mirror of
https://gitlab.freedesktop.org/mesa/mesa.git
synced 2025-12-20 22:30:12 +01:00
IRIS_BATCH_BLITTER isn't supported prior to Tigerlake; in general,
batches may not be supported on all hardware. In most cases, querying
them is harmless (if useless): they reference nothing, have no commands
to flush, and so on. However, the fence code does need to know that
certain batches don't exist, so it can avoid adding inter-batch fences
involving them.
This patch introduces a new iris_foreach_batch() iterator macro that
walks over all batches that are actually supported on the platform,
while skipping the others. It provides a central place to update should
we add or reorder more batches in the future.
Fixes various tests in the piglit.spec.ext_external_objects.* category.
Thanks to Tapani Pälli for catching this.
Fixes: a90a1f15 ("iris: Create an IRIS_BATCH_BLITTER for using the BLT command streamer")
Reviewed-by: Caio Oliveira <caio.oliveira@intel.com>
Reviewed-by: Paulo Zanoni <paulo.r.zanoni@intel.com>
Part-of: <https://gitlab.freedesktop.org/mesa/mesa/-/merge_requests/14834>
1142 lines
35 KiB
C
1142 lines
35 KiB
C
/*
|
|
* Copyright © 2017 Intel Corporation
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
* to deal in the Software without restriction, including without limitation
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included
|
|
* in all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
|
|
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
|
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
|
|
* DEALINGS IN THE SOFTWARE.
|
|
*/
|
|
|
|
/**
|
|
* @file iris_batch.c
|
|
*
|
|
* Batchbuffer and command submission module.
|
|
*
|
|
* Every API draw call results in a number of GPU commands, which we
|
|
* collect into a "batch buffer". Typically, many draw calls are grouped
|
|
* into a single batch to amortize command submission overhead.
|
|
*
|
|
* We submit batches to the kernel using the I915_GEM_EXECBUFFER2 ioctl.
|
|
* One critical piece of data is the "validation list", which contains a
|
|
* list of the buffer objects (BOs) which the commands in the GPU need.
|
|
* The kernel will make sure these are resident and pinned at the correct
|
|
* virtual memory address before executing our batch. If a BO is not in
|
|
* the validation list, it effectively does not exist, so take care.
|
|
*/
|
|
|
|
#include "iris_batch.h"
|
|
#include "iris_bufmgr.h"
|
|
#include "iris_context.h"
|
|
#include "iris_fence.h"
|
|
#include "iris_utrace.h"
|
|
|
|
#include "drm-uapi/i915_drm.h"
|
|
|
|
#include "common/intel_aux_map.h"
|
|
#include "intel/common/intel_gem.h"
|
|
#include "intel/ds/intel_tracepoints.h"
|
|
#include "util/hash_table.h"
|
|
#include "util/set.h"
|
|
#include "util/u_upload_mgr.h"
|
|
|
|
#include <errno.h>
|
|
#include <xf86drm.h>
|
|
|
|
#if HAVE_VALGRIND
|
|
#include <valgrind.h>
|
|
#include <memcheck.h>
|
|
#define VG(x) x
|
|
#else
|
|
#define VG(x)
|
|
#endif
|
|
|
|
#define FILE_DEBUG_FLAG DEBUG_BUFMGR
|
|
|
|
static void
|
|
iris_batch_reset(struct iris_batch *batch);
|
|
|
|
static unsigned
|
|
num_fences(struct iris_batch *batch)
|
|
{
|
|
return util_dynarray_num_elements(&batch->exec_fences,
|
|
struct drm_i915_gem_exec_fence);
|
|
}
|
|
|
|
/**
|
|
* Debugging code to dump the fence list, used by INTEL_DEBUG=submit.
|
|
*/
|
|
static void
|
|
dump_fence_list(struct iris_batch *batch)
|
|
{
|
|
fprintf(stderr, "Fence list (length %u): ", num_fences(batch));
|
|
|
|
util_dynarray_foreach(&batch->exec_fences,
|
|
struct drm_i915_gem_exec_fence, f) {
|
|
fprintf(stderr, "%s%u%s ",
|
|
(f->flags & I915_EXEC_FENCE_WAIT) ? "..." : "",
|
|
f->handle,
|
|
(f->flags & I915_EXEC_FENCE_SIGNAL) ? "!" : "");
|
|
}
|
|
|
|
fprintf(stderr, "\n");
|
|
}
|
|
|
|
/**
|
|
* Debugging code to dump the validation list, used by INTEL_DEBUG=submit.
|
|
*/
|
|
static void
|
|
dump_bo_list(struct iris_batch *batch)
|
|
{
|
|
fprintf(stderr, "BO list (length %d):\n", batch->exec_count);
|
|
|
|
for (int i = 0; i < batch->exec_count; i++) {
|
|
struct iris_bo *bo = batch->exec_bos[i];
|
|
struct iris_bo *backing = iris_get_backing_bo(bo);
|
|
bool written = BITSET_TEST(batch->bos_written, i);
|
|
bool exported = iris_bo_is_exported(bo);
|
|
bool imported = iris_bo_is_imported(bo);
|
|
|
|
fprintf(stderr, "[%2d]: %3d (%3d) %-14s @ 0x%016"PRIx64" (%-15s %8"PRIu64"B) %2d refs %s%s%s\n",
|
|
i,
|
|
bo->gem_handle,
|
|
backing->gem_handle,
|
|
bo->name,
|
|
bo->address,
|
|
iris_heap_to_string[backing->real.heap],
|
|
bo->size,
|
|
bo->refcount,
|
|
written ? " write" : "",
|
|
exported ? " exported" : "",
|
|
imported ? " imported" : "");
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Return BO information to the batch decoder (for debugging).
|
|
*/
|
|
static struct intel_batch_decode_bo
|
|
decode_get_bo(void *v_batch, bool ppgtt, uint64_t address)
|
|
{
|
|
struct iris_batch *batch = v_batch;
|
|
|
|
assert(ppgtt);
|
|
|
|
for (int i = 0; i < batch->exec_count; i++) {
|
|
struct iris_bo *bo = batch->exec_bos[i];
|
|
/* The decoder zeroes out the top 16 bits, so we need to as well */
|
|
uint64_t bo_address = bo->address & (~0ull >> 16);
|
|
|
|
if (address >= bo_address && address < bo_address + bo->size) {
|
|
return (struct intel_batch_decode_bo) {
|
|
.addr = bo_address,
|
|
.size = bo->size,
|
|
.map = iris_bo_map(batch->dbg, bo, MAP_READ),
|
|
};
|
|
}
|
|
}
|
|
|
|
return (struct intel_batch_decode_bo) { };
|
|
}
|
|
|
|
static unsigned
|
|
decode_get_state_size(void *v_batch,
|
|
uint64_t address,
|
|
UNUSED uint64_t base_address)
|
|
{
|
|
struct iris_batch *batch = v_batch;
|
|
unsigned size = (uintptr_t)
|
|
_mesa_hash_table_u64_search(batch->state_sizes, address);
|
|
|
|
return size;
|
|
}
|
|
|
|
/**
|
|
* Decode the current batch.
|
|
*/
|
|
static void
|
|
decode_batch(struct iris_batch *batch)
|
|
{
|
|
void *map = iris_bo_map(batch->dbg, batch->exec_bos[0], MAP_READ);
|
|
intel_print_batch(&batch->decoder, map, batch->primary_batch_size,
|
|
batch->exec_bos[0]->address, false);
|
|
}
|
|
|
|
static void
|
|
iris_init_batch(struct iris_context *ice,
|
|
enum iris_batch_name name)
|
|
{
|
|
struct iris_batch *batch = &ice->batches[name];
|
|
struct iris_screen *screen = (void *) ice->ctx.screen;
|
|
|
|
/* Note: screen, ctx_id, exec_flags and has_engines_context fields are
|
|
* initialized at an earlier phase when contexts are created.
|
|
*
|
|
* See iris_init_batches(), which calls either iris_init_engines_context()
|
|
* or iris_init_non_engine_contexts().
|
|
*/
|
|
|
|
batch->dbg = &ice->dbg;
|
|
batch->reset = &ice->reset;
|
|
batch->state_sizes = ice->state.sizes;
|
|
batch->name = name;
|
|
batch->ice = ice;
|
|
batch->contains_fence_signal = false;
|
|
|
|
batch->fine_fences.uploader =
|
|
u_upload_create(&ice->ctx, 4096, PIPE_BIND_CUSTOM,
|
|
PIPE_USAGE_STAGING, 0);
|
|
iris_fine_fence_init(batch);
|
|
|
|
util_dynarray_init(&batch->exec_fences, ralloc_context(NULL));
|
|
util_dynarray_init(&batch->syncobjs, ralloc_context(NULL));
|
|
|
|
batch->exec_count = 0;
|
|
batch->max_gem_handle = 0;
|
|
batch->exec_array_size = 128;
|
|
batch->exec_bos =
|
|
malloc(batch->exec_array_size * sizeof(batch->exec_bos[0]));
|
|
batch->bos_written =
|
|
rzalloc_array(NULL, BITSET_WORD, BITSET_WORDS(batch->exec_array_size));
|
|
|
|
batch->cache.render = _mesa_hash_table_create(NULL, _mesa_hash_pointer,
|
|
_mesa_key_pointer_equal);
|
|
|
|
batch->num_other_batches = 0;
|
|
memset(batch->other_batches, 0, sizeof(batch->other_batches));
|
|
|
|
iris_foreach_batch(ice, other_batch) {
|
|
if (batch != other_batch)
|
|
batch->other_batches[batch->num_other_batches++] = other_batch;
|
|
}
|
|
|
|
if (INTEL_DEBUG(DEBUG_ANY)) {
|
|
const unsigned decode_flags =
|
|
INTEL_BATCH_DECODE_FULL |
|
|
(INTEL_DEBUG(DEBUG_COLOR) ? INTEL_BATCH_DECODE_IN_COLOR : 0) |
|
|
INTEL_BATCH_DECODE_OFFSETS |
|
|
INTEL_BATCH_DECODE_FLOATS;
|
|
|
|
intel_batch_decode_ctx_init(&batch->decoder, &screen->devinfo,
|
|
stderr, decode_flags, NULL,
|
|
decode_get_bo, decode_get_state_size, batch);
|
|
batch->decoder.dynamic_base = IRIS_MEMZONE_DYNAMIC_START;
|
|
batch->decoder.instruction_base = IRIS_MEMZONE_SHADER_START;
|
|
batch->decoder.max_vbo_decoded_lines = 32;
|
|
if (batch->name == IRIS_BATCH_BLITTER)
|
|
batch->decoder.engine = I915_ENGINE_CLASS_COPY;
|
|
}
|
|
|
|
iris_init_batch_measure(ice, batch);
|
|
|
|
u_trace_init(&batch->trace, &ice->ds.trace_context);
|
|
|
|
iris_batch_reset(batch);
|
|
}
|
|
|
|
static void
|
|
iris_init_non_engine_contexts(struct iris_context *ice, int priority)
|
|
{
|
|
struct iris_screen *screen = (void *) ice->ctx.screen;
|
|
|
|
iris_foreach_batch(ice, batch) {
|
|
batch->ctx_id = iris_create_hw_context(screen->bufmgr);
|
|
batch->exec_flags = I915_EXEC_RENDER;
|
|
batch->has_engines_context = false;
|
|
assert(batch->ctx_id);
|
|
iris_hw_context_set_priority(screen->bufmgr, batch->ctx_id, priority);
|
|
}
|
|
|
|
ice->batches[IRIS_BATCH_BLITTER].exec_flags = I915_EXEC_BLT;
|
|
}
|
|
|
|
static int
|
|
iris_create_engines_context(struct iris_context *ice, int priority)
|
|
{
|
|
struct iris_screen *screen = (void *) ice->ctx.screen;
|
|
const struct intel_device_info *devinfo = &screen->devinfo;
|
|
int fd = iris_bufmgr_get_fd(screen->bufmgr);
|
|
|
|
struct drm_i915_query_engine_info *engines_info =
|
|
intel_i915_query_alloc(fd, DRM_I915_QUERY_ENGINE_INFO, NULL);
|
|
|
|
if (!engines_info)
|
|
return -1;
|
|
|
|
if (intel_gem_count_engines(engines_info, I915_ENGINE_CLASS_RENDER) < 1) {
|
|
free(engines_info);
|
|
return -1;
|
|
}
|
|
|
|
STATIC_ASSERT(IRIS_BATCH_COUNT == 3);
|
|
uint16_t engine_classes[IRIS_BATCH_COUNT] = {
|
|
[IRIS_BATCH_RENDER] = I915_ENGINE_CLASS_RENDER,
|
|
[IRIS_BATCH_COMPUTE] = I915_ENGINE_CLASS_RENDER,
|
|
[IRIS_BATCH_BLITTER] = I915_ENGINE_CLASS_COPY,
|
|
};
|
|
|
|
/* Blitter is only supported on Gfx12+ */
|
|
unsigned num_batches = IRIS_BATCH_COUNT - (devinfo->ver >= 12 ? 0 : 1);
|
|
|
|
int engines_ctx =
|
|
intel_gem_create_context_engines(fd, engines_info, num_batches,
|
|
engine_classes);
|
|
|
|
if (engines_ctx < 0) {
|
|
free(engines_info);
|
|
return -1;
|
|
}
|
|
|
|
iris_hw_context_set_unrecoverable(screen->bufmgr, engines_ctx);
|
|
|
|
free(engines_info);
|
|
return engines_ctx;
|
|
}
|
|
|
|
static bool
|
|
iris_init_engines_context(struct iris_context *ice, int priority)
|
|
{
|
|
int engines_ctx = iris_create_engines_context(ice, priority);
|
|
if (engines_ctx < 0)
|
|
return false;
|
|
|
|
struct iris_screen *screen = (void *) ice->ctx.screen;
|
|
iris_hw_context_set_priority(screen->bufmgr, engines_ctx, priority);
|
|
|
|
iris_foreach_batch(ice, batch) {
|
|
unsigned i = batch - &ice->batches[0];
|
|
batch->ctx_id = engines_ctx;
|
|
batch->exec_flags = i;
|
|
batch->has_engines_context = true;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
void
|
|
iris_init_batches(struct iris_context *ice, int priority)
|
|
{
|
|
/* We have to do this early for iris_foreach_batch() to work */
|
|
for (int i = 0; i < IRIS_BATCH_COUNT; i++)
|
|
ice->batches[i].screen = (void *) ice->ctx.screen;
|
|
|
|
if (!iris_init_engines_context(ice, priority))
|
|
iris_init_non_engine_contexts(ice, priority);
|
|
iris_foreach_batch(ice, batch)
|
|
iris_init_batch(ice, batch - &ice->batches[0]);
|
|
}
|
|
|
|
static int
|
|
find_exec_index(struct iris_batch *batch, struct iris_bo *bo)
|
|
{
|
|
unsigned index = READ_ONCE(bo->index);
|
|
|
|
if (index < batch->exec_count && batch->exec_bos[index] == bo)
|
|
return index;
|
|
|
|
/* May have been shared between multiple active batches */
|
|
for (index = 0; index < batch->exec_count; index++) {
|
|
if (batch->exec_bos[index] == bo)
|
|
return index;
|
|
}
|
|
|
|
return -1;
|
|
}
|
|
|
|
static void
|
|
ensure_exec_obj_space(struct iris_batch *batch, uint32_t count)
|
|
{
|
|
while (batch->exec_count + count > batch->exec_array_size) {
|
|
unsigned old_size = batch->exec_array_size;
|
|
|
|
batch->exec_array_size *= 2;
|
|
batch->exec_bos =
|
|
realloc(batch->exec_bos,
|
|
batch->exec_array_size * sizeof(batch->exec_bos[0]));
|
|
batch->bos_written =
|
|
rerzalloc(NULL, batch->bos_written, BITSET_WORD,
|
|
BITSET_WORDS(old_size),
|
|
BITSET_WORDS(batch->exec_array_size));
|
|
}
|
|
}
|
|
|
|
static void
|
|
add_bo_to_batch(struct iris_batch *batch, struct iris_bo *bo, bool writable)
|
|
{
|
|
assert(batch->exec_array_size > batch->exec_count);
|
|
|
|
iris_bo_reference(bo);
|
|
|
|
batch->exec_bos[batch->exec_count] = bo;
|
|
|
|
if (writable)
|
|
BITSET_SET(batch->bos_written, batch->exec_count);
|
|
|
|
bo->index = batch->exec_count;
|
|
batch->exec_count++;
|
|
batch->aperture_space += bo->size;
|
|
|
|
batch->max_gem_handle =
|
|
MAX2(batch->max_gem_handle, iris_get_backing_bo(bo)->gem_handle);
|
|
}
|
|
|
|
static void
|
|
flush_for_cross_batch_dependencies(struct iris_batch *batch,
|
|
struct iris_bo *bo,
|
|
bool writable)
|
|
{
|
|
if (batch->measure && bo == batch->measure->bo)
|
|
return;
|
|
|
|
/* When a batch uses a buffer for the first time, or newly writes a buffer
|
|
* it had already referenced, we may need to flush other batches in order
|
|
* to correctly synchronize them.
|
|
*/
|
|
for (int b = 0; b < batch->num_other_batches; b++) {
|
|
struct iris_batch *other_batch = batch->other_batches[b];
|
|
int other_index = find_exec_index(other_batch, bo);
|
|
|
|
/* If the buffer is referenced by another batch, and either batch
|
|
* intends to write it, then flush the other batch and synchronize.
|
|
*
|
|
* Consider these cases:
|
|
*
|
|
* 1. They read, we read => No synchronization required.
|
|
* 2. They read, we write => Synchronize (they need the old value)
|
|
* 3. They write, we read => Synchronize (we need their new value)
|
|
* 4. They write, we write => Synchronize (order writes)
|
|
*
|
|
* The read/read case is very common, as multiple batches usually
|
|
* share a streaming state buffer or shader assembly buffer, and
|
|
* we want to avoid synchronizing in this case.
|
|
*/
|
|
if (other_index != -1 &&
|
|
(writable || BITSET_TEST(other_batch->bos_written, other_index)))
|
|
iris_batch_flush(other_batch);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Add a buffer to the current batch's validation list.
|
|
*
|
|
* You must call this on any BO you wish to use in this batch, to ensure
|
|
* that it's resident when the GPU commands execute.
|
|
*/
|
|
void
|
|
iris_use_pinned_bo(struct iris_batch *batch,
|
|
struct iris_bo *bo,
|
|
bool writable, enum iris_domain access)
|
|
{
|
|
assert(iris_get_backing_bo(bo)->real.kflags & EXEC_OBJECT_PINNED);
|
|
assert(bo != batch->bo);
|
|
|
|
/* Never mark the workaround BO with EXEC_OBJECT_WRITE. We don't care
|
|
* about the order of any writes to that buffer, and marking it writable
|
|
* would introduce data dependencies between multiple batches which share
|
|
* the buffer. It is added directly to the batch using add_bo_to_batch()
|
|
* during batch reset time.
|
|
*/
|
|
if (bo == batch->screen->workaround_bo)
|
|
return;
|
|
|
|
if (access < NUM_IRIS_DOMAINS) {
|
|
assert(batch->sync_region_depth);
|
|
iris_bo_bump_seqno(bo, batch->next_seqno, access);
|
|
}
|
|
|
|
int existing_index = find_exec_index(batch, bo);
|
|
|
|
if (existing_index == -1) {
|
|
flush_for_cross_batch_dependencies(batch, bo, writable);
|
|
|
|
ensure_exec_obj_space(batch, 1);
|
|
add_bo_to_batch(batch, bo, writable);
|
|
} else if (writable && !BITSET_TEST(batch->bos_written, existing_index)) {
|
|
flush_for_cross_batch_dependencies(batch, bo, writable);
|
|
|
|
/* The BO is already in the list; mark it writable */
|
|
BITSET_SET(batch->bos_written, existing_index);
|
|
}
|
|
}
|
|
|
|
static void
|
|
create_batch(struct iris_batch *batch)
|
|
{
|
|
struct iris_screen *screen = batch->screen;
|
|
struct iris_bufmgr *bufmgr = screen->bufmgr;
|
|
|
|
/* TODO: We probably could suballocate batches... */
|
|
batch->bo = iris_bo_alloc(bufmgr, "command buffer",
|
|
BATCH_SZ + BATCH_RESERVED, 1,
|
|
IRIS_MEMZONE_OTHER, BO_ALLOC_NO_SUBALLOC);
|
|
iris_get_backing_bo(batch->bo)->real.kflags |= EXEC_OBJECT_CAPTURE;
|
|
batch->map = iris_bo_map(NULL, batch->bo, MAP_READ | MAP_WRITE);
|
|
batch->map_next = batch->map;
|
|
|
|
ensure_exec_obj_space(batch, 1);
|
|
add_bo_to_batch(batch, batch->bo, false);
|
|
}
|
|
|
|
static void
|
|
iris_batch_maybe_noop(struct iris_batch *batch)
|
|
{
|
|
/* We only insert the NOOP at the beginning of the batch. */
|
|
assert(iris_batch_bytes_used(batch) == 0);
|
|
|
|
if (batch->noop_enabled) {
|
|
/* Emit MI_BATCH_BUFFER_END to prevent any further command to be
|
|
* executed.
|
|
*/
|
|
uint32_t *map = batch->map_next;
|
|
|
|
map[0] = (0xA << 23);
|
|
|
|
batch->map_next += 4;
|
|
}
|
|
}
|
|
|
|
static void
|
|
iris_batch_reset(struct iris_batch *batch)
|
|
{
|
|
struct iris_screen *screen = batch->screen;
|
|
struct iris_bufmgr *bufmgr = screen->bufmgr;
|
|
|
|
u_trace_fini(&batch->trace);
|
|
|
|
iris_bo_unreference(batch->bo);
|
|
batch->primary_batch_size = 0;
|
|
batch->total_chained_batch_size = 0;
|
|
batch->contains_draw = false;
|
|
batch->contains_fence_signal = false;
|
|
batch->decoder.surface_base = batch->last_surface_base_address;
|
|
|
|
create_batch(batch);
|
|
assert(batch->bo->index == 0);
|
|
|
|
memset(batch->bos_written, 0,
|
|
sizeof(BITSET_WORD) * BITSET_WORDS(batch->exec_array_size));
|
|
|
|
struct iris_syncobj *syncobj = iris_create_syncobj(bufmgr);
|
|
iris_batch_add_syncobj(batch, syncobj, I915_EXEC_FENCE_SIGNAL);
|
|
iris_syncobj_reference(bufmgr, &syncobj, NULL);
|
|
|
|
assert(!batch->sync_region_depth);
|
|
iris_batch_sync_boundary(batch);
|
|
iris_batch_mark_reset_sync(batch);
|
|
|
|
/* Always add the workaround BO, it contains a driver identifier at the
|
|
* beginning quite helpful to debug error states.
|
|
*/
|
|
add_bo_to_batch(batch, screen->workaround_bo, false);
|
|
|
|
iris_batch_maybe_noop(batch);
|
|
|
|
u_trace_init(&batch->trace, &batch->ice->ds.trace_context);
|
|
batch->begin_trace_recorded = false;
|
|
}
|
|
|
|
static void
|
|
iris_batch_free(struct iris_batch *batch)
|
|
{
|
|
struct iris_screen *screen = batch->screen;
|
|
struct iris_bufmgr *bufmgr = screen->bufmgr;
|
|
|
|
for (int i = 0; i < batch->exec_count; i++) {
|
|
iris_bo_unreference(batch->exec_bos[i]);
|
|
}
|
|
free(batch->exec_bos);
|
|
ralloc_free(batch->bos_written);
|
|
|
|
ralloc_free(batch->exec_fences.mem_ctx);
|
|
|
|
pipe_resource_reference(&batch->fine_fences.ref.res, NULL);
|
|
|
|
util_dynarray_foreach(&batch->syncobjs, struct iris_syncobj *, s)
|
|
iris_syncobj_reference(bufmgr, s, NULL);
|
|
ralloc_free(batch->syncobjs.mem_ctx);
|
|
|
|
iris_fine_fence_reference(batch->screen, &batch->last_fence, NULL);
|
|
u_upload_destroy(batch->fine_fences.uploader);
|
|
|
|
iris_bo_unreference(batch->bo);
|
|
batch->bo = NULL;
|
|
batch->map = NULL;
|
|
batch->map_next = NULL;
|
|
|
|
/* iris_destroy_batches() will destroy engines contexts. */
|
|
if (!batch->has_engines_context)
|
|
iris_destroy_kernel_context(bufmgr, batch->ctx_id);
|
|
|
|
iris_destroy_batch_measure(batch->measure);
|
|
batch->measure = NULL;
|
|
|
|
u_trace_fini(&batch->trace);
|
|
|
|
_mesa_hash_table_destroy(batch->cache.render, NULL);
|
|
|
|
if (INTEL_DEBUG(DEBUG_ANY))
|
|
intel_batch_decode_ctx_finish(&batch->decoder);
|
|
}
|
|
|
|
void
|
|
iris_destroy_batches(struct iris_context *ice)
|
|
{
|
|
/* If we are using an engines context, then a single kernel context is
|
|
* created, with multiple hardware contexts. So, we only need to destroy
|
|
* the context on the first batch.
|
|
*/
|
|
if (ice->batches[0].has_engines_context) {
|
|
iris_destroy_kernel_context(ice->batches[0].screen->bufmgr,
|
|
ice->batches[0].ctx_id);
|
|
}
|
|
|
|
iris_foreach_batch(ice, batch)
|
|
iris_batch_free(batch);
|
|
}
|
|
|
|
/**
|
|
* If we've chained to a secondary batch, or are getting near to the end,
|
|
* then flush. This should only be called between draws.
|
|
*/
|
|
void
|
|
iris_batch_maybe_flush(struct iris_batch *batch, unsigned estimate)
|
|
{
|
|
if (batch->bo != batch->exec_bos[0] ||
|
|
iris_batch_bytes_used(batch) + estimate >= BATCH_SZ) {
|
|
iris_batch_flush(batch);
|
|
}
|
|
}
|
|
|
|
static void
|
|
record_batch_sizes(struct iris_batch *batch)
|
|
{
|
|
unsigned batch_size = iris_batch_bytes_used(batch);
|
|
|
|
VG(VALGRIND_CHECK_MEM_IS_DEFINED(batch->map, batch_size));
|
|
|
|
if (batch->bo == batch->exec_bos[0])
|
|
batch->primary_batch_size = batch_size;
|
|
|
|
batch->total_chained_batch_size += batch_size;
|
|
}
|
|
|
|
void
|
|
iris_chain_to_new_batch(struct iris_batch *batch)
|
|
{
|
|
uint32_t *cmd = batch->map_next;
|
|
uint64_t *addr = batch->map_next + 4;
|
|
batch->map_next += 12;
|
|
|
|
record_batch_sizes(batch);
|
|
|
|
/* No longer held by batch->bo, still held by validation list */
|
|
iris_bo_unreference(batch->bo);
|
|
create_batch(batch);
|
|
|
|
/* Emit MI_BATCH_BUFFER_START to chain to another batch. */
|
|
*cmd = (0x31 << 23) | (1 << 8) | (3 - 2);
|
|
*addr = batch->bo->address;
|
|
}
|
|
|
|
static void
|
|
add_aux_map_bos_to_batch(struct iris_batch *batch)
|
|
{
|
|
void *aux_map_ctx = iris_bufmgr_get_aux_map_context(batch->screen->bufmgr);
|
|
if (!aux_map_ctx)
|
|
return;
|
|
|
|
uint32_t count = intel_aux_map_get_num_buffers(aux_map_ctx);
|
|
ensure_exec_obj_space(batch, count);
|
|
intel_aux_map_fill_bos(aux_map_ctx,
|
|
(void**)&batch->exec_bos[batch->exec_count], count);
|
|
for (uint32_t i = 0; i < count; i++) {
|
|
struct iris_bo *bo = batch->exec_bos[batch->exec_count];
|
|
add_bo_to_batch(batch, bo, false);
|
|
}
|
|
}
|
|
|
|
static void
|
|
finish_seqno(struct iris_batch *batch)
|
|
{
|
|
struct iris_fine_fence *sq = iris_fine_fence_new(batch, IRIS_FENCE_END);
|
|
if (!sq)
|
|
return;
|
|
|
|
iris_fine_fence_reference(batch->screen, &batch->last_fence, sq);
|
|
iris_fine_fence_reference(batch->screen, &sq, NULL);
|
|
}
|
|
|
|
/**
|
|
* Terminate a batch with MI_BATCH_BUFFER_END.
|
|
*/
|
|
static void
|
|
iris_finish_batch(struct iris_batch *batch)
|
|
{
|
|
const struct intel_device_info *devinfo = &batch->screen->devinfo;
|
|
|
|
if (devinfo->ver == 12 && batch->name == IRIS_BATCH_RENDER) {
|
|
/* We re-emit constants at the beginning of every batch as a hardware
|
|
* bug workaround, so invalidate indirect state pointers in order to
|
|
* save ourselves the overhead of restoring constants redundantly when
|
|
* the next render batch is executed.
|
|
*/
|
|
iris_emit_pipe_control_flush(batch, "ISP invalidate at batch end",
|
|
PIPE_CONTROL_INDIRECT_STATE_POINTERS_DISABLE |
|
|
PIPE_CONTROL_STALL_AT_SCOREBOARD |
|
|
PIPE_CONTROL_CS_STALL);
|
|
}
|
|
|
|
add_aux_map_bos_to_batch(batch);
|
|
|
|
finish_seqno(batch);
|
|
|
|
trace_intel_end_batch(&batch->trace, batch, batch->name);
|
|
|
|
/* Emit MI_BATCH_BUFFER_END to finish our batch. */
|
|
uint32_t *map = batch->map_next;
|
|
|
|
map[0] = (0xA << 23);
|
|
|
|
batch->map_next += 4;
|
|
|
|
record_batch_sizes(batch);
|
|
}
|
|
|
|
/**
|
|
* Replace our current GEM context with a new one (in case it got banned).
|
|
*/
|
|
static bool
|
|
replace_kernel_ctx(struct iris_batch *batch)
|
|
{
|
|
struct iris_screen *screen = batch->screen;
|
|
struct iris_bufmgr *bufmgr = screen->bufmgr;
|
|
|
|
if (batch->has_engines_context) {
|
|
struct iris_context *ice = batch->ice;
|
|
int priority = iris_kernel_context_get_priority(bufmgr, batch->ctx_id);
|
|
uint32_t old_ctx = batch->ctx_id;
|
|
int new_ctx = iris_create_engines_context(ice, priority);
|
|
if (new_ctx < 0)
|
|
return false;
|
|
iris_foreach_batch(ice, bat) {
|
|
bat->ctx_id = new_ctx;
|
|
/* Notify the context that state must be re-initialized. */
|
|
iris_lost_context_state(bat);
|
|
}
|
|
iris_destroy_kernel_context(bufmgr, old_ctx);
|
|
} else {
|
|
uint32_t new_ctx = iris_clone_hw_context(bufmgr, batch->ctx_id);
|
|
if (!new_ctx)
|
|
return false;
|
|
|
|
iris_destroy_kernel_context(bufmgr, batch->ctx_id);
|
|
batch->ctx_id = new_ctx;
|
|
|
|
/* Notify the context that state must be re-initialized. */
|
|
iris_lost_context_state(batch);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
enum pipe_reset_status
|
|
iris_batch_check_for_reset(struct iris_batch *batch)
|
|
{
|
|
struct iris_screen *screen = batch->screen;
|
|
enum pipe_reset_status status = PIPE_NO_RESET;
|
|
struct drm_i915_reset_stats stats = { .ctx_id = batch->ctx_id };
|
|
|
|
if (intel_ioctl(screen->fd, DRM_IOCTL_I915_GET_RESET_STATS, &stats))
|
|
DBG("DRM_IOCTL_I915_GET_RESET_STATS failed: %s\n", strerror(errno));
|
|
|
|
if (stats.batch_active != 0) {
|
|
/* A reset was observed while a batch from this hardware context was
|
|
* executing. Assume that this context was at fault.
|
|
*/
|
|
status = PIPE_GUILTY_CONTEXT_RESET;
|
|
} else if (stats.batch_pending != 0) {
|
|
/* A reset was observed while a batch from this context was in progress,
|
|
* but the batch was not executing. In this case, assume that the
|
|
* context was not at fault.
|
|
*/
|
|
status = PIPE_INNOCENT_CONTEXT_RESET;
|
|
}
|
|
|
|
if (status != PIPE_NO_RESET) {
|
|
/* Our context is likely banned, or at least in an unknown state.
|
|
* Throw it away and start with a fresh context. Ideally this may
|
|
* catch the problem before our next execbuf fails with -EIO.
|
|
*/
|
|
replace_kernel_ctx(batch);
|
|
}
|
|
|
|
return status;
|
|
}
|
|
|
|
static void
|
|
move_syncobj_to_batch(struct iris_batch *batch,
|
|
struct iris_syncobj **p_syncobj,
|
|
unsigned flags)
|
|
{
|
|
struct iris_bufmgr *bufmgr = batch->screen->bufmgr;
|
|
|
|
if (!*p_syncobj)
|
|
return;
|
|
|
|
bool found = false;
|
|
util_dynarray_foreach(&batch->syncobjs, struct iris_syncobj *, s) {
|
|
if (*p_syncobj == *s) {
|
|
found = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!found)
|
|
iris_batch_add_syncobj(batch, *p_syncobj, flags);
|
|
|
|
iris_syncobj_reference(bufmgr, p_syncobj, NULL);
|
|
}
|
|
|
|
static void
|
|
update_bo_syncobjs(struct iris_batch *batch, struct iris_bo *bo, bool write)
|
|
{
|
|
struct iris_screen *screen = batch->screen;
|
|
struct iris_bufmgr *bufmgr = screen->bufmgr;
|
|
struct iris_context *ice = batch->ice;
|
|
|
|
/* Make sure bo->deps is big enough */
|
|
if (screen->id >= bo->deps_size) {
|
|
int new_size = screen->id + 1;
|
|
bo->deps = realloc(bo->deps, new_size * sizeof(bo->deps[0]));
|
|
memset(&bo->deps[bo->deps_size], 0,
|
|
sizeof(bo->deps[0]) * (new_size - bo->deps_size));
|
|
|
|
bo->deps_size = new_size;
|
|
}
|
|
|
|
/* When it comes to execbuf submission of non-shared buffers, we only need
|
|
* to care about the reads and writes done by the other batches of our own
|
|
* screen, and we also don't care about the reads and writes done by our
|
|
* own batch, although we need to track them. Just note that other places of
|
|
* our code may need to care about all the operations done by every batch
|
|
* on every screen.
|
|
*/
|
|
struct iris_bo_screen_deps *bo_deps = &bo->deps[screen->id];
|
|
int batch_idx = batch->name;
|
|
|
|
/* Make our batch depend on additional syncobjs depending on what other
|
|
* batches have been doing to this bo.
|
|
*
|
|
* We also look at the dependencies set by our own batch since those could
|
|
* have come from a different context, and apps don't like it when we don't
|
|
* do inter-context tracking.
|
|
*/
|
|
iris_foreach_batch(ice, batch_i) {
|
|
unsigned i = batch_i->name;
|
|
|
|
/* If the bo is being written to by others, wait for them. */
|
|
if (bo_deps->write_syncobjs[i])
|
|
move_syncobj_to_batch(batch, &bo_deps->write_syncobjs[i],
|
|
I915_EXEC_FENCE_WAIT);
|
|
|
|
/* If we're writing to the bo, wait on the reads from other batches. */
|
|
if (write)
|
|
move_syncobj_to_batch(batch, &bo_deps->read_syncobjs[i],
|
|
I915_EXEC_FENCE_WAIT);
|
|
}
|
|
|
|
struct iris_syncobj *batch_syncobj =
|
|
iris_batch_get_signal_syncobj(batch);
|
|
|
|
/* Update bo_deps depending on what we're doing with the bo in this batch
|
|
* by putting the batch's syncobj in the bo_deps lists accordingly. Only
|
|
* keep track of the last time we wrote to or read the BO.
|
|
*/
|
|
if (write) {
|
|
iris_syncobj_reference(bufmgr, &bo_deps->write_syncobjs[batch_idx],
|
|
batch_syncobj);
|
|
} else {
|
|
iris_syncobj_reference(bufmgr, &bo_deps->read_syncobjs[batch_idx],
|
|
batch_syncobj);
|
|
}
|
|
}
|
|
|
|
static void
|
|
update_batch_syncobjs(struct iris_batch *batch)
|
|
{
|
|
struct iris_bufmgr *bufmgr = batch->screen->bufmgr;
|
|
simple_mtx_t *bo_deps_lock = iris_bufmgr_get_bo_deps_lock(bufmgr);
|
|
|
|
simple_mtx_lock(bo_deps_lock);
|
|
|
|
for (int i = 0; i < batch->exec_count; i++) {
|
|
struct iris_bo *bo = batch->exec_bos[i];
|
|
bool write = BITSET_TEST(batch->bos_written, i);
|
|
|
|
if (bo == batch->screen->workaround_bo)
|
|
continue;
|
|
|
|
update_bo_syncobjs(batch, bo, write);
|
|
}
|
|
simple_mtx_unlock(bo_deps_lock);
|
|
}
|
|
|
|
/**
|
|
* Submit the batch to the GPU via execbuffer2.
|
|
*/
|
|
static int
|
|
submit_batch(struct iris_batch *batch)
|
|
{
|
|
iris_bo_unmap(batch->bo);
|
|
|
|
struct drm_i915_gem_exec_object2 *validation_list =
|
|
malloc(batch->exec_count * sizeof(*validation_list));
|
|
|
|
unsigned *index_for_handle =
|
|
calloc(batch->max_gem_handle + 1, sizeof(unsigned));
|
|
|
|
unsigned validation_count = 0;
|
|
for (int i = 0; i < batch->exec_count; i++) {
|
|
struct iris_bo *bo = iris_get_backing_bo(batch->exec_bos[i]);
|
|
assert(bo->gem_handle != 0);
|
|
|
|
bool written = BITSET_TEST(batch->bos_written, i);
|
|
unsigned prev_index = index_for_handle[bo->gem_handle];
|
|
if (prev_index > 0) {
|
|
if (written)
|
|
validation_list[prev_index].flags |= EXEC_OBJECT_WRITE;
|
|
} else {
|
|
index_for_handle[bo->gem_handle] = validation_count;
|
|
validation_list[validation_count] =
|
|
(struct drm_i915_gem_exec_object2) {
|
|
.handle = bo->gem_handle,
|
|
.offset = bo->address,
|
|
.flags = bo->real.kflags | (written ? EXEC_OBJECT_WRITE : 0) |
|
|
(iris_bo_is_external(bo) ? 0 : EXEC_OBJECT_ASYNC),
|
|
};
|
|
++validation_count;
|
|
}
|
|
}
|
|
|
|
free(index_for_handle);
|
|
|
|
if (INTEL_DEBUG(DEBUG_BATCH | DEBUG_SUBMIT)) {
|
|
dump_fence_list(batch);
|
|
dump_bo_list(batch);
|
|
}
|
|
|
|
if (INTEL_DEBUG(DEBUG_BATCH)) {
|
|
decode_batch(batch);
|
|
}
|
|
|
|
/* The requirement for using I915_EXEC_NO_RELOC are:
|
|
*
|
|
* The addresses written in the objects must match the corresponding
|
|
* reloc.address which in turn must match the corresponding
|
|
* execobject.offset.
|
|
*
|
|
* Any render targets written to in the batch must be flagged with
|
|
* EXEC_OBJECT_WRITE.
|
|
*
|
|
* To avoid stalling, execobject.offset should match the current
|
|
* address of that object within the active context.
|
|
*/
|
|
struct drm_i915_gem_execbuffer2 execbuf = {
|
|
.buffers_ptr = (uintptr_t) validation_list,
|
|
.buffer_count = validation_count,
|
|
.batch_start_offset = 0,
|
|
/* This must be QWord aligned. */
|
|
.batch_len = ALIGN(batch->primary_batch_size, 8),
|
|
.flags = batch->exec_flags |
|
|
I915_EXEC_NO_RELOC |
|
|
I915_EXEC_BATCH_FIRST |
|
|
I915_EXEC_HANDLE_LUT,
|
|
.rsvd1 = batch->ctx_id, /* rsvd1 is actually the context ID */
|
|
};
|
|
|
|
if (num_fences(batch)) {
|
|
execbuf.flags |= I915_EXEC_FENCE_ARRAY;
|
|
execbuf.num_cliprects = num_fences(batch);
|
|
execbuf.cliprects_ptr =
|
|
(uintptr_t)util_dynarray_begin(&batch->exec_fences);
|
|
}
|
|
|
|
int ret = 0;
|
|
if (!batch->screen->devinfo.no_hw &&
|
|
intel_ioctl(batch->screen->fd, DRM_IOCTL_I915_GEM_EXECBUFFER2, &execbuf))
|
|
ret = -errno;
|
|
|
|
for (int i = 0; i < batch->exec_count; i++) {
|
|
struct iris_bo *bo = batch->exec_bos[i];
|
|
|
|
bo->idle = false;
|
|
bo->index = -1;
|
|
|
|
iris_get_backing_bo(bo)->idle = false;
|
|
|
|
iris_bo_unreference(bo);
|
|
}
|
|
|
|
free(validation_list);
|
|
|
|
return ret;
|
|
}
|
|
|
|
const char *
|
|
iris_batch_name_to_string(enum iris_batch_name name)
|
|
{
|
|
const char *names[IRIS_BATCH_COUNT] = {
|
|
[IRIS_BATCH_RENDER] = "render",
|
|
[IRIS_BATCH_COMPUTE] = "compute",
|
|
[IRIS_BATCH_BLITTER] = "blitter",
|
|
};
|
|
return names[name];
|
|
}
|
|
|
|
/**
|
|
* Flush the batch buffer, submitting it to the GPU and resetting it so
|
|
* we're ready to emit the next batch.
|
|
*/
|
|
void
|
|
_iris_batch_flush(struct iris_batch *batch, const char *file, int line)
|
|
{
|
|
struct iris_screen *screen = batch->screen;
|
|
struct iris_context *ice = batch->ice;
|
|
|
|
/* If a fence signals we need to flush it. */
|
|
if (iris_batch_bytes_used(batch) == 0 && !batch->contains_fence_signal)
|
|
return;
|
|
|
|
iris_measure_batch_end(ice, batch);
|
|
|
|
iris_finish_batch(batch);
|
|
|
|
update_batch_syncobjs(batch);
|
|
|
|
if (INTEL_DEBUG(DEBUG_BATCH | DEBUG_SUBMIT | DEBUG_PIPE_CONTROL)) {
|
|
const char *basefile = strstr(file, "iris/");
|
|
if (basefile)
|
|
file = basefile + 5;
|
|
|
|
fprintf(stderr, "%19s:%-3d: %s batch [%u] flush with %5db (%0.1f%%) "
|
|
"(cmds), %4d BOs (%0.1fMb aperture)\n",
|
|
file, line, iris_batch_name_to_string(batch->name), batch->ctx_id,
|
|
batch->total_chained_batch_size,
|
|
100.0f * batch->total_chained_batch_size / BATCH_SZ,
|
|
batch->exec_count,
|
|
(float) batch->aperture_space / (1024 * 1024));
|
|
|
|
}
|
|
|
|
uint64_t start_ts = intel_ds_begin_submit(batch->ds);
|
|
uint64_t submission_id = batch->ds->submission_id;
|
|
int ret = submit_batch(batch);
|
|
intel_ds_end_submit(batch->ds, start_ts);
|
|
|
|
/* When batch submission fails, our end-of-batch syncobj remains
|
|
* unsignalled, and in fact is not even considered submitted.
|
|
*
|
|
* In the hang recovery case (-EIO) or -ENOMEM, we recreate our context and
|
|
* attempt to carry on. In that case, we need to signal our syncobj,
|
|
* dubiously claiming that this batch completed, because future batches may
|
|
* depend on it. If we don't, then execbuf would fail with -EINVAL for
|
|
* those batches, because they depend on a syncobj that's considered to be
|
|
* "never submitted". This would lead to an abort(). So here, we signal
|
|
* the failing batch's syncobj to try and allow further progress to be
|
|
* made, knowing we may have broken our dependency tracking.
|
|
*/
|
|
if (ret < 0)
|
|
iris_syncobj_signal(screen->bufmgr, iris_batch_get_signal_syncobj(batch));
|
|
|
|
batch->exec_count = 0;
|
|
batch->max_gem_handle = 0;
|
|
batch->aperture_space = 0;
|
|
|
|
util_dynarray_foreach(&batch->syncobjs, struct iris_syncobj *, s)
|
|
iris_syncobj_reference(screen->bufmgr, s, NULL);
|
|
util_dynarray_clear(&batch->syncobjs);
|
|
|
|
util_dynarray_clear(&batch->exec_fences);
|
|
|
|
if (INTEL_DEBUG(DEBUG_SYNC)) {
|
|
dbg_printf("waiting for idle\n");
|
|
iris_bo_wait_rendering(batch->bo); /* if execbuf failed; this is a nop */
|
|
}
|
|
|
|
if (u_trace_context_actively_tracing(&ice->ds.trace_context))
|
|
iris_utrace_flush(batch, submission_id);
|
|
|
|
/* Start a new batch buffer. */
|
|
iris_batch_reset(batch);
|
|
|
|
/* EIO means our context is banned. In this case, try and replace it
|
|
* with a new logical context, and inform iris_context that all state
|
|
* has been lost and needs to be re-initialized. If this succeeds,
|
|
* dubiously claim success...
|
|
* Also handle ENOMEM here.
|
|
*/
|
|
if ((ret == -EIO || ret == -ENOMEM) && replace_kernel_ctx(batch)) {
|
|
if (batch->reset->reset) {
|
|
/* Tell gallium frontends the device is lost and it was our fault. */
|
|
batch->reset->reset(batch->reset->data, PIPE_GUILTY_CONTEXT_RESET);
|
|
}
|
|
|
|
ret = 0;
|
|
}
|
|
|
|
if (ret < 0) {
|
|
#ifdef DEBUG
|
|
const bool color = INTEL_DEBUG(DEBUG_COLOR);
|
|
fprintf(stderr, "%siris: Failed to submit batchbuffer: %-80s%s\n",
|
|
color ? "\e[1;41m" : "", strerror(-ret), color ? "\e[0m" : "");
|
|
#endif
|
|
abort();
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Does the current batch refer to the given BO?
|
|
*
|
|
* (In other words, is the BO in the current batch's validation list?)
|
|
*/
|
|
bool
|
|
iris_batch_references(struct iris_batch *batch, struct iris_bo *bo)
|
|
{
|
|
return find_exec_index(batch, bo) != -1;
|
|
}
|
|
|
|
/**
|
|
* Updates the state of the noop feature. Returns true if there was a noop
|
|
* transition that led to state invalidation.
|
|
*/
|
|
bool
|
|
iris_batch_prepare_noop(struct iris_batch *batch, bool noop_enable)
|
|
{
|
|
if (batch->noop_enabled == noop_enable)
|
|
return 0;
|
|
|
|
batch->noop_enabled = noop_enable;
|
|
|
|
iris_batch_flush(batch);
|
|
|
|
/* If the batch was empty, flush had no effect, so insert our noop. */
|
|
if (iris_batch_bytes_used(batch) == 0)
|
|
iris_batch_maybe_noop(batch);
|
|
|
|
/* We only need to update the entire state if we transition from noop ->
|
|
* not-noop.
|
|
*/
|
|
return !batch->noop_enabled;
|
|
}
|