ISL_TILING_ICL_Yf:
|
||
case ISL_TILING_ICL_Ys: {
|
||
bool is_Ys = tiling == ISL_TILING_SKL_Ys ||
|
||
tiling == ISL_TILING_ICL_Ys;
|
||
assert(format_bpb >= 8);
|
||
|
||
switch (dim) {
|
||
case ISL_SURF_DIM_2D:
|
||
/* See the BSpec Memory Data Formats » Common Surface Formats »
|
||
* Surface Layout and Tiling [SKL+] » 2D Surfaces SKL+ » 2D/CUBE
|
||
* Alignment Requirement [SKL+]
|
||
*
|
||
* Or, look in the SKL PRM under Memory Views > Common Surface
|
||
* Formats > Surface Layout and Tiling > 2D Surfaces > 2D/CUBE
|
||
* Alignment Requirements.
|
||
*/
|
||
logical_el = (struct isl_extent4d) {
|
||
.w = 1 << (6 - ((ffs(format_bpb) - 4) / 2) + (2 * is_Ys)),
|
||
.h = 1 << (6 - ((ffs(format_bpb) - 3) / 2) + (2 * is_Ys)),
|
||
.d = 1,
|
||
.a = 1,
|
||
};
|
||
|
||
if (samples > 1 && tiling != ISL_TILING_SKL_Yf) {
|
||
/* SKL PRMs, Volume 5: Memory Views, 2D/CUBE Alignment
|
||
* Requirement:
|
||
*
|
||
* "For MSFMT_MSS type multi-sampled TileYS surfaces, the
|
||
* alignments given above must be divided by the appropriate
|
||
* value from the table below."
|
||
*
|
||
* The formulas below reproduce those values.
|
||
*/
|
||
if (msaa_layout == ISL_MSAA_LAYOUT_ARRAY) {
|
||
logical_el.w >>= (ffs(samples) - 0) / 2;
|
||
logical_el.h >>= (ffs(samples) - 1) / 2;
|
||
logical_el.a = samples;
|
||
}
|
||
}
|
||
break;
|
||
|
||
case ISL_SURF_DIM_3D:
|
||
/* See the BSpec Memory Data Formats » Common Surface Formats »
|
||
* Surface Layout and Tiling [SKL+] » 3D Surfaces SKL+ » 3D Alignment
|
||
* Requirements [SKL+]
|
||
*
|
||
* Or, look in the SKL PRM under Memory Views > Common Surface
|
||
* Formats > Surface Layout and Tiling > 3D Surfaces > 3D Alignment
|
||
* Requirements.
|
||
*/
|
||
logical_el = (struct isl_extent4d) {
|
||
.w = 1 << (4 - ((ffs(format_bpb) - 2) / 3) + (2 * is_Ys)),
|
||
.h = 1 << (4 - ((ffs(format_bpb) - 4) / 3) + (1 * is_Ys)),
|
||
.d = 1 << (4 - ((ffs(format_bpb) - 3) / 3) + (1 * is_Ys)),
|
||
.a = 1,
|
||
};
|
||
break;
|
||
default:
|
||
unreachable("Invalid dimension");
|
||
}
|
||
|
||
uint32_t tile_size_B = is_Ys ? (1 << 16) : (1 << 12);
|
||
|
||
phys_B.w = logical_el.width * bs;
|
||
phys_B.h = tile_size_B / phys_B.w;
|
||
break;
|
||
}
|
||
case ISL_TILING_64:
|
||
/* The tables below are taken from the "2D Surfaces" & "3D Surfaces"
|
||
* pages in the Bspec which are formulated in terms of the Cv and Cu
|
||
* constants. This is different from the tables in the "Tile64 Format"
|
||
* page which should be equivalent but are usually in terms of pixels.
|
||
* Also note that Cv and Cu are HxW order to match the Bspec table, not
|
||
* WxH order like you might expect.
|
||
*
|
||
* From the Bspec's or ATS-M PRMs Volume 5: Memory Data Formats, "Tile64
|
||
* Format" :
|
||
*
|
||
* MSAA Depth/Stencil surface use IMS (Interleaved Multi Samples)
|
||
* which means:
|
||
*
|
||
* - Use the 1X MSAA (non-MSRT) version of the Tile64 equations and
|
||
* let the client unit do the swizzling internally
|
||
*
|
||
* Surfaces using the IMS layout will use the mapping for 1x MSAA.
|
||
*/
|
||
#define tile_extent2d(bs, cv, cu, a) \
|
||
isl_extent4d((1 << cu) / bs, 1 << cv, 1, a)
|
||
#define tile_extent3d(bs, cr, cv, cu) \
|
||
isl_extent4d((1 << cu) / bs, 1 << cv, 1 << cr, 1)
|
||
|
||
if (dim == ISL_SURF_DIM_3D) {
|
||
switch (format_bpb) {
|
||
case 128: logical_el = tile_extent3d(bs, 4, 4, 8); break;
|
||
case 64: logical_el = tile_extent3d(bs, 4, 4, 8); break;
|
||
case 32: logical_el = tile_extent3d(bs, 4, 5, 7); break;
|
||
case 16: logical_el = tile_extent3d(bs, 5, 5, 6); break;
|
||
case 8: logical_el = tile_extent3d(bs, 5, 5, 6); break;
|
||
default: unreachable("Unsupported format size for 3D");
|
||
}
|
||
} else {
|
||
if (samples == 1 || msaa_layout == ISL_MSAA_LAYOUT_INTERLEAVED) {
|
||
switch (format_bpb) {
|
||
case 128: logical_el = tile_extent2d(bs, 6, 10, 1); break;
|
||
case 64: logical_el = tile_extent2d(bs, 6, 10, 1); break;
|
||
case 32: logical_el = tile_extent2d(bs, 7, 9, 1); break;
|
||
case 16: logical_el = tile_extent2d(bs, 7, 9, 1); break;
|
||
case 8: logical_el = tile_extent2d(bs, 8, 8, 1); break;
|
||
default: unreachable("Unsupported format size.");
|
||
}
|
||
} else if (samples == 2) {
|
||
switch (format_bpb) {
|
||
case 128: logical_el = tile_extent2d(bs, 6, 9, 2); break;
|
||
case 64: logical_el = tile_extent2d(bs, 6, 9, 2); break;
|
||
case 32: logical_el = tile_extent2d(bs, 7, 8, 2); break;
|
||
case 16: logical_el = tile_extent2d(bs, 7, 8, 2); break;
|
||
case 8: logical_el = tile_extent2d(bs, 8, 7, 2); break;
|
||
default: unreachable("Unsupported format size.");
|
||
}
|
||
} else {
|
||
switch (format_bpb) {
|
||
case 128: logical_el = tile_extent2d(bs, 5, 9, 4); break;
|
||
case 64: logical_el = tile_extent2d(bs, 5, 9, 4); break;
|
||
case 32: logical_el = tile_extent2d(bs, 6, 8, 4); break;
|
||
case 16: logical_el = tile_extent2d(bs, 6, 8, 4); break;
|
||
case 8: logical_el = tile_extent2d(bs, 7, 7, 4); break;
|
||
default: unreachable("Unsupported format size.");
|
||
}
|
||
}
|
||
}
|
||
|
||
#undef tile_extent2d
|
||
#undef tile_extent3d
|
||
|
||
phys_B.w = logical_el.w * bs;
|
||
phys_B.h = 64 * 1024 / phys_B.w;
|
||
break;
|
||
|
||
case ISL_TILING_HIZ:
|
||
/* HiZ buffers are required to have a 128bpb HiZ format. The tiling has
|
||
* the same physical dimensions as Y-tiling but actually has two HiZ
|
||
* columns per Y-tiled column.
|
||
*/
|
||
assert(bs == 16);
|
||
logical_el = isl_extent4d(16, 16, 1, 1);
|
||
phys_B = isl_extent2d(128, 32);
|
||
break;
|
||
|
||
case ISL_TILING_CCS:
|
||
/* CCS surfaces are required to have one of the GENX_CCS_* formats which
|
||
* have a block size of 1 or 2 bits per block and each CCS element
|
||
* corresponds to one cache-line pair in the main surface. From the Sky
|
||
* Lake PRM Vol. 12 in the section on planes:
|
||
*
|
||
* "The Color Control Surface (CCS) contains the compression status
|
||
* of the cache-line pairs. The compression state of the cache-line
|
||
* pair is specified by 2 bits in the CCS. Each CCS cache-line
|
||
* represents an area on the main surface of 16x16 sets of 128 byte
|
||
* Y-tiled cache-line-pairs. CCS is always Y tiled."
|
||
*
|
||
* The CCS being Y-tiled implies that it's an 8x8 grid of cache-lines.
|
||
* Since each cache line corresponds to a 16x16 set of cache-line pairs,
|
||
* that yields total tile area of 128x128 cache-line pairs or CCS
|
||
* elements. On older hardware, each CCS element is 1 bit and the tile
|
||
* is 128x256 elements.
|
||
*/
|
||
assert(format_bpb == 1 || format_bpb == 2);
|
||
logical_el = isl_extent4d(128, 256 / format_bpb, 1, 1);
|
||
phys_B = isl_extent2d(128, 32);
|
||
break;
|
||
|
||
case ISL_TILING_GFX12_CCS:
|
||
/* From the Bspec, Gen Graphics > Gfx12 > Memory Data Formats > Memory
|
||
* Compression > Memory Compression - Gfx12:
|
||
*
|
||
* 4 bits of auxiliary plane data are required for 2 cachelines of
|
||
* main surface data. This results in a single cacheline of auxiliary
|
||
* plane data mapping to 4 4K pages of main surface data for the 4K
|
||
* pages (tile Y ) and 1 64K Tile Ys page.
|
||
*
|
||
* The Y-tiled pairing bit of 9 shown in the table below that Bspec
|
||
* section expresses that the 2 cachelines of main surface data are
|
||
* horizontally adjacent.
|
||
*
|
||
* TODO: Handle Ys, Yf and their pairing bits.
|
||
*
|
||
* Therefore, each CCS cacheline represents a 512Bx32 row area and each
|
||
* element represents a 32Bx4 row area.
|
||
*/
|
||
assert(format_bpb == 4);
|
||
logical_el = isl_extent4d(16, 8, 1, 1);
|
||
phys_B = isl_extent2d(64, 1);
|
||
break;
|
||
|
||
default:
|
||
unreachable("not reached");
|
||
} /* end switch */
|
||
|
||
*tile_info = (struct isl_tile_info) {
|
||
.tiling = tiling,
|
||
.format_bpb = format_bpb,
|
||
.logical_extent_el = logical_el,
|
||
.phys_extent_B = phys_B,
|
||
.max_miptail_levels = tiling_max_mip_tail(tiling, dim, samples),
|
||
};
|
||
}
|
||
|
||
bool
|
||
isl_color_value_is_zero(union isl_color_value value,
|
||
enum isl_format format)
|
||
{
|
||
const struct isl_format_layout *fmtl = isl_format_get_layout(format);
|
||
|
||
#define RETURN_FALSE_IF_NOT_0(c, i) \
|
||
if (fmtl->channels.c.bits && value.u32[i] != 0) \
|
||
return false
|
||
|
||
RETURN_FALSE_IF_NOT_0(r, 0);
|
||
RETURN_FALSE_IF_NOT_0(g, 1);
|
||
RETURN_FALSE_IF_NOT_0(b, 2);
|
||
RETURN_FALSE_IF_NOT_0(a, 3);
|
||
|
||
#undef RETURN_FALSE_IF_NOT_0
|
||
|
||
return true;
|
||
}
|
||
|
||
bool
|
||
isl_color_value_is_zero_one(union isl_color_value value,
|
||
enum isl_format format)
|
||
{
|
||
const struct isl_format_layout *fmtl = isl_format_get_layout(format);
|
||
|
||
#define RETURN_FALSE_IF_NOT_0_1(c, i, field) \
|
||
if (fmtl->channels.c.bits && value.field[i] != 0 && value.field[i] != 1) \
|
||
return false
|
||
|
||
if (isl_format_has_int_channel(format)) {
|
||
RETURN_FALSE_IF_NOT_0_1(r, 0, u32);
|
||
RETURN_FALSE_IF_NOT_0_1(g, 1, u32);
|
||
RETURN_FALSE_IF_NOT_0_1(b, 2, u32);
|
||
RETURN_FALSE_IF_NOT_0_1(a, 3, u32);
|
||
} else {
|
||
RETURN_FALSE_IF_NOT_0_1(r, 0, f32);
|
||
RETURN_FALSE_IF_NOT_0_1(g, 1, f32);
|
||
RETURN_FALSE_IF_NOT_0_1(b, 2, f32);
|
||
RETURN_FALSE_IF_NOT_0_1(a, 3, f32);
|
||
}
|
||
|
||
#undef RETURN_FALSE_IF_NOT_0_1
|
||
|
||
return true;
|
||
}
|
||
|
||
/**
|
||
* @param[out] tiling is set only on success
|
||
*/
|
||
static bool
|
||
isl_surf_choose_tiling(const struct isl_device *dev,
|
||
const struct isl_surf_init_info *restrict info,
|
||
enum isl_tiling *tiling)
|
||
{
|
||
isl_tiling_flags_t tiling_flags = info->tiling_flags;
|
||
|
||
/* HiZ surfaces always use the HiZ tiling */
|
||
if (info->usage & ISL_SURF_USAGE_HIZ_BIT) {
|
||
assert(isl_format_is_hiz(info->format));
|
||
assert(tiling_flags == ISL_TILING_HIZ_BIT);
|
||
*tiling = isl_tiling_flag_to_enum(tiling_flags);
|
||
return true;
|
||
}
|
||
|
||
/* CCS surfaces always use the CCS tiling */
|
||
if (info->usage & ISL_SURF_USAGE_CCS_BIT) {
|
||
assert(isl_format_get_layout(info->format)->txc == ISL_TXC_CCS);
|
||
UNUSED bool ivb_ccs = ISL_GFX_VER(dev) < 12 &&
|
||
tiling_flags == ISL_TILING_CCS_BIT;
|
||
UNUSED bool tgl_ccs = ISL_GFX_VER(dev) >= 12 &&
|
||
tiling_flags == ISL_TILING_GFX12_CCS_BIT;
|
||
assert(ivb_ccs != tgl_ccs);
|
||
*tiling = isl_tiling_flag_to_enum(tiling_flags);
|
||
return true;
|
||
}
|
||
|
||
if (ISL_GFX_VERX10(dev) >= 125) {
|
||
isl_gfx125_filter_tiling(dev, info, &tiling_flags);
|
||
} else if (ISL_GFX_VER(dev) >= 6) {
|
||
isl_gfx6_filter_tiling(dev, info, &tiling_flags);
|
||
} else {
|
||
isl_gfx4_filter_tiling(dev, info, &tiling_flags);
|
||
}
|
||
|
||
#define CHOOSE(__tiling) \
|
||
do { \
|
||
if (tiling_flags & (1u << (__tiling))) { \
|
||
*tiling = (__tiling); \
|
||
return true; \
|
||
} \
|
||
} while (0)
|
||
|
||
/* Of the tiling modes remaining, choose the one that offers the best
|
||
* performance.
|
||
*/
|
||
|
||
if (info->dim == ISL_SURF_DIM_1D) {
|
||
/* Prefer linear for 1D surfaces because they do not benefit from
|
||
* tiling. To the contrary, tiling leads to wasted memory and poor
|
||
* memory locality due to the swizzling and alignment restrictions
|
||
* required in tiled surfaces.
|
||
*/
|
||
CHOOSE(ISL_TILING_LINEAR);
|
||
}
|
||
|
||
/* For sparse images, prefer the formats that use the standard block
|
||
* shapes.
|
||
*/
|
||
if (info->usage & ISL_SURF_USAGE_SPARSE_BIT) {
|
||
CHOOSE(ISL_TILING_64);
|
||
CHOOSE(ISL_TILING_ICL_Ys);
|
||
CHOOSE(ISL_TILING_SKL_Ys);
|
||
}
|
||
|
||
/* Choose suggested 4K tilings first, then 64K tilings:
|
||
*
|
||
* Then following quotes can be found in the SKL PRMs,
|
||
* Volume 5: Memory Views, Address Tiling Function Introduction
|
||
* and from the ATS-M PRMs,
|
||
* Volume 5: Memory Data Formats, Address Tiling Function Introduction
|
||
*
|
||
* "TileY: Used for most tiled surfaces when TR_MODE=TR_NONE."
|
||
* "Tile4: 4KB tiling mode based on previously-supported TileY"
|
||
* "TileYF: 4KB tiling mode based on TileY"
|
||
* "TileYS: 64KB tiling mode based on TileY"
|
||
* "Tile64: 64KB tiling mode which support standard-tiling including
|
||
* Mip Tails"
|
||
*
|
||
* When TileYF and TileYS are used TR_MODE != TR_NONE.
|
||
*/
|
||
CHOOSE(ISL_TILING_Y0);
|
||
CHOOSE(ISL_TILING_4);
|
||
CHOOSE(ISL_TILING_SKL_Yf);
|
||
CHOOSE(ISL_TILING_ICL_Yf);
|
||
CHOOSE(ISL_TILING_SKL_Ys);
|
||
CHOOSE(ISL_TILING_ICL_Ys);
|
||
CHOOSE(ISL_TILING_64);
|
||
|
||
CHOOSE(ISL_TILING_X);
|
||
CHOOSE(ISL_TILING_W);
|
||
CHOOSE(ISL_TILING_LINEAR);
|
||
|
||
#undef CHOOSE
|
||
|
||
/* No tiling mode accommodates the inputs. */
|
||
assert(tiling_flags == 0);
|
||
return notify_failure(info, "no supported tiling");
|
||
}
|
||
|
||
static bool
|
||
isl_choose_msaa_layout(const struct isl_device *dev,
|
||
const struct isl_surf_init_info *info,
|
||
enum isl_tiling tiling,
|
||
enum isl_msaa_layout *msaa_layout)
|
||
{
|
||
if (ISL_GFX_VER(dev) >= 8) {
|
||
return isl_gfx8_choose_msaa_layout(dev, info, tiling, msaa_layout);
|
||
} else if (ISL_GFX_VER(dev) >= 7) {
|
||
return isl_gfx7_choose_msaa_layout(dev, info, tiling, msaa_layout);
|
||
} else if (ISL_GFX_VER(dev) >= 6) {
|
||
return isl_gfx6_choose_msaa_layout(dev, info, tiling, msaa_layout);
|
||
} else {
|
||
return isl_gfx4_choose_msaa_layout(dev, info, tiling, msaa_layout);
|
||
}
|
||
}
|
||
|
||
struct isl_extent2d
|
||
isl_get_interleaved_msaa_px_size_sa(uint32_t samples)
|
||
{
|
||
assert(isl_is_pow2(samples));
|
||
|
||
/* From the Broadwell PRM >> Volume 5: Memory Views >> Computing Mip Level
|
||
* Sizes (p133):
|
||
*
|
||
* If the surface is multisampled and it is a depth or stencil surface
|
||
* or Multisampled Surface StorageFormat in SURFACE_STATE is
|
||
* MSFMT_DEPTH_STENCIL, W_L and H_L must be adjusted as follows before
|
||
* proceeding: [...]
|
||
*/
|
||
return (struct isl_extent2d) {
|
||
.width = 1 << ((ffs(samples) - 0) / 2),
|
||
.height = 1 << ((ffs(samples) - 1) / 2),
|
||
};
|
||
}
|
||
|
||
static void
|
||
isl_msaa_interleaved_scale_px_to_sa(uint32_t samples,
|
||
uint32_t *width, uint32_t *height)
|
||
{
|
||
const struct isl_extent2d px_size_sa =
|
||
isl_get_interleaved_msaa_px_size_sa(samples);
|
||
|
||
if (width)
|
||
*width = isl_align(*width, 2) * px_size_sa.width;
|
||
if (height)
|
||
*height = isl_align(*height, 2) * px_size_sa.height;
|
||
}
|
||
|
||
static enum isl_array_pitch_span
|
||
isl_choose_array_pitch_span(const struct isl_device *dev,
|
||
const struct isl_surf_init_info *restrict info,
|
||
enum isl_dim_layout dim_layout,
|
||
const struct isl_extent4d *phys_level0_sa)
|
||
{
|
||
switch (dim_layout) {
|
||
case ISL_DIM_LAYOUT_GFX9_1D:
|
||
case ISL_DIM_LAYOUT_GFX4_2D:
|
||
if (ISL_GFX_VER(dev) >= 8) {
|
||
/* QPitch becomes programmable in Broadwell. So choose the
|
||
* most compact QPitch possible in order to conserve memory.
|
||
*
|
||
* From the Broadwell PRM >> Volume 2d: Command Reference: Structures
|
||
* >> RENDER_SURFACE_STATE Surface QPitch (p325):
|
||
*
|
||
* - Software must ensure that this field is set to a value
|
||
* sufficiently large such that the array slices in the surface
|
||
* do not overlap. Refer to the Memory Data Formats section for
|
||
* information on how surfaces are stored in memory.
|
||
*
|
||
* - This field specifies the distance in rows between array
|
||
* slices. It is used only in the following cases:
|
||
*
|
||
* - Surface Array is enabled OR
|
||
* - Number of Mulitsamples is not NUMSAMPLES_1 and
|
||
* Multisampled Surface Storage Format set to MSFMT_MSS OR
|
||
* - Surface Type is SURFTYPE_CUBE
|
||
*/
|
||
return ISL_ARRAY_PITCH_SPAN_COMPACT;
|
||
} else if (ISL_GFX_VER(dev) >= 7) {
|
||
/* Note that Ivybridge introduces
|
||
* RENDER_SURFACE_STATE.SurfaceArraySpacing, which provides the
|
||
* driver more control over the QPitch.
|
||
*/
|
||
|
||
if (phys_level0_sa->array_len == 1) {
|
||
/* The hardware will never use the QPitch. So choose the most
|
||
* compact QPitch possible in order to conserve memory.
|
||
*/
|
||
return ISL_ARRAY_PITCH_SPAN_COMPACT;
|
||
}
|
||
|
||
if (isl_surf_usage_is_depth_or_stencil(info->usage) ||
|
||
(info->usage & ISL_SURF_USAGE_HIZ_BIT)) {
|
||
/* From the Ivybridge PRM >> Volume 1 Part 1: Graphics Core >>
|
||
* Section 6.18.4.7: Surface Arrays (p112):
|
||
*
|
||
* If Surface Array Spacing is set to ARYSPC_FULL (note that
|
||
* the depth buffer and stencil buffer have an implied value of
|
||
* ARYSPC_FULL):
|
||
*/
|
||
return ISL_ARRAY_PITCH_SPAN_FULL;
|
||
}
|
||
|
||
if (info->levels == 1) {
|
||
/* We are able to set RENDER_SURFACE_STATE.SurfaceArraySpacing
|
||
* to ARYSPC_LOD0.
|
||
*/
|
||
return ISL_ARRAY_PITCH_SPAN_COMPACT;
|
||
}
|
||
|
||
return ISL_ARRAY_PITCH_SPAN_FULL;
|
||
} else if ((ISL_GFX_VER(dev) == 5 || ISL_GFX_VER(dev) == 6) &&
|
||
ISL_DEV_USE_SEPARATE_STENCIL(dev) &&
|
||
isl_surf_usage_is_stencil(info->usage)) {
|
||
/* [ILK-SNB] Errata from the Sandy Bridge PRM >> Volume 4 Part 1:
|
||
* Graphics Core >> Section 7.18.3.7: Surface Arrays:
|
||
*
|
||
* The separate stencil buffer does not support mip mapping, thus
|
||
* the storage for LODs other than LOD 0 is not needed.
|
||
*/
|
||
assert(info->levels == 1);
|
||
return ISL_ARRAY_PITCH_SPAN_COMPACT;
|
||
} else {
|
||
if ((ISL_GFX_VER(dev) == 5 || ISL_GFX_VER(dev) == 6) &&
|
||
ISL_DEV_USE_SEPARATE_STENCIL(dev) &&
|
||
isl_surf_usage_is_stencil(info->usage)) {
|
||
/* [ILK-SNB] Errata from the Sandy Bridge PRM >> Volume 4 Part 1:
|
||
* Graphics Core >> Section 7.18.3.7: Surface Arrays:
|
||
*
|
||
* The separate stencil buffer does not support mip mapping,
|
||
* thus the storage for LODs other than LOD 0 is not needed.
|
||
*/
|
||
assert(info->levels == 1);
|
||
assert(phys_level0_sa->array_len == 1);
|
||
return ISL_ARRAY_PITCH_SPAN_COMPACT;
|
||
}
|
||
|
||
if (phys_level0_sa->array_len == 1) {
|
||
/* The hardware will never use the QPitch. So choose the most
|
||
* compact QPitch possible in order to conserve memory.
|
||
*/
|
||
return ISL_ARRAY_PITCH_SPAN_COMPACT;
|
||
}
|
||
|
||
return ISL_ARRAY_PITCH_SPAN_FULL;
|
||
}
|
||
|
||
case ISL_DIM_LAYOUT_GFX4_3D:
|
||
/* The hardware will never use the QPitch. So choose the most
|
||
* compact QPitch possible in order to conserve memory.
|
||
*/
|
||
return ISL_ARRAY_PITCH_SPAN_COMPACT;
|
||
|
||
case ISL_DIM_LAYOUT_GFX6_STENCIL_HIZ:
|
||
/* Each array image in the gfx6 stencil of HiZ surface is compact in the
|
||
* sense that every LOD is a compact array of the same size as LOD0.
|
||
*/
|
||
return ISL_ARRAY_PITCH_SPAN_COMPACT;
|
||
}
|
||
|
||
unreachable("bad isl_dim_layout");
|
||
return ISL_ARRAY_PITCH_SPAN_FULL;
|
||
}
|
||
|
||
static void
|
||
isl_choose_image_alignment_el(const struct isl_device *dev,
|
||
const struct isl_surf_init_info *restrict info,
|
||
enum isl_tiling tiling,
|
||
enum isl_dim_layout dim_layout,
|
||
enum isl_msaa_layout msaa_layout,
|
||
struct isl_extent3d *image_align_el)
|
||
{
|
||
const struct isl_format_layout *fmtl = isl_format_get_layout(info->format);
|
||
if (fmtl->txc == ISL_TXC_MCS) {
|
||
/*
|
||
* IvyBrigde PRM Vol 2, Part 1, "11.7 MCS Buffer for Render Target(s)":
|
||
*
|
||
* Height, width, and layout of MCS buffer in this case must match with
|
||
* Render Target height, width, and layout. MCS buffer is tiledY.
|
||
*
|
||
* Pick a vertical and horizontal alignment that matches the main render
|
||
* target. Vertical alignment is important for properly spacing an array
|
||
* of MCS images. Horizontal alignment is not expected to matter because
|
||
* MCS is not mipmapped. Regardless, we pick a valid value here.
|
||
*/
|
||
if (ISL_GFX_VERX10(dev) >= 125) {
|
||
*image_align_el = isl_extent3d(128 * 8 / fmtl->bpb, 4, 1);
|
||
} else if (ISL_GFX_VER(dev) >= 8) {
|
||
*image_align_el = isl_extent3d(16, 4, 1);
|
||
} else {
|
||
*image_align_el = isl_extent3d(4, 4, 1);
|
||
}
|
||
return;
|
||
} else if (fmtl->txc == ISL_TXC_HIZ) {
|
||
assert(ISL_GFX_VER(dev) >= 6);
|
||
if (ISL_GFX_VER(dev) == 6) {
|
||
/* HiZ surfaces on Sandy Bridge are packed tightly. */
|
||
*image_align_el = isl_extent3d(1, 1, 1);
|
||
} else if (ISL_GFX_VER(dev) < 12) {
|
||
/* On gfx7+, HiZ surfaces are always aligned to 16x8 pixels in the
|
||
* primary surface which works out to 2x2 HiZ elements.
|
||
*/
|
||
*image_align_el = isl_extent3d(2, 2, 1);
|
||
} else {
|
||
/* We choose the alignments based on the docs and what we've seen on
|
||
* prior platforms. From the TGL PRM Vol. 9, "Hierarchical Depth
|
||
* Buffer":
|
||
*
|
||
* The height and width of the hierarchical depth buffer that must
|
||
* be allocated are computed by the following formulas, where HZ
|
||
* is the hierarchical depth buffer and Z is the depth buffer. The
|
||
* Z_Height, Z_Width, and Z_Depth values given in these formulas
|
||
* are those present in 3DSTATE_DEPTH_BUFFER incremented by one.
|
||
*
|
||
* The note about 3DSTATE_DEPTH_BUFFER tells us that the dimensions
|
||
* in the following formula refers to the base level. The key formula
|
||
* for the horizontal alignment is:
|
||
*
|
||
* HZ_Width (bytes) [=]
|
||
* ceiling(Z_Width / 16) * 16
|
||
*
|
||
* This type of formula is used when sizing compression blocks. So,
|
||
* the docs seem to say that the HiZ format has a block width of 16,
|
||
* and thus, the surface has a minimum horizontal alignment of 16
|
||
* pixels. This formula hasn't changed from prior platforms (where
|
||
* we've chosen a horizontal alignment of 16), so we should be on the
|
||
* right track. As for the vertical alignment, we're told:
|
||
*
|
||
* To compute the minimum QPitch for the HZ surface, the height of
|
||
* each LOD in pixels is determined using the equations for hL in
|
||
* the GPU Overview volume, using a vertical alignment j=16.
|
||
*
|
||
* We're not calculating the QPitch right now, but the vertical
|
||
* alignment is plainly given as 16 rows in the depth buffer.
|
||
*
|
||
* As a result, we believe that HiZ surfaces are aligned to 16x16
|
||
* pixels in the primary surface. We divide this area by the HiZ
|
||
* block dimensions to get the alignment in terms of HiZ blocks.
|
||
*/
|
||
*image_align_el = isl_extent3d(16 / fmtl->bw, 16 / fmtl->bh, 1);
|
||
}
|
||
return;
|
||
}
|
||
|
||
if (ISL_GFX_VERX10(dev) >= 125) {
|
||
isl_gfx125_choose_image_alignment_el(dev, info, tiling, dim_layout,
|
||
msaa_layout, image_align_el);
|
||
} else if (ISL_GFX_VER(dev) >= 12) {
|
||
isl_gfx12_choose_image_alignment_el(dev, info, tiling, dim_layout,
|
||
msaa_layout, image_align_el);
|
||
} else if (ISL_GFX_VER(dev) >= 9) {
|
||
isl_gfx9_choose_image_alignment_el(dev, info, tiling, dim_layout,
|
||
msaa_layout, image_align_el);
|
||
} else if (ISL_GFX_VER(dev) >= 8) {
|
||
isl_gfx8_choose_image_alignment_el(dev, info, tiling, dim_layout,
|
||
msaa_layout, image_align_el);
|
||
} else if (ISL_GFX_VER(dev) >= 7) {
|
||
isl_gfx7_choose_image_alignment_el(dev, info, tiling, dim_layout,
|
||
msaa_layout, image_align_el);
|
||
} else if (ISL_GFX_VER(dev) >= 6) {
|
||
isl_gfx6_choose_image_alignment_el(dev, info, tiling, dim_layout,
|
||
msaa_layout, image_align_el);
|
||
} else {
|
||
isl_gfx4_choose_image_alignment_el(dev, info, tiling, dim_layout,
|
||
msaa_layout, image_align_el);
|
||
}
|
||
}
|
||
|
||
static enum isl_dim_layout
|
||
isl_surf_choose_dim_layout(const struct isl_device *dev,
|
||
enum isl_surf_dim logical_dim,
|
||
enum isl_tiling tiling,
|
||
isl_surf_usage_flags_t usage)
|
||
{
|
||
/* Sandy bridge needs a special layout for HiZ and stencil. */
|
||
if (ISL_GFX_VER(dev) == 6 &&
|
||
(tiling == ISL_TILING_W || tiling == ISL_TILING_HIZ))
|
||
return ISL_DIM_LAYOUT_GFX6_STENCIL_HIZ;
|
||
|
||
if (ISL_GFX_VER(dev) >= 9) {
|
||
switch (logical_dim) {
|
||
case ISL_SURF_DIM_1D:
|
||
/* From the Sky Lake PRM Vol. 5, "1D Surfaces":
|
||
*
|
||
* One-dimensional surfaces use a tiling mode of linear.
|
||
* Technically, they are not tiled resources, but the Tiled
|
||
* Resource Mode field in RENDER_SURFACE_STATE is still used to
|
||
* indicate the alignment requirements for this linear surface
|
||
* (See 1D Alignment requirements for how 4K and 64KB Tiled
|
||
* Resource Modes impact alignment). Alternatively, a 1D surface
|
||
* can be defined as a 2D tiled surface (e.g. TileY or TileX) with
|
||
* a height of 0.
|
||
*
|
||
* In other words, ISL_DIM_LAYOUT_GFX9_1D is only used for linear
|
||
* surfaces and, for tiled surfaces, ISL_DIM_LAYOUT_GFX4_2D is used.
|
||
*/
|
||
if (tiling == ISL_TILING_LINEAR)
|
||
return ISL_DIM_LAYOUT_GFX9_1D;
|
||
else
|
||
return ISL_DIM_LAYOUT_GFX4_2D;
|
||
case ISL_SURF_DIM_2D:
|
||
case ISL_SURF_DIM_3D:
|
||
return ISL_DIM_LAYOUT_GFX4_2D;
|
||
}
|
||
} else {
|
||
switch (logical_dim) {
|
||
case ISL_SURF_DIM_1D:
|
||
case ISL_SURF_DIM_2D:
|
||
/* From the G45 PRM Vol. 1a, "6.17.4.1 Hardware Cube Map Layout":
|
||
*
|
||
* The cube face textures are stored in the same way as 3D surfaces
|
||
* are stored (see section 6.17.5 for details). For cube surfaces,
|
||
* however, the depth is equal to the number of faces (always 6) and
|
||
* is not reduced for each MIP.
|
||
*/
|
||
if (ISL_GFX_VER(dev) == 4 && (usage & ISL_SURF_USAGE_CUBE_BIT))
|
||
return ISL_DIM_LAYOUT_GFX4_3D;
|
||
|
||
return ISL_DIM_LAYOUT_GFX4_2D;
|
||
case ISL_SURF_DIM_3D:
|
||
return ISL_DIM_LAYOUT_GFX4_3D;
|
||
}
|
||
}
|
||
|
||
unreachable("bad isl_surf_dim");
|
||
return ISL_DIM_LAYOUT_GFX4_2D;
|
||
}
|
||
|
||
/**
|
||
* Calculate the physical extent of the surface's first level, in units of
|
||
* surface samples.
|
||
*/
|
||
static void
|
||
isl_calc_phys_level0_extent_sa(const struct isl_device *dev,
|
||
const struct isl_surf_init_info *restrict info,
|
||
enum isl_dim_layout dim_layout,
|
||
enum isl_tiling tiling,
|
||
enum isl_msaa_layout msaa_layout,
|
||
struct isl_extent4d *phys_level0_sa)
|
||
{
|
||
const struct isl_format_layout *fmtl = isl_format_get_layout(info->format);
|
||
|
||
if (isl_format_is_planar(info->format))
|
||
unreachable("Planar formats unsupported");
|
||
|
||
switch (info->dim) {
|
||
case ISL_SURF_DIM_1D:
|
||
assert(info->height == 1);
|
||
assert(info->depth == 1);
|
||
assert(info->samples == 1);
|
||
|
||
switch (dim_layout) {
|
||
case ISL_DIM_LAYOUT_GFX4_3D:
|
||
unreachable("bad isl_dim_layout");
|
||
|
||
case ISL_DIM_LAYOUT_GFX9_1D:
|
||
case ISL_DIM_LAYOUT_GFX4_2D:
|
||
case ISL_DIM_LAYOUT_GFX6_STENCIL_HIZ:
|
||
*phys_level0_sa = (struct isl_extent4d) {
|
||
.w = info->width,
|
||
.h = 1,
|
||
.d = 1,
|
||
.a = info->array_len,
|
||
};
|
||
break;
|
||
}
|
||
break;
|
||
|
||
case ISL_SURF_DIM_2D:
|
||
if (ISL_GFX_VER(dev) == 4 && (info->usage & ISL_SURF_USAGE_CUBE_BIT))
|
||
assert(dim_layout == ISL_DIM_LAYOUT_GFX4_3D);
|
||
else
|
||
assert(dim_layout == ISL_DIM_LAYOUT_GFX4_2D ||
|
||
dim_layout == ISL_DIM_LAYOUT_GFX6_STENCIL_HIZ);
|
||
|
||
switch (msaa_layout) {
|
||
case ISL_MSAA_LAYOUT_NONE:
|
||
assert(info->depth == 1);
|
||
assert(info->samples == 1);
|
||
|
||
*phys_level0_sa = (struct isl_extent4d) {
|
||
.w = info->width,
|
||
.h = info->height,
|
||
.d = 1,
|
||
.a = info->array_len,
|
||
};
|
||
break;
|
||
|
||
case ISL_MSAA_LAYOUT_ARRAY:
|
||
assert(info->depth == 1);
|
||
assert(info->levels == 1);
|
||
assert(isl_format_supports_multisampling(dev->info, info->format));
|
||
assert(fmtl->bw == 1 && fmtl->bh == 1);
|
||
|
||
*phys_level0_sa = (struct isl_extent4d) {
|
||
.w = info->width,
|
||
.h = info->height,
|
||
.d = 1,
|
||
.a = info->array_len * info->samples,
|
||
};
|
||
break;
|
||
|
||
case ISL_MSAA_LAYOUT_INTERLEAVED:
|
||
assert(info->depth == 1);
|
||
assert(info->levels == 1);
|
||
assert(isl_format_supports_multisampling(dev->info, info->format));
|
||
|
||
*phys_level0_sa = (struct isl_extent4d) {
|
||
.w = info->width,
|
||
.h = info->height,
|
||
.d = 1,
|
||
.a = info->array_len,
|
||
};
|
||
|
||
isl_msaa_interleaved_scale_px_to_sa(info->samples,
|
||
&phys_level0_sa->w,
|
||
&phys_level0_sa->h);
|
||
break;
|
||
}
|
||
break;
|
||
|
||
case ISL_SURF_DIM_3D:
|
||
assert(info->array_len == 1);
|
||
assert(info->samples == 1);
|
||
|
||
if (fmtl->bd > 1) {
|
||
isl_finishme("%s:%s: compression block with depth > 1",
|
||
__FILE__, __func__);
|
||
}
|
||
|
||
switch (dim_layout) {
|
||
case ISL_DIM_LAYOUT_GFX9_1D:
|
||
case ISL_DIM_LAYOUT_GFX6_STENCIL_HIZ:
|
||
unreachable("bad isl_dim_layout");
|
||
|
||
case ISL_DIM_LAYOUT_GFX4_2D:
|
||
case ISL_DIM_LAYOUT_GFX4_3D:
|
||
*phys_level0_sa = (struct isl_extent4d) {
|
||
.w = info->width,
|
||
.h = info->height,
|
||
.d = info->depth,
|
||
.a = 1,
|
||
};
|
||
break;
|
||
}
|
||
break;
|
||
}
|
||
}
|
||
|
||
static void
|
||
isl_get_miptail_level_offset_el(enum isl_tiling tiling,
|
||
enum isl_surf_dim dim,
|
||
uint32_t format_bpb,
|
||
uint32_t level,
|
||
uint32_t *x_offset_el,
|
||
uint32_t *y_offset_el,
|
||
uint32_t *z_offset_el)
|
||
{
|
||
uint32_t row = isl_get_miptail_base_row(tiling) + level;
|
||
uint32_t col = 8 - ffs(format_bpb);
|
||
|
||
switch (dim) {
|
||
case ISL_SURF_DIM_2D:
|
||
switch (tiling) {
|
||
case ISL_TILING_64:
|
||
case ISL_TILING_ICL_Yf:
|
||
case ISL_TILING_ICL_Ys:
|
||
assert(row < ARRAY_SIZE(icl_std_y_2d_miptail_offset_el));
|
||
assert(col < ARRAY_SIZE(icl_std_y_2d_miptail_offset_el[0]));
|
||
*x_offset_el = icl_std_y_2d_miptail_offset_el[row][col][0];
|
||
*y_offset_el = icl_std_y_2d_miptail_offset_el[row][col][1];
|
||
break;
|
||
case ISL_TILING_SKL_Yf:
|
||
case ISL_TILING_SKL_Ys:
|
||
assert(row < ARRAY_SIZE(skl_std_y_2d_miptail_offset_el));
|
||
assert(col < ARRAY_SIZE(skl_std_y_2d_miptail_offset_el[0]));
|
||
*x_offset_el = skl_std_y_2d_miptail_offset_el[row][col][0];
|
||
*y_offset_el = skl_std_y_2d_miptail_offset_el[row][col][1];
|
||
break;
|
||
default:
|
||
unreachable("invalid tiling");
|
||
}
|
||
*z_offset_el = 0;
|
||
break;
|
||
|
||
case ISL_SURF_DIM_3D:
|
||
switch (tiling) {
|
||
case ISL_TILING_64:
|
||
assert(row < ARRAY_SIZE(acm_tile64_3d_miptail_offset_el));
|
||
assert(col < ARRAY_SIZE(acm_tile64_3d_miptail_offset_el[0]));
|
||
*x_offset_el = acm_tile64_3d_miptail_offset_el[row][col][0];
|
||
*y_offset_el = acm_tile64_3d_miptail_offset_el[row][col][1];
|
||
*z_offset_el = acm_tile64_3d_miptail_offset_el[row][col][2];
|
||
break;
|
||
case ISL_TILING_ICL_Yf:
|
||
case ISL_TILING_ICL_Ys:
|
||
assert(row < ARRAY_SIZE(icl_std_y_3d_miptail_offset_el));
|
||
assert(col < ARRAY_SIZE(icl_std_y_3d_miptail_offset_el[0]));
|
||
*x_offset_el = icl_std_y_3d_miptail_offset_el[row][col][0];
|
||
*y_offset_el = icl_std_y_3d_miptail_offset_el[row][col][1];
|
||
*z_offset_el = icl_std_y_3d_miptail_offset_el[row][col][2];
|
||
break;
|
||
case ISL_TILING_SKL_Yf:
|
||
case ISL_TILING_SKL_Ys:
|
||
assert(row < ARRAY_SIZE(skl_std_y_3d_miptail_offset_el));
|
||
assert(col < ARRAY_SIZE(skl_std_y_3d_miptail_offset_el[0]));
|
||
*x_offset_el = skl_std_y_3d_miptail_offset_el[row][col][0];
|
||
*y_offset_el = skl_std_y_3d_miptail_offset_el[row][col][1];
|
||
*z_offset_el = skl_std_y_3d_miptail_offset_el[row][col][2];
|
||
break;
|
||
default:
|
||
unreachable("invalid tiling");
|
||
}
|
||
break;
|
||
|
||
case ISL_SURF_DIM_1D:
|
||
unreachable("invalid dimension");
|
||
}
|
||
}
|
||
|
||
static uint32_t
|
||
isl_choose_miptail_start_level(const struct isl_device *dev,
|
||
const struct isl_surf_init_info *restrict info,
|
||
const struct isl_tile_info *tile_info)
|
||
{
|
||
const struct isl_format_layout *fmtl = isl_format_get_layout(info->format);
|
||
|
||
if (tile_info->max_miptail_levels == 0)
|
||
return info->levels;
|
||
|
||
/* SKL PRMs, Volume 5: Memory Views, YUV 4:2:0 Format Memory Organization :
|
||
*
|
||
* "Planar YUV does not support MIP Tails as part of Standard Tiling.
|
||
* The MIP Tail Start field in RENDER_SURFACE_STATE must be programmed
|
||
* to 15."
|
||
*/
|
||
if (isl_format_is_planar(info->format))
|
||
return 15;
|
||
|
||
/* TODO: figure out why having YUV formats in the miptail on Gfx12 does not
|
||
* work.
|
||
*/
|
||
if (ISL_GFX_VER(dev) == 12 && isl_format_is_yuv(info->format))
|
||
return 15;
|
||
|
||
assert(tile_info->tiling == ISL_TILING_64 || isl_tiling_is_std_y(tile_info->tiling));
|
||
assert(info->samples == 1);
|
||
|
||
uint32_t max_miptail_levels = tile_info->max_miptail_levels;
|
||
|
||
/* Start with the minimum number of levels that will fit in the tile */
|
||
uint32_t min_miptail_start =
|
||
info->levels > max_miptail_levels ? info->levels - max_miptail_levels : 0;
|
||
|
||
/* Account for the specified minimum */
|
||
min_miptail_start = MAX(min_miptail_start, info->min_miptail_start_level);
|
||
|
||
struct isl_extent3d level0_extent_el = {
|
||
.w = isl_align_div_npot(info->width, fmtl->bw),
|
||
.h = isl_align_div_npot(info->height, fmtl->bh),
|
||
.d = isl_align_div_npot(info->depth, fmtl->bd),
|
||
};
|
||
|
||
/* The first miptail slot takes up the entire right side of the tile. So,
|
||
* the extent is just the distance from the offset of the first level to
|
||
* the corner of the tile.
|
||
*/
|
||
uint32_t level0_x_offset_el, level0_y_offset_el, level0_z_offset_el;
|
||
isl_get_miptail_level_offset_el(tile_info->tiling, info->dim,
|
||
fmtl->bpb, 0, /* level */
|
||
&level0_x_offset_el,
|
||
&level0_y_offset_el,
|
||
&level0_z_offset_el);
|
||
struct isl_extent3d miptail_level0_extent_el = {
|
||
.w = tile_info->logical_extent_el.w - level0_x_offset_el,
|
||
.h = tile_info->logical_extent_el.h - level0_y_offset_el,
|
||
.d = tile_info->logical_extent_el.d - level0_z_offset_el,
|
||
};
|
||
|
||
/* Now find the first level that fits the maximum miptail size requirement.
|
||
*/
|
||
for (uint32_t s = min_miptail_start; s < info->levels; s++) {
|
||
if (isl_minify(level0_extent_el.w, s) <= miptail_level0_extent_el.w &&
|
||
isl_minify(level0_extent_el.h, s) <= miptail_level0_extent_el.h &&
|
||
isl_minify(level0_extent_el.d, s) <= miptail_level0_extent_el.d)
|
||
return s;
|
||
}
|
||
|
||
return info->levels;
|
||
}
|
||
|
||
/**
|
||
* Calculate the pitch between physical array slices, in units of rows of
|
||
* surface elements.
|
||
*/
|
||
static uint32_t
|
||
isl_calc_array_pitch_el_rows_gfx4_2d(
|
||
const struct isl_device *dev,
|
||
const struct isl_surf_init_info *restrict info,
|
||
const struct isl_tile_info *tile_info,
|
||
const struct isl_extent3d *image_align_sa,
|
||
const struct isl_extent4d *phys_level0_sa,
|
||
enum isl_array_pitch_span array_pitch_span,
|
||
const struct isl_extent2d *phys_slice0_sa)
|
||
{
|
||
const struct isl_format_layout *fmtl = isl_format_get_layout(info->format);
|
||
uint32_t pitch_sa_rows = 0;
|
||
|
||
switch (array_pitch_span) {
|
||
case ISL_ARRAY_PITCH_SPAN_COMPACT:
|
||
pitch_sa_rows = isl_align_npot(phys_slice0_sa->h, image_align_sa->h);
|
||
break;
|
||
case ISL_ARRAY_PITCH_SPAN_FULL: {
|
||
/* The QPitch equation is found in the Broadwell PRM >> Volume 5:
|
||
* Memory Views >> Common Surface Formats >> Surface Layout >> 2D
|
||
* Surfaces >> Surface Arrays.
|
||
*/
|
||
uint32_t H0_sa = phys_level0_sa->h;
|
||
uint32_t H1_sa = isl_minify(H0_sa, 1);
|
||
|
||
uint32_t h0_sa = isl_align_npot(H0_sa, image_align_sa->h);
|
||
uint32_t h1_sa = isl_align_npot(H1_sa, image_align_sa->h);
|
||
|
||
uint32_t m;
|
||
if (ISL_GFX_VER(dev) >= 7) {
|
||
/* The QPitch equation changed slightly in Ivybridge. */
|
||
m = 12;
|
||
} else {
|
||
m = 11;
|
||
}
|
||
|
||
pitch_sa_rows = h0_sa + h1_sa + (m * image_align_sa->h);
|
||
|
||
if (ISL_GFX_VER(dev) == 6 && info->samples > 1 &&
|
||
(info->height % 4 == 1)) {
|
||
/* [SNB] Errata from the Sandy Bridge PRM >> Volume 4 Part 1:
|
||
* Graphics Core >> Section 7.18.3.7: Surface Arrays:
|
||
*
|
||
* [SNB] Errata: Sampler MSAA Qpitch will be 4 greater than
|
||
* the value calculated in the equation above , for every
|
||
* other odd Surface Height starting from 1 i.e. 1,5,9,13.
|
||
*
|
||
* XXX(chadv): Is the errata natural corollary of the physical
|
||
* layout of interleaved samples?
|
||
*/
|
||
pitch_sa_rows += 4;
|
||
}
|
||
|
||
pitch_sa_rows = isl_align_npot(pitch_sa_rows, fmtl->bh);
|
||
} /* end case */
|
||
break;
|
||
}
|
||
|
||
assert(pitch_sa_rows % fmtl->bh == 0);
|
||
uint32_t pitch_el_rows = pitch_sa_rows / fmtl->bh;
|
||
|
||
if (ISL_GFX_VER(dev) >= 9 && ISL_GFX_VER(dev) <= 11 &&
|
||
fmtl->txc == ISL_TXC_CCS) {
|
||
/*
|
||
* From the Sky Lake PRM Vol 7, "MCS Buffer for Render Target(s)" (p. 632):
|
||
*
|
||
* "Mip-mapped and arrayed surfaces are supported with MCS buffer
|
||
* layout with these alignments in the RT space: Horizontal
|
||
* Alignment = 128 and Vertical Alignment = 64."
|
||
*
|
||
* From the Sky Lake PRM Vol. 2d, "RENDER_SURFACE_STATE" (p. 435):
|
||
*
|
||
* "For non-multisampled render target's CCS auxiliary surface,
|
||
* QPitch must be computed with Horizontal Alignment = 128 and
|
||
* Surface Vertical Alignment = 256. These alignments are only for
|
||
* CCS buffer and not for associated render target."
|
||
*
|
||
* The first restriction is already handled by isl_choose_image_alignment_el
|
||
* but the second restriction, which is an extension of the first, only
|
||
* applies to qpitch and must be applied here.
|
||
*
|
||
* The second restriction disappears on Gfx12.
|
||
*/
|
||
assert(fmtl->bh == 4);
|
||
pitch_el_rows = isl_align(pitch_el_rows, 256 / 4);
|
||
}
|
||
|
||
if (ISL_GFX_VER(dev) >= 9 &&
|
||
info->dim == ISL_SURF_DIM_3D &&
|
||
tile_info->tiling != ISL_TILING_LINEAR) {
|
||
/* From the Skylake BSpec >> RENDER_SURFACE_STATE >> Surface QPitch:
|
||
*
|
||
* Tile Mode != Linear: This field must be set to an integer multiple
|
||
* of the tile height
|
||
*/
|
||
pitch_el_rows = isl_align(pitch_el_rows, tile_info->logical_extent_el.height);
|
||
}
|
||
|
||
return pitch_el_rows;
|
||
}
|
||
|
||
/**
|
||
* A variant of isl_calc_phys_slice0_extent_sa() specific to
|
||
* ISL_DIM_LAYOUT_GFX4_2D.
|
||
*/
|
||
static void
|
||
isl_calc_phys_slice0_extent_sa_gfx4_2d(
|
||
const struct isl_device *dev,
|
||
const struct isl_surf_init_info *restrict info,
|
||
const struct isl_tile_info *tile_info,
|
||
enum isl_msaa_layout msaa_layout,
|
||
const struct isl_extent3d *image_align_sa,
|
||
const struct isl_extent4d *phys_level0_sa,
|
||
uint32_t miptail_start_level,
|
||
struct isl_extent2d *phys_slice0_sa)
|
||
{
|
||
ASSERTED const struct isl_format_layout *fmtl =
|
||
isl_format_get_layout(info->format);
|
||
|
||
if (info->levels == 1 && miptail_start_level > 0) {
|
||
/* Do not pad the surface to the image alignment.
|
||
*
|
||
* For tiled surfaces, using a reduced alignment here avoids wasting CPU
|
||
* cycles on the below mipmap layout caluclations. Reducing the
|
||
* alignment here is safe because we later align the row pitch and array
|
||
* pitch to the tile boundary. It is safe even for
|
||
* ISL_MSAA_LAYOUT_INTERLEAVED, because phys_level0_sa is already scaled
|
||
* to accommodate the interleaved samples.
|
||
*
|
||
* For linear surfaces, reducing the alignment here permits us to later
|
||
* choose an arbitrary, non-aligned row pitch. If the surface backs
|
||
* a VkBuffer, then an arbitrary pitch may be needed to accommodate
|
||
* VkBufferImageCopy::bufferRowLength.
|
||
*/
|
||
*phys_slice0_sa = (struct isl_extent2d) {
|
||
.w = phys_level0_sa->w,
|
||
.h = phys_level0_sa->h,
|
||
};
|
||
return;
|
||
}
|
||
|
||
uint32_t slice_top_w = 0;
|
||
uint32_t slice_bottom_w = 0;
|
||
uint32_t slice_left_h = 0;
|
||
uint32_t slice_right_h = 0;
|
||
|
||
uint32_t W0 = phys_level0_sa->w;
|
||
uint32_t H0 = phys_level0_sa->h;
|
||
|
||
for (uint32_t l = 0; l < info->levels; ++l) {
|
||
uint32_t W = isl_minify(W0, l);
|
||
uint32_t H = isl_minify(H0, l);
|
||
|
||
uint32_t w = isl_align_npot(W, image_align_sa->w);
|
||
uint32_t h = isl_align_npot(H, image_align_sa->h);
|
||
|
||
if (l == 0) {
|
||
slice_top_w = w;
|
||
slice_left_h = h;
|
||
slice_right_h = h;
|
||
} else if (l == 1) {
|
||
slice_bottom_w = w;
|
||
slice_left_h += h;
|
||
} else if (l == 2) {
|
||
slice_bottom_w += w;
|
||
slice_right_h += h;
|
||
} else {
|
||
slice_right_h += h;
|
||
}
|
||
|
||
if (l >= miptail_start_level) {
|
||
assert(l == miptail_start_level);
|
||
assert(tile_info->tiling == ISL_TILING_64 ||
|
||
isl_tiling_is_std_y(tile_info->tiling));
|
||
assert(w == tile_info->logical_extent_el.w * fmtl->bw);
|
||
assert(h == tile_info->logical_extent_el.h * fmtl->bh);
|
||
/* If we've gone into the miptail, we're done. All higher miplevels
|
||
* will be tucked into the same tile as this one.
|
||
*/
|
||
break;
|
||
}
|
||
}
|
||
|
||
*phys_slice0_sa = (struct isl_extent2d) {
|
||
.w = MAX(slice_top_w, slice_bottom_w),
|
||
.h = MAX(slice_left_h, slice_right_h),
|
||
};
|
||
}
|
||
|
||
static void
|
||
isl_calc_phys_total_extent_el_gfx4_2d(
|
||
const struct isl_device *dev,
|
||
const struct isl_surf_init_info *restrict info,
|
||
const struct isl_tile_info *tile_info,
|
||
enum isl_msaa_layout msaa_layout,
|
||
const struct isl_extent3d *image_align_sa,
|
||
const struct isl_extent4d *phys_level0_sa,
|
||
enum isl_array_pitch_span array_pitch_span,
|
||
uint32_t miptail_start_level,
|
||
uint32_t *array_pitch_el_rows,
|
||
struct isl_extent4d *phys_total_el)
|
||
{
|
||
const struct isl_format_layout *fmtl = isl_format_get_layout(info->format);
|
||
|
||
struct isl_extent2d phys_slice0_sa;
|
||
isl_calc_phys_slice0_extent_sa_gfx4_2d(dev, info, tile_info, msaa_layout,
|
||
image_align_sa, phys_level0_sa,
|
||
miptail_start_level,
|
||
&phys_slice0_sa);
|
||
*array_pitch_el_rows =
|
||
isl_calc_array_pitch_el_rows_gfx4_2d(dev, info, tile_info,
|
||
image_align_sa, phys_level0_sa,
|
||
array_pitch_span,
|
||
&phys_slice0_sa);
|
||
|
||
if (tile_info->tiling == ISL_TILING_64 ||
|
||
isl_tiling_is_std_y(tile_info->tiling)) {
|
||
*phys_total_el = (struct isl_extent4d) {
|
||
.w = isl_align_div_npot(phys_slice0_sa.w, fmtl->bw),
|
||
.h = isl_align_div_npot(phys_slice0_sa.h, fmtl->bh),
|
||
.d = isl_align_div_npot(phys_level0_sa->d, fmtl->bd),
|
||
.a = phys_level0_sa->array_len,
|
||
};
|
||
} else {
|
||
uint32_t array_len = MAX(phys_level0_sa->d, phys_level0_sa->a);
|
||
*phys_total_el = (struct isl_extent4d) {
|
||
.w = isl_align_div_npot(phys_slice0_sa.w, fmtl->bw),
|
||
.h = *array_pitch_el_rows * (array_len - 1) +
|
||
isl_align_div_npot(phys_slice0_sa.h, fmtl->bh),
|
||
.d = 1,
|
||
.a = 1,
|
||
};
|
||
}
|
||
}
|
||
|
||
/**
|
||
* A variant of isl_calc_phys_slice0_extent_sa() specific to
|
||
* ISL_DIM_LAYOUT_GFX4_3D.
|
||
*/
|
||
static void
|
||
isl_calc_phys_total_extent_el_gfx4_3d(
|
||
const struct isl_device *dev,
|
||
const struct isl_surf_init_info *restrict info,
|
||
const struct isl_extent3d *image_align_sa,
|
||
const struct isl_extent4d *phys_level0_sa,
|
||
uint32_t *array_pitch_el_rows,
|
||
struct isl_extent4d *phys_total_el)
|
||
{
|
||
const struct isl_format_layout *fmtl = isl_format_get_layout(info->format);
|
||
|
||
assert(info->samples == 1);
|
||
|
||
if (info->dim != ISL_SURF_DIM_3D) {
|
||
/* From the G45 PRM Vol. 1a, "6.17.4.1 Hardware Cube Map Layout":
|
||
*
|
||
* The cube face textures are stored in the same way as 3D surfaces
|
||
* are stored (see section 6.17.5 for details). For cube surfaces,
|
||
* however, the depth is equal to the number of faces (always 6) and
|
||
* is not reduced for each MIP.
|
||
*/
|
||
assert(ISL_GFX_VER(dev) == 4);
|
||
assert(info->usage & ISL_SURF_USAGE_CUBE_BIT);
|
||
assert(phys_level0_sa->array_len == 6);
|
||
} else {
|
||
assert(phys_level0_sa->array_len == 1);
|
||
}
|
||
|
||
uint32_t total_w = 0;
|
||
uint32_t total_h = 0;
|
||
|
||
uint32_t W0 = phys_level0_sa->w;
|
||
uint32_t H0 = phys_level0_sa->h;
|
||
uint32_t D0 = phys_level0_sa->d;
|
||
uint32_t A0 = phys_level0_sa->a;
|
||
|
||
for (uint32_t l = 0; l < info->levels; ++l) {
|
||
uint32_t level_w = isl_align_npot(isl_minify(W0, l), image_align_sa->w);
|
||
uint32_t level_h = isl_align_npot(isl_minify(H0, l), image_align_sa->h);
|
||
uint32_t level_d = info->dim == ISL_SURF_DIM_3D ? isl_minify(D0, l) : A0;
|
||
|
||
uint32_t max_layers_horiz = MIN(level_d, 1u << l);
|
||
uint32_t max_layers_vert = isl_align(level_d, 1u << l) / (1u << l);
|
||
|
||
total_w = MAX(total_w, level_w * max_layers_horiz);
|
||
total_h += level_h * max_layers_vert;
|
||
}
|
||
|
||
/* GFX4_3D layouts don't really have an array pitch since each LOD has a
|
||
* different number of horizontal and vertical layers. We have to set it
|
||
* to something, so at least make it true for LOD0.
|
||
*/
|
||
*array_pitch_el_rows =
|
||
isl_align_npot(phys_level0_sa->h, image_align_sa->h) / fmtl->bw;
|
||
*phys_total_el = (struct isl_extent4d) {
|
||
.w = isl_assert_div(total_w, fmtl->bw),
|
||
.h = isl_assert_div(total_h, fmtl->bh),
|
||
.d = 1,
|
||
.a = 1,
|
||
};
|
||
}
|
||
|
||
/**
|
||
* A variant of isl_calc_phys_slice0_extent_sa() specific to
|
||
* ISL_DIM_LAYOUT_GFX6_STENCIL_HIZ.
|
||
*/
|
||
static void
|
||
isl_calc_phys_total_extent_el_gfx6_stencil_hiz(
|
||
const struct isl_device *dev,
|
||
const struct isl_surf_init_info *restrict info,
|
||
const struct isl_tile_info *tile_info,
|
||
const struct isl_extent3d *image_align_sa,
|
||
const struct isl_extent4d *phys_level0_sa,
|
||
uint32_t *array_pitch_el_rows,
|
||
struct isl_extent4d *phys_total_el)
|
||
{
|
||
const struct isl_format_layout *fmtl = isl_format_get_layout(info->format);
|
||
|
||
const struct isl_extent2d tile_extent_sa = {
|
||
.w = tile_info->logical_extent_el.w * fmtl->bw,
|
||
.h = tile_info->logical_extent_el.h * fmtl->bh,
|
||
};
|
||
/* Tile size is a multiple of image alignment */
|
||
assert(tile_extent_sa.w % image_align_sa->w == 0);
|
||
assert(tile_extent_sa.h % image_align_sa->h == 0);
|
||
|
||
const uint32_t W0 = phys_level0_sa->w;
|
||
const uint32_t H0 = phys_level0_sa->h;
|
||
|
||
/* Each image has the same height as LOD0 because the hardware thinks
|
||
* everything is LOD0
|
||
*/
|
||
const uint32_t H = isl_align(H0, image_align_sa->h) * phys_level0_sa->a;
|
||
|
||
uint32_t total_top_w = 0;
|
||
uint32_t total_bottom_w = 0;
|
||
uint32_t total_h = 0;
|
||
|
||
for (uint32_t l = 0; l < info->levels; ++l) {
|
||
const uint32_t W = isl_minify(W0, l);
|
||
|
||
const uint32_t w = isl_align(W, tile_extent_sa.w);
|
||
const uint32_t h = isl_align(H, tile_extent_sa.h);
|
||
|
||
if (l == 0) {
|
||
total_top_w = w;
|
||
total_h = h;
|
||
} else if (l == 1) {
|
||
total_bottom_w = w;
|
||
total_h += h;
|
||
} else {
|
||
total_bottom_w += w;
|
||
}
|
||
}
|
||
|
||
*array_pitch_el_rows =
|
||
isl_assert_div(isl_align(H0, image_align_sa->h), fmtl->bh);
|
||
*phys_total_el = (struct isl_extent4d) {
|
||
.w = isl_assert_div(MAX(total_top_w, total_bottom_w), fmtl->bw),
|
||
.h = isl_assert_div(total_h, fmtl->bh),
|
||
.d = 1,
|
||
.a = 1,
|
||
};
|
||
}
|
||
|
||
/**
|
||
* A variant of isl_calc_phys_slice0_extent_sa() specific to
|
||
* ISL_DIM_LAYOUT_GFX9_1D.
|
||
*/
|
||
static void
|
||
isl_calc_phys_total_extent_el_gfx9_1d(
|
||
const struct isl_device *dev,
|
||
const struct isl_surf_init_info *restrict info,
|
||
const struct isl_extent3d *image_align_sa,
|
||
const struct isl_extent4d *phys_level0_sa,
|
||
uint32_t *array_pitch_el_rows,
|
||
struct isl_extent4d *phys_total_el)
|
||
{
|
||
const struct isl_format_layout *fmtl = isl_format_get_layout(info->format);
|
||
|
||
assert(phys_level0_sa->height == 1);
|
||
assert(phys_level0_sa->depth == 1);
|
||
assert(info->samples == 1);
|
||
assert(image_align_sa->w >= fmtl->bw);
|
||
|
||
uint32_t slice_w = 0;
|
||
const uint32_t W0 = phys_level0_sa->w;
|
||
|
||
for (uint32_t l = 0; l < info->levels; ++l) {
|
||
uint32_t W = isl_minify(W0, l);
|
||
uint32_t w = isl_align_npot(W, image_align_sa->w);
|
||
|
||
slice_w += w;
|
||
}
|
||
|
||
*array_pitch_el_rows = 1;
|
||
*phys_total_el = (struct isl_extent4d) {
|
||
.w = isl_assert_div(slice_w, fmtl->bw),
|
||
.h = phys_level0_sa->array_len,
|
||
.d = 1,
|
||
.a = 1,
|
||
};
|
||
}
|
||
|
||
/**
|
||
* Calculate the two-dimensional total physical extent of the surface, in
|
||
* units of surface elements.
|
||
*/
|
||
static void
|
||
isl_calc_phys_total_extent_el(const struct isl_device *dev,
|
||
const struct isl_surf_init_info *restrict info,
|
||
const struct isl_tile_info *tile_info,
|
||
enum isl_dim_layout dim_layout,
|
||
enum isl_msaa_layout msaa_layout,
|
||
const struct isl_extent3d *image_align_sa,
|
||
const struct isl_extent4d *phys_level0_sa,
|
||
enum isl_array_pitch_span array_pitch_span,
|
||
uint32_t miptail_start_level,
|
||
uint32_t *array_pitch_el_rows,
|
||
struct isl_extent4d *phys_total_el)
|
||
{
|
||
switch (dim_layout) {
|
||
case ISL_DIM_LAYOUT_GFX9_1D:
|
||
assert(array_pitch_span == ISL_ARRAY_PITCH_SPAN_COMPACT);
|
||
isl_calc_phys_total_extent_el_gfx9_1d(dev, info,
|
||
image_align_sa, phys_level0_sa,
|
||
array_pitch_el_rows,
|
||
phys_total_el);
|
||
return;
|
||
case ISL_DIM_LAYOUT_GFX4_2D:
|
||
isl_calc_phys_total_extent_el_gfx4_2d(dev, info, tile_info, msaa_layout,
|
||
image_align_sa, phys_level0_sa,
|
||
array_pitch_span,
|
||
miptail_start_level,
|
||
array_pitch_el_rows,
|
||
phys_total_el);
|
||
return;
|
||
case ISL_DIM_LAYOUT_GFX6_STENCIL_HIZ:
|
||
assert(array_pitch_span == ISL_ARRAY_PITCH_SPAN_COMPACT);
|
||
isl_calc_phys_total_extent_el_gfx6_stencil_hiz(dev, info, tile_info,
|
||
image_align_sa,
|
||
phys_level0_sa,
|
||
array_pitch_el_rows,
|
||
phys_total_el);
|
||
return;
|
||
case ISL_DIM_LAYOUT_GFX4_3D:
|
||
assert(array_pitch_span == ISL_ARRAY_PITCH_SPAN_COMPACT);
|
||
isl_calc_phys_total_extent_el_gfx4_3d(dev, info,
|
||
image_align_sa, phys_level0_sa,
|
||
array_pitch_el_rows,
|
||
phys_total_el);
|
||
return;
|
||
}
|
||
|
||
unreachable("invalid value for dim_layout");
|
||
}
|
||
|
||
static uint32_t
|
||
isl_calc_row_pitch_alignment(const struct isl_device *dev,
|
||
const struct isl_surf_init_info *surf_info,
|
||
const struct isl_tile_info *tile_info)
|
||
{
|
||
if (tile_info->tiling != ISL_TILING_LINEAR) {
|
||
/* According to BSpec: 44930, Gfx12's CCS-compressed surface pitches must
|
||
* be 512B-aligned. CCS is only support on Y tilings.
|
||
*
|
||
* Only consider 512B alignment when :
|
||
* - AUX is not explicitly disabled
|
||
* - the caller has specified no pitch
|
||
*
|
||
* isl_surf_get_ccs_surf() will check that the main surface alignment
|
||
* matches CCS expectations.
|
||
*/
|
||
if (ISL_GFX_VER(dev) >= 12 &&
|
||
isl_format_supports_ccs_e(dev->info, surf_info->format) &&
|
||
tile_info->tiling != ISL_TILING_X &&
|
||
!(surf_info->usage & ISL_SURF_USAGE_DISABLE_AUX_BIT) &&
|
||
surf_info->row_pitch_B == 0) {
|
||
return isl_align(tile_info->phys_extent_B.width, 512);
|
||
}
|
||
|
||
return tile_info->phys_extent_B.width;
|
||
}
|
||
|
||
/* We only support tiled fragment shading rate buffers. */
|
||
assert((surf_info->usage & ISL_SURF_USAGE_CPB_BIT) == 0);
|
||
|
||
/* From the Broadwel PRM >> Volume 2d: Command Reference: Structures >>
|
||
* RENDER_SURFACE_STATE Surface Pitch (p349):
|
||
*
|
||
* - For linear render target surfaces and surfaces accessed with the
|
||
* typed data port messages, the pitch must be a multiple of the
|
||
* element size for non-YUV surface formats. Pitch must be
|
||
* a multiple of 2 * element size for YUV surface formats.
|
||
*
|
||
* - [Requirements for SURFTYPE_BUFFER and SURFTYPE_STRBUF, which we
|
||
* ignore because isl doesn't do buffers.]
|
||
*
|
||
* - For other linear surfaces, the pitch can be any multiple of
|
||
* bytes.
|
||
*/
|
||
const struct isl_format_layout *fmtl = isl_format_get_layout(surf_info->format);
|
||
const uint32_t bs = fmtl->bpb / 8;
|
||
uint32_t alignment;
|
||
|
||
if (surf_info->usage & ISL_SURF_USAGE_RENDER_TARGET_BIT) {
|
||
if (isl_format_is_yuv(surf_info->format)) {
|
||
alignment = 2 * bs;
|
||
} else {
|
||
alignment = bs;
|
||
}
|
||
} else {
|
||
alignment = 1;
|
||
}
|
||
|
||
/* From the Broadwell PRM >> Volume 2c: Command Reference: Registers >>
|
||
* PRI_STRIDE Stride (p1254):
|
||
*
|
||
* "When using linear memory, this must be at least 64 byte aligned."
|
||
*
|
||
* However, when displaying on NVIDIA and recent AMD GPUs via PRIME,
|
||
* we need a larger pitch of 256 bytes.
|
||
*
|
||
* If the ISL caller didn't specify a row_pitch_B, then we should assume
|
||
* the NVIDIA/AMD requirements. Otherwise, if we have a specified
|
||
* row_pitch_B, this is probably because the caller is trying to import a
|
||
* buffer. In that case we limit the minimum row pitch to the Intel HW
|
||
* requirement.
|
||
*/
|
||
if (surf_info->usage & ISL_SURF_USAGE_DISPLAY_BIT) {
|
||
if (surf_info->row_pitch_B == 0)
|
||
alignment = isl_align(alignment, 256);
|
||
else
|
||
alignment = isl_align(alignment, 64);
|
||
}
|
||
|
||
return alignment;
|
||
}
|
||
|
||
static uint32_t
|
||
isl_calc_linear_min_row_pitch(const struct isl_device *dev,
|
||
const struct isl_surf_init_info *info,
|
||
const struct isl_extent4d *phys_total_el,
|
||
uint32_t alignment_B)
|
||
{
|
||
const struct isl_format_layout *fmtl = isl_format_get_layout(info->format);
|
||
const uint32_t bs = fmtl->bpb / 8;
|
||
|
||
return isl_align_npot(bs * phys_total_el->w, alignment_B);
|
||
}
|
||
|
||
static uint32_t
|
||
isl_calc_tiled_min_row_pitch(const struct isl_device *dev,
|
||
const struct isl_surf_init_info *surf_info,
|
||
const struct isl_tile_info *tile_info,
|
||
const struct isl_extent4d *phys_total_el,
|
||
uint32_t alignment_B)
|
||
{
|
||
const struct isl_format_layout *fmtl = isl_format_get_layout(surf_info->format);
|
||
|
||
assert(fmtl->bpb % tile_info->format_bpb == 0);
|
||
|
||
const uint32_t tile_el_scale = fmtl->bpb / tile_info->format_bpb;
|
||
const uint32_t total_w_tl =
|
||
isl_align_div(phys_total_el->w * tile_el_scale,
|
||
tile_info->logical_extent_el.width);
|
||
|
||
/* In some cases the alignment of the pitch might be > to the tile size
|
||
* (for example Gfx12 CCS requires 512B alignment while the tile's width
|
||
* can be 128B), so align the row pitch to the alignment.
|
||
*/
|
||
assert(alignment_B >= tile_info->phys_extent_B.width);
|
||
return isl_align(total_w_tl * tile_info->phys_extent_B.width, alignment_B);
|
||
}
|
||
|
||
static uint32_t
|
||
isl_calc_min_row_pitch(const struct isl_device *dev,
|
||
const struct isl_surf_init_info *surf_info,
|
||
const struct isl_tile_info *tile_info,
|
||
const struct isl_extent4d *phys_total_el,
|
||
uint32_t alignment_B)
|
||
{
|
||
if (tile_info->tiling == ISL_TILING_LINEAR) {
|
||
return isl_calc_linear_min_row_pitch(dev, surf_info, phys_total_el,
|
||
alignment_B);
|
||
} else {
|
||
return isl_calc_tiled_min_row_pitch(dev, surf_info, tile_info,
|
||
phys_total_el, alignment_B);
|
||
}
|
||
}
|
||
|
||
/**
|
||
* Is `pitch` in the valid range for a hardware bitfield, if the bitfield's
|
||
* size is `bits` bits?
|
||
*
|
||
* Hardware pitch fields are offset by 1. For example, if the size of
|
||
* RENDER_SURFACE_STATE::SurfacePitch is B bits, then the range of valid
|
||
* pitches is [1, 2^b] inclusive. If the surface pitch is N, then
|
||
* RENDER_SURFACE_STATE::SurfacePitch must be set to N-1.
|
||
*/
|
||
static bool
|
||
pitch_in_range(uint32_t n, uint32_t bits)
|
||
{
|
||
assert(n != 0);
|
||
return likely(bits != 0 && 1 <= n && n <= (1 << bits));
|
||
}
|
||
|
||
void PRINTFLIKE(4, 5)
|
||
_isl_notify_failure(const struct isl_surf_init_info *surf_info,
|
||
const char *file, int line, const char *fmt, ...)
|
||
{
|
||
if (!INTEL_DEBUG(DEBUG_ISL))
|
||
return;
|
||
|
||
char msg[512];
|
||
va_list ap;
|
||
va_start(ap, fmt);
|
||
int ret = vsnprintf(msg, sizeof(msg), fmt, ap);
|
||
assert(ret < sizeof(msg));
|
||
va_end(ap);
|
||
|
||
#define PRINT_USAGE(bit, str) \
|
||
(surf_info->usage & ISL_SURF_USAGE_##bit##_BIT) ? ("+"str) : ""
|
||
#define PRINT_TILING(bit, str) \
|
||
(surf_info->tiling_flags & ISL_TILING_##bit##_BIT) ? ("+"str) : ""
|
||
|
||
snprintf(msg + ret, sizeof(msg) - ret,
|
||
" extent=%ux%ux%u dim=%s msaa=%ux levels=%u rpitch=%u fmt=%s "
|
||
"usages=%s%s%s%s%s%s%s%s%s%s%s%s%s%s "
|
||
"tiling_flags=%s%s%s%s%s%s%s%s%s%s%s%s%s",
|
||
surf_info->width, surf_info->height,
|
||
surf_info->dim == ISL_SURF_DIM_3D ?
|
||
surf_info->depth : surf_info->array_len,
|
||
surf_info->dim == ISL_SURF_DIM_1D ? "1d" :
|
||
surf_info->dim == ISL_SURF_DIM_2D ? "2d" : "3d",
|
||
surf_info->samples, surf_info->levels,
|
||
surf_info->row_pitch_B,
|
||
isl_format_get_name(surf_info->format) + strlen("ISL_FORMAT_"),
|
||
|
||
PRINT_USAGE(RENDER_TARGET, "rt"),
|
||
PRINT_USAGE(DEPTH, "depth"),
|
||
PRINT_USAGE(STENCIL, "stenc"),
|
||
PRINT_USAGE(TEXTURE, "tex"),
|
||
PRINT_USAGE(CUBE, "cube"),
|
||
PRINT_USAGE(DISABLE_AUX, "noaux"),
|
||
PRINT_USAGE(DISPLAY, "disp"),
|
||
PRINT_USAGE(HIZ, "hiz"),
|
||
PRINT_USAGE(MCS, "mcs"),
|
||
PRINT_USAGE(CCS, "ccs"),
|
||
PRINT_USAGE(VERTEX_BUFFER, "vb"),
|
||
PRINT_USAGE(INDEX_BUFFER, "ib"),
|
||
PRINT_USAGE(CONSTANT_BUFFER, "const"),
|
||
PRINT_USAGE(STAGING, "stage"),
|
||
|
||
PRINT_TILING(LINEAR, "linear"),
|
||
PRINT_TILING(W, "W"),
|
||
PRINT_TILING(X, "X"),
|
||
PRINT_TILING(Y0, "Y0"),
|
||
PRINT_TILING(SKL_Yf, "skl-Yf"),
|
||
PRINT_TILING(SKL_Ys, "skl-Ys"),
|
||
PRINT_TILING(ICL_Yf, "icl-Yf"),
|
||
PRINT_TILING(ICL_Ys, "icl-Ys"),
|
||
PRINT_TILING(4, "4"),
|
||
PRINT_TILING(64, "64"),
|
||
PRINT_TILING(HIZ, "hiz"),
|
||
PRINT_TILING(CCS, "ccs"),
|
||
PRINT_TILING(GFX12_CCS, "ccs12"));
|
||
|
||
#undef PRINT_USAGE
|
||
#undef PRINT_TILING
|
||
|
||
mesa_logd("%s:%i: %s", file, line, msg);
|
||
}
|
||
|
||
static bool
|
||
isl_calc_row_pitch(const struct isl_device *dev,
|
||
const struct isl_surf_init_info *surf_info,
|
||
const struct isl_tile_info *tile_info,
|
||
enum isl_dim_layout dim_layout,
|
||
const struct isl_extent4d *phys_total_el,
|
||
uint32_t *out_row_pitch_B)
|
||
{
|
||
uint32_t alignment_B =
|
||
isl_calc_row_pitch_alignment(dev, surf_info, tile_info);
|
||
|
||
const uint32_t min_row_pitch_B =
|
||
isl_calc_min_row_pitch(dev, surf_info, tile_info, phys_total_el,
|
||
alignment_B);
|
||
|
||
if (surf_info->row_pitch_B != 0) {
|
||
if (surf_info->row_pitch_B < min_row_pitch_B) {
|
||
return notify_failure(surf_info,
|
||
"requested row pitch (%uB) less than minimum "
|
||
"allowed (%uB)",
|
||
surf_info->row_pitch_B, min_row_pitch_B);
|
||
}
|
||
|
||
if (surf_info->row_pitch_B % alignment_B != 0) {
|
||
return notify_failure(surf_info,
|
||
"requested row pitch (%uB) doesn't satisfy the "
|
||
"minimum alignment requirement (%uB)",
|
||
surf_info->row_pitch_B, alignment_B);
|
||
}
|
||
}
|
||
|
||
const uint32_t row_pitch_B =
|
||
surf_info->row_pitch_B != 0 ? surf_info->row_pitch_B : min_row_pitch_B;
|
||
|
||
const uint32_t row_pitch_tl = row_pitch_B / tile_info->phys_extent_B.width;
|
||
|
||
if (row_pitch_B == 0)
|
||
return notify_failure(surf_info, "calculated row pitch is zero");
|
||
|
||
if (dim_layout == ISL_DIM_LAYOUT_GFX9_1D) {
|
||
/* SurfacePitch is ignored for this layout. */
|
||
goto done;
|
||
}
|
||
|
||
if ((surf_info->usage & (ISL_SURF_USAGE_RENDER_TARGET_BIT |
|
||
ISL_SURF_USAGE_TEXTURE_BIT |
|
||
ISL_SURF_USAGE_STORAGE_BIT)) &&
|
||
!pitch_in_range(row_pitch_B, RENDER_SURFACE_STATE_SurfacePitch_bits(dev->info))) {
|
||
return notify_failure(surf_info,
|
||
"row pitch (%uB) not in range of "
|
||
"RENDER_SURFACE_STATE::SurfacePitch",
|
||
row_pitch_B);
|
||
}
|
||
|
||
if ((surf_info->usage & (ISL_SURF_USAGE_CCS_BIT |
|
||
ISL_SURF_USAGE_MCS_BIT)) &&
|
||
!pitch_in_range(row_pitch_tl, RENDER_SURFACE_STATE_AuxiliarySurfacePitch_bits(dev->info))) {
|
||
return notify_failure(surf_info,
|
||
"row_pitch_tl=%u not in range of "
|
||
"RENDER_SURFACE_STATE::AuxiliarySurfacePitch",
|
||
row_pitch_tl);
|
||
}
|
||
|
||
if ((surf_info->usage & ISL_SURF_USAGE_DEPTH_BIT) &&
|
||
!pitch_in_range(row_pitch_B, _3DSTATE_DEPTH_BUFFER_SurfacePitch_bits(dev->info))) {
|
||
return notify_failure(surf_info,
|
||
"row pitch (%uB) not in range of "
|
||
"3DSTATE_DEPTH_BUFFER::SurfacePitch",
|
||
row_pitch_B);
|
||
}
|
||
|
||
if ((surf_info->usage & ISL_SURF_USAGE_HIZ_BIT) &&
|
||
!pitch_in_range(row_pitch_B, _3DSTATE_HIER_DEPTH_BUFFER_SurfacePitch_bits(dev->info))) {
|
||
return notify_failure(surf_info,
|
||
"row pitch (%uB) not in range of "
|
||
"3DSTATE_HIER_DEPTH_BUFFER::SurfacePitch",
|
||
row_pitch_B);
|
||
}
|
||
|
||
const uint32_t stencil_pitch_bits = dev->use_separate_stencil ?
|
||
_3DSTATE_STENCIL_BUFFER_SurfacePitch_bits(dev->info) :
|
||
_3DSTATE_DEPTH_BUFFER_SurfacePitch_bits(dev->info);
|
||
|
||
if ((surf_info->usage & ISL_SURF_USAGE_STENCIL_BIT) &&
|
||
!pitch_in_range(row_pitch_B, stencil_pitch_bits)) {
|
||
return notify_failure(surf_info,
|
||
"row pitch (%uB) not in range of "
|
||
"3DSTATE_STENCIL_BUFFER/3DSTATE_DEPTH_BUFFER::SurfacePitch",
|
||
row_pitch_B);
|
||
}
|
||
|
||
if ((surf_info->usage & ISL_SURF_USAGE_CPB_BIT) &&
|
||
!pitch_in_range(row_pitch_B, _3DSTATE_CPSIZE_CONTROL_BUFFER_SurfacePitch_bits(dev->info)))
|
||
return false;
|
||
|
||
done:
|
||
*out_row_pitch_B = row_pitch_B;
|
||
return true;
|
||
}
|
||
|
||
static bool
|
||
isl_calc_size(const struct isl_device *dev,
|
||
const struct isl_surf_init_info *info,
|
||
const struct isl_tile_info *tile_info,
|
||
const struct isl_extent4d *phys_total_el,
|
||
uint32_t array_pitch_el_rows,
|
||
uint32_t row_pitch_B,
|
||
uint64_t *out_size_B)
|
||
{
|
||
uint64_t size_B;
|
||
if (tile_info->tiling == ISL_TILING_LINEAR) {
|
||
/* LINEAR tiling has no concept of intra-tile arrays */
|
||
assert(phys_total_el->d == 1 && phys_total_el->a == 1);
|
||
|
||
size_B = (uint64_t) row_pitch_B * phys_total_el->h;
|
||
|
||
} else {
|
||
/* Pitches must make sense with the tiling */
|
||
assert(row_pitch_B % tile_info->phys_extent_B.width == 0);
|
||
|
||
uint32_t array_slices, array_pitch_tl_rows;
|
||
if (phys_total_el->d > 1) {
|
||
assert(phys_total_el->a == 1);
|
||
array_pitch_tl_rows = isl_assert_div(array_pitch_el_rows,
|
||
tile_info->logical_extent_el.h);
|
||
array_slices = isl_align_div(phys_total_el->d,
|
||
tile_info->logical_extent_el.d);
|
||
} else if (phys_total_el->a > 1) {
|
||
assert(phys_total_el->d == 1);
|
||
array_pitch_tl_rows = isl_assert_div(array_pitch_el_rows,
|
||
tile_info->logical_extent_el.h);
|
||
array_slices = isl_align_div(phys_total_el->a,
|
||
tile_info->logical_extent_el.a);
|
||
} else {
|
||
assert(phys_total_el->d == 1 && phys_total_el->a == 1);
|
||
array_pitch_tl_rows = 0;
|
||
array_slices = 1;
|
||
}
|
||
|
||
const uint32_t total_h_tl =
|
||
(array_slices - 1) * array_pitch_tl_rows +
|
||
isl_align_div(phys_total_el->h, tile_info->logical_extent_el.height);
|
||
|
||
size_B = (uint64_t) total_h_tl * tile_info->phys_extent_B.height *
|
||
row_pitch_B;
|
||
}
|
||
|
||
/* If for some reason we can't support the appropriate tiling format and
|
||
* end up falling to linear or some other format, make sure the image size
|
||
* and alignment are aligned to the expected block size so we can at least
|
||
* do opaque binds.
|
||
*/
|
||
if (info->usage & ISL_SURF_USAGE_SPARSE_BIT)
|
||
size_B = isl_align(size_B, 64 * 1024);
|
||
|
||
/* Pre-gfx9: from the Broadwell PRM Vol 5, Surface Layout:
|
||
* "In addition to restrictions on maximum height, width, and depth,
|
||
* surfaces are also restricted to a maximum size in bytes. This
|
||
* maximum is 2 GB for all products and all surface types."
|
||
*
|
||
* gfx9-10: from the Skylake PRM Vol 5, Maximum Surface Size in Bytes:
|
||
* "In addition to restrictions on maximum height, width, and depth,
|
||
* surfaces are also restricted to a maximum size of 2^38 bytes.
|
||
* All pixels within the surface must be contained within 2^38 bytes
|
||
* of the base address."
|
||
*
|
||
* gfx11+ platforms raised this limit to 2^44 bytes.
|
||
*/
|
||
uint64_t max_surface_B = 1ull << (ISL_GFX_VER(dev) >= 11 ? 44 :
|
||
ISL_GFX_VER(dev) >= 9 ? 38 : 31);
|
||
if (size_B > max_surface_B) {
|
||
return notify_failure(
|
||
info,
|
||
"calculated size (%"PRIu64"B) exceeds platform limit of %"PRIu64"B",
|
||
size_B, max_surface_B);
|
||
}
|
||
|
||
*out_size_B = size_B;
|
||
return true;
|
||
}
|
||
|
||
static uint32_t
|
||
isl_calc_base_alignment(const struct isl_device *dev,
|
||
const struct isl_surf_init_info *info,
|
||
const struct isl_tile_info *tile_info)
|
||
{
|
||
uint32_t base_alignment_B;
|
||
if (tile_info->tiling == ISL_TILING_LINEAR) {
|
||
/* From the Broadwell PRM Vol 2d,
|
||
* RENDER_SURFACE_STATE::SurfaceBaseAddress:
|
||
*
|
||
* "The Base Address for linear render target surfaces and surfaces
|
||
* accessed with the typed surface read/write data port messages must
|
||
* be element-size aligned, for non-YUV surface formats, or a
|
||
* multiple of 2 element-sizes for YUV surface formats. Other linear
|
||
* surfaces have no alignment requirements (byte alignment is
|
||
* sufficient.)"
|
||
*/
|
||
base_alignment_B = MAX(1, info->min_alignment_B);
|
||
if (info->usage & ISL_SURF_USAGE_RENDER_TARGET_BIT) {
|
||
if (isl_format_is_yuv(info->format)) {
|
||
base_alignment_B =
|
||
MAX(base_alignment_B, tile_info->format_bpb / 4);
|
||
} else {
|
||
base_alignment_B =
|
||
MAX(base_alignment_B, tile_info->format_bpb / 8);
|
||
}
|
||
}
|
||
base_alignment_B = isl_round_up_to_power_of_two(base_alignment_B);
|
||
|
||
/* From the Skylake PRM Vol 2c, PLANE_STRIDE::Stride:
|
||
*
|
||
* "For Linear memory, this field specifies the stride in chunks of
|
||
* 64 bytes (1 cache line)."
|
||
*/
|
||
if (isl_surf_usage_is_display(info->usage))
|
||
base_alignment_B = MAX(base_alignment_B, 64);
|
||
} else {
|
||
const uint32_t tile_size_B = tile_info->phys_extent_B.width *
|
||
tile_info->phys_extent_B.height;
|
||
assert(isl_is_pow2(info->min_alignment_B) && isl_is_pow2(tile_size_B));
|
||
base_alignment_B = MAX(info->min_alignment_B, tile_size_B);
|
||
|
||
/* The diagram in the Bspec section Memory Compression - Gfx12, shows
|
||
* that the CCS is indexed in 256B chunks. However, the
|
||
* PLANE_AUX_DIST::Auxiliary Surface Distance field is in units of 4K
|
||
* pages. We currently don't assign the usage field like we do for main
|
||
* surfaces, so just use 4K for now.
|
||
*/
|
||
if (tile_info->tiling == ISL_TILING_GFX12_CCS)
|
||
base_alignment_B = MAX(base_alignment_B, 4096);
|
||
|
||
/* Platforms using an aux map require that images be granularity-aligned
|
||
* if they're going to used with CCS. This is because the Aux
|
||
* translation table maps main surface addresses to aux addresses at a
|
||
* granularity in the main surface. Because we don't know for sure in
|
||
* ISL if a surface will use CCS, we have to guess based on the
|
||
* DISABLE_AUX usage bit. The one thing we do know is that we haven't
|
||
* enable CCS on linear images yet so we can avoid the extra alignment
|
||
* there.
|
||
*/
|
||
if (dev->info->has_aux_map &&
|
||
!(info->usage & ISL_SURF_USAGE_DISABLE_AUX_BIT)) {
|
||
base_alignment_B = MAX(base_alignment_B, dev->info->verx10 >= 125 ?
|
||
1024 * 1024 : 64 * 1024);
|
||
}
|
||
}
|
||
|
||
/* If for some reason we can't support the appropriate tiling format and
|
||
* end up falling to linear or some other format, make sure the image size
|
||
* and alignment are aligned to the expected block size so we can at least
|
||
* do opaque binds.
|
||
*/
|
||
if (info->usage & ISL_SURF_USAGE_SPARSE_BIT)
|
||
base_alignment_B = MAX(base_alignment_B, 64 * 1024);
|
||
|
||
return base_alignment_B;
|
||
}
|
||
|
||
bool
|
||
isl_surf_init_s(const struct isl_device *dev,
|
||
struct isl_surf *surf,
|
||
const struct isl_surf_init_info *restrict info)
|
||
{
|
||
/* Some sanity checks */
|
||
assert(!(info->usage & ISL_SURF_USAGE_CPB_BIT) ||
|
||
dev->info->has_coarse_pixel_primitive_and_cb);
|
||
|
||
const struct isl_format_layout *fmtl = isl_format_get_layout(info->format);
|
||
|
||
const struct isl_extent4d logical_level0_px = {
|
||
.w = info->width,
|
||
.h = info->height,
|
||
.d = info->depth,
|
||
.a = info->array_len,
|
||
};
|
||
|
||
enum isl_tiling tiling;
|
||
if (!isl_surf_choose_tiling(dev, info, &tiling))
|
||
return false;
|
||
|
||
const enum isl_dim_layout dim_layout =
|
||
isl_surf_choose_dim_layout(dev, info->dim, tiling, info->usage);
|
||
|
||
enum isl_msaa_layout msaa_layout;
|
||
if (!isl_choose_msaa_layout(dev, info, tiling, &msaa_layout))
|
||
return false;
|
||
|
||
struct isl_tile_info tile_info;
|
||
isl_tiling_get_info(tiling, info->dim, msaa_layout, fmtl->bpb,
|
||
info->samples, &tile_info);
|
||
|
||
struct isl_extent3d image_align_el;
|
||
isl_choose_image_alignment_el(dev, info, tiling, dim_layout, msaa_layout,
|
||
&image_align_el);
|
||
|
||
struct isl_extent3d image_align_sa =
|
||
isl_extent3d_el_to_sa(info->format, image_align_el);
|
||
|
||
struct isl_extent4d phys_level0_sa;
|
||
isl_calc_phys_level0_extent_sa(dev, info, dim_layout, tiling, msaa_layout,
|
||
&phys_level0_sa);
|
||
|
||
enum isl_array_pitch_span array_pitch_span =
|
||
isl_choose_array_pitch_span(dev, info, dim_layout, &phys_level0_sa);
|
||
|
||
uint32_t miptail_start_level =
|
||
isl_choose_miptail_start_level(dev, info, &tile_info);
|
||
|
||
uint32_t array_pitch_el_rows;
|
||
struct isl_extent4d phys_total_el;
|
||
isl_calc_phys_total_extent_el(dev, info, &tile_info,
|
||
dim_layout, msaa_layout,
|
||
&image_align_sa, &phys_level0_sa,
|
||
array_pitch_span, miptail_start_level,
|
||
&array_pitch_el_rows,
|
||
&phys_total_el);
|
||
|
||
uint32_t row_pitch_B;
|
||
if (!isl_calc_row_pitch(dev, info, &tile_info, dim_layout,
|
||
&phys_total_el, &row_pitch_B))
|
||
return false;
|
||
|
||
uint64_t size_B;
|
||
if (!isl_calc_size(dev, info, &tile_info, &phys_total_el,
|
||
array_pitch_el_rows, row_pitch_B, &size_B))
|
||
return false;
|
||
|
||
const uint32_t base_alignment_B =
|
||
isl_calc_base_alignment(dev, info, &tile_info);
|
||
|
||
*surf = (struct isl_surf) {
|
||
.dim = info->dim,
|
||
.dim_layout = dim_layout,
|
||
.msaa_layout = msaa_layout,
|
||
.tiling = tiling,
|
||
.format = info->format,
|
||
|
||
.levels = info->levels,
|
||
.samples = info->samples,
|
||
|
||
.image_alignment_el = image_align_el,
|
||
.logical_level0_px = logical_level0_px,
|
||
.phys_level0_sa = phys_level0_sa,
|
||
|
||
.size_B = size_B,
|
||
.alignment_B = base_alignment_B,
|
||
.row_pitch_B = row_pitch_B,
|
||
.array_pitch_el_rows = array_pitch_el_rows,
|
||
.array_pitch_span = array_pitch_span,
|
||
.miptail_start_level = miptail_start_level,
|
||
|
||
.usage = info->usage,
|
||
};
|
||
|
||
return true;
|
||
}
|
||
|
||
void
|
||
isl_surf_get_tile_info(const struct isl_surf *surf,
|
||
struct isl_tile_info *tile_info)
|
||
{
|
||
const struct isl_format_layout *fmtl = isl_format_get_layout(surf->format);
|
||
isl_tiling_get_info(surf->tiling, surf->dim, surf->msaa_layout, fmtl->bpb,
|
||
surf->samples, tile_info);
|
||
}
|
||
|
||
bool
|
||
isl_surf_get_hiz_surf(const struct isl_device *dev,
|
||
const struct isl_surf *surf,
|
||
struct isl_surf *hiz_surf)
|
||
{
|
||
if (INTEL_DEBUG(DEBUG_NO_HIZ))
|
||
return false;
|
||
|
||
/* HiZ support does not exist prior to Gfx5 */
|
||
if (ISL_GFX_VER(dev) < 5)
|
||
return false;
|
||
|
||
if (!isl_surf_usage_is_depth(surf->usage))
|
||
return false;
|
||
|
||
/* From the Sandy Bridge PRM, Vol 2 Part 1,
|
||
* 3DSTATE_DEPTH_BUFFER::Hierarchical Depth Buffer Enable,
|
||
*
|
||
* If this field is enabled, the Surface Format of the depth buffer
|
||
* cannot be D32_FLOAT_S8X24_UINT or D24_UNORM_S8_UINT. Use of stencil
|
||
* requires the separate stencil buffer.
|
||
*
|
||
* On SNB+, HiZ can't be used with combined depth-stencil buffers.
|
||
*/
|
||
if (isl_surf_usage_is_stencil(surf->usage))
|
||
return false;
|
||
|
||
/* Multisampled depth is always interleaved */
|
||
assert(surf->msaa_layout == ISL_MSAA_LAYOUT_NONE ||
|
||
surf->msaa_layout == ISL_MSAA_LAYOUT_INTERLEAVED);
|
||
|
||
/* From the Broadwell PRM Vol. 7, "Hierarchical Depth Buffer":
|
||
*
|
||
* "The Surface Type, Height, Width, Depth, Minimum Array Element, Render
|
||
* Target View Extent, and Depth Coordinate Offset X/Y of the
|
||
* hierarchical depth buffer are inherited from the depth buffer. The
|
||
* height and width of the hierarchical depth buffer that must be
|
||
* allocated are computed by the following formulas, where HZ is the
|
||
* hierarchical depth buffer and Z is the depth buffer. The Z_Height,
|
||
* Z_Width, and Z_Depth values given in these formulas are those present
|
||
* in 3DSTATE_DEPTH_BUFFER incremented by one.
|
||
*
|
||
* "The value of Z_Height and Z_Width must each be multiplied by 2 before
|
||
* being applied to the table below if Number of Multisamples is set to
|
||
* NUMSAMPLES_4. The value of Z_Height must be multiplied by 2 and
|
||
* Z_Width must be multiplied by 4 before being applied to the table
|
||
* below if Number of Multisamples is set to NUMSAMPLES_8."
|
||
*
|
||
* In the Sky Lake PRM, the second paragraph is gone. This means that,
|
||
* from Sandy Bridge through Broadwell, HiZ compresses samples in the
|
||
* primary depth surface. On Sky Lake and onward, HiZ compresses pixels.
|
||
*
|
||
* There are a number of different ways that this discrepancy could be
|
||
* handled. The way we have chosen is to simply make MSAA HiZ have the
|
||
* same number of samples as the parent surface pre-Sky Lake and always be
|
||
* single-sampled on Sky Lake and above. Since the block sizes of
|
||
* compressed formats are given in samples, this neatly handles everything
|
||
* without the need for additional HiZ formats with different block sizes
|
||
* on SKL+.
|
||
*/
|
||
const unsigned samples = ISL_GFX_VER(dev) >= 9 ? 1 : surf->samples;
|
||
|
||
const enum isl_format format =
|
||
ISL_GFX_VERX10(dev) >= 125 ? ISL_FORMAT_GFX125_HIZ : ISL_FORMAT_HIZ;
|
||
|
||
return isl_surf_init(dev, hiz_surf,
|
||
.dim = surf->dim,
|
||
.format = format,
|
||
.width = surf->logical_level0_px.width,
|
||
.height = surf->logical_level0_px.height,
|
||
.depth = surf->logical_level0_px.depth,
|
||
.levels = surf->levels,
|
||
.array_len = surf->logical_level0_px.array_len,
|
||
.samples = samples,
|
||
.usage = ISL_SURF_USAGE_HIZ_BIT,
|
||
.tiling_flags = ISL_TILING_HIZ_BIT);
|
||
}
|
||
|
||
bool
|
||
isl_surf_get_mcs_surf(const struct isl_device *dev,
|
||
const struct isl_surf *surf,
|
||
struct isl_surf *mcs_surf)
|
||
{
|
||
/* It must be multisampled with an array layout */
|
||
if (surf->msaa_layout != ISL_MSAA_LAYOUT_ARRAY)
|
||
return false;
|
||
|
||
/* On Gfx12+ this format is not listed in TGL PRMs, Volume 2b: Command
|
||
* Reference: Enumerations, RenderCompressionFormat
|
||
*/
|
||
if (ISL_GFX_VER(dev) >= 12 &&
|
||
surf->format == ISL_FORMAT_R9G9B9E5_SHAREDEXP)
|
||
return false;
|
||
|
||
/* The following are true of all multisampled surfaces */
|
||
assert(surf->samples > 1);
|
||
assert(surf->dim == ISL_SURF_DIM_2D);
|
||
assert(surf->levels == 1);
|
||
assert(surf->logical_level0_px.depth == 1);
|
||
assert(isl_format_supports_multisampling(dev->info, surf->format));
|
||
|
||
enum isl_format mcs_format;
|
||
switch (surf->samples) {
|
||
case 2: mcs_format = ISL_FORMAT_MCS_2X; break;
|
||
case 4: mcs_format = ISL_FORMAT_MCS_4X; break;
|
||
case 8: mcs_format = ISL_FORMAT_MCS_8X; break;
|
||
case 16: mcs_format = ISL_FORMAT_MCS_16X; break;
|
||
default:
|
||
unreachable("Invalid sample count");
|
||
}
|
||
|
||
return isl_surf_init(dev, mcs_surf,
|
||
.dim = ISL_SURF_DIM_2D,
|
||
.format = mcs_format,
|
||
.width = surf->logical_level0_px.width,
|
||
.height = surf->logical_level0_px.height,
|
||
.depth = 1,
|
||
.levels = 1,
|
||
.array_len = surf->logical_level0_px.array_len,
|
||
.samples = 1, /* MCS surfaces are really single-sampled */
|
||
.usage = ISL_SURF_USAGE_MCS_BIT,
|
||
.tiling_flags = ISL_TILING_ANY_MASK);
|
||
}
|
||
|
||
bool
|
||
isl_surf_supports_ccs(const struct isl_device *dev,
|
||
const struct isl_surf *surf,
|
||
const struct isl_surf *hiz_or_mcs_surf)
|
||
{
|
||
if (INTEL_DEBUG(DEBUG_NO_CCS))
|
||
return false;
|
||
|
||
if (surf->usage & ISL_SURF_USAGE_DISABLE_AUX_BIT)
|
||
return false;
|
||
|
||
if (!isl_format_supports_ccs_d(dev->info, surf->format) &&
|
||
!isl_format_supports_ccs_e(dev->info, surf->format))
|
||
return false;
|
||
|
||
/* From the Ivy Bridge PRM, Vol2 Part1 11.7 "MCS Buffer for Render
|
||
* Target(s)", beneath the "Fast Color Clear" bullet (p326):
|
||
*
|
||
* - Support is limited to tiled render targets.
|
||
*
|
||
* From the Skylake documentation, it is made clear that X-tiling is no
|
||
* longer supported:
|
||
*
|
||
* - MCS and Lossless compression is supported for
|
||
* TiledY/TileYs/TileYf non-MSRTs only.
|
||
*
|
||
* From the BSpec (44930) for Gfx12:
|
||
*
|
||
* Linear CCS is only allowed for Untyped Buffers but only via HDC
|
||
* Data-Port messages.
|
||
*
|
||
* We never use untyped messages on surfaces created by ISL on Gfx9+ so
|
||
* this means linear is out on Gfx12+ as well.
|
||
*/
|
||
if (surf->tiling == ISL_TILING_LINEAR)
|
||
return false;
|
||
|
||
/* TODO: Disable for now, as we're not sure about the meaning of
|
||
* 3DSTATE_CPSIZE_CONTROL_BUFFER::CPCBCompressionEnable
|
||
*/
|
||
if (isl_surf_usage_is_cpb(surf->usage))
|
||
return false;
|
||
|
||
/* SKL PRMs, Volume 5: Memory Views, Tiling and Mip Tails for 2D Surfaces:
|
||
*
|
||
* "Lossless compression must not be used on surfaces which have MIP
|
||
* Tail which contains MIPs for Slots greater than 11."
|
||
*/
|
||
if (surf->miptail_start_level < surf->levels) {
|
||
const uint32_t miptail_levels = surf->levels - surf->miptail_start_level;
|
||
if (miptail_levels + isl_get_miptail_base_row(surf->tiling) > 11) {
|
||
assert(surf->tiling == ISL_TILING_64 || isl_tiling_is_std_y(surf->tiling));
|
||
return false;
|
||
}
|
||
}
|
||
|
||
/* From the workarounds section in the SKL PRM:
|
||
*
|
||
* "RCC cacheline is composed of X-adjacent 64B fragments instead of
|
||
* memory adjacent. This causes a single 128B cacheline to straddle
|
||
* multiple LODs inside the TYF MIPtail for 3D surfaces (beyond a
|
||
* certain slot number), leading to corruption when CCS is enabled
|
||
* for these LODs and RT is later bound as texture. WA: If
|
||
* RENDER_SURFACE_STATE.Surface Type = 3D and
|
||
* RENDER_SURFACE_STATE.Auxiliary Surface Mode != AUX_NONE and
|
||
* RENDER_SURFACE_STATE.Tiled ResourceMode is TYF or TYS, Set the
|
||
* value of RENDER_SURFACE_STATE.Mip Tail Start LOD to a mip that
|
||
* larger than those present in the surface (i.e. 15)"
|
||
*
|
||
* We simply disallow CCS on 3D surfaces with miptails.
|
||
*
|
||
* Referred to as Wa_1207137018 on ICL+
|
||
*/
|
||
if (ISL_GFX_VERX10(dev) <= 120 &&
|
||
surf->dim == ISL_SURF_DIM_3D &&
|
||
surf->miptail_start_level < surf->levels) {
|
||
assert(isl_tiling_is_std_y(surf->tiling));
|
||
return false;
|
||
}
|
||
|
||
/* TODO: add CCS support for Ys/Yf */
|
||
if (isl_tiling_is_std_y(surf->tiling))
|
||
return false;
|
||
|
||
if (ISL_GFX_VER(dev) >= 12) {
|
||
if (isl_surf_usage_is_stencil(surf->usage)) {
|
||
/* HiZ and MCS aren't allowed with stencil */
|
||
assert(hiz_or_mcs_surf == NULL || hiz_or_mcs_surf->size_B == 0);
|
||
|
||
/* Multi-sampled stencil cannot have CCS */
|
||
if (surf->samples > 1)
|
||
return false;
|
||
} else if (isl_surf_usage_is_depth(surf->usage)) {
|
||
const struct isl_surf *hiz_surf = hiz_or_mcs_surf;
|
||
|
||
/* With depth surfaces, HIZ is required for CCS. */
|
||
if (hiz_surf == NULL || hiz_surf->size_B == 0)
|
||
return false;
|
||
|
||
assert(hiz_surf->usage & ISL_SURF_USAGE_HIZ_BIT);
|
||
assert(hiz_surf->tiling == ISL_TILING_HIZ);
|
||
assert(isl_format_is_hiz(hiz_surf->format));
|
||
} else if (surf->samples > 1) {
|
||
const struct isl_surf *mcs_surf = hiz_or_mcs_surf;
|
||
|
||
/* With multisampled color, CCS requires MCS */
|
||
if (mcs_surf == NULL || mcs_surf->size_B == 0)
|
||
return false;
|
||
|
||
assert(mcs_surf->usage & ISL_SURF_USAGE_MCS_BIT);
|
||
assert(isl_format_is_mcs(mcs_surf->format));
|
||
} else {
|
||
/* Single-sampled color can't have MCS or HiZ */
|
||
assert(hiz_or_mcs_surf == NULL || hiz_or_mcs_surf->size_B == 0);
|
||
}
|
||
|
||
/* On Gfx12, all CCS-compressed surface pitches must be multiples of
|
||
* 512B.
|
||
*/
|
||
if (surf->row_pitch_B % 512 != 0)
|
||
return false;
|
||
|
||
/* TODO: According to Wa_1406738321, 3D textures need a blit to a new
|
||
* surface in order to perform a resolve. For now, just disable CCS.
|
||
*/
|
||
if (surf->dim == ISL_SURF_DIM_3D)
|
||
return false;
|
||
|
||
/* BSpec 44930: (Gfx12, Gfx12.5)
|
||
*
|
||
* "Compression of 3D Ys surfaces with 64 or 128 bpp is not supported
|
||
* in Gen12. Moreover, "Render Target Fast-clear Enable" command is
|
||
* not supported for any 3D Ys surfaces. except when Surface is a
|
||
* Procdural Texture."
|
||
*
|
||
* Since the note applies to MTL, we apply this to TILE64 too.
|
||
*/
|
||
uint32_t format_bpb = isl_format_get_layout(surf->format)->bpb;
|
||
if (ISL_GFX_VER(dev) == 12 &&
|
||
surf->dim == ISL_SURF_DIM_3D &&
|
||
(surf->tiling == ISL_TILING_ICL_Ys ||
|
||
surf->tiling == ISL_TILING_64) &&
|
||
(format_bpb == 64 || format_bpb == 128))
|
||
return false;
|
||
|
||
/* TODO: Handle the other tiling formats */
|
||
if (surf->tiling != ISL_TILING_Y0 && surf->tiling != ISL_TILING_4 &&
|
||
surf->tiling != ISL_TILING_64)
|
||
return false;
|
||
|
||
/* TODO: Handle single-sampled Tile64. */
|
||
if (surf->samples == 1 && surf->tiling == ISL_TILING_64)
|
||
return false;
|
||
} else {
|
||
/* ISL_GFX_VER(dev) < 12 */
|
||
if (surf->samples > 1)
|
||
return false;
|
||
|
||
/* CCS is only for color images on Gfx7-11 */
|
||
if (isl_surf_usage_is_depth_or_stencil(surf->usage))
|
||
return false;
|
||
|
||
/* We're single-sampled color so having HiZ or MCS makes no sense */
|
||
assert(hiz_or_mcs_surf == NULL || hiz_or_mcs_surf->size_B == 0);
|
||
|
||
/* The PRM doesn't say this explicitly, but fast-clears don't appear to
|
||
* work for 3D textures until gfx9 where the layout of 3D textures
|
||
* changes to match 2D array textures.
|
||
*/
|
||
if (ISL_GFX_VER(dev) <= 8 && surf->dim != ISL_SURF_DIM_2D)
|
||
return false;
|
||
|
||
/* From the HSW PRM Volume 7: 3D-Media-GPGPU, page 652 (Color Clear of
|
||
* Non-MultiSampler Render Target Restrictions):
|
||
*
|
||
* "Support is for non-mip-mapped and non-array surface types only."
|
||
*
|
||
* This restriction is lifted on gfx8+. Technically, it may be possible
|
||
* to create a CCS for an arrayed or mipmapped image and only enable
|
||
* CCS_D when rendering to the base slice. However, there is no
|
||
* documentation tell us what the hardware would do in that case or what
|
||
* it does if you walk off the bases slice. (Does it ignore CCS or does
|
||
* it start scribbling over random memory?) We play it safe and just
|
||
* follow the docs and don't allow CCS_D for arrayed or mip-mapped
|
||
* surfaces.
|
||
*/
|
||
if (ISL_GFX_VER(dev) <= 7 &&
|
||
(surf->levels > 1 || surf->logical_level0_px.array_len > 1))
|
||
return false;
|
||
|
||
/* From the Skylake documentation, it is made clear that X-tiling is no
|
||
* longer supported:
|
||
*
|
||
* - MCS and Lossless compression is supported for
|
||
* TiledY/TileYs/TileYf non-MSRTs only.
|
||
*/
|
||
if (ISL_GFX_VER(dev) >= 9 && !isl_tiling_is_any_y(surf->tiling))
|
||
return false;
|
||
}
|
||
|
||
return true;
|
||
}
|
||
|
||
bool
|
||
isl_surf_get_ccs_surf(const struct isl_device *dev,
|
||
const struct isl_surf *surf,
|
||
const struct isl_surf *hiz_or_mcs_surf,
|
||
struct isl_surf *ccs_surf,
|
||
uint32_t row_pitch_B)
|
||
{
|
||
if (!isl_surf_supports_ccs(dev, surf, hiz_or_mcs_surf))
|
||
return false;
|
||
|
||
if (ISL_GFX_VER(dev) >= 12) {
|
||
enum isl_format ccs_format;
|
||
switch (isl_format_get_layout(surf->format)->bpb) {
|
||
case 8: ccs_format = ISL_FORMAT_GFX12_CCS_8BPP_Y0; break;
|
||
case 16: ccs_format = ISL_FORMAT_GFX12_CCS_16BPP_Y0; break;
|
||
case 32: ccs_format = ISL_FORMAT_GFX12_CCS_32BPP_Y0; break;
|
||
case 64: ccs_format = ISL_FORMAT_GFX12_CCS_64BPP_Y0; break;
|
||
case 128: ccs_format = ISL_FORMAT_GFX12_CCS_128BPP_Y0; break;
|
||
default:
|
||
return false;
|
||
}
|
||
|
||
/* On Gfx12, the CCS is a scaled-down version of the main surface. We
|
||
* model this as the CCS compressing a 2D-view of the entire surface.
|
||
*/
|
||
const bool ok =
|
||
isl_surf_init(dev, ccs_surf,
|
||
.dim = ISL_SURF_DIM_2D,
|
||
.format = ccs_format,
|
||
.width = isl_surf_get_row_pitch_el(surf),
|
||
.height = surf->size_B / surf->row_pitch_B,
|
||
.depth = 1,
|
||
.levels = 1,
|
||
.array_len = 1,
|
||
.samples = 1,
|
||
.row_pitch_B = row_pitch_B,
|
||
.usage = ISL_SURF_USAGE_CCS_BIT,
|
||
.tiling_flags = ISL_TILING_GFX12_CCS_BIT);
|
||
assert(!ok || ccs_surf->size_B == surf->size_B / 256);
|
||
return ok;
|
||
} else {
|
||
enum isl_format ccs_format;
|
||
if (ISL_GFX_VER(dev) >= 9) {
|
||
switch (isl_format_get_layout(surf->format)->bpb) {
|
||
case 32: ccs_format = ISL_FORMAT_GFX9_CCS_32BPP; break;
|
||
case 64: ccs_format = ISL_FORMAT_GFX9_CCS_64BPP; break;
|
||
case 128: ccs_format = ISL_FORMAT_GFX9_CCS_128BPP; break;
|
||
default: unreachable("Unsupported CCS format");
|
||
return false;
|
||
}
|
||
} else if (surf->tiling == ISL_TILING_Y0) {
|
||
switch (isl_format_get_layout(surf->format)->bpb) {
|
||
case 32: ccs_format = ISL_FORMAT_GFX7_CCS_32BPP_Y; break;
|
||
case 64: ccs_format = ISL_FORMAT_GFX7_CCS_64BPP_Y; break;
|
||
case 128: ccs_format = ISL_FORMAT_GFX7_CCS_128BPP_Y; break;
|
||
default: unreachable("Unsupported CCS format");
|
||
}
|
||
} else if (surf->tiling == ISL_TILING_X) {
|
||
switch (isl_format_get_layout(surf->format)->bpb) {
|
||
case 32: ccs_format = ISL_FORMAT_GFX7_CCS_32BPP_X; break;
|
||
case 64: ccs_format = ISL_FORMAT_GFX7_CCS_64BPP_X; break;
|
||
case 128: ccs_format = ISL_FORMAT_GFX7_CCS_128BPP_X; break;
|
||
default: unreachable("Unsupported CCS format");
|
||
}
|
||
} else {
|
||
unreachable("Invalid tiling format");
|
||
}
|
||
|
||
return isl_surf_init(dev, ccs_surf,
|
||
.dim = surf->dim,
|
||
.format = ccs_format,
|
||
.width = surf->logical_level0_px.width,
|
||
.height = surf->logical_level0_px.height,
|
||
.depth = surf->logical_level0_px.depth,
|
||
.levels = surf->levels,
|
||
.array_len = surf->logical_level0_px.array_len,
|
||
.samples = 1,
|
||
.row_pitch_B = row_pitch_B,
|
||
.usage = ISL_SURF_USAGE_CCS_BIT,
|
||
.tiling_flags = ISL_TILING_CCS_BIT);
|
||
}
|
||
}
|
||
|
||
#define isl_genX_call(dev, func, ...) \
|
||
switch (ISL_GFX_VERX10(dev)) { \
|
||
case 40: \
|
||
isl_gfx4_##func(__VA_ARGS__); \
|
||
break; \
|
||
case 45: \
|
||
/* G45 surface state is the same as gfx5 */ \
|
||
case 50: \
|
||
isl_gfx5_##func(__VA_ARGS__); \
|
||
break; \
|
||
case 60: \
|
||
isl_gfx6_##func(__VA_ARGS__); \
|
||
break; \
|
||
case 70: \
|
||
isl_gfx7_##func(__VA_ARGS__); \
|
||
break; \
|
||
case 75: \
|
||
isl_gfx75_##func(__VA_ARGS__); \
|
||
break; \
|
||
case 80: \
|
||
isl_gfx8_##func(__VA_ARGS__); \
|
||
break; \
|
||
case 90: \
|
||
isl_gfx9_##func(__VA_ARGS__); \
|
||
break; \
|
||
case 110: \
|
||
isl_gfx11_##func(__VA_ARGS__); \
|
||
break; \
|
||
case 120: \
|
||
isl_gfx12_##func(__VA_ARGS__); \
|
||
break; \
|
||
case 125: \
|
||
isl_gfx125_##func(__VA_ARGS__); \
|
||
break; \
|
||
case 200: \
|
||
isl_gfx20_##func(__VA_ARGS__); \
|
||
break; \
|
||
default: \
|
||
assert(!"Unknown hardware generation"); \
|
||
}
|
||
|
||
/**
|
||
* A variant of isl_surf_get_image_offset_sa() specific to
|
||
* ISL_DIM_LAYOUT_GFX4_2D.
|
||
*/
|
||
static void
|
||
get_image_offset_sa_gfx4_2d(const struct isl_surf *surf,
|
||
uint32_t level, uint32_t logical_array_layer,
|
||
uint32_t *x_offset_sa,
|
||
uint32_t *y_offset_sa,
|
||
uint32_t *z_offset_sa,
|
||
uint32_t *array_offset)
|
||
{
|
||
assert(level < surf->levels);
|
||
if (surf->dim == ISL_SURF_DIM_3D)
|
||
assert(logical_array_layer < surf->logical_level0_px.depth);
|
||
else
|
||
assert(logical_array_layer < surf->logical_level0_px.array_len);
|
||
|
||
const struct isl_extent3d image_align_sa =
|
||
isl_surf_get_image_alignment_sa(surf);
|
||
|
||
const uint32_t W0 = surf->phys_level0_sa.width;
|
||
const uint32_t H0 = surf->phys_level0_sa.height;
|
||
|
||
const uint32_t phys_layer = logical_array_layer *
|
||
(surf->msaa_layout == ISL_MSAA_LAYOUT_ARRAY ? surf->samples : 1);
|
||
|
||
uint32_t x = 0, y;
|
||
if (isl_tiling_is_std_y(surf->tiling) || surf->tiling == ISL_TILING_64) {
|
||
y = 0;
|
||
if (surf->dim == ISL_SURF_DIM_3D) {
|
||
*z_offset_sa = logical_array_layer;
|
||
*array_offset = 0;
|
||
} else {
|
||
*z_offset_sa = 0;
|
||
*array_offset = phys_layer;
|
||
}
|
||
} else {
|
||
y = phys_layer * isl_surf_get_array_pitch_sa_rows(surf);
|
||
*z_offset_sa = 0;
|
||
*array_offset = 0;
|
||
}
|
||
|
||
for (uint32_t l = 0; l < MIN(level, surf->miptail_start_level); ++l) {
|
||
if (l == 1) {
|
||
uint32_t W = isl_minify(W0, l);
|
||
x += isl_align_npot(W, image_align_sa.w);
|
||
} else {
|
||
uint32_t H = isl_minify(H0, l);
|
||
y += isl_align_npot(H, image_align_sa.h);
|
||
}
|
||
}
|
||
|
||
*x_offset_sa = x;
|
||
*y_offset_sa = y;
|
||
|
||
if (level >= surf->miptail_start_level) {
|
||
const struct isl_format_layout *fmtl =
|
||
isl_format_get_layout(surf->format);
|
||
|
||
uint32_t tail_offset_x_el, tail_offset_y_el, tail_offset_z_el;
|
||
isl_get_miptail_level_offset_el(surf->tiling, surf->dim,
|
||
fmtl->bpb,
|
||
level - surf->miptail_start_level,
|
||
&tail_offset_x_el,
|
||
&tail_offset_y_el,
|
||
&tail_offset_z_el);
|
||
*x_offset_sa += tail_offset_x_el * fmtl->bw;
|
||
*y_offset_sa += tail_offset_y_el * fmtl->bh;
|
||
*z_offset_sa += tail_offset_z_el * fmtl->bd;
|
||
}
|
||
}
|
||
|
||
/**
|
||
* A variant of isl_surf_get_image_offset_sa() specific to
|
||
* ISL_DIM_LAYOUT_GFX4_3D.
|
||
*/
|
||
static void
|
||
get_image_offset_sa_gfx4_3d(const struct isl_surf *surf,
|
||
uint32_t level, uint32_t logical_z_offset_px,
|
||
uint32_t *x_offset_sa,
|
||
uint32_t *y_offset_sa)
|
||
{
|
||
assert(level < surf->levels);
|
||
if (surf->dim == ISL_SURF_DIM_3D) {
|
||
assert(surf->phys_level0_sa.array_len == 1);
|
||
assert(logical_z_offset_px < isl_minify(surf->phys_level0_sa.depth, level));
|
||
} else {
|
||
assert(surf->dim == ISL_SURF_DIM_2D);
|
||
assert(surf->usage & ISL_SURF_USAGE_CUBE_BIT);
|
||
assert(surf->phys_level0_sa.array_len == 6);
|
||
assert(logical_z_offset_px < surf->phys_level0_sa.array_len);
|
||
}
|
||
|
||
const struct isl_extent3d image_align_sa =
|
||
isl_surf_get_image_alignment_sa(surf);
|
||
|
||
const uint32_t W0 = surf->phys_level0_sa.width;
|
||
const uint32_t H0 = surf->phys_level0_sa.height;
|
||
const uint32_t D0 = surf->phys_level0_sa.depth;
|
||
const uint32_t AL = surf->phys_level0_sa.array_len;
|
||
|
||
uint32_t x = 0;
|
||
uint32_t y = 0;
|
||
|
||
for (uint32_t l = 0; l < level; ++l) {
|
||
const uint32_t level_h = isl_align_npot(isl_minify(H0, l), image_align_sa.h);
|
||
const uint32_t level_d =
|
||
isl_align_npot(surf->dim == ISL_SURF_DIM_3D ? isl_minify(D0, l) : AL,
|
||
image_align_sa.d);
|
||
const uint32_t max_layers_vert = isl_align(level_d, 1u << l) / (1u << l);
|
||
|
||
y += level_h * max_layers_vert;
|
||
}
|
||
|
||
const uint32_t level_w = isl_align_npot(isl_minify(W0, level), image_align_sa.w);
|
||
const uint32_t level_h = isl_align_npot(isl_minify(H0, level), image_align_sa.h);
|
||
const uint32_t level_d =
|
||
isl_align_npot(surf->dim == ISL_SURF_DIM_3D ? isl_minify(D0, level) : AL,
|
||
image_align_sa.d);
|
||
|
||
const uint32_t max_layers_horiz = MIN(level_d, 1u << level);
|
||
|
||
x += level_w * (logical_z_offset_px % max_layers_horiz);
|
||
y += level_h * (logical_z_offset_px / max_layers_horiz);
|
||
|
||
*x_offset_sa = x;
|
||
*y_offset_sa = y;
|
||
}
|
||
|
||
static void
|
||
get_image_offset_sa_gfx6_stencil_hiz(const struct isl_surf *surf,
|
||
uint32_t level,
|
||
uint32_t logical_array_layer,
|
||
uint32_t *x_offset_sa,
|
||
uint32_t *y_offset_sa)
|
||
{
|
||
assert(level < surf->levels);
|
||
assert(surf->logical_level0_px.depth == 1);
|
||
assert(logical_array_layer < surf->logical_level0_px.array_len);
|
||
|
||
const struct isl_format_layout *fmtl = isl_format_get_layout(surf->format);
|
||
|
||
const struct isl_extent3d image_align_sa =
|
||
isl_surf_get_image_alignment_sa(surf);
|
||
|
||
struct isl_tile_info tile_info;
|
||
isl_surf_get_tile_info(surf, &tile_info);
|
||
const struct isl_extent2d tile_extent_sa = {
|
||
.w = tile_info.logical_extent_el.w * fmtl->bw,
|
||
.h = tile_info.logical_extent_el.h * fmtl->bh,
|
||
};
|
||
/* Tile size is a multiple of image alignment */
|
||
assert(tile_extent_sa.w % image_align_sa.w == 0);
|
||
assert(tile_extent_sa.h % image_align_sa.h == 0);
|
||
|
||
const uint32_t W0 = surf->phys_level0_sa.w;
|
||
const uint32_t H0 = surf->phys_level0_sa.h;
|
||
|
||
/* Each image has the same height as LOD0 because the hardware thinks
|
||
* everything is LOD0
|
||
*/
|
||
const uint32_t H = isl_align(H0, image_align_sa.h);
|
||
|
||
/* Quick sanity check for consistency */
|
||
if (surf->phys_level0_sa.array_len > 1)
|
||
assert(surf->array_pitch_el_rows == isl_assert_div(H, fmtl->bh));
|
||
|
||
uint32_t x = 0, y = 0;
|
||
for (uint32_t l = 0; l < level; ++l) {
|
||
const uint32_t W = isl_minify(W0, l);
|
||
|
||
const uint32_t w = isl_align(W, tile_extent_sa.w);
|
||
const uint32_t h = isl_align(H * surf->phys_level0_sa.a,
|
||
tile_extent_sa.h);
|
||
|
||
if (l == 0) {
|
||
y += h;
|
||
} else {
|
||
x += w;
|
||
}
|
||
}
|
||
|
||
y += H * logical_array_layer;
|
||
|
||
*x_offset_sa = x;
|
||
*y_offset_sa = y;
|
||
}
|
||
|
||
/**
|
||
* A variant of isl_surf_get_image_offset_sa() specific to
|
||
* ISL_DIM_LAYOUT_GFX9_1D.
|
||
*/
|
||
static void
|
||
get_image_offset_sa_gfx9_1d(const struct isl_surf *surf,
|
||
uint32_t level, uint32_t layer,
|
||
uint32_t *x_offset_sa,
|
||
uint32_t *y_offset_sa)
|
||
{
|
||
assert(level < surf->levels);
|
||
assert(layer < surf->phys_level0_sa.array_len);
|
||
assert(surf->phys_level0_sa.height == 1);
|
||
assert(surf->phys_level0_sa.depth == 1);
|
||
assert(surf->samples == 1);
|
||
|
||
const uint32_t W0 = surf->phys_level0_sa.width;
|
||
const struct isl_extent3d image_align_sa =
|
||
isl_surf_get_image_alignment_sa(surf);
|
||
|
||
uint32_t x = 0;
|
||
|
||
for (uint32_t l = 0; l < level; ++l) {
|
||
uint32_t W = isl_minify(W0, l);
|
||
uint32_t w = isl_align_npot(W, image_align_sa.w);
|
||
|
||
x += w;
|
||
}
|
||
|
||
*x_offset_sa = x;
|
||
*y_offset_sa = layer * isl_surf_get_array_pitch_sa_rows(surf);
|
||
}
|
||
|
||
/**
|
||
* Calculate the offset, in units of surface samples, to a subimage in the
|
||
* surface.
|
||
*
|
||
* @invariant level < surface levels
|
||
* @invariant logical_array_layer < logical array length of surface
|
||
* @invariant logical_z_offset_px < logical depth of surface at level
|
||
*/
|
||
void
|
||
isl_surf_get_image_offset_sa(const struct isl_surf *surf,
|
||
uint32_t level,
|
||
uint32_t logical_array_layer,
|
||
uint32_t logical_z_offset_px,
|
||
uint32_t *x_offset_sa,
|
||
uint32_t *y_offset_sa,
|
||
uint32_t *z_offset_sa,
|
||
uint32_t *array_offset)
|
||
{
|
||
assert(level < surf->levels);
|
||
assert(logical_array_layer < surf->logical_level0_px.array_len);
|
||
assert(logical_z_offset_px
|
||
< isl_minify(surf->logical_level0_px.depth, level));
|
||
|
||
switch (surf->dim_layout) {
|
||
case ISL_DIM_LAYOUT_GFX9_1D:
|
||
get_image_offset_sa_gfx9_1d(surf, level, logical_array_layer,
|
||
x_offset_sa, y_offset_sa);
|
||
*z_offset_sa = 0;
|
||
*array_offset = 0;
|
||
break;
|
||
case ISL_DIM_LAYOUT_GFX4_2D:
|
||
get_image_offset_sa_gfx4_2d(surf, level, logical_array_layer
|
||
+ logical_z_offset_px,
|
||
x_offset_sa, y_offset_sa,
|
||
z_offset_sa, array_offset);
|
||
break;
|
||
case ISL_DIM_LAYOUT_GFX4_3D:
|
||
get_image_offset_sa_gfx4_3d(surf, level, logical_array_layer +
|
||
logical_z_offset_px,
|
||
x_offset_sa, y_offset_sa);
|
||
*z_offset_sa = 0;
|
||
*array_offset = 0;
|
||
break;
|
||
case ISL_DIM_LAYOUT_GFX6_STENCIL_HIZ:
|
||
get_image_offset_sa_gfx6_stencil_hiz(surf, level, logical_array_layer +
|
||
logical_z_offset_px,
|
||
x_offset_sa, y_offset_sa);
|
||
*z_offset_sa = 0;
|
||
*array_offset = 0;
|
||
break;
|
||
|
||
default:
|
||
unreachable("not reached");
|
||
}
|
||
}
|
||
|
||
void
|
||
isl_surf_get_image_offset_el(const struct isl_surf *surf,
|
||
uint32_t level,
|
||
uint32_t logical_array_layer,
|
||
uint32_t logical_z_offset_px,
|
||
uint32_t *x_offset_el,
|
||
uint32_t *y_offset_el,
|
||
uint32_t *z_offset_el,
|
||
uint32_t *array_offset)
|
||
{
|
||
const struct isl_format_layout *fmtl = isl_format_get_layout(surf->format);
|
||
|
||
assert(level < surf->levels);
|
||
assert(logical_array_layer < surf->logical_level0_px.array_len);
|
||
assert(logical_z_offset_px
|
||
< isl_minify(surf->logical_level0_px.depth, level));
|
||
|
||
uint32_t x_offset_sa, y_offset_sa, z_offset_sa;
|
||
isl_surf_get_image_offset_sa(surf, level,
|
||
logical_array_layer,
|
||
logical_z_offset_px,
|
||
&x_offset_sa,
|
||
&y_offset_sa,
|
||
&z_offset_sa,
|
||
array_offset);
|
||
|
||
*x_offset_el = x_offset_sa / fmtl->bw;
|
||
*y_offset_el = y_offset_sa / fmtl->bh;
|
||
*z_offset_el = z_offset_sa / fmtl->bd;
|
||
}
|
||
|
||
void
|
||
isl_surf_get_image_offset_B_tile_sa(const struct isl_surf *surf,
|
||
uint32_t level,
|
||
uint32_t logical_array_layer,
|
||
uint32_t logical_z_offset_px,
|
||
uint64_t *offset_B,
|
||
uint32_t *x_offset_sa,
|
||
uint32_t *y_offset_sa)
|
||
{
|
||
const struct isl_format_layout *fmtl = isl_format_get_layout(surf->format);
|
||
|
||
uint32_t x_offset_el, y_offset_el;
|
||
isl_surf_get_image_offset_B_tile_el(surf, level,
|
||
logical_array_layer,
|
||
logical_z_offset_px,
|
||
offset_B,
|
||
&x_offset_el,
|
||
&y_offset_el);
|
||
|
||
if (x_offset_sa) {
|
||
*x_offset_sa = x_offset_el * fmtl->bw;
|
||
} else {
|
||
assert(x_offset_el == 0);
|
||
}
|
||
|
||
if (y_offset_sa) {
|
||
*y_offset_sa = y_offset_el * fmtl->bh;
|
||
} else {
|
||
assert(y_offset_el == 0);
|
||
}
|
||
}
|
||
|
||
void
|
||
isl_surf_get_image_offset_B_tile_el(const struct isl_surf *surf,
|
||
uint32_t level,
|
||
uint32_t logical_array_layer,
|
||
uint32_t logical_z_offset_px,
|
||
uint64_t *offset_B,
|
||
uint32_t *x_offset_el,
|
||
uint32_t *y_offset_el)
|
||
{
|
||
const struct isl_format_layout *fmtl = isl_format_get_layout(surf->format);
|
||
|
||
uint32_t total_x_offset_el, total_y_offset_el;
|
||
uint32_t total_z_offset_el, total_array_offset;
|
||
isl_surf_get_image_offset_el(surf, level, logical_array_layer,
|
||
logical_z_offset_px,
|
||
&total_x_offset_el,
|
||
&total_y_offset_el,
|
||
&total_z_offset_el,
|
||
&total_array_offset);
|
||
|
||
uint32_t z_offset_el, array_offset;
|
||
isl_tiling_get_intratile_offset_el(surf->tiling, surf->dim,
|
||
surf->msaa_layout, fmtl->bpb,
|
||
surf->samples,
|
||
surf->row_pitch_B,
|
||
surf->array_pitch_el_rows,
|
||
total_x_offset_el,
|
||
total_y_offset_el,
|
||
total_z_offset_el,
|
||
total_array_offset,
|
||
offset_B,
|
||
x_offset_el,
|
||
y_offset_el,
|
||
&z_offset_el,
|
||
&array_offset);
|
||
if (level >= surf->miptail_start_level) {
|
||
/* We can do a byte offset to the first level of a miptail but we cannot
|
||
* offset into a miptail.
|
||
*/
|
||
assert(level == surf->miptail_start_level);
|
||
|
||
/* The byte offset will get us to the miptail page. The other offsets
|
||
* are to the actual level within the miptail. It is assumed that the
|
||
* caller will set up a texture with a miptail and use the hardware to
|
||
* handle offseting inside the miptail.
|
||
*/
|
||
*x_offset_el = 0;
|
||
*y_offset_el = 0;
|
||
} else {
|
||
assert(z_offset_el == 0);
|
||
assert(array_offset == 0);
|
||
}
|
||
}
|
||
|
||
void
|
||
isl_surf_get_image_range_B_tile(const struct isl_surf *surf,
|
||
uint32_t level,
|
||
uint32_t logical_array_layer,
|
||
uint32_t logical_z_offset_px,
|
||
uint64_t *start_tile_B,
|
||
uint64_t *end_tile_B)
|
||
{
|
||
uint32_t start_x_offset_el, start_y_offset_el;
|
||
uint32_t start_z_offset_el, start_array_slice;
|
||
isl_surf_get_image_offset_el(surf, level, logical_array_layer,
|
||
logical_z_offset_px,
|
||
&start_x_offset_el,
|
||
&start_y_offset_el,
|
||
&start_z_offset_el,
|
||
&start_array_slice);
|
||
|
||
/* Compute the size of the subimage in surface elements */
|
||
const uint32_t subimage_w_sa = isl_minify(surf->phys_level0_sa.w, level);
|
||
const uint32_t subimage_h_sa = isl_minify(surf->phys_level0_sa.h, level);
|
||
const struct isl_format_layout *fmtl = isl_format_get_layout(surf->format);
|
||
const uint32_t subimage_w_el = isl_align_div_npot(subimage_w_sa, fmtl->bw);
|
||
const uint32_t subimage_h_el = isl_align_div_npot(subimage_h_sa, fmtl->bh);
|
||
|
||
/* Find the last pixel */
|
||
uint32_t end_x_offset_el = start_x_offset_el + subimage_w_el - 1;
|
||
uint32_t end_y_offset_el = start_y_offset_el + subimage_h_el - 1;
|
||
|
||
/* We only consider one Z or array slice */
|
||
const uint32_t end_z_offset_el = start_z_offset_el;
|
||
const uint32_t end_array_slice = start_array_slice;
|
||
|
||
UNUSED uint32_t x_offset_el, y_offset_el, z_offset_el, array_slice;
|
||
isl_tiling_get_intratile_offset_el(surf->tiling, surf->dim,
|
||
surf->msaa_layout, fmtl->bpb,
|
||
surf->samples,
|
||
surf->row_pitch_B,
|
||
surf->array_pitch_el_rows,
|
||
start_x_offset_el,
|
||
start_y_offset_el,
|
||
start_z_offset_el,
|
||
start_array_slice,
|
||
start_tile_B,
|
||
&x_offset_el,
|
||
&y_offset_el,
|
||
&z_offset_el,
|
||
&array_slice);
|
||
|
||
isl_tiling_get_intratile_offset_el(surf->tiling, surf->dim,
|
||
surf->msaa_layout, fmtl->bpb,
|
||
surf->samples,
|
||
surf->row_pitch_B,
|
||
surf->array_pitch_el_rows,
|
||
end_x_offset_el,
|
||
end_y_offset_el,
|
||
end_z_offset_el,
|
||
end_array_slice,
|
||
end_tile_B,
|
||
&x_offset_el,
|
||
&y_offset_el,
|
||
&z_offset_el,
|
||
&array_slice);
|
||
|
||
/* We want the range we return to be exclusive but the tile containing the
|
||
* last pixel (what we just calculated) is inclusive. Add one.
|
||
*/
|
||
(*end_tile_B)++;
|
||
|
||
assert(*end_tile_B <= surf->size_B);
|
||
}
|
||
|
||
void
|
||
isl_surf_get_image_surf(const struct isl_device *dev,
|
||
const struct isl_surf *surf,
|
||
uint32_t level,
|
||
uint32_t logical_array_layer,
|
||
uint32_t logical_z_offset_px,
|
||
struct isl_surf *image_surf,
|
||
uint64_t *offset_B,
|
||
uint32_t *x_offset_sa,
|
||
uint32_t *y_offset_sa)
|
||
{
|
||
isl_surf_get_image_offset_B_tile_sa(surf,
|
||
level,
|
||
logical_array_layer,
|
||
logical_z_offset_px,
|
||
offset_B,
|
||
x_offset_sa,
|
||
y_offset_sa);
|
||
|
||
/* Even for cube maps there will be only single face, therefore drop the
|
||
* corresponding flag if present.
|
||
*/
|
||
const isl_surf_usage_flags_t usage =
|
||
surf->usage & (~ISL_SURF_USAGE_CUBE_BIT);
|
||
|
||
bool ok UNUSED;
|
||
ok = isl_surf_init(dev, image_surf,
|
||
.dim = ISL_SURF_DIM_2D,
|
||
.format = surf->format,
|
||
.width = isl_minify(surf->logical_level0_px.w, level),
|
||
.height = isl_minify(surf->logical_level0_px.h, level),
|
||
.depth = 1,
|
||
.levels = 1,
|
||
.array_len = 1,
|
||
.samples = surf->samples,
|
||
.row_pitch_B = surf->row_pitch_B,
|
||
.usage = usage,
|
||
.tiling_flags = (1 << surf->tiling));
|
||
assert(ok);
|
||
}
|
||
|
||
bool
|
||
isl_surf_get_uncompressed_surf(const struct isl_device *dev,
|
||
const struct isl_surf *_surf,
|
||
const struct isl_view *_view,
|
||
struct isl_surf *ucompr_surf,
|
||
struct isl_view *ucompr_view,
|
||
uint64_t *offset_B,
|
||
uint32_t *x_offset_el,
|
||
uint32_t *y_offset_el)
|
||
{
|
||
/* Input and output pointers may be the same, save the input contents now. */
|
||
const struct isl_surf __surf = *_surf, *surf = &__surf;
|
||
const struct isl_view __view = *_view, *view = &__view;
|
||
const struct isl_format_layout *fmtl =
|
||
isl_format_get_layout(surf->format);
|
||
const enum isl_format view_format = view->format;
|
||
|
||
assert(fmtl->bw > 1 || fmtl->bh > 1 || fmtl->bd > 1);
|
||
assert(isl_format_is_compressed(surf->format));
|
||
assert(!isl_format_is_compressed(view->format));
|
||
assert(isl_format_get_layout(view->format)->bpb == fmtl->bpb);
|
||
assert(view->levels == 1);
|
||
|
||
const uint32_t view_width_px =
|
||
isl_minify(surf->logical_level0_px.width, view->base_level);
|
||
const uint32_t view_height_px =
|
||
isl_minify(surf->logical_level0_px.height, view->base_level);
|
||
|
||
assert(surf->samples == 1);
|
||
const uint32_t view_width_el = isl_align_div_npot(view_width_px, fmtl->bw);
|
||
const uint32_t view_height_el = isl_align_div_npot(view_height_px, fmtl->bh);
|
||
|
||
/* If we ever enable 3D block formats, we'll need to re-think this */
|
||
assert(fmtl->bd == 1);
|
||
|
||
if (isl_tiling_is_std_y(surf->tiling) || surf->tiling == ISL_TILING_64) {
|
||
/* If the requested level is not part of the miptail, we just offset to
|
||
* the requested level. Because we're using standard tilings and aren't
|
||
* in the miptail, arrays and 3D textures should just work so long as we
|
||
* have the right array stride in the end.
|
||
*
|
||
* If the requested level is in the miptail, we instead offset to the
|
||
* base of the miptail. Because offsets into the miptail are fixed by
|
||
* the tiling and don't depend on the actual size of the image, we can
|
||
* set the level in the view to offset into the miptail regardless of
|
||
* the fact minification yields different results for the compressed and
|
||
* uncompressed surface.
|
||
*/
|
||
const uint32_t base_level =
|
||
MIN(view->base_level, surf->miptail_start_level);
|
||
|
||
isl_surf_get_image_offset_B_tile_el(surf, base_level, 0, 0,
|
||
offset_B, x_offset_el, y_offset_el);
|
||
/* Tile64, Ys and Yf should have no intratile X or Y offset */
|
||
assert(*x_offset_el == 0 && *y_offset_el == 0);
|
||
|
||
/* Save off the array pitch */
|
||
const uint32_t array_pitch_el_rows = surf->array_pitch_el_rows;
|
||
|
||
const uint32_t view_depth_px =
|
||
isl_minify(surf->logical_level0_px.depth, view->base_level);
|
||
const uint32_t view_depth_el =
|
||
isl_align_div_npot(view_depth_px, fmtl->bd);
|
||
|
||
/* We need to compute the size of the uncompressed surface we will
|
||
* create. If we're not in the miptail, it is just the view size in
|
||
* surface elements. If we are in a miptail, we need a size that will
|
||
* minify to the view size in surface elements. This may not be the same
|
||
* as the size of base_level, but that's not a problem. Slot offsets are
|
||
* fixed in HW (see the tables used in isl_get_miptail_level_offset_el).
|
||
*/
|
||
const uint32_t ucompr_level = view->base_level - base_level;
|
||
|
||
/* The > 1 check is here to prevent a change in the surface's overall
|
||
* dimension (e.g. 2D->3D).
|
||
*
|
||
* Also having a base_level dimension = 1 doesn´t mean the HW will
|
||
* ignore higher mip level. Once the dimension has reached 1, it'll stay
|
||
* at 1 in the higher mip levels.
|
||
*/
|
||
struct isl_extent3d ucompr_surf_extent_el = {
|
||
.w = view_width_el > 1 ? view_width_el << ucompr_level : 1,
|
||
.h = view_height_el > 1 ? view_height_el << ucompr_level : 1,
|
||
.d = view_depth_el > 1 ? view_depth_el << ucompr_level : 1,
|
||
};
|
||
|
||
bool ok UNUSED;
|
||
ok = isl_surf_init(dev, ucompr_surf,
|
||
.dim = surf->dim,
|
||
.format = view->format,
|
||
.width = ucompr_surf_extent_el.width,
|
||
.height = ucompr_surf_extent_el.height,
|
||
.depth = ucompr_surf_extent_el.depth,
|
||
.levels = ucompr_level + 1,
|
||
.array_len = surf->logical_level0_px.array_len,
|
||
.samples = surf->samples,
|
||
.min_miptail_start_level =
|
||
(int) (view->base_level < surf->miptail_start_level),
|
||
.row_pitch_B = surf->row_pitch_B,
|
||
.usage = surf->usage,
|
||
.tiling_flags = (1u << surf->tiling));
|
||
assert(ok);
|
||
|
||
/* Use the array pitch from the original surface. This way 2D arrays
|
||
* and 3D textures should work properly, just with one LOD.
|
||
*/
|
||
assert(ucompr_surf->array_pitch_el_rows <= array_pitch_el_rows);
|
||
ucompr_surf->array_pitch_el_rows = array_pitch_el_rows;
|
||
|
||
/* The newly created image represents only the one miplevel so we
|
||
* need to adjust the view accordingly. Because we offset it to
|
||
* miplevel but used a Z and array slice of 0, the array range can be
|
||
* left alone.
|
||
*/
|
||
*ucompr_view = *view;
|
||
ucompr_view->base_level -= base_level;
|
||
} else {
|
||
if (view->array_len > 1) {
|
||
/* The Skylake PRM Vol. 2d, "RENDER_SURFACE_STATE::X Offset" says:
|
||
*
|
||
* "If Surface Array is enabled, this field must be zero."
|
||
*
|
||
* The PRMs for other hardware have similar text. This is also tricky
|
||
* to handle with things like BLORP's SW offsetting because the
|
||
* increased surface size required for the offset may result in an
|
||
* image height greater than qpitch.
|
||
*/
|
||
if (view->base_level > 0)
|
||
return false;
|
||
|
||
/* On Haswell and earlier, RENDER_SURFACE_STATE doesn't have a QPitch
|
||
* field; it only has "array pitch span" which means the QPitch is
|
||
* automatically calculated. Since we're smashing the surface format
|
||
* (block formats are subtly different) and the number of miplevels,
|
||
* that calculation will get thrown off. This means we can't do
|
||
* arrays even at LOD0
|
||
*
|
||
* On Broadwell, we do have a QPitch field which we can control.
|
||
* However, HALIGN and VALIGN are specified in pixels and are
|
||
* hard-coded to align to exactly the block size of the compressed
|
||
* texture. This means that, when reinterpreted as a non-compressed
|
||
* the QPitch may be anything but the HW requires it to be properly
|
||
* aligned.
|
||
*/
|
||
if (ISL_GFX_VER(dev) < 9)
|
||
return false;
|
||
|
||
*ucompr_surf = *surf;
|
||
ucompr_surf->levels = 1;
|
||
ucompr_surf->format = view_format;
|
||
|
||
/* We're making an uncompressed view here. The image dimensions need
|
||
* to be scaled down by the block size.
|
||
*/
|
||
assert(ucompr_surf->logical_level0_px.width == view_width_px);
|
||
assert(ucompr_surf->logical_level0_px.height == view_height_px);
|
||
ucompr_surf->logical_level0_px.width = view_width_el;
|
||
ucompr_surf->logical_level0_px.height = view_height_el;
|
||
ucompr_surf->phys_level0_sa = isl_surf_get_phys_level0_el(surf);
|
||
|
||
/* The surface mostly stays as-is; there is no offset */
|
||
*offset_B = 0;
|
||
*x_offset_el = 0;
|
||
*y_offset_el = 0;
|
||
|
||
/* The view remains the same */
|
||
*ucompr_view = *view;
|
||
} else {
|
||
/* If only one array slice is requested, directly offset to that
|
||
* slice. We could, in theory, still use arrays in some cases but
|
||
* BLORP isn't prepared for this and everyone who calls this function
|
||
* should be prepared to handle an X/Y offset.
|
||
*/
|
||
isl_surf_get_image_offset_B_tile_el(surf,
|
||
view->base_level,
|
||
surf->dim == ISL_SURF_DIM_3D ?
|
||
0 : view->base_array_layer,
|
||
surf->dim == ISL_SURF_DIM_3D ?
|
||
view->base_array_layer : 0,
|
||
offset_B,
|
||
x_offset_el,
|
||
y_offset_el);
|
||
|
||
/* Even for cube maps there will be only single face, therefore drop
|
||
* the corresponding flag if present.
|
||
*/
|
||
const isl_surf_usage_flags_t usage =
|
||
surf->usage & (~ISL_SURF_USAGE_CUBE_BIT);
|
||
|
||
bool ok UNUSED;
|
||
ok = isl_surf_init(dev, ucompr_surf,
|
||
.dim = ISL_SURF_DIM_2D,
|
||
.format = view_format,
|
||
.width = view_width_el,
|
||
.height = view_height_el,
|
||
.depth = 1,
|
||
.levels = 1,
|
||
.array_len = 1,
|
||
.samples = 1,
|
||
.row_pitch_B = surf->row_pitch_B,
|
||
.usage = usage,
|
||
.tiling_flags = (1 << surf->tiling));
|
||
assert(ok);
|
||
|
||
/* The newly created image represents the one subimage we're
|
||
* referencing with this view so it only has one array slice and
|
||
* miplevel.
|
||
*/
|
||
*ucompr_view = *view;
|
||
ucompr_view->base_array_layer = 0;
|
||
ucompr_view->base_level = 0;
|
||
}
|
||
}
|
||
|
||
return true;
|
||
}
|
||
|
||
void
|
||
isl_tiling_get_intratile_offset_el(enum isl_tiling tiling,
|
||
enum isl_surf_dim dim,
|
||
enum isl_msaa_layout msaa_layout,
|
||
uint32_t bpb,
|
||
uint32_t samples,
|
||
uint32_t row_pitch_B,
|
||
uint32_t array_pitch_el_rows,
|
||
uint32_t total_x_offset_el,
|
||
uint32_t total_y_offset_el,
|
||
uint32_t total_z_offset_el,
|
||
uint32_t total_array_offset,
|
||
uint64_t *tile_offset_B,
|
||
uint32_t *x_offset_el,
|
||
uint32_t *y_offset_el,
|
||
uint32_t *z_offset_el,
|
||
uint32_t *array_offset)
|
||
{
|
||
if (tiling == ISL_TILING_LINEAR) {
|
||
assert(bpb % 8 == 0);
|
||
assert(samples == 1);
|
||
assert(total_z_offset_el == 0 && total_array_offset == 0);
|
||
*tile_offset_B = (uint64_t)total_y_offset_el * row_pitch_B +
|
||
(uint64_t)total_x_offset_el * (bpb / 8);
|
||
*x_offset_el = 0;
|
||
*y_offset_el = 0;
|
||
*z_offset_el = 0;
|
||
*array_offset = 0;
|
||
return;
|
||
}
|
||
|
||
struct isl_tile_info tile_info;
|
||
isl_tiling_get_info(tiling, dim, msaa_layout, bpb, samples, &tile_info);
|
||
|
||
/* Pitches must make sense with the tiling */
|
||
assert(row_pitch_B % tile_info.phys_extent_B.width == 0);
|
||
if (tile_info.logical_extent_el.d > 1 || tile_info.logical_extent_el.a > 1)
|
||
assert(array_pitch_el_rows % tile_info.logical_extent_el.h == 0);
|
||
|
||
/* For non-power-of-two formats, we need the address to be both tile and
|
||
* element-aligned. The easiest way to achieve this is to work with a tile
|
||
* that is three times as wide as the regular tile.
|
||
*
|
||
* The tile info returned by get_tile_info has a logical size that is an
|
||
* integer number of tile_info.format_bpb size elements. To scale the
|
||
* tile, we scale up the physical width and then treat the logical tile
|
||
* size as if it has bpb size elements.
|
||
*/
|
||
const uint32_t tile_el_scale = bpb / tile_info.format_bpb;
|
||
tile_info.phys_extent_B.width *= tile_el_scale;
|
||
|
||
/* Compute the offset into the tile */
|
||
*x_offset_el = total_x_offset_el % tile_info.logical_extent_el.w;
|
||
*y_offset_el = total_y_offset_el % tile_info.logical_extent_el.h;
|
||
*z_offset_el = total_z_offset_el % tile_info.logical_extent_el.d;
|
||
*array_offset = total_array_offset % tile_info.logical_extent_el.a;
|
||
|
||
/* Compute the offset of the tile in units of whole tiles */
|
||
uint32_t x_offset_tl = total_x_offset_el / tile_info.logical_extent_el.w;
|
||
uint32_t y_offset_tl = total_y_offset_el / tile_info.logical_extent_el.h;
|
||
uint32_t z_offset_tl = total_z_offset_el / tile_info.logical_extent_el.d;
|
||
uint32_t a_offset_tl = total_array_offset / tile_info.logical_extent_el.a;
|
||
|
||
/* Compute an array pitch in number of tiles */
|
||
uint32_t array_pitch_tl_rows =
|
||
array_pitch_el_rows / tile_info.logical_extent_el.h;
|
||
|
||
/* Add the Z and array offset to the Y offset to get a 2D offset */
|
||
y_offset_tl += (z_offset_tl + a_offset_tl) * array_pitch_tl_rows;
|
||
|
||
*tile_offset_B =
|
||
(uint64_t)y_offset_tl * tile_info.phys_extent_B.h * row_pitch_B +
|
||
(uint64_t)x_offset_tl * tile_info.phys_extent_B.h * tile_info.phys_extent_B.w;
|
||
}
|
||
|
||
uint32_t
|
||
isl_surf_get_depth_format(const struct isl_device *dev,
|
||
const struct isl_surf *surf)
|
||
{
|
||
/* Support for separate stencil buffers began in gfx5. Support for
|
||
* interleaved depthstencil buffers ceased in gfx7. The intermediate gens,
|
||
* those that supported separate and interleaved stencil, were gfx5 and
|
||
* gfx6.
|
||
*
|
||
* For a list of all available formats, see the Sandybridge PRM >> Volume
|
||
* 2 Part 1: 3D/Media - 3D Pipeline >> 3DSTATE_DEPTH_BUFFER >> Surface
|
||
* Format (p321).
|
||
*/
|
||
|
||
bool has_stencil = surf->usage & ISL_SURF_USAGE_STENCIL_BIT;
|
||
|
||
assert(surf->usage & ISL_SURF_USAGE_DEPTH_BIT);
|
||
|
||
if (has_stencil)
|
||
assert(ISL_GFX_VER(dev) < 7);
|
||
|
||
switch (surf->format) {
|
||
default:
|
||
unreachable("bad isl depth format");
|
||
case ISL_FORMAT_R32_FLOAT_X8X24_TYPELESS:
|
||
assert(ISL_GFX_VER(dev) < 7);
|
||
return 0; /* D32_FLOAT_S8X24_UINT */
|
||
case ISL_FORMAT_R32_FLOAT:
|
||
assert(!has_stencil);
|
||
return 1; /* D32_FLOAT */
|
||
case ISL_FORMAT_R24_UNORM_X8_TYPELESS:
|
||
if (has_stencil) {
|
||
assert(ISL_GFX_VER(dev) < 7);
|
||
return 2; /* D24_UNORM_S8_UINT */
|
||
} else {
|
||
assert(ISL_GFX_VER(dev) >= 5);
|
||
return 3; /* D24_UNORM_X8_UINT */
|
||
}
|
||
case ISL_FORMAT_R16_UNORM:
|
||
assert(!has_stencil);
|
||
return 5; /* D16_UNORM */
|
||
}
|
||
}
|
||
|
||
bool
|
||
isl_swizzle_supports_rendering(const struct intel_device_info *devinfo,
|
||
struct isl_swizzle swizzle)
|
||
{
|
||
if (devinfo->platform == INTEL_PLATFORM_HSW) {
|
||
/* From the Haswell PRM,
|
||
* RENDER_SURFACE_STATE::Shader Channel Select Red
|
||
*
|
||
* "The Shader channel selects also define which shader channels are
|
||
* written to which surface channel. If the Shader channel select is
|
||
* SCS_ZERO or SCS_ONE then it is not written to the surface. If the
|
||
* shader channel select is SCS_RED it is written to the surface red
|
||
* channel and so on. If more than one shader channel select is set
|
||
* to the same surface channel only the first shader channel in RGBA
|
||
* order will be written."
|
||
*/
|
||
return true;
|
||
} else if (devinfo->ver <= 7) {
|
||
/* Ivy Bridge and early doesn't have any swizzling */
|
||
return isl_swizzle_is_identity(swizzle);
|
||
} else {
|
||
/* From the Sky Lake PRM Vol. 2d,
|
||
* RENDER_SURFACE_STATE::Shader Channel Select Red
|
||
*
|
||
* "For Render Target, Red, Green and Blue Shader Channel Selects
|
||
* MUST be such that only valid components can be swapped i.e. only
|
||
* change the order of components in the pixel. Any other values for
|
||
* these Shader Channel Select fields are not valid for Render
|
||
* Targets. This also means that there MUST not be multiple shader
|
||
* channels mapped to the same RT channel."
|
||
*
|
||
* From the Sky Lake PRM Vol. 2d,
|
||
* RENDER_SURFACE_STATE::Shader Channel Select Alpha
|
||
*
|
||
* "For Render Target, this field MUST be programmed to
|
||
* value = SCS_ALPHA."
|
||
*/
|
||
return (swizzle.r == ISL_CHANNEL_SELECT_RED ||
|
||
swizzle.r == ISL_CHANNEL_SELECT_GREEN ||
|
||
swizzle.r == ISL_CHANNEL_SELECT_BLUE) &&
|
||
(swizzle.g == ISL_CHANNEL_SELECT_RED ||
|
||
swizzle.g == ISL_CHANNEL_SELECT_GREEN ||
|
||
swizzle.g == ISL_CHANNEL_SELECT_BLUE) &&
|
||
(swizzle.b == ISL_CHANNEL_SELECT_RED ||
|
||
swizzle.b == ISL_CHANNEL_SELECT_GREEN ||
|
||
swizzle.b == ISL_CHANNEL_SELECT_BLUE) &&
|
||
swizzle.r != swizzle.g &&
|
||
swizzle.r != swizzle.b &&
|
||
swizzle.g != swizzle.b &&
|
||
swizzle.a == ISL_CHANNEL_SELECT_ALPHA;
|
||
}
|
||
}
|
||
|
||
static enum isl_channel_select
|
||
swizzle_select(enum isl_channel_select chan, struct isl_swizzle swizzle)
|
||
{
|
||
switch (chan) {
|
||
case ISL_CHANNEL_SELECT_ZERO:
|
||
case ISL_CHANNEL_SELECT_ONE:
|
||
return chan;
|
||
case ISL_CHANNEL_SELECT_RED:
|
||
return swizzle.r;
|
||
case ISL_CHANNEL_SELECT_GREEN:
|
||
return swizzle.g;
|
||
case ISL_CHANNEL_SELECT_BLUE:
|
||
return swizzle.b;
|
||
case ISL_CHANNEL_SELECT_ALPHA:
|
||
return swizzle.a;
|
||
default:
|
||
unreachable("Invalid swizzle component");
|
||
}
|
||
}
|
||
|
||
/**
|
||
* Returns the single swizzle that is equivalent to applying the two given
|
||
* swizzles in sequence.
|
||
*/
|
||
struct isl_swizzle
|
||
isl_swizzle_compose(struct isl_swizzle first, struct isl_swizzle second)
|
||
{
|
||
return (struct isl_swizzle) {
|
||
.r = swizzle_select(first.r, second),
|
||
.g = swizzle_select(first.g, second),
|
||
.b = swizzle_select(first.b, second),
|
||
.a = swizzle_select(first.a, second),
|
||
};
|
||
}
|
||
|
||
/**
|
||
* Returns a swizzle that is the pseudo-inverse of this swizzle.
|
||
*/
|
||
struct isl_swizzle
|
||
isl_swizzle_invert(struct isl_swizzle swizzle)
|
||
{
|
||
/* Default to zero for channels which do not show up in the swizzle */
|
||
enum isl_channel_select chans[4] = {
|
||
ISL_CHANNEL_SELECT_ZERO,
|
||
ISL_CHANNEL_SELECT_ZERO,
|
||
ISL_CHANNEL_SELECT_ZERO,
|
||
ISL_CHANNEL_SELECT_ZERO,
|
||
};
|
||
|
||
/* We go in ABGR order so that, if there are any duplicates, the first one
|
||
* is taken if you look at it in RGBA order. This is what Haswell hardware
|
||
* does for render target swizzles.
|
||
*/
|
||
if ((unsigned)(swizzle.a - ISL_CHANNEL_SELECT_RED) < 4)
|
||
chans[swizzle.a - ISL_CHANNEL_SELECT_RED] = ISL_CHANNEL_SELECT_ALPHA;
|
||
if ((unsigned)(swizzle.b - ISL_CHANNEL_SELECT_RED) < 4)
|
||
chans[swizzle.b - ISL_CHANNEL_SELECT_RED] = ISL_CHANNEL_SELECT_BLUE;
|
||
if ((unsigned)(swizzle.g - ISL_CHANNEL_SELECT_RED) < 4)
|
||
chans[swizzle.g - ISL_CHANNEL_SELECT_RED] = ISL_CHANNEL_SELECT_GREEN;
|
||
if ((unsigned)(swizzle.r - ISL_CHANNEL_SELECT_RED) < 4)
|
||
chans[swizzle.r - ISL_CHANNEL_SELECT_RED] = ISL_CHANNEL_SELECT_RED;
|
||
|
||
return (struct isl_swizzle) { chans[0], chans[1], chans[2], chans[3] };
|
||
}
|
||
|
||
static uint32_t
|
||
isl_color_value_channel(union isl_color_value src,
|
||
enum isl_channel_select chan,
|
||
uint32_t one)
|
||
{
|
||
if (chan == ISL_CHANNEL_SELECT_ZERO)
|
||
return 0;
|
||
if (chan == ISL_CHANNEL_SELECT_ONE)
|
||
return one;
|
||
|
||
assert(chan >= ISL_CHANNEL_SELECT_RED);
|
||
assert(chan < ISL_CHANNEL_SELECT_RED + 4);
|
||
|
||
return src.u32[chan - ISL_CHANNEL_SELECT_RED];
|
||
}
|
||
|
||
/** Applies an inverse swizzle to a color value */
|
||
union isl_color_value
|
||
isl_color_value_swizzle(union isl_color_value src,
|
||
struct isl_swizzle swizzle,
|
||
bool is_float)
|
||
{
|
||
uint32_t one = is_float ? 0x3f800000 : 1;
|
||
|
||
return (union isl_color_value) { .u32 = {
|
||
isl_color_value_channel(src, swizzle.r, one),
|
||
isl_color_value_channel(src, swizzle.g, one),
|
||
isl_color_value_channel(src, swizzle.b, one),
|
||
isl_color_value_channel(src, swizzle.a, one),
|
||
} };
|
||
}
|
||
|
||
/** Applies an inverse swizzle to a color value */
|
||
union isl_color_value
|
||
isl_color_value_swizzle_inv(union isl_color_value src,
|
||
struct isl_swizzle swizzle)
|
||
{
|
||
union isl_color_value dst = { .u32 = { 0, } };
|
||
|
||
/* We assign colors in ABGR order so that the first one will be taken in
|
||
* RGBA precedence order. According to the PRM docs for shader channel
|
||
* select, this matches Haswell hardware behavior.
|
||
*/
|
||
if ((unsigned)(swizzle.a - ISL_CHANNEL_SELECT_RED) < 4)
|
||
dst.u32[swizzle.a - ISL_CHANNEL_SELECT_RED] = src.u32[3];
|
||
if ((unsigned)(swizzle.b - ISL_CHANNEL_SELECT_RED) < 4)
|
||
dst.u32[swizzle.b - ISL_CHANNEL_SELECT_RED] = src.u32[2];
|
||
if ((unsigned)(swizzle.g - ISL_CHANNEL_SELECT_RED) < 4)
|
||
dst.u32[swizzle.g - ISL_CHANNEL_SELECT_RED] = src.u32[1];
|
||
if ((unsigned)(swizzle.r - ISL_CHANNEL_SELECT_RED) < 4)
|
||
dst.u32[swizzle.r - ISL_CHANNEL_SELECT_RED] = src.u32[0];
|
||
|
||
return dst;
|
||
}
|
||
|
||
uint8_t
|
||
isl_format_get_aux_map_encoding(enum isl_format format)
|
||
{
|
||
switch(format) {
|
||
case ISL_FORMAT_R32G32B32A32_FLOAT: return 0x11;
|
||
case ISL_FORMAT_R32G32B32X32_FLOAT: return 0x11;
|
||
case ISL_FORMAT_R32G32B32A32_SINT: return 0x12;
|
||
case ISL_FORMAT_R32G32B32A32_UINT: return 0x13;
|
||
case ISL_FORMAT_R16G16B16A16_UNORM: return 0x14;
|
||
case ISL_FORMAT_R16G16B16A16_SNORM: return 0x15;
|
||
case ISL_FORMAT_R16G16B16A16_SINT: return 0x16;
|
||
case ISL_FORMAT_R16G16B16A16_UINT: return 0x17;
|
||
case ISL_FORMAT_R16G16B16A16_FLOAT: return 0x10;
|
||
case ISL_FORMAT_R16G16B16X16_FLOAT: return 0x10;
|
||
case ISL_FORMAT_R32G32_FLOAT: return 0x11;
|
||
case ISL_FORMAT_R32G32_SINT: return 0x12;
|
||
case ISL_FORMAT_R32G32_UINT: return 0x13;
|
||
case ISL_FORMAT_B8G8R8A8_UNORM: return 0xA;
|
||
case ISL_FORMAT_B8G8R8X8_UNORM: return 0xA;
|
||
case ISL_FORMAT_B8G8R8A8_UNORM_SRGB: return 0xA;
|
||
case ISL_FORMAT_B8G8R8X8_UNORM_SRGB: return 0xA;
|
||
case ISL_FORMAT_R10G10B10A2_UNORM: return 0x18;
|
||
case ISL_FORMAT_R10G10B10A2_UNORM_SRGB: return 0x18;
|
||
case ISL_FORMAT_R10G10B10_FLOAT_A2_UNORM: return 0x19;
|
||
case ISL_FORMAT_R10G10B10A2_UINT: return 0x1A;
|
||
case ISL_FORMAT_R8G8B8A8_UNORM: return 0xA;
|
||
case ISL_FORMAT_R8G8B8A8_UNORM_SRGB: return 0xA;
|
||
case ISL_FORMAT_R8G8B8A8_SNORM: return 0x1B;
|
||
case ISL_FORMAT_R8G8B8A8_SINT: return 0x1C;
|
||
case ISL_FORMAT_R8G8B8A8_UINT: return 0x1D;
|
||
case ISL_FORMAT_R16G16_UNORM: return 0x14;
|
||
case ISL_FORMAT_R16G16_SNORM: return 0x15;
|
||
case ISL_FORMAT_R16G16_SINT: return 0x16;
|
||
case ISL_FORMAT_R16G16_UINT: return 0x17;
|
||
case ISL_FORMAT_R16G16_FLOAT: return 0x10;
|
||
case ISL_FORMAT_B10G10R10A2_UNORM: return 0x18;
|
||
case ISL_FORMAT_B10G10R10A2_UNORM_SRGB: return 0x18;
|
||
case ISL_FORMAT_R11G11B10_FLOAT: return 0x1E;
|
||
case ISL_FORMAT_R32_SINT: return 0x12;
|
||
case ISL_FORMAT_R32_UINT: return 0x13;
|
||
case ISL_FORMAT_R32_FLOAT: return 0x11;
|
||
case ISL_FORMAT_R24_UNORM_X8_TYPELESS: return 0x13;
|
||
case ISL_FORMAT_B5G6R5_UNORM: return 0xA;
|
||
case ISL_FORMAT_B5G6R5_UNORM_SRGB: return 0xA;
|
||
case ISL_FORMAT_B5G5R5A1_UNORM: return 0xA;
|
||
case ISL_FORMAT_B5G5R5A1_UNORM_SRGB: return 0xA;
|
||
case ISL_FORMAT_B4G4R4A4_UNORM: return 0xA;
|
||
case ISL_FORMAT_B4G4R4A4_UNORM_SRGB: return 0xA;
|
||
case ISL_FORMAT_R8G8_UNORM: return 0xA;
|
||
case ISL_FORMAT_R8G8_SNORM: return 0x1B;
|
||
case ISL_FORMAT_R8G8_SINT: return 0x1C;
|
||
case ISL_FORMAT_R8G8_UINT: return 0x1D;
|
||
case ISL_FORMAT_R16_UNORM: return 0x14;
|
||
case ISL_FORMAT_R16_SNORM: return 0x15;
|
||
case ISL_FORMAT_R16_SINT: return 0x16;
|
||
case ISL_FORMAT_R16_UINT: return 0x17;
|
||
case ISL_FORMAT_R16_FLOAT: return 0x10;
|
||
case ISL_FORMAT_B5G5R5X1_UNORM: return 0xA;
|
||
case ISL_FORMAT_B5G5R5X1_UNORM_SRGB: return 0xA;
|
||
case ISL_FORMAT_A1B5G5R5_UNORM: return 0xA;
|
||
case ISL_FORMAT_A4B4G4R4_UNORM: return 0xA;
|
||
case ISL_FORMAT_R8_UNORM: return 0xA;
|
||
case ISL_FORMAT_R8_SNORM: return 0x1B;
|
||
case ISL_FORMAT_R8_SINT: return 0x1C;
|
||
case ISL_FORMAT_R8_UINT: return 0x1D;
|
||
case ISL_FORMAT_A8_UNORM: return 0xA;
|
||
case ISL_FORMAT_PLANAR_420_8: return 0xF;
|
||
case ISL_FORMAT_PLANAR_420_10: return 0x7;
|
||
case ISL_FORMAT_PLANAR_420_12: return 0x8;
|
||
case ISL_FORMAT_PLANAR_420_16: return 0x8;
|
||
case ISL_FORMAT_YCRCB_NORMAL: return 0x3;
|
||
case ISL_FORMAT_YCRCB_SWAPY: return 0xB;
|
||
default:
|
||
unreachable("Unsupported aux-map format!");
|
||
return 0;
|
||
}
|
||
}
|
||
|
||
/*
|
||
* Returns compression format encoding for Unified Lossless Compression
|
||
*/
|
||
uint8_t
|
||
isl_get_render_compression_format(enum isl_format format)
|
||
{
|
||
/* From the Bspec, Enumeration_RenderCompressionFormat section (53726): */
|
||
switch(format) {
|
||
case ISL_FORMAT_R32G32B32A32_FLOAT:
|
||
case ISL_FORMAT_R32G32B32X32_FLOAT:
|
||
case ISL_FORMAT_R32G32B32A32_SINT:
|
||
return 0x0;
|
||
case ISL_FORMAT_R32G32B32A32_UINT:
|
||
return 0x1;
|
||
case ISL_FORMAT_R32G32_FLOAT:
|
||
case ISL_FORMAT_R32G32_SINT:
|
||
return 0x2;
|
||
case ISL_FORMAT_R32G32_UINT:
|
||
return 0x3;
|
||
case ISL_FORMAT_R16G16B16A16_UNORM:
|
||
case ISL_FORMAT_R16G16B16X16_UNORM:
|
||
case ISL_FORMAT_R16G16B16A16_UINT:
|
||
return 0x4;
|
||
case ISL_FORMAT_R16G16B16A16_SNORM:
|
||
case ISL_FORMAT_R16G16B16A16_SINT:
|
||
case ISL_FORMAT_R16G16B16A16_FLOAT:
|
||
case ISL_FORMAT_R16G16B16X16_FLOAT:
|
||
return 0x5;
|
||
case ISL_FORMAT_R16G16_UNORM:
|
||
case ISL_FORMAT_R16G16_UINT:
|
||
return 0x6;
|
||
case ISL_FORMAT_R16G16_SNORM:
|
||
case ISL_FORMAT_R16G16_SINT:
|
||
case ISL_FORMAT_R16G16_FLOAT:
|
||
return 0x7;
|
||
case ISL_FORMAT_B8G8R8A8_UNORM:
|
||
case ISL_FORMAT_B8G8R8X8_UNORM:
|
||
case ISL_FORMAT_B8G8R8A8_UNORM_SRGB:
|
||
case ISL_FORMAT_B8G8R8X8_UNORM_SRGB:
|
||
case ISL_FORMAT_R8G8B8A8_UNORM:
|
||
case ISL_FORMAT_R8G8B8X8_UNORM:
|
||
case ISL_FORMAT_R8G8B8A8_UNORM_SRGB:
|
||
case ISL_FORMAT_R8G8B8X8_UNORM_SRGB:
|
||
case ISL_FORMAT_R8G8B8A8_UINT:
|
||
return 0x8;
|
||
case ISL_FORMAT_R8G8B8A8_SNORM:
|
||
case ISL_FORMAT_R8G8B8A8_SINT:
|
||
return 0x9;
|
||
case ISL_FORMAT_B5G6R5_UNORM:
|
||
case ISL_FORMAT_B5G6R5_UNORM_SRGB:
|
||
case ISL_FORMAT_B5G5R5A1_UNORM:
|
||
case ISL_FORMAT_B5G5R5A1_UNORM_SRGB:
|
||
case ISL_FORMAT_B4G4R4A4_UNORM:
|
||
case ISL_FORMAT_B4G4R4A4_UNORM_SRGB:
|
||
case ISL_FORMAT_B5G5R5X1_UNORM:
|
||
case ISL_FORMAT_B5G5R5X1_UNORM_SRGB:
|
||
case ISL_FORMAT_A1B5G5R5_UNORM:
|
||
case ISL_FORMAT_A4B4G4R4_UNORM:
|
||
case ISL_FORMAT_R8G8_UNORM:
|
||
case ISL_FORMAT_R8G8_UINT:
|
||
return 0xA;
|
||
case ISL_FORMAT_R8G8_SNORM:
|
||
case ISL_FORMAT_R8G8_SINT:
|
||
return 0xB;
|
||
case ISL_FORMAT_R10G10B10A2_UNORM:
|
||
case ISL_FORMAT_R10G10B10A2_UNORM_SRGB:
|
||
case ISL_FORMAT_R10G10B10_FLOAT_A2_UNORM:
|
||
case ISL_FORMAT_R10G10B10A2_UINT:
|
||
case ISL_FORMAT_B10G10R10A2_UNORM:
|
||
case ISL_FORMAT_B10G10R10X2_UNORM:
|
||
case ISL_FORMAT_B10G10R10A2_UNORM_SRGB:
|
||
return 0xC;
|
||
case ISL_FORMAT_R11G11B10_FLOAT:
|
||
return 0xD;
|
||
case ISL_FORMAT_R32_SINT:
|
||
case ISL_FORMAT_R32_FLOAT:
|
||
return 0x10;
|
||
case ISL_FORMAT_R32_UINT:
|
||
case ISL_FORMAT_R24_UNORM_X8_TYPELESS:
|
||
return 0x11;
|
||
case ISL_FORMAT_R16_UNORM:
|
||
case ISL_FORMAT_R16_UINT:
|
||
return 0x14;
|
||
case ISL_FORMAT_R16_SNORM:
|
||
case ISL_FORMAT_R16_SINT:
|
||
case ISL_FORMAT_R16_FLOAT:
|
||
return 0x15;
|
||
case ISL_FORMAT_R8_UNORM:
|
||
case ISL_FORMAT_R8_UINT:
|
||
case ISL_FORMAT_A8_UNORM:
|
||
return 0x18;
|
||
case ISL_FORMAT_R8_SNORM:
|
||
case ISL_FORMAT_R8_SINT:
|
||
return 0x19;
|
||
default:
|
||
unreachable("Unsupported render compression format!");
|
||
return 0;
|
||
}
|
||
}
|
||
|
||
const char *
|
||
isl_aux_op_to_name(enum isl_aux_op op)
|
||
{
|
||
static const char *names[] = {
|
||
[ISL_AUX_OP_NONE] = "none",
|
||
[ISL_AUX_OP_FAST_CLEAR] = "fast-clear",
|
||
[ISL_AUX_OP_FULL_RESOLVE] = "full-resolve",
|
||
[ISL_AUX_OP_PARTIAL_RESOLVE] = "partial-resolve",
|
||
[ISL_AUX_OP_AMBIGUATE] = "ambiguate",
|
||
};
|
||
assert(op < ARRAY_SIZE(names));
|
||
return names[op];
|
||
}
|
||
|
||
const char *
|
||
isl_tiling_to_name(enum isl_tiling tiling)
|
||
{
|
||
static const char *names[] = {
|
||
[ISL_TILING_LINEAR] = "linear",
|
||
[ISL_TILING_W] = "W",
|
||
[ISL_TILING_X] = "X",
|
||
[ISL_TILING_Y0] = "Y0",
|
||
[ISL_TILING_SKL_Yf] = "SKL-Yf",
|
||
[ISL_TILING_SKL_Ys] = "SKL-Ys",
|
||
[ISL_TILING_ICL_Yf] = "ICL-Yf",
|
||
[ISL_TILING_ICL_Ys] = "ICL-Ys",
|
||
[ISL_TILING_4] = "4",
|
||
[ISL_TILING_64] = "64",
|
||
[ISL_TILING_HIZ] = "hiz",
|
||
[ISL_TILING_CCS] = "ccs",
|
||
[ISL_TILING_GFX12_CCS] = "gfx12-ccs",
|
||
};
|
||
assert(tiling < ARRAY_SIZE(names));
|
||
return names[tiling];
|
||
}
|